
Glue Semantics as Dominance Constraints

Master’s Thesis

Advisors: Dr. Alexander Koller
Prof. Dr. Manfred Pinkal

Étienne Ailloud
M.Sc. Language Science and Technology

Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik

Universität des Saarlandes

Saarbrücken, 18/05/2007

Erklärung

Ich erkläre an Eides statt, daß ich die Masterarbeit mit dem Titel Glue Seman-
tics as Dominance Constraints selbständig und ohne fremde Hilfe verfaßt, andere
als die angegebenen Quellen und Hilfsmittel nicht benutzt und alle den benutz-
ten Quellen wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe.

Saarbrücken, den 18. Mai 2007

Étienne Ailloud

iv

v

Abstract

The choice of a suitable semantic representation is crucial in many natural lan-
guage processing applications. Since sentences of a corpus often have a large num-
ber of interpretations according to the syntax-semantics interface, it is a sensible
choice to avoid the enumeration of all the possible readings by using a concise
representation leaving interpretations unspecified, in a first step. Among these
underspecification approaches, different formalisms coexist.

Dominance Constraints refers to a family of logical languages that describe
trees via constraints. It enjoys the visually intuitive instance of dominance graphs,
as well as an efficient solving algorithm for a linguistically relevant fragment.

Glue Semantics is a semantic formalism whose meaning construction process
is akin to a proof. Underspecification is implicit in Glue Semantics, and is induced
by the multiplicity of proofs from given hypotheses.

Translations between underspecification formalisms are important to make the
underspecification mechanisms in each more apparent, and to allow each one to
benefit from the advantages of the others.

This thesis defines a translation between Glue Semantics and Dominance Con-
straints, and proves it sound. It thereby reveals the implicit underspecification of
semantic representation in Glue Semantics, and implies the existence of an efficient
solving algorithm for a fragment of Glue Semantics. It thus fills a gap between
the two formalisms.

vi

Contents

1 Introduction 1
1.1 Ambiguity in semantic formalisms 1
1.2 Underspecification . 2
1.3 Translations between semantic formalisms 4
1.4 Contribution . 4
1.5 Outline of the thesis . 6

2 Dominance Constraints 7
2.1 Introduction . 7
2.2 Definitions . 10

2.2.1 Trees and tree descriptions 10
2.2.2 Solutions . 12
2.2.3 Well-formedness . 12

2.3 Utilising Dominance Constraints 14
2.3.1 A piece of syntax-semantics interface 14
2.3.2 Construction . 15
2.3.3 Solving Dominance Constraints 16

3 Glue Semantics 19
3.1 Introduction . 19
3.2 “LFG’s semantics” . 22

3.2.1 Layer structure . 22
3.2.2 Instantiation of generic entries 23
3.2.3 The two facets of the lexicon 24

3.3 Linear Logic . 25
3.3.1 A different paradigm . 25
3.3.2 The Curry-Howard Isomorphism 27

3.4 The semantics of gluing . 28
3.5 The Glue version used here . 31

3.5.1 Core Glue . 31
3.5.2 Structural definitions . 32
3.5.3 Polarity . 32
3.5.4 Normalisation . 35

3.6 Glue treatment of classic phenomena 36

vii

viii CONTENTS

4 Translations 41
4.1 Introduction . 41
4.2 From Hole Semantics to Dominance Constraints 42

4.2.1 Hole Semantics . 42
4.2.2 Translation . 43
4.2.3 Towards the Net Hypothesis 44

4.3 From MRS to Dominance Constraints 44
4.3.1 Minimal Recursion Semantics 45
4.3.2 Translation . 47

4.4 Other examples . 48

5 Contribution 49
5.1 Introduction . 49
5.2 Formal preliminaries . 52

5.2.1 Theoretical Assumptions on Glue 53
5.2.2 Glue and quantifiers . 54
5.2.3 Modelling derivation trees 56

5.3 The translation itself . 59
5.3.1 Translation—fragments . 60
5.3.2 Properties of the labelling constraints 64
5.3.3 Weak local soundness . 69
5.3.4 Translation—proper dominance 73

5.4 Results . 76
5.4.1 Normality . 77
5.4.2 Polarity . 78
5.4.3 Soundness . 80

5.5 Conclusion: completeness? . 83

6 Conclusion 85
6.1 Wrapping up . 85
6.2 Open issues, future work . 85

Chapter 1

Introduction

1.1 Ambiguity in semantic formalisms

Meaning is important to many applications of natural language processing. Di-
verse semantic formalisms have been created to represent the meaning of natural
languages utterances. But even with an operational formalism, meaning cannot
be always uniquely determined: Ambiguities are inherent to natural language.

To illustrate the issue, we consider a particular sentence:

(1.1) Every woman loves a man.

There are two different readings of this notoriously ambiguous sentence.1 We state
both of them using a standard first-order logical form:

(1.2) (a) ∀x (woman(x) → ∃y (man(y) ∧ love(x, y))) (∀∃)

(b) ∃y (man(y) ∧ ∀x (woman(x) → love(x, y))) (∃∀)

This particular sentence may be an easy case for semantic theories (the two read-
ings simply corresponds to twofold alternation between the two quantifiers), but
real-life sentences do trigger ambiguity in many occasions.

In fact, the number of readings may grow exponentially in the number of
ambiguity triggering configurations (the most basic example being quantifiers). A
particularly pathological example from the Rondane Treebank has 2.4 ·1012 “read-
ings”, although the sentence (But that would give us all day by Tuesday) looks
rather harmless. The design of the syntax-semantics interface is there responsible
for the numerous syntactic configurations which may trigger ambiguity. In any
case there are too many to apprehend (and process) all readings reasonably. Even
when less problematic sentences are considered, the space of possible readings
remains a major problem for actual systems.

In either case, be the ambiguity genuinely semantic as in example (1.1) or a
design idiosyncrasy in a syntax-semantics interface, the multiplicity of readings

1At least for semantic theories. The distinct readings of a semantically ambiguous sentence do
not necessary appeal to anybody’s intuition. Semantic theories actually dictate which readings
should be taken into account by a “reasonable” model. It is not always clear how human readers
are supposed to accommodate all distinct readings of a “pathological” sentence, for instance
Someone may fool a single person a thousand times, or fool a thousand persons a single time,

but nobody may fool a thousand persons a thousand times.

1

2 CHAPTER 1. INTRODUCTION

must be taken in consideration. The classic approach to ambiguity is the enumer-
ation of all readings (resolution) before meaning construction. This means that
this step is somehow accommodated in the syntax-semantics interface (an example
thereof is Cooper Storage, cf. [Kel88]), which implies that meaning construction
can become exponentially costly.

In this case, the construction of a semantic representation required by some
natural language system may have drastic consequences on its performances. It
is therefore crucial to provide an alternative to avoid this costly enumeration of
readings.

Underspecification is a paradigm that addresses this problem.

1.2 Context: Underspecification formalisms

The underspecification approach is different from the resolution in that it
allows not to enumerate all readings in a first step. To achieve this it provides
a concise semantic representation of a sentence that is not yet committed to any
reading. Enumeration of readings can then be performed a posteriori, as a genuine
semantic step.

Implementing underspecification. For our previous example, we would like
a compact representation for both the ∀∃ and the ∃∀ reading, to be derived from
the syntactic parse tree alone, given below:

S

NP1

Det

every

N

woman

VP

TV

loves

NP2

Det

a

N

man

(1.3)

A closer look at meaning representations for the two readings (1.1) shows that
different parts of the logical representations contribute to different semantic func-
tions, and correspond in both representations. Though it may not be particularly
striking in the “flat” form of the logical formulas (focussing on the two quantified
noun phrases, respectively):

(a) ∀x (woman(x) → ∃y (man(y)∧love(x, y)))

(b) ∃y (man(y)∧ ∀x (woman(x) → love(x, y))),

in the canonical tree structures of those formulas (figure 1.1), partial subtrees are
found in both readings, but at different places.

Thus, a meaning representation consisting of the different subtrees as meaning
chunks, together with a description of how they may be combined would be a
good candidate for an underspecified representation. Most underspecification for-
malisms contain some structures representing meaning elements as well as rules
for their possible combinations.

1.2. UNDERSPECIFICATION 3

∀ •

→ •

woman •

x •

∃ •

∧ •

man •

y •

love •

x • y •

∃ •

∧ •

man •

y •

∀ •

→ •

woman •

x •

love •

x • y •

Every woman

∀ •

→ •

woman •

x •

•

∃ •

∧ •

man •

y •

•

A man

Figure 1.1: Tree representations for the two readings of Every woman loves a man.
The respective contributions of the two quantifiers are extracted from definite parts
of the tree.

This generic principle for underspecification formalisms can be found in a num-
ber approaches found in the literature, but we focus in this thesis only two for-
malisms: Dominance Constraints and Glue Semantics, which we describe
briefly.

Dominance Constraints. The bottom line to the Dominance Constraints ap-
proach (see [EKN01]) is that trees can be described by constraints, but also only
partially described, which very naturally yields underspecification. Therefore a
metalanguage over tree representations has been designed in order to be used
within the framework of Constraint Programming.

Dominance Constraints also offer the advantage of having intuitive represen-
tations: the dominance graphs. Everything needed to represent meaning is there
present in a single drawing: the tree labelling structure, as well as the meta-
language for producing actual representations (viz. trees).

Moreover, the dominance graph version enjoys a very efficient solving algo-
rithm, making dominance graphs the most useful objects for ambiguity resolution.

Glue Semantics. In a nutshell, Glue Semantics (see [Dal01]) is a description
of how semantic resources are used—consumed and produced. It can be seen as a
metalanguage which is borrowed from Proof Theory. In particular, it is based on
Linear Logic and the Curry-Howard Isomorphism.

In Glue Semantics, meaning construction is tantamount to performing a proof.
The only constraint is thus for the proof to be valid in the chosen proof system.
Then ambiguity can be seen as the multiplicity of proofs and its resolution as the
choice of a valid proof.

An important aspect, thus, is that contrary to dominance graphs, the under-
specification of Glue Semantics representations is only implicit : All the material

4 CHAPTER 1. INTRODUCTION

needed for the proof (viz. the hypotheses) constitutes such a representation. In-
deed, we argue in this work that Glue has got (implicit) devices for representing
(and solving) ambiguity, which are made explicit using dominance graphs.

1.3 Translations between semantic formalisms

Due to the great variety of different semantic formalisms, the need for translations
between them arise frequently. It is therefore important to find reliable translation
mechanisms which should have the following properties:

• Soundness, i.e. everything the translation output is a proper representation
with proper solutions;

• Completeness, i.e. all expected readings are given by the output (in other
words the translation is expressive enough).

Providing a translation mechanism also offers some advantages. Firstly, by
revealing, through a translation, the mechanisms dealing with ambiguity in each
single formalism, we are able to corroborate the rough idea that the different
underspecification formalisms basically share similar means of representing am-
biguity, since they separate in a similar way the mechanisms for representing
meaning parts and those for assembling these elements (thus specifying scope,
i.e., constraints on how to combine the meaning parts).

In this way, pieces of meaning may be mapped together, while assembly mech-
anisms can be compared.

Secondly, translations also constitute a possible way of combining advantages
from different formalisms. While the dominance constraints approach enjoys in-
tuitive graphs and efficient algorithms, Glue Semantics enjoys the computational
insights inherited from the Curry-Howard Correspondence, and offers a very sim-
ple and unique composition process (the eponymous “gluing”).

1.4 Contribution

The main contribution of our work was to provide a mechanism for translating
Glue Semantics representations into dominance graphs. A visual idea of the proof
is given in figure 1.2. We show in particular that a similarity can be found be-
tween the dominance relation between fragments of a dominance graph (top of
figure 1.2: dotted edges) and the conclusion/premiss opposition (i.e., depen-
dency of pieces of logical material on each other) between Glue axioms (bottom
of figure 1.2: root of fragment and assumed subproofs of W and M).

In addition to the translation mechanism, we also give a formal proof of its
soundness, i.e. that all of its outputs are dominance constraints that, firstly: are
well-formed; secondly: behave as expected, in that they only admit solutions that
correspond to solutions of Glue representations.

Additionally, we introduce our translation mechanism in the context of similar
works, thus giving a more generic idea of the possible extension of our translation
to other paradigms.

1.4. CONTRIBUTION 5

Glue Semantics

woman (man (love [woman]

man (love [man]

love

(woman (W) (W
W

woman (W
W

(man (M) (M
M

man (M
M

∀ •

→ •

woman •

x •

•

∃ •

∧ •

man •

y •

•

love •

x • y •

Dominance Constraints

Figure 1.2: A graphical idea of how a translation may work, run on the semanti-
cally ambiguous sentence Every woman loves a man.
Both M and W may be substituted with love and with each other, so that both
subproofs may be used in either order.
Likewise, each dominating tree may be plugged on top of the other.

6 CHAPTER 1. INTRODUCTION

1.5 Outline of the thesis

This thesis is organised in the following manner. Chapter 2 will present Dominance
Constraints and its usage in underspecified computational semantics. Chapter 3
will focus on Glue Semantics and its resource-conscious treatment of meaning.
Other similar and important works will be briefly presented in chapter 4. The most
important part (chapter 5) will expose the work achieved towards the translation
aforementioned. Finally, chapter 6 wraps up and gives hints at potential future
extensions of the contribution.

Chapter 2

A closer look on Dominance
Constraints

2.1 Introduction

Coping with ambiguity. The first formalism we present has its origins in
computer science, namely in the Constraint Programming paradigm.

Its application to natural language processing, and more specifically, to under-
specified semantics, lies in the following observation.

Traditionally, different readings for a semantically ambiguous sentence yield
distinct meaning representations. Let us return to the ambiguous sentence from
the introduction:

(2.1) Every woman loves a man.

Its two distinct readings may be represented by the following first-order logical
formulas:

1. ∀x(woman(x) → ∃y(man(y) ∧ love(x, y))) and

2. ∃y(man(y) ∧ ∀x(woman(x) → love(x, y))).

The tree is a more familiar concept in computational linguistics, and by looking at
the structures induced by the formulas (figure 2.1), one notices that only disjoint
fragments of each tree need to be rearranged to switch from a reading to the other.
The Constraint Language for Lambda-Structures provides the logical material for
such a description.

In fact, one can be more accurate than that: The two fragments corresponding
to both quantified noun phrases (henceforth QNP) are in each configuration above
the fragment modelling the transitive verb. Besides, in one configuration the
every woman fragment is located above the a man fragment (wide scope for every
woman) and in the other configuration the converse happens (wide scope for a
man).

This is precisely what the language DI of Dominance Constraints is able to
model. Identifying several parts of trees and describing how they may rearrange
is the keynote of Dominance Constraints in general.

The dominance (“aboveness”) relation in a tree (model-theoretically: in a tree
structure) is herein used to interpret the symbol �

∗ of domination between two

7

8 CHAPTER 2. DOMINANCE CONSTRAINTS

∀ •

→ •

woman •

x •

∃ •

∧ •

man •

y •

love •

x • y •

∃ •

∧ •

man •

y •

∀ •

→ •

woman •

x •

love •

x • y •

Figure 2.1: Representations for the two readings of Every woman loves a man.1

constraint nodes, transcribed on the dominance graph by the dotted straight
lines (figure 2.2): We can check that each of the tree (structure) from figure 2.1
indeed is modelled by the structure from figure 2.2).

∀ •

→ •

woman •

var •

•

∃ •

∧ •

man •

var •

•

love •

var • var •

Figure 2.2: An underspecified representation for Every woman loves a man.

Furthermore, the drawing from figure 2.2 is a genuinely underspecified rep-
resentation of the ambiguous sentence, because it deploys the maximum (most
specific) meaning structure without committing to one reading in particular. And
in doing so it avoids the (here limited) combinatorial explosion of fully specified
syntax-semantics interfaces, mentioned in the introduction (§1.2).

A tiny syntax-semantics interface examplifying the treatment of a few linguistic
phenomena is exposed in subsection 2.3.

Resolving ambiguity. Retrieving all possible readings will be achieved by enu-
merating all solutions of the dominance graph. This new concept requires of
course a theoretical apparatus (§2.2). The latter is inasmuch important as the
generic definition of solution of a dominance constraint is somewhat loose for the

1Actually, binding relations are used instead of variables: dotted curved edges in figure 2.2.
They prove a reliable solution when faced to the usual issues of variable capture. They are
induced by generic binding specifications: for instance, DILλ is the most commonly used for
representing meaning in Dominance Constraints ([Kol04, chap. 2]); it corresponds to how λ-
calculus accommodates variable binding.

Because binding specifications allow to decouple semantic structure from variable binding, the
issue of binding has no influence on the concept of scope resolution. It is thus irrelevant in this
thesis, so we may safely ignore it. The constraints developed in the translation (chap. 5) do not
make use of constraints for binding either, because the Curry-Howard Correspondence implicitly
takes care of it (cf. chapter 3).

2.1. INTRODUCTION 9

sole retrieving of readings for an ambiguous sentence. Any tree that could be em-
bedded in the dominance graph and satisfying the proper dominance constraints
could be a solution thereof, in particular any tree with more nodes. This leads to
an infinite number of actual solutions to any dominance graph representing an am-
biguous sentence. Since it is definitely too many for linguistic purposes, another
concept is introduced, and one will practically restrict oneself to constructive
solutions of a given constraint/graph.2 These solutions are the one that comply
best to our intuitions, since they are required to map every of their nodes to every
node of the dominance graph in a one-to-one fashion. 3

Several algorithms have been given for solving dominance constraints, some-
times with very different approaches ([Kol04, chap. 4]). One of the most efficients
was given that bases on these tree representations ([Kol04, chap. 5]). Most im-
portantly, it is shown to be tractable for a fragment of input constraints that
is conjectured to be representative of “reasonable” syntax-semantics interfaces.
Linguistic application is shortly exposed in section 2.3.

A generic formalism. The grounding idea behind Dominance Constraints is
that constraints are being used for describing how different graphs may interact
with each other to form an adequate meaning representation—a tree. But this is
all very general.

Firstly, a lot of different interacting relations are likely to be expressed for tree
fragments. Secondly, trees may be assigned labels from very different signatures
and thus be given several distinct semantics.4

Therefore, what we will use and refer to as “Dominance Constraints” in the
following (and in particular in our contribution—chapter 5) is but a fragment
of a broader, far more general formalism: the Constraint Language for Lambda
Structures (CLLS, [EKN01]). In fact, one should rather speak of “languages of
dominance constraints”, because the nature of relations between fragments of trees
is manyfold, even for the restricted domain of semantic underspecification.

Different versions of CLLS have been used to model anaphoric relations, for
example, or reinterpretation ([Kol04, chap. 7 & 8]). The constraint language
used here is the one referred to as DI in [Kol04], which may express labelling,
dominance and inequality of tree nodes. That is, one is able to express:

1. a parent-child relation between nodes, as well as the label borne by the
parent;

2. the existence of a path between them, and their relative positions on it;

3. and of course whether nodes are different.

2Another way to limit the number of solutions and the one actually used in solving algorithms
is to consider so-called minimal solved forms of dominance constraints, which are archetypical
for any actual solutions that can be embedded in them. The approaches are equivalent, modulo
well-formedness conditions: normality and leaf-labeledness (cf. §2.2.3 below).

3Some linguistic phenomena may utilise the possibility of having more nodes in solutions as
explicitly required. Reinterpretation of knowledge may play this role. They are used in non-trivial
extensions of dominance constraints (cf. [KNS00], e.g.).

4These two features of the formalism reflect the clear distinction between meaning language
and the metalanguage of description, a important distinction followed by all modern underspec-
ification formalisms (such as Glue Semantics, cf. chapter 3).

10 CHAPTER 2. DOMINANCE CONSTRAINTS

The signature from which labels are taken may differ according to modelling
purposes. Labels canonically used to represent semantic underspecification via
Dominance Constraints, as in [Kol04], use the syntactic material of λ-terms and
higher-order logic.

The one chosen for our purposes (chapter 5) is able to emulate Linear Logic
proof trees, and therefore consists of names of proof rules, with the corresponding
arities.

A dual formalism. The easiest way to look at Dominance Constraints is as
graphs. Indeed, dominance graphs may also be defined that are proved to be
equivalent (at least for scope of the present work) to dominance constraints. That
is, there are two ways of seeing and utilising this formalism:

1. The declarative version of dominance constraints, the logical language;

2. The visual, perhaps more intuitive5 version of dominance graphs, the
graph-theoretical counterpart,

both of which are equivalent, under certain circumstances ([Kol04, chap. 5]).
These circumstances presuppose some new well-formedness notions, ensuring

that the constraints indeed “look like” a tree, and a proper one, too. Such con-
straints will be called normal and are exposed in subsection 2.2.3.

2.2 Definitions

2.2.1 Trees and tree descriptions

Following the distinction between meaning language and metalanguage, we have
to define what we describe and how this description is achieved.

For the “what” part, we will assume labelled trees over a given signature Σ to
be the basic objects—trees in the “classical” sense, as familiar to the computa-
tional semanticist.

However, the notion of solution of a dominance constraint is a model-theoretical
one. So the trees will also be defined as structures over the signature Σ = {f |a(f),
g|a(g), . . .} (often only implicit, though), that specifies which labels decorate the
nodes. The arities a(f), a(g) of the labels may also be implicitly given.6 The set
of vertices Vτ of a tree τ is thus always implicitly interpreted as a unary relation.

But we will speak indifferently of trees or the model-theoretic tree structures
they induce, which canonically interpret �

∗, 6=, etc, so long as confusion is harm-
less. We will also need to uniquely identify the nodes of a tree:

Definition 1 (Node address) Addresses of nodes of a tree (structure) are de-
fined recursively: If n is the root node, it has address ε. Otherwise it is the i-th
child of a node with address u, and has then address ui.

5Beyond seeing dominance graphs as more intuitive just because they are graphs, their inner,
tree-like structure furthermore corresponds to the inner structure of the well-known and widely-
used λ-terms, while their outer structure (the actual dominance edges) provides an insight on
the sentence’s scopal behavior, this already at a glance.

6In the signature chosen in chapter 5, the arities will be those of the modelled deduction rules.

2.2. DEFINITIONS 11

For the “how” part, we will assume some primitive relations on tree nodes, so
that every two nodes are in exactly one of those:

• dominance: starting with the immediate dominance: n�m if m is a child
of n; Canonically induced are the transitive closure thereof: the dominance
�

∗ and the irreflexive version, the strict dominance: �
+. Unless otherwise

mentioned, plain dominance (�∗) will be conventionally understood;

• inequality between nodes (6=);

• disjointness: n ⊥ m if neither of both applies (in which case there is a low-
est node that dominates both n and m—the tree being canonically assigned
a partially ordered structure with the lowest upper bound property).

And starting from this, we can define a dominance constraint over the
signature Σ by the following grammar:

C := A | C ∧C ′ (constraints)
A := X : f(X1, . . . , Xa(f)) | X�

∗X ′ (atoms)

where X, X ′, X1,. . . are (dominance) variables, taken among V(C), the set of
all variables appearing in constraint C.

Atoms of the first type are called labelling atoms, those of the second type
dominance atoms.

A key feature of dominance constraints is their ability to be grasped more easily
in a visual way: The dominance graph from figure 2.2, for instance, is merely an
encoding of dominance constraints as they are exposed above:

1. Dominance variables are encoded as tree nodes;

2. Labelling atoms are encoded as tree edges, connecting nodes with plain
lines, and giving them as outdegrees the atoms’ arities;

3. Dominance atoms are encoded as dominance edges, the straight dotted
lines.7

Besides this, there are a number of precautions one has to take to make this
encoding proper and ensure one can speak indifferently of dominance graphs or
constraints, of their nodes or variables: see §2.2.3.

We mentioned in the introduction (§2.1) that the primary aim of Dominance
Constraints for semantic modelling is to describe how fragments of trees may
rearrange and dominate each other to yield different readings. This very important
notion of fragment (crucial as well for chapter 5) is formally defined here, in both
flavours:

• (constraint) Any of the reachability components {X ∈ V(C); ∃Y (X,Y) ∈
R↔
C }, where RC := {(X,Y); X : f(. . . , Y, . . .) ∈ C for some f ∈ Σ} denotes

the one-step reachability relation and R↔
C the reflexive, transitive and

symmetric closure thereof;

7There would of course be the need of binding atoms that correspond to the round dotted
binding edges, but we chose to forget about binding altogether.

12 CHAPTER 2. DOMINANCE CONSTRAINTS

• (graph) Any connected component of the graph restricted to tree edges.

The following types of variables (or nodes for the graphs) are of great impor-
tance in the subsequent chapters, for dominance atoms will be required to go from
holes to roots only (cf. compacity, §2.2.3). Visually, they are simply encoded as
unlabelled leaves—leaves of the plain-lined trees, of course—and the same roots
as trees’.

Definition 2 A hole of a dominance constraint is an unlabelled variable, i.e. it
does not appear on the left-hand side of any labelling atom. A root is a variable
that does not appear on the right-hand side of any labelling atom.

The root of a tree-shaped (cf. definition 5) fragment F is unique and will be
denoted by R(F).

2.2.2 Solutions

The following definition model-theoretically specifies what solutions of constraints
are: trees over the given signature that can be embedded into the tree parts of
the constraints (the labelling atoms) and fulfilling the dominance parts (the domi-
nance atoms). Constructive solutions further require surjectivity of the embedding
assignment.

Definition 3 (Solution) A tree τ is a solution of the constraint C if there is
a variable assignment α : V(C) → Vτ that makes τ ’s canonical tree structure Mτ

a model of C: (Mτ , α) |= C. It is further a constructive solution if for every
node n of τ , there is a variable X ∈ V(C) such that α(X) = n.

Starting from this, we will allow ourselves to introduce indifferently trees or their
associated tree structures, in particular when dealing with the notion of solution.
Even: to speak of trees as solutions of dominance graphs.

The constraint view is equivalent to the graph view insofar as:

1. the constraint is always canonically interpreted as given in the encoding
above;

2. the constraint is well-formed: this motivates the next subsection.

2.2.3 Well-formedness

Leaf-labeledness is a first well-formedness property. It ensures, as the name sug-
gests, that leaves (viz. variables that do not appear as the head of a labelling
atom) are either labelled or lead to dominance edges: leaves in the broader sense
(including dominance edges) must be labelled, then.

The equivalence of the graph view (more intuitive) and the constraint view
(possibly more expressive) makes use of normality and compactification: Compact
normal dominance constraints are equivalent to dominance graphs, in that their
notions of solution correspond (cf. below).

2.2. DEFINITIONS 13

f • X g • X ′

a • Y b • Z c • W
Overlapping

x x
f • X

a • Y g • Z
x Cyclicity

f • X

• Y
g • Z

• W
Improper dominance

Figure 2.3: Three configurations that are non-normal.

Up to compacity, the properties will be proved fulfilled by the constraints
output by the translation from chapter 5.8

Normality is defined to rule out the pathological cases illustrated in figure 2.3
which indeed we would not want to be allowed as graphs (the third one being
unsuitable for compactification).

Definition 4 (Leaf-labeledness) A constraint C is leaf-labeled if any of its vari-
ables appears on the left-hand side of a labelling or dominance atom.

Definition 5 (Normality) A constraint C is normal if it verifies:

1. (no overlap) There is an atom X 6= Y if X and Y are different variables
that occur as heads of labelling atoms of C;

2. (tree-shaped fragments) Every variable appears at most once as a head and
at most once as a child in a labelling atom in C, and the one-step reachability
relation in C does not allow cycles: its transitive closure R+

C is irreflexive;

3. (dominances out of holes) If X�
∗Y is in C, then X is a hole;

4. (no empty fragments) Every variable in C occurs in a labelling atom.

The first point is easily addressed by explicitly completing those constraints
that satisfy the first three points with inequality atoms: Constraint C 6= is then
defined as

C ∧
∧

{X 6= Y ; X and Y heads of different labelling atoms}.

We see in the three pictures of figure 2.3 how normality is lost:

1. The two binary labelling atoms contradict tree-shapedness, as there are
atoms X : f(Y,Z) and X ′ : f(Z,W), so that Z appears twice as a child;

2. There is a cycle via one-step relations: X : f(Z) ∧ Z : g(X);

3. There is a dominance atom X�
∗W , whereas X is not a hole.

Normal constraints are then proved to be equivalent to dominance graphs, in-
sofar as their notions of solution coincide: They have the same minimal solved
forms ([Kol04, chap. 5]); And minimal solved forms bijectively correspond to con-
structive solutions of a leaf-labeled constraint ([KNT03]).

8Normality and leaf-labeledness of the output constraints of the translation are needed
to ensure the notion of constructive solutions equivalent to that of minimal solved forms
(cf. [KNT03]), which is used by graph algorithms. And normality was necessary for the im-
plementation part (embedding the translation’s output into Utool (cf. §2.3.3)), as outputs of
arbitrary Glue axioms would have to be displayed as dominance graphs.

14 CHAPTER 2. DOMINANCE CONSTRAINTS

Compact dominance constraints are normal dominance constraints that have
depth at most 1, in which every variable is either a root or a hole. They are
formally defined as the constraints in which every variable occurs in exactly one
labelling atom, and where any dominance atom X�

∗Y ’s presence implies that Y
be a root.

This is not the case of many constraints actually built for computational se-
mantics, and is seldom the case for the new type of constraints developed in this
thesis (chap. 5). Nevertheless, there is a straightforward linear time procedure, ex-
posed in [Kol04, chap. 5], that may compactify any normal dominance constraint.9

Hence, it suffices to describe formally the processing of dominance constraints, and
their encoding into dominance graphs, for compact constraints.

Compactified normal constraints are fed to the enumeration/solving algorithm,
in particular the efficient graph-based solver evoked in §2.3.3 below.

2.3 Utilising Dominance Constraints in computational
semantics

We present here a syntax-semantics interface examplifying the linguistic phenom-
ena also covered by the translation developed in this thesis. For this, we assume
given a context-free grammar for English, each of its rules triggering a combina-
tion of the dominance constraints computed so far. As above, it will be given in
the friendlier form of graphs. They uniquely connect to each other via so-called
interface nodes, marked by dotted circles in the rules.

As suggested in the introduction (§2.1), dominance graphs (or constraints)
provide a compact, underspecified representation for semantically ambiguous sen-
tences. Let us see how it may be constructed (§2.3.2), starting from a tiny syntax-
semantics interface (§2.3.1). But the important point remains how to solve domi-
nance graphs and enumerate their solutions, viz. the distinct readings: §2.3.3.

2.3.1 A piece of syntax-semantics interface

Let us assume a context-free toy grammar for English being given, say, sufficient
to parse the semantically ambiguous sentence Every woman loves a man:

(a1) S → NP VP

(a3) VP → TV NP

(a7’) NP → Det N

(a13) α →W if (W,α,C) ∈ Lex

The four items of the syntax-semantics interface from figure 2.4 (taken from a
broader one in [Kol04, chap. 3]) correspond each to a grammar rule:

(a1) Expanding the sentence to a verbal phrase and a subject nominal phrase;

(a3) Expanding the verbal phrase to a transitive verb;

(a7’) Expanding the noun phrase to a determiner and a noun; linking these to-
gether with the adequate dominance.

9It is applied by default for constraints output by all distinct codecs of Utool (cf. §2.3.3).
Although it will not be exposed in details here, this linear time algorithm proceeds by “collapsing”
each fragment into its root and holes—if any, and (since the tree structure is then irrelevant)
by introducing a new global variable standing for the tree structure, then finally by raising the
dominance edges up to those new roots.

2.3. UTILISING DOMINANCE CONSTRAINTS 15

(b1)
@ • S
• VP • NP

(b3)
@ • VP
• TV • NP

(b7’)

@ •

@ •

• Det • N
lam •

•

var • NP

(b13)
C′

• α
where (W,α,C) ∈ Lex and C′ fresh

Figure 2.4: A tiny syntax-semantics interface for Dominance Constraints.
‘@’ denotes λ-application, ‘lam’ λ-abstraction over the variable occurring at ‘var’.

As for the lexicon, Lex contains entries of the form: (W,α,C), where W is the
word, α its lexical category and C the constraint entry. The single node’s con-
straint C ′ in (b13) is then constraint C where all variables have been replaced
with fresh ones, so as to avoid capturing issues. For instance, proper nouns are
raised and require a non-trivial constraint entry (cf. Glue treatment in §3.6).

In each fragment, the interface node, viz. the node through which the single
fragment may communicate with (i.e. plug into) other ones, is the one noted with
the corresponding rule’s head. That is, for those four items: S, VP, NP, and α
(any category).

It is to note here that the interface node for the quantifier fragment is not
its root, but the dominated node standing below the actual tree, nevertheless
coreferential with its λ-node (hence the binding edge). This particularity, as well
as the nodal separation between noun phrase and noun10, is also to be noted in
Glue Semantics (chapter 3). In the end, the determiner triggers the ambiguity
about what meaning its noun takes, not the noun itself! so it seems normal the
determiner should dominate—semantically. But as for the syntax, the NP node is
definitely dominating its noun N.

A broader, more realistic syntax-semantics interface, such as that from [Kol04,
chap. 3], would of course account for many more linguistic phenomena. In partic-
ular, apart from quantifiers, other phenomena likely to trigger scope ambiguity,
such as: prepositional phrases (cf. Every researcher of a company saw most
samples.), sentence-embedding verbs (cf. Every man believes that a student
yawns.), control and raising verbs, or relative phrases (cf. a book that every stu-
dent owns). The first two will actually be rendered by our translation (chapter 5).

2.3.2 Construction: a closer look at (scopal) ambiguity

We already saw in figure 2.2 how the underspecified representation of Every woman
loves a man looks like; let us sketch now how we get there, starting from the
construction rules illustrated in figure 2.4 and the syntactic parse tree:

10For the sake of simplicity, the N was introduced in place of a more general N̄, which would pos-
sibly trigger further dominance edges, say, via an ambiguous adjectival phrase. Such dominances
triggered by the substantive would have nothing to do with that explicitly stated here—intrinsic
to the determiner; therefore their respective interface nodes should not be confounded. In Glue,
this distinction is instantiated by that between the var and the NP resources. In the translation
(chapter 5), these resources are mapped to the same interfaces nodes as here.

16 CHAPTER 2. DOMINANCE CONSTRAINTS

@ •

@ •

• every • woman

lam •

•

var • NP1

@ •

@ •

• a • man

lam •

•

var • NP2

@ • S
@ • VP

• love • NP2

• NP1

Figure 2.5: Construction of dominance constraints: fragments for, respectively:
Every woman, A man and loves.

S

NP1

Det

every

N

woman

VP

TV

loves

NP2

Det

a

N

man

(2.2)

We may start by plugging the quantified noun phrases (QNP) together (b7+b13,
twice), as well as the verbal components (b1+b3):11 see figure 2.5.

In doing so, we notice that the only remaining task would be to plug the
NPs, and thereby make explicit the dominance relations between the meaning
components (trees), which were only implicit in (b7’): Both QNP fragments shall
dominate the verbal skeleton fragment, yet at different nodes, NP1 and NP2.

This last difference is easily normalised (cf. §2.3.2 below) in raising both dom-
inance edges to the root S.

Eventually, the form obtained is very much that of figure 2.2, the λ-bindings
having already been seamlessly updated via binding edges.

2.3.3 Solving Dominance Constraints

An intuitive solving procedure

Looking back at the dominance graph from figure 2.2, repeated here left of fig-
ure 2.6, one can but notice that its incapacity to be a tree lies in the node at
the junction of the two dominance edges (node/variable Y on top of the love
fragment).

Indeed, it is precisely at this location that one is supposed to make a choice
whether the left fragment shall end up above the right fragment (wide scope for a
woman) or the other way around (wide scope for a man).

And this is also just the way every algorithm step begins, by a Choice Rule,
illustrated in figure 2.6, that causes the remaining solving to fork in two threads
(thus reflecting the potential exponentiality of reading enumeration). Therefrom

11In the Glue literature, QNPs are often grouped together as well, prior to any actual derivation.
Indeed, unless ambiguity is present in the noun phrase (e.g., in an adjectival phrase), there is no
harm in taking these as one-block axioms.

2.3. UTILISING DOMINANCE CONSTRAINTS 17

∀ •

→ •

woman •

var •

•

∃ •

∧ •

man •

var •

•

love • Y

var • var •

Figure 2.6: The Choice Rule.

results a redundant dominance edge: that which directly connects the higher dom-
inating fragment to the bottom fragment. It is redundant because the domination
relation is transitive: The existence of a path from the higher dominating frag-
ment down to the bottom fragment via the lower dominating fragment implies a
top-down path altogether.

The next step is thus called Redundancy Elimination, which gets rid of
such dominance edges.

The third and last step consists in ensuring that the edges created (by the
choice rule) lead to the highest nodes of fragments, viz. their roots. Since the tree
structures of fragments are never changed when solving a dominance graph, it is
indeed no harm to move dominance edges to the highest parent of each goal node.
This step is called Parent Normalisation.

If the resulting graph still contains a node with two incoming dominance edges,
the above three-step process is applied again, and so on.

In the end, the only remaining thing is to check the resulting graph for cycles.
If there is a cycle, the input graph is unsolvable.

Otherwise, the graph is solvable, and the output is very close to a solution tree:
In fact, in most cases (and in all empirical cases, actually), identifying every two
nodes connected by a dominance edge will provide a constructive solution tree.12

And the algorithm enumerates all solution trees through recursive branching at
the Choice Rule.

A very efficient solving algorithm

In [Kol04, chap. 5] (improving a result from [KMN00]), another algorithm was
exhibited that is able to polynomially enumerate all solved forms of a hypernor-
mally connected dominance graph (cf. chapter 4). The algorithm is quadratic in
the size of the graph.

This result alone would motivate the need for translations from diverse un-
derspecification formalisms into Dominance Constraints (chapter 4): Provided
the translation were simple enough, the former would benefit from the latter’s
tractability, in matter of solving and enumerating the solutions.

12The algorithm given here actually enumerates solved forms of dominance graphs. However,
under the Net Hypothesis (cf. chapter 4), which is empirically verified, all solved forms correspond
to constructive solution trees in a one-to-one fashion.

18 CHAPTER 2. DOMINANCE CONSTRAINTS

Glue Semantics, presented in the next chapter, is a successful example thereof;
The proof is exposed in chapter 5.

A word on Utool

This idea is also materialised in a multi-formalism implementation, called Utool13,
that allows to convert underspecified semantic representations from and into
Dominance Constraints, and of course to solve them with the most efficient algo-
rithms available.

Dominance graphs and solutions thereof are also displayed, allowing quick
monitoring and experimenting on converted representations. As it happens, part of
the translation exposed in chapter 5 was tested on an experimental Glue Semantics
codec for Utool.

13http://www.coli.uni-saarland.de/projects/chorus/utool/

Chapter 3

A closer look on Glue
Semantics

3.1 Introduction

Construction as proof. Glue Semantics (or short—Glue)1 is probably best
remembered as “LFG’s semantics”, but is also a fully-fledged semantic formalism
with a genuine, yet implicit, device for realising underspecification. The “glue”
part of the name refers to its construction principle, and gives a hint on how
semantic composition is performed: meanings for lexical entries are just glued
together—following a certain number of rules, of course, borrowed from Linear
Logic (henceforth LL). But there is only one uniform principle of composition,
that is thus tantamount to performing a proof.

The entries are then linear logic formulas, considered as axioms, that is, as
hypotheses to the proof to be done. For Every woman loves a man, e.g., one would
be to prove f from:

h (g (f
∀G (g (G) (G
∀H (h (H) (H.

(3.1)

But admittedly this is not very helpful to our preliminary intuitions, because:
what do these symbols represent? what do we want to prove? where does the
meaning appear?

1. The symbol (is called linear implication and is only one of the whole
range of new operators Linear Logic provides. Let us understand it as an
implication, at first, but more intuitive an implication that we are used to
in Propositional Logic: Linear implication actually consumes its hypotheses
and produces its conclusions, ensuring that, roughly speaking, “everything
is used and only once” (cf. §3.3.1).

And this last parsimony concern, or more frequently called in the literature:
the resource-consciousness of LL proofs, resembles much those known
in the LFG world as completeness and coherence. What hypotheses

1A state-of-the-art reference is [Dal01], but the literature is quite important on this formalism;
Our second main reference is [Dal99], which deals with some more elaborated aspects of Glue,
more experimental ones, too.

19

20 CHAPTER 3. GLUE SEMANTICS

and conclusions are to LL proofs, f -structure nodes are to the predicate-
argument structures (pred) they belong to: resources, all of which singly
necessitated.2

The analogy is not fortuitous: Glue atomic subformulas (lower-case: f , g,
h) represent indeed nodes of the sentence’s f -structure, while upper-case
variables (G, H) may stand for any Glue formula (hence the quantifications).

Upon examining the f -structure for the above sentence:

f :












pred ‘love’〈subj, obj〉

subj g :

[

pred ‘woman’

spec ‘every’

]

obj h :

[

pred ‘man’

spec ‘a’

]












,

the names of atomic subformulas from (3.1) become less cryptic: They cor-
respond to f -structure nodes.3

2. Then, proving f turns out to be necessary to get the meaning for the whole
sentence, while subproofs will yield subparts of meaning—according to com-
positionality. An example of a proof of f for the sentence is given below,
where one notices that linear implication behaves just like one expects—only
that all hypotheses are carefully consumed just once each:

h ((g (f)
(ax)

∀H (h (H) (H
(ax)

(h ((g (f)) ((g (f)

g (f

∀G (g (G) (G
(ax)

(g (f) (f

f
(3.2)

Computational vs. meaning content. As for the meaning, once the proof
completed, that does not actually appear in the pure LL representation of (3.1).
Anyway, it is sufficient (and in fact necessary) to have proved the LL part to be
able to retrieve the global meaning for a sentence, thanks to the Curry-Howard
Correspondence: The LL formulas used in proving always come along with a
meaning part (which is traditionally skipped in Glue derivations for the sake of

2An f -structure is locally complete if it contains all the governable grammatical functions
its pred governs; It is locally coherent if, conversely, all its governable grammatical functions
are present in the pred’s argument list. An f -structure is complete (resp. coherent) iff all its
substructures are locally complete (resp. locally coherent). Therefore any node of an f -structure
is to be used, and exactly once, just like hypotheses of a LL proof.

For more details on the objects used in Lexical-Functional Grammar, see for instance
[DKMZ95].

3This notation is abusive, and the example voluntarily very simplified. Besides, the argu-
ment structure within the f -structure (pred) does not necessarily reflect the semantic argument
structure; more details in §3.2.2.

3.1. INTRODUCTION 21

displayability), so we would actually consider the following derivation:

λy.λx.love(x, y) : h (g (f,
λP.every(woman, P) : ∀H (h (H) (H,

λQ.some(man, Q) : ∀G (g (G) (G
....

∀x(woman(x) → ∃y(man(y) ∧ love(x, y))) : f (3.3)

The composition4 process is not particularly complex but is two-faceted, for
this is where the Correspondence plays its role:

1. Linear Logic rules dictate how the meaning statements, consisting of a pure
LL part and a meaning language part, are combined (metalanguage);

2. The modifications thus undergone by the LL formulas (viz. the LL proof
tree) are one-to-one mapped to modifications in the meaning language parts,
the root f of the proof tree thus being eventually mapped to the final reading
(meaning language).

Section 3.3 will take a closer glance at Linear Logic, in particular at the Corre-
spondence (§3.3.2).

Implicit underspecification. One may notice that, apart from that of (3.2),
there is another proof tree that derives f starting from the same hypotheses (3.1),
displayed below:

g ((h (f)
(ax)

∀G (g (G) (G
(ax)

(g ((h (f)) ((h (f)

h (f

∀H (h (H) (H
(ax)

(h (f) (f

f
(3.4)

There the verbal axiom h ((g (f) is replaced by the equivalent formula
g ((h (f)—the identity is valid in Classical as well as Linear Logic (cf. §3.3
for a justification, §3.4 (3.8) for a proof).

Indeed, multiplicity of proofs is a frequent phenomenon, even when, as Linear
Logic strives to, proofs are somehow normalised (the differences between distinct
proofs are then essential).

As it happens, the λ-term derived from (3.4) corresponds to the expected other
reading of Every woman loves a man, namely:

∃y(man(y) ∧ ∀x(woman(x) → love(x, y))).

So there may be a manner of considering underspecified Glue structures, even
though only implicitly, namely via the axiom set {h ((g (f), ∀G (g (G) (

G, ∀H (h (H) (H}. The formulas’ relationships with each other (to be
compared with the dominance relation in §2.2) are already stated within their

4Composition is the name of meaning construction in compositional semantic formalisms,
as are Dominance Constraints (chapter 2) or Montague Semantics ([Mon74]): “The meaning of
the whole is a function of the meanings of the parts.”

22 CHAPTER 3. GLUE SEMANTICS

computational content, thanks to the Curry-Howard Correspondence. The crux
is that axioms depend one one another, as a proof may depend on an assumed
result (to be proved someplace else). For example, the verb axiom h ((g (f)
depends on the every woman axiom because it is, modulo substitution of the scope
variable H 7→ (g (f), a premiss to (h (H) (H. Likewise, it also depends
on the a man axiom, since it is equivalent to the formula g ((h (f), so that
altogether we may see a similarity with figure 2.2, for instance.

Chapter 5 will show that this vision of Glue constitutes in fact a strong link
to semantic underspecification, strong enough to support a translation between
formalisms.

3.2 “LFG’s semantics”

As a part of Lexical-Functional Grammar, originally, Glue Semantics inherited
a syntax-semantics interface starting from the f -structures (§3.2.2), although it
could be provided for other input structures (cf. §3.2.3).

The f -layer happens to be an intermediate, largely language-independent layer
and also contains some higher-level, perhaps even semantic, information. Thus,
unlike classic syntax-semantics interfaces which typically map context-free rules
onto logical formulas, the input of our meaning entries will not be constituted
of information about syntactic categories, but already instantiated f-structure
nodes. This is a peculiarity of Functional Grammar, not of Glue Semantics.

In fact, the σ-layer is intended to play this role of interface with classic semantic
formalisms (not in the sense of syntax-semantics interface, though, for the input
is not purely syntactic). For instance, quantifiers are given a restriction and
a variable argument via σ-application, as is needed in Montague-like semantics
(higher-order scope variables and first-order variables), say, or in MRS (ordinary
variables and handles).5

3.2.1 LFG’s legacy: Layer structure

Due to the peculiarity of LFG’s layer structure (cf. figure 3.1), and more precisely,
to its having two separate syntactic layers, the input of the interface will not be
a classic context-free grammar. In fact, it will bear no relationship with the
surface form of a sentence (this would be a matter for the c-layer), but will be
an intermediate representation form—intermediate between syntax and semantics
already.

Glue, built upon this layer architecture, makes use of the f -layer and imple-
ments the σ-layer, as illustrated in figure 3.1.

The literature on LFG has been quite evasive about concrete specifications
of the σ-layer; It merely requires there to be a layer whose nodes (mapped from
the f -layer under σ) correspond to “units of semantic structure” ([DKMZ95, page

5The f -structures are so much above the surface structure that they can be considered as
containing semantic information already. But this is so primitive semantic information that it is
in fact underspecified (w.r.t. scope ambiguity). For instance, they were used as input for a direct
translation to UDRT in [vGC99].

More classically though, their thematic-like argument structure has been used as the basis to
an argument-mapping theory (as in [DLS93], e.g.).

3.2. “LFG’S SEMANTICS” 23

c-layer f-layer σ-layer

S

Bill

convinced everyone

7−→φ

k :

2

6

6

6

4

PRED f :‘convince’

SUBJ g:
h

PRED ‘Bill’
i

OBJ h:
h

PRED ‘everyone’
i

3

7

7

7

5

7−→σ

hσ:

"

VAR []

RESTR []

#

gσ
fσ

Figure 3.1: LFG’s layer structure.

23]), but this is not further specified by LFG. Indeed: this is a matter for the
syntax-semantics interface, and not for the lexical-functional grammar itself.

LFG is also a functional formalism, and representations are projected from one
layer to the upper. But within the f -layer itself, every path between nodes (of the
Attribute-Value Matrix) may be described as a the successive application of labels
from the outer node onto the inner node, yielding equations like (f obj pred) =
‘everyone’ for instance. Glue’s syntax-semantics interface uses such descriptions,
thus should also be able to describe such paths.

3.2.2 Instantiation of generic entries

The link between the f -structure evoked in the introduction and the Glue axioms
it induces is not very rigorous. Let us consider a smaller example, assuming,
for the sake of simplicity, that proper nouns may receive a simple, non-raised
treatment, and that everyone is interpreted as one block (as usually done in the
Glue literature). f -structure, σ-structure and axioms are displayed in table 3.1.

f :








pred ‘love’〈subj, obj〉

subj g :
[

pred ‘Bill’
]

obj h :
[

pred ‘everyone’
]








gσ []

hσ

[

var v []

restr r []

] gσ
hσ (gσ (fσ
∀H (hσ (H) (H.

Table 3.1: f -structure and interface entries for Bill convinced everyone.

The LL atoms actually appearing in the Glue formulas are actually the images
of the f -structure nodes under σ, not the nodes themselves. It moreover makes
sense, in that a “reasonable” semantics should only use the highest available rep-
resentation layer.
Convention. Yet we will use the same letters for denoting f -structure nodes
and their images under σ. Since the topic of this thesis stays within semantics,
we will never need to have trace back down the f -structures; It is therefore a safe
convention.

But the actual entries of the LFG lexicon still do not look quite as in table
3.1, because the lower-case letters refer to an f -structure, which is still to be
constructed from the c-structure. Actual entries are thus generic entries (suitable
to any f -structure), that still have to be instantiated. Say, in the case of our
example Bill convinced everyone:

PN (↑ pred) = ‘Bill’
bill : ↑σ

24 CHAPTER 3. GLUE SEMANTICS

TV (↑ pred) = ‘convince’
λy.λx.convince(x, y) : (↑ obj)σ(((↑ subj)σ(↑σ)

NP (↑ pred) = ‘everyone’
λP.every(X, person(X), P (X)) : ∀S (↑σ (S) (S

The first line pertains to the f -structure and sets the needed attribute-value
couple; no genuine semantics is involved yet. Because ↑ is a metavariable (instan-
tiable to any f -node), it could read as “Whenever an f -structure is encountered
that through a pred label leads to a node ‘Bill’, then the subsidiary f -structure is
assigned the meaning Bill (by means of σ-projection).

Now this generic meaning gets instantiated to an actual meaning pertaining to
the f -structure under consideration, g. With this instantiation step, one leaves the
syntax-semantics interface to enter an intermediate level, the σ-layer, committed
to one actual structure.

The transitive verb convince gets instantiated to the Glue formula hσ (gσ (

fσ, which means that the binary predicate convince needs to be discharged of its
two arguments, that happen to be the σ-projections of g and h, respectively.

Linear implication then ensures that each argument is discharged exactly once
(cf. §3.3), in accordance with the verb’s argument structure (and especially to its
semantics, as we will see in §3.4).

Convention. As a second convention, we will always work with already instan-
tiated entries (this amounts to supposing the f -structure always given).

Remark. Although Glue inherits the layer philosophy from LFG, it does not
take over functional uncertainty (cf. [DKIZ95]): the semantic entries must be
deterministically instantiated in order for Glue to function correctly. Equations
with multiple paths within an f -structure, as often necessary to syntactic phe-
nomena, are not wanted here.

3.2.3 The two facets of the lexicon

Different notations There have been several notations for the Glue formalism
since its beginnings. Consider the example of a lexical entry for the verb love, given
in the “thematic” (cf. [DLS93]), the old (cf. [vGC99]) and the newer notation (cf.
[Dal01], from 1999 onward):

Thematic Glue ∀x.∀y.[agent](gσ , x) ⊗ [patient](gσ, y) (fσ = love(x, y)
Old Glue ∀x∀y.(r ; x⊗ s ; y) (t ; love(x, y)
New Glue λx.λy.love(x, y) : s ((r (t)

The second line could read like: “If two σ-nodes r and s bear, respectively, mean-
ings x and y, then another node t bears meaning love(x, y).” The third line, in a
more functional fashion, would say: “The function love of two individuals bears
type r ((s (t)”, which, in a typed λ-calculus, means exactly the same.

The newer notation is partly motivated by the Curry-Howard Isomorphism;
It really separates meaning (λx.λy.love(x, y)) and glue (s ((r (t)) language
in the statements, whereas the older one kept them just a little mixed. As a side
effect, the ⊗ connective need not be introduced yet in the newer one—all the
better for uniformity.

3.3. LINEAR LOGIC 25

Arguably, the original is better for understanding the premisses (it is more or
less enough to read them literally to apprehend them), while the newer is good
for understanding the derivation (in a proof-theoretical or computational way, cf.
§3.3.2 below). Therefore, only the newer will be used in the following.

Meaning language vs. gluing language. We notice therein a clear-cut dis-
tinction between meaning language and metalanguage, as has been exhibited
for Dominance Constraints, too (§2.2), and which is arguably required for a satis-
fying treatment of underspecification in computational semantics.

Again, this feature allows for a relative liberty in the choice of the meaning
language, although higher-order, Montague-like logics seem a canonical choice.
Indeed, Glue Semantics, or in a broader sense: resource-conscious logics, have
been applied to various forms of meaning representation, such as: Discourse Rep-
resentation Theory (cf. [vGC99]), Head-driven Phrase Structure Grammar (cf.
[AC02b]), Categorial Semantics (cf. [DGLS99]). All of these may thus be pro-
cessed in a uniform way through a Linear Logic assembly language.

3.3 Linear Logic

Linear Logic is a branch of Proof Theory initiated in 1987 by Girard ([Gir87,
Gir95]) and distinguishes itself from other proof-theoretical approaches in that
it centers the notion of resource in a proof: the logical material used therein,
instantiated by our intuitive notions of axioms, hypotheses or logical consequences,
is given a more “natural” interpretation.

The basic idea was that proofs, as they are usually represented (typically, using
a tree representing logical deductions) do not reflect accurately the actual process
of proving. Usage of resources is ill-described in the classical deduction toolkit,
that only says what one is allowed to deduce, but not what one is likely to deduce.
So Linear Logic aims at describing proofs as one would really perform them.

It is also, thanks to the Curry-Howard Correspondence (§3.3.2), a great de-
scriptor of functional programming languages, which proved extremely useful in
Computer Science, but also in Computational Semantics in the framework of this
thesis. Since the works of Montague ([Mon74]), natural language semantics seem
indeed indissociable from λ-calculus, or variants thereof.

3.3.1 A different paradigm

Filling truth tables. A thing that has long been criticized by many logicians
(and thus a motivation for the introduction of several non-classical logics) is the
unnaturalness of our classic, model-theoretical implication, with truth table as
follows:

ϕ ψ ϕ→ ψ

** 0 0 1
* 0 1 1

1 0 0
1 1 1

The first two lines, while fully accepted among mathematicians, specify that an
implication be vacuously true, i.e. even with unfulfilled premiss. The first

26 CHAPTER 3. GLUE SEMANTICS

one may even be regarded as less satisfactory (depending on one’s intuition or
philosophical obedience), since it defines a genuinely empty tautology.

In fact, even though mathematicians use this notion of implication as a tool
provided by their logician colleagues6, it is much likely that their own intuitive
notion of implication expects another behavior, too, even for the other rows of the
truth table: That a simple tautology as “the square of an even number is even”
implies Fermat’s theorem, no logician would doubt (both assertions being proved
to be true in the same axiomatic system), but from an empirically mathematical
point of view, this would rather sound highly dubious...

It is the very notion of truth table that causes the problem: In order to
define implication model-theoretically, those lines had to be filled. In applications
of Logics to Computer Science, this matter became all the more important, for
computers are not as accommodating as humans and must be told what to do in
all cases.

Redefining logic. In Linear Logic, the hypothesis of an implication has to be
actually used in order to make it valid, and the syllogical sequent ϕ,ϕ (ψ ` ψ
as well; but also, once used, it cannot be reused anymore.

It is to this extent a linear—as opposed to monotonic—logic, in that it has
the particularity of consuming its premisses upon producing its conclusions, in
much the same way as a chemical reaction consumes the compounds available in
certain proportions and produces its final products in fixed proportions as well.

The following comparison, taken from [Gir95], considers the basic reaction
producing water from dihydrogen and dioxygen:

2H2 +O2 −→ 2H2O

Every two molecules of dihydrogen combine with one molecule of dioxygen to form
two molecules of water. Loosely using the linear logic conjunction and implication,
this could be described as:

H2 ⊗H2 ⊗O2 (H2O ⊗H2O,

clearly establishing the proportions in which the elements rearrange. Observing
combining and production of chemical compounds under this light gives a first
idea of how linear conjunction and linear implication behave.

In particular, the otherwise widely accepted principles of strengthening of
hypotheses and weakening of conclusions are no longer sustainable in Linear
Logic. Compare:

A,A, (A → B) `FO B vs. A,A, (A(B) 6`LL B
(but `LL A⊗B).

6In fact, before the Hilbert programme and earlier attempts to formalise the foundations of
mathematics (e.g. Whitehead and Russell’s Principiae Mathematicae) at the beginning of the
20th century, mathematicians had little care about foundational issues of their discipline. The
monstrous sets resulting from Cantor’s attempts to found a mathematical theory at the end of
the 19th century were only to discourage them (cf. Cantor’s paradox). Gödel, later, proved it to
be an ultimately hazardous issue. With such antecedents, it is no wonder why mathematics and
logics have remained rather separate fields for so much time, in particular why the implication
remained so long unexplored. Some recent research topics, though (modern Set Theory, Non-
Standard Analysis, Girard’s Linear Logic, e.g.), tend to gather them again; but above all the
enormous development of Computer Science since more than half a century gave rise to new
research in Logic.

3.3. LINEAR LOGIC 27

Not only does linear implication consume its input, it also produces its output,
in the same resource-caring way as for hypotheses, that is, it consumes no more
and no less than the proof allows. This again bans the principle of weakening of
conclusions:

A,A→ B,C `FO B vs. A, (A (B), C 6`LL B
(but `LL B ⊗C).

3.3.2 The Curry-Howard Isomorphism

Proof Theory as a major part of (Mathematical) Logic on one hand, and the
semantics of programming languages on the other hand, describe both the same!

This observation has become one of the most important paradigms in compu-
tation nowadays: the so-called Curry-Howard Isomorphism (or Correspon-
dence, abbreviated in CHI in the following). One is able to describe proofs as
programs or, conversely, formulas as types (both expressions are other casual
denominations induced by the Correspondence).

Any term in a typed λ-calculus is assigned a type which is a formula from a
given logic.7 This formula is valid if the term is well-typed. Conversely, the term
itself represents a proof that its type is valid, via the Correspondence.

In Computer Science, where programs are often modelled as λ-terms, their
specification (type) is valid iff their computational content (λ-term) encodes a
valid proof thereof.

A double-sided notation. Let us now show how the CHI translates to for the
classic implication in Natural Deduction logic, where it is described via two rules.
Introduction thus very naturally corresponds to λ-abstraction while elimination
corresponds to β-reduction:

t : A→ B u : A
t(u) : B

(→)elim

x : [A]i
....

t : B
λx.t(x) : A→ B

(→)intro

This illustrates the proofs-as-programs version of the Correspondence: We have a
functional reading of the modus ponens (elimination), in that an implication of
B from A is also the type of a function A → B, so every image under it should
have type B. Likewise, making an hypothesis of type A in a derivation leading
to B hints at a functional construct, of type A→ B.

Linear Logic provides a strictly identical scheme for its linear implication, as
shown in table 3.2 below. (Notice herein the perfect adequacy of linear implication
to the CHI; one feels indeed that this notion of implication “must be right”.)

7Usual examples herefrom are Intuitionistic Propositional Logic (simply typed λ-calculus),
Girard’s F and AF 2 systems; the richer the logic, the more expressive the formalism on the other
side. For a long time it was thought that only constructive logics fitted in this scheme, until Griffin
([Gri90]) and Krivine ([Kri03]) proposed λ-calculi with devices “implementing”, respectively, the
Double Negation elimination (or equivalently, the law of the Excluded Middle) and the Choice
Axiom, thus closing the case: All modern mathematics, that is, those based on the Zermelo-
Fraenkel axioms plus Axiom of Choice, can now be modelled by a CHI-like correspondence.

28 CHAPTER 3. GLUE SEMANTICS

This has motivated the newer notation for Glue, which separates the compu-
tational part (LL formulas) from the meaning part (theoretically whatever, but
canonically λ-calculus), as in the entry for a transitive verb (σ-structure only):

[convinced] := λy.λx.convince(x, y) : hσ (gσ (fσ (3.5)

Of particular importance for Glue Semantics is here the bidirectional constraining
of each of the two sides onto the other one: With every gluing step (cf. next
section) performed—right-hand side, the meaning part—left-hand side—gets up-
dated. Therefore, the meaning part is only needed in the lexicon; all proofs may
be performed as a pure LL part (which often saves a great deal of place), the final
reading being always available upon rereading the proof tree: the CHI is used as
a kind of dictionary.

If another meaning language is preferred to λ-calculus (cf. §3.2.3), it should
accommodate the LL rules in its own fashion (on the left), but still be “CHI-
compliant” (on the right): In particular, it should have an equivalent to the couple
λ-abstraction/application, which constitute really a powerful combination.

3.4 The semantics of gluing: Meaning construction

With lexicon entries such as (3.5) available, everything is ready for meaning con-
struction. It takes the form of a proof, whose premisses are the CHI-like state-
ments. Their left-hand sides compositionally update the meaning, but the proof
itself is constrained by the sole right-hand sides to be led properly. The premisses
undergo a single uniform construction process, the eponymous gluing.

This reveals a key feature of Glue: that virtually all the needed linguistic
information is contained already in the instantiated lexical entries (implicit in
the computational content of the CHI). This way, a simple principle (gluing) can
handle complex composition. As such Glue departs from other formalisms, where
much more information lies in the assembly itself.8

Conjugating premisses. Considering all the statements amounts to setting
their conjunction as the proof’s hypothesis. However, since it is a conjunction-
free LL fragment we consider, we will most simply see this in a sequent fashion,
say, for Bill yawned:

[bill], [yawned] ` [bill-yawned],

abbreviated from:

λx.yawn(x) : b (f, bill : b ` yawn(bill) : f

and referring to the f -structure:

f




pred ‘yawn’〈subj〉

subj b
[

pred ‘Bill’
]





.

8For instance, MRS has got two distinct composition principles, for scopal and intersective
combination ([CFS01]).

3.4. THE SEMANTICS OF GLUING 29

The proof in this case is straightforward, and the derivation tree thus very simple:

λx.yawn(x) : b (f bill : b

(λx.yawn(x))(bill) : f
((e)

yawn(bill) : f
(β-reduction)

.

One notices here that implication elimination alone does not exactly lead to the
expected result, but to a β-equivalent longer term, which is of no concern to the
LL part. It makes no difference for the meaning either, β-reduced terms are just
more readable.
Convention. Therefore, in forthcoming derivations, we will assume β-reduct-
ions to be performed whenever possible. This will allow us to just skip them, so
that they will in fact not appear at all.

Sortal restrictions. The space of possible derivations is also limited by other
factors than sheer LL validity. Similar sortal restrictions as in type-theoretical
semantics are applied, so that transitive verbs, for example, are required to have
type 〈e, 〈e, t〉〉 (consume two individual arguments to produce a proposition
result).

For Glue, however, such restrictions apply probably only for the instantiation
step, in order to determine onto which f -nodes the entries’ metavariables ↑ are
mapped. In particular—and this cannot be determined at instantiation step yet,
the scope variables may not be of the individual type e.

∀S(t) (↑(e)
σ (S) (S

inst.
7−→ ∀H (h(e)

(H(t)) (H(t)

They may thus further constrain the Glue premisses to combine the way wanted
and encode, say, scope constraints additionally prescribed by some linguistic the-
ory (cf. [Dal99, pp 47–52]). Yet once the generic entries are anchored to an actual
sentence (via the f -structure), little freedom remains, really, as to combination of
premisses.

From the instantiated premisses, one sees that H could only be instantiated
to f :

[bill] Bil : g(e)

[convinced] λx.λy.convince(x, y) : g(e)
((h(e)

(f (t))

[everyone] λS.every(person, S) : ∀H.(h(e)
(H(t)) (H(t).

This can be compared, perhaps, to the opposition found in MRS between
ordinary variable and handle arguments of an Elementary Predicate, where
the first is dedicated to the intrinsic content of the predicate (as Glue’s type e var

node; cf. substantives and determiners, §3.6), while the second gives information
on the scopal behavior (Glue: type t restr).

Other restrictions, like MRS’s elimination of EP assemblies that lead to empty
predicate arguments, are not relevant for Glue, since implicitly present: Back-
tracking is intrinsic to the notion of proof,9 so that no invalid meaning can be
derived from a valid proof.

9It may be seen, in fact, as taking the form of hypotheses in a proof; It is therefore connected
to the cut elimination issue, a major one in Proof Theory.

30 CHAPTER 3. GLUE SEMANTICS

Multiple proofs. Different proofs, if any, will yield different readings (and thus
help handling ambiguity). Let us return to the ambiguous example Every woman
loves a man, to illustrate scope management:

[every-woman] λS.every(woman, S) : ∀G (g (G) (G
[loves] λy.λx.love(x, y) : h ((g (f)
[a-man] λS.a(man, S) : ∀H (h (H) (H

Even upon considering simplified premiss statements (QNP as one statement)
[every-woman], [a-man] and [loves], two distinct proofs may be traced:

• After instantiation of variable H to g (f , [every-woman] and [loves]
combine (modus ponens and simplification by β-reduction) to yield a sub-
proof of [every-woman-loves] := every(woman, λx.love(x, y)). The latter
combines with [a-man] = λS.a(man, S) : (g (f) (f to yield the final ∃∀
meaning, certified by the final right-hand side (it should be the σ-mapping
of the global f -structure):

[every-woman], [loves], [a-man] ` [every-woman-loves], [a-man]

` a(man, λx.every(woman, λy.love(x, y))) : f

• However, as hinted at in the introduction, another derivation would success-
fully yield f as well, but with a different meaning part. If the a man resource
h is first discharged as an hypothesis, then one may choose to combine [loves]
and [a-man] first, thus giving every woman the wide scope (∀∃):

[every-woman], [loves], [a-man] ` [every-woman], [loves-a-man]

` every(woman, λy.a(man, λx.love(x, y))) : f

The differences appear in the derivation trees, respectively:

λQ.a(man,Q) : ∀G (g (G) (G

λQ.a(man, Q) : (g (f) (f

λP.every(woman, P) : ∀H (h (H) (H

λP.every(woman, P) : (h ((g (f)) ((g (f) λy.λx.love(x, y) : h ((g (f)

λx.every(woman, λy.love(x, y)) : g (f

a(man, λx.every(woman, λy.love(x, y))) : f
(3.6)

λP.every(woman, P) : ∀H (h (H) (H

λP.every(woman, P) : (h (f) (f

λQ.a(man, Q) : ∀G (g (G) (G

λQ.a(man,Q) : (g (f) (f

λy.λx.love(x, y) : h ((g (f) y : [h]

λx.love(x, y) : g (f

a(man, λx.love(x, y)) : f

λy.a(man, λx.love(x, y)) : h (f
((i)h

every(woman, λy.a(man, λx.love(x, y))) : f
(3.7)

or, shorter, as a combination of statements:

[every-woman] [loves]

[every-woman-loves] [a-man]

[every-woman-loves-a-man]

[loves] [a-man]

[loves-a-man] [every-woman]

[every-woman-loves-a-man] .

This last vision of the semantic construction process perhaps gives the eponymous
word “glue” its full scope of meaning.
Remark. As implication elimination is the only binary rule in our (limited) proof
system (cf. table 3.2), branching precisely amounts to modus ponens. Implication

3.5. THE GLUE VERSION USED HERE 31

Implication elimination and introduction

t : ϕ (ψ u : ϕ

t(u) : ψ
((e)

x : [ϕ]i
....

t : ψ

λx.t(x) : ϕ (ψ
((i)i

Universal quantification elimination and introduction

t : ∀Xϕ

t : ϕ[ψ/X]
(∀e)

t : ϕ

t : ∀X ϕ
(∀i) (X fresh variable)

Axiom rule

t : ϕ
(ax)i if Ai = ϕ and Λ(ϕ) = t

Table 3.2: The Core Glue fragment—CHI-compliant.

is therefore responsible for making trees wider, and wider trees are combinatorially
more likely to offer different readings. However, what actually triggers ambiguity
are the scope variables.

To sum up, ambiguity likelihood grows with the number of implication argu-
ments (viz. hypotheses), but is really released only if scope variables are present
to match these arguments.

Remark. The equivalence between the two uncurryied LL forms h ((g (f)
and g ((h (f) of the verbal predicate involves hypothesising in Implicative
Linear Logic (used above too):10

h ((g (f) [h]

g (f
((e) [g]

f
((e)

h (f
((i)h

g ((h (f)
((i)g

g ((h (f) [g]

h (f
((e) [h]

f
((e)

g (f
((i)g

h ((g (f)
((i)h

(3.8)

3.5 The Glue version used here

3.5.1 Core Glue

The Core Glue fragment (as defined in [CvG00, pp. 100-101]) consists of formu-
las from Implicative Linear Logic expanded with the universal quantifier. The
way connectives behave can be described in natural deduction by the derivation
rules present in table 3.2.

10In Multiplicative Linear Logic, it would be a trivial identity (cf. (3.9) below), the curryied
form of both (h⊗ g) (f being strictly symmetric w.r.t. g and h.

32 CHAPTER 3. GLUE SEMANTICS

The Axiom Rule will introduce the meaning entries t : ϕ (t =: Λ(ϕ)) from
the syntax-semantics interface, thus introduced as axioms in the proof-theoretical
sense (viz. leaves in derivation trees). LL axioms will be indexed: A := (Ai)i.
Remark. Rules governing quantification are so limited (and predictable) in
their influence that they will not be considered at all in chapter 5: Quantification
elimination will be just dropped (assumption 3, §5.2.1), and a pretreatment of
Glue axioms will get rid of all quantifiers, so that the fragment of Glue consid-
ered as input to the translation will be nearly quantifier-free and thereby purely
implicative (to be detailed farther below, §5.2.2).

3.5.2 Structural definitions

Specific parts of the structure of implicative Glue formulas will be distinguished
in the translation (§5.3), that have to be defined here.

Definition 6 (Suffixes) Suf(α (β) := Suf(β) ∪ {α (β} and Suf(a) := {a} if
a is an atom or a variable. ϕ is a proper suffix of ψ if ϕ ∈ Suf(ψ) and ψ 6= ϕ.

Remark. This definition happens to gather two intuitions: Suffixes of a formula
ψ may be defined inductively by a right-hand depth traversal of the tree structure
of ψ (always purely implicative after the modifications from section 5.2), but also
as the rightmost substrings of ψ that are again formulas (when skipping unneeded
parentheses), viz. its suffixes (in the word-theoretical sense).

The next definition on the contrary, admits only the first kind of definition: It
also proceeds of a right-hand depth traversal, but this time collecting the other
part of the formula (its premiss, whence the name).

Definition 7 (Right-branching premisses) Prmr(α (β) := Prmr(β) ∪ {α}
and Prmr(a) := ∅ if a is an atom or a variable.

Definition 8 ((Transitive) conclusion) cc+(α (β) := cc+(β) and cc+(a) :=
a if a is an atom or a variable.

Remark. The transitive conclusion of a formula is also one of its suffixes, the
smallest.

3.5.3 Polarity

Polarisation of subformulas is not a concept necessary to a first understanding
of Linear Logic, but it does help us prove important well-formedness properties
needed by the translation (chap. 5). It is also used in some advanced literature
on Glue Semantics (cf. [GL98, CFvG99]).

Linear Logic and polarity.

The origins. Polarised linear logic originates in the following transformation—
which operates in a broader fragment of Linear Logic (necessitating three further
linear operators), and the subsequent observations:

ψ (χ := ψ>] χ (3.9)

3.5. THE GLUE VERSION USED HERE 33

Even unknowing of the semantics of these operators, this reminds of the classical
identity A→ B ≡ ¬A∨V in the propositional calculus; and indeed corresponding
de Morgan and double negation laws are valid:

(ψ] χ)> = ψ> ⊗ χ> (ψ ⊗ χ)> = ψ>] χ> ϕ>>
= ϕ

A normal form11 is therefore to be obtained by “pushing the negations inward”
to the literals via iteration. In the end, the “negated” literals (appearing under ·>)
are termed of negative polarity, the other ones of positive polarity.

The polarity property of a literal is thus of course always relative to its contain-
ing formula (just as the “polarity” of disjunctive and conjunctive normal forms).

It is then possible, via identity 3.9, to transfer polarity results to the smaller
sublogic that Implicative Linear Logic is, i.e. to assign polarity to any subformula
of an implication.

The polarity of implication is perhaps more easily understood if one decides
to “tag” the conclusion and the premiss of any implicative formula. With the
transformation from above, one notices that every conclusion of any subformula
is tagged positively, while every premiss is tagged negatively.

It thus becomes a very handy criterion for classifying formulas according to
their resources, which is of course the primary concern in Proof Theory: A proof
in Implicative Linear Logic proceeds merely by “matching” between positive
and negative resources (as pointed out under different forms in the literature,
cf. [Per00], say). Theorem 1 below is an instance of this idea, found in [Gal91].

The application. The definition of polarity chosen in this thesis is a convenience
definition, i.e. our matter here is not what a positive occurrence of a formula really
means, just that we be able to map each subformula of an atom to a binary token.

In fact, one could have as well set polarities the other way around! The impor-
tant point is just to see that they are opposed; We will thus be able to distinguish
the formulas that are premisses and those that are conclusions in a deriva-
tion. This distinction relates to the definitions cc+(ϕ) and Prmr(ϕ) from subsec-
tion 5.3.1, and will also be reflected in terms of the structure of the fragments
obtained from axiom formulas.

We define polarity top-down and recursively:

Definition 9 (Polarity of the occurrence of a subformula) Every (occurrence
of an) axiom in a Glue axiom set A is of negative polarity: pol(Aj) := −.

If ϕ is an implication ψ (χ, then the conclusion has the same polarity as
ϕ, while the premiss has opposite polarity: pol(χ) := pol(ϕ) =: −pol(ψ).

Convention. Abusively, although only when the context is clear, we will speak
of polarity for the formula, rather than for its particular occurrence.

Two schemes.

Two polarity schemes will be presented and used below:

11To be compared with the disjunctive and conjunctive normal forms of the propositional
calculus, for instance.

34 CHAPTER 3. GLUE SEMANTICS

• One result applicable to any Implicative Linear Logic (theorem 1). It is not
committed to any linguistic assumptions whatsoever;

• One strengthening assumption over the Core Glue fragment relying on this
result: our polarity pattern (assumption 1); It relies on empirical obser-
vations made throughout the history of Glue, although it does not seem to
apply to multiplicative extensions of Glue, nor to certain linguistic phenom-
ena yet well rendered by Glue (cf. footnote 12).

The theorem. It basically straightens out the intuition that every ILL deriva-
tion proceeds in matching negative (conclusions) with positive resources (pre-
misses). It appears in different forms in the LL literature ([Per00, Gal91], e.g.):

The following is a result imported from Proof Theory (taken over from [Gal91])
that establishes certain restrictions on polarities of a fragment. It assumes a
classically defined notion of polarity (e.g. as in 3.5.3), which is tantamount to
that of definition 9 above (possibly modulo an inversion of polarities).

Theorem 1 (Polarity matching) Every derivation of implicative Linear Logic
matches each positive occurrence of each literal with exactly one negative occur-
rence of it, up to one literal—the conclusion, appearing once more positively than
negatively.

Remark. The proof can be performed for example via proofs nets (see [Gal91]).
In fact, the visual intuition of this result is most directly grasped by looking at
proof nets and how arrows may or may not connect literals to literals of opposite
polarity and inferring the subsequent conditions for literals.

The result is valid for all kinds of proofs, in particular those with non-atomic
and multiple conclusions, which we actually are to avoid.

The polarity pattern. This assumption goes a step further by incorporat-
ing the linguistic intuition that a meaning entry will either be a modifier, a
consumer or a producer of meaning items (cf. [GL98, CFvG99]). This very
naturally amounts for Glue to a classification of axioms w.r.t. how they manage
resources (cf. §5.4.2 and its relation to the classification obtained in §5.3.4). The
three configurations are then mutually exclusive, which will prove technically very
helpful in disjunctive cases.

The assumption, which [GL98] say to hold “in all the glue analyses [they]
know of, with one exception”12, thus states a stronger version of the theorem,
idiosyncratic to Glue derivations: Not only must the LL atoms match pairwise
according to their polarity, but they must also verify some unicity pattern, namely
that all must appear:

1. either exactly twice throughout the whole axiom sequence: one positive
occurrence in one axiom, and one negative occurrence in another axiom,

12The treatment of anaphora by means of contexts constitutes the exception, and is modelled
using the linear conjunction connector (⊗) from linear logic, and thus falls out of the scope of
this paper.

Another exception, perhaps more troublesome, is the case of generic modifier functors intro-
duced in the theory of modification from [Dal01, chap. 10]

3.5. THE GLUE VERSION USED HERE 35

2. or exactly twice in any axiom: once positively and once negatively.

It becomes below the core assumption of our formal scaffolding and the war-
ranty that everything functions fine. In particular, it ensures unicity 13 of con-
sumers and producers for a resource, whose mere existence or parity would have
followed from theorem 1; It is utilised as such in section 5.4.2.

Assumption 1 (Polarity pattern) For every satisfiable, quantifier-free Core
Glue axiom sequence (i.e., quantifiers having been replaced by variables) and for
each of its atoms and variables—up to one14, there are:

1. Either one positive occurrence in one axiom and one negative in another
axiom,

2. or both a positive and a negative occurrence in zero or more axioms.15

This constitutes a huge step from the plain mathematical, though “visually
intuitive”, theorem, and there we have to rely on (and be thankful for) genuine
linguistic know-how that the design of Glue axioms implicitly contains.

3.5.4 Axiom normalisation: Exhaustion of premisses

The introduction of hypotheses in derivations may appear arbitrary; it seems
indeed to make a difference between the two readings of Every woman loves a
man (3.7) and (3.6), and is used for the uncurrying identity (3.8) as well.

Yet the difference is inessential, and we will make it clear right from the start
in systematically hypothesising premisses of LL axioms of a derivation: The pre-
misses of any formulas are then exhaustively examined. It does not make any
difference at all for the remainder of the proof, since any resource r hypothesised
may be immediately reintroduced via ((i)r (and β-reduction). But it does help
access the different premisses of an axiom in any order, as needed:

r1 (r2 (· · · (r [r1]
r2 (· · · (r [r2]....

r
rσ(1)(r

((i)σ(1)

rσ(2) (rσ(1) (r
((i)σ(2)

....
rσ(n) (rσ(n−1) (· · · (r

((i)σ(n) for any substitution σ ∈ Sn

Section 5.3 will show that in fact, not all quite all of the premisses become
hypotheses, but they are recursively analysed anyway. This normalisation step
then comes immediately on top of the syntax-semantics interface.

It will help make explicit the merely implicit underspecification of the Glue
axiom sequence: Exhausting premisses of Glue formulas will allow to determine

13Only modulo unification, though, because of the presence of variables.
14The atomic conclusion of the whole set of axioms, corresponding to the global f -structure.

This atom shall appear with one more positive occurrence than it has negative occurrences.
15The axioms of the first type are coined skeleton axioms in [GL98], the other ones mod-

ifier axioms. This naming hints at the distinction between scopal behavior and pure meaning
contribution, also evoked throughout chapter 5.

36 CHAPTER 3. GLUE SEMANTICS

each axiom’s behavior with the others. Since dominance between axioms is ex-
pressed as to whether one constitutes a premiss to another (as suggested in the
introduction, page 22), the normalised entries will almost directly make premiss
resources available—as hypotheses.

3.6 Glue treatment of classic phenomena

We extend here the syntax-semantics interface evoked in section 3.2.2 to account
for slightly more complex phenomena, in particular those triggering other kinds
of ambiguity (embedded sentences, adjectival).

We will, however, restrict ourselves to the phenomena for which the translation
is known to function flawlessly. Glue approaches to more complex phenomena
such as, say, anaphora (cf. [Dal99, chap. 11 & 12], [CvG99]) or general-purpose
conjunction (cf. [Dal99, chap. 13], [AC02a]), are rather experimental and not
clearly convergent, at least following the two state-of-the-art references ([Dal01,
Dal99]).16 Other phenomena, like raising and control, are known to work, but
without rigorous evidence, since they do not fulfill the preliminary assumptions.
Yet other ones, like relative pronouns, are conjectured to work, though without
further investigation.

A thorougher account of determiners and noun phrases. Considering a
Quantified Noun Phrase (QNP) as a single entry, as in (3.1), was a simplification.
If adjectival ambiguity is to be rendered, too (cf. the ambiguous N̄ alleged criminal
from London), or ambiguity embedded in prepositional phrases (cf. Every repre-
sentative of a company saw (most samples of) a product), then determiners and
nouns should be assigned distinct entries. For instance, as in every representative:

r




spec

[

pred ‘every’
]

pred ‘representative’



 7−→ rσ

[

var vr []

restr rr []

]

[every] λP.λQ.∀x (P(x) → Q(x)) : (vr (rr) (∀R (r (R) (R
[representative] λx.representative(x) : vr (rr
[a] λP.λQ.∃x (P(x) ∧ Q(x)) : (vr (rr) (∀R (r (R) (R

Remark. Another advantage of separating meaning from LL part in Glue
axioms is seen here: Different determiners with distinct semantics (meaning part)
receive in fact the same LL formula: their computational contents are the same.
(Likewise, dominance graphs for these two determiners have exactly the same
form, only the labels differ.)

Prepositions are just introduced as depending on a noun phrase; the prepo-
sitional phrase thus created may modify an N̄ (which consists of a restriction rr

16In fact, there is probably no satisfying treatment of anaphora within the mere Core Glue
fragment; All approaches to this phenomenon had to consider so-called contexts, whose updating
must be synchronous with the rest of the proofs. That is, every statement consists of a formula
as seen so far, conjoined with a context updating and thus utilising linear conjunction, which
could be avoided so far.

3.6. GLUE TREATMENT OF CLASSIC PHENOMENA 37

inputting a variable vr):

[every] λP.λQ.∀x(P(x) → Q(x)) : (vr (rr) (∀R (r (R) (R
[representative-of] λz.λx.rep-of(x, z) : c ((vr (rr)
[a-company] λQ.∃z(company(z) ∧Q(z)) : ∀C (c (C) (C

where the presence of a modifying oblof node (cf. (3.10)) has triggered the sub-
stantive entry’s expecting another resource c first. The separation of these three
entries then really lets both scopal ambiguities C and R be (under)specified sep-
arately, as needed for a successful analysis of Every representative of a company.

Proper nouns will be given the same LL formula as QNPs, that is, their
semantics shall be raised (unlike in the simplified examples from above) from type
e to 〈〈e, t〉, t〉:

[Bill′] := bill : b ; [Bill] := λP.P (bill) : ∀B (b (B) (B

This goes against the Glue literature encountered, but is motivated by sticking
to Dominance Constraints’ own raising of proper nouns—for the sake of unifor-
mity in our translation (and accordance with semantic theories!). The possible
“ambiguity” thereby introduced (because of the extraneous dominance) will just
possibly add a few β-equivalent readings to the translation output—no harm there.

After adding similar entries for company, product, and the transitive verb
saw:

[company] λz.company(z) : vc (rc
[saw] λy.λx.see(x, z) : p (r (f
[a] λP.λQ.∃y (P(y) ∧ Q(y)) : (vp (rp) (∀P (p (P) (P
[product] λy.product(y) : vp (rp

pertaining to the following f -structure:

f

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

pred ‘see〈(↑ subj), (↑ obj)〉’

subj r

2

6

6

6

6

4

pred ‘representative’

spec ‘every’

oblof c

"

pred ‘company’

spec ‘a’

#

3

7

7

7

7

5

obj p

"

pred ‘product’

spec ‘a’

#

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3.10)

one may derive here five readings of this sentence: because the a company quan-
tification is embedded in the modifying PP, the enumeration of readings does not
follow the mere exponentiality of quantifiers (which would yield 23 = 8 possibili-
ties): some quantifier positions are not valid.

Sentence-embedding verbs. Scopal ambiguity is not exclusive to determiners;
consider the “embassy” sentence:

(3.11) Every man believes that a (sleepy) student yawns.

Due to the embedding of the a quantifier in the subordinate proposition, the
sentence receives three readings, one of which de dicto, the other two de re, re-
spectively:

38 CHAPTER 3. GLUE SEMANTICS

(3.12) (a) ∀y(man(y) → believe(y,∃x(student(x) ∧ yawn(x))))

(b) ∃x(student(x) ∧ ∀y(man(y) → believe(y, yawn(x))))

(c) ∀y(man(y) → ∃x(student(x) ∧ believe(y, yawn(x))))

They are rendered by the proof trees displayed in figure 3.2, pertaining to the
axioms introduced in the right bottom corner.

Modification. Modifiers are as intuitively modelled in Glue as in type-theoretical
semantics:

[sleepy] : (v (r) (v (r
[student] : v (r

[skillfully] :∀S(t) S (S

Adverbs can thus naturally modify any non-individual (no type e) resource, often
the whole f -structure itself. More complex constraints on adverb attachment
may, again,be specified using sortal restrictions. We point to [Dal99, chap. 10] for
further information on modification. (In particular an substantial treatment of
modification is offered there, that differs from most of the accounts found in other
Glue literature, for the sake of a greater uniformity, and challenges assumption 1.)

3.6.
G

L
U

E
T

R
E

A
T

M
E

N
T

O
F

C
L
A

S
S
IC

P
H

E
N

O
M

E
N

A
39

(a) (b)

∀M(m (M) (M

(m (f) (f

y (m (f

∀S(s (S) (S

(s (y) (y s (y
y

m (f

every(man, λy.believe(y, a(student, λx.yawn(x)))) : f

∀S(s (S) (S

(s (f) (f

∀M(m (M) (M

(m (f) (f

y (m (f [y]

m (f

f

y (f
((i)y

s (y [y]
y

f

s (f
((i)s

a(student, λx.every(man, λy.believe(y, yawn(x)))) : f

(c)

∀M(m (M) (M

(m (f) (f

∀S(s (S) (S

(s ((m (f)) ((m (f)

y (m (f
s (y [s]

y

m (f

s (m (f
((i)s

m (f

every(man, λy.a(student, λx.believe(y, yawn(x)))) : f

[every] λP.λQ.∀y(P (y) → Q(y)) : (vm (rm) (∀M (m (M) (M
[man] λy.man(y) : vm (rm
[believes] λY.λy.believe(y, Y) : y (m (f
[a] λP.λQ.∃x(P (x) ∧Q(x)) : (vs (rs) (∀S (s (S) (S
[student] λx.student(x) : vs (rs
[yawns] λx.yawn(x) : s (y

precombinations:
[every-man] λQ.∀y(man(y) → Q(y)) :∀M (m (M) (M
[a-student]λQ.∃x(student(x) ∧Q(x)) : ∀S (s (S) (S

Figure 3.2: Glue treatment of the embassy sentence.

40 CHAPTER 3. GLUE SEMANTICS

Chapter 4

Translations between
underspecification formalisms

4.1 Introduction

In this chapter we situate the present contribution in the frame of similar works.
This implies a formalisation of the concept of translation between underspec-
ification formalisms, for it is twofold; It should be:

• A translation between two semantic formalisms, i.e., it should provide direct
translation for meaning.

Since Montague’s works a canonical choice is a higher-order λ-calculus, and
thus also for the two formalisms focused on in this thesis; but many different
representations are available, including for Dominance Constraints (as hinted
at in §2.1) and Glue Semantics (cf. §3.2.3).

• A translation between two formalisms with a notion of solution.

A graphical intuition of how parts of meaning representation correspond
between formalisms, like that sketched in figure 1.2 may constitute a good
starting point: But a formal investigation should go beyond the optical
similarity. In particular, it should be ensured that readings output by the
translation are indeed valid readings (soundness), and maybe also that all
expected readings are present (completeness). This may be achieved only
under formalisation of how readings are derived from the concise under-
specified representation, hence the notion of solution (e.g. of a dominance
constraint, a proof in Glue Semantics, a configuration in MRS, etc.).

Further restrictions on the solutions obtained may be demanded, depending on
the translation, as a theoretical guarantee the translation works (theoretical as-
sumptions), or as a condition the translation in usable in practice (empirical as-
sumptions).

We will see that in the case of Dominance Constraints as output, proofs will
be restricted to a particular fragment of Dominance Constraints, namely the hy-
pernormally connected constraints (so-called nets, to be defined below). Nev-
ertheless, such a restriction is conjectured to be always fulfilled in constraints
generated by linguistic syntax-semantics interfaces: this is called the Net Hy-
pothesis ([FKNT04]). One notices thus the relevance of translations between

41

42 CHAPTER 4. TRANSLATIONS

Figure 4.1: Hole Semantics and Dominance Constraints representations for Every
researcher of a company saw a sample.

underspecification formalisms, especially to Dominance Constraints: Each trans-
lation whose output is proved to consist of nets contributes a bit more to an
empirical confirmation of the Net Hypothesis.1

We will first look at such similar translations already present in the literature:
making the connection between underspecification in Dominance Constraints and,
respectively, Hole Semantics (§4.2) and Minimal Recursion Semantics (§4.3). We
will also take a quicker look at yet other similar works (§4.4).

4.2 From Hole Semantics to Dominance Constraints

Hole Semantics ([Bos96, Bos02])2 is a formalism defined, as Dominance Con-
straints, over arbitrary meaning languages, whose formulas are equipped with
holes, into which other formulas can be plugged. Underspecification is realised
in that several admissible pluggings are stated via scope constraints. Several actual
pluggings may satisfy the constraints; hence the concept of solution mentioned in
the introduction is instantiated here as a plugging satisfying the constraints.

A translation from holes to holes and labels to roots can be graphically grasped
(cf. figure 4.1). It is even a back-and-forth translation, but only under certain
restrictions. These motivate the introduction of the Net Hypothesis.

4.2.1 Hole Semantics

The representations are called underspecified representations (USR), which
consist of a finite set LU of labelled formulas l : F (h1, . . . , hn) and a set of con-
straints CU on pluggings into holes. Labels like l and holes like h1, . . . , hn un-
dergo constraints of the form l ≤ h: “hole h outscopes label l”.

These constraints are displayed in the graphical representation of USRs as dot-
ted edges, where vertices are then formulas of the meaning language (cf. figure 4.1,
left).

A well-formed, so-called proper, USR should have:

1. a unique top element, that may reach all other nodes in the graph;

2. an acyclic graph;

1An empirical study conducted on HPSG corpuses ([FKNT04], developed in[FKT05]) already
showed its relevance and pointed at mistakes in annotation or at incoherences in the syntax-
semantics interface.

2We rely here on the version of Hole Semantics described in [KNT03], which corresponds to
the newer original source [Bos02].

4.2. FROM HOLE SEMANTICS TO DOMINANCE CONSTRAINTS 43

3. the property that every label and every hole occurs exactly once in LU ,
except for the top hole.

Resolution of an USR amounts to plugging labels into holes, while respecting
the constraints. Formally, a plugging is a bijection from the holes to the labels.
But an admissible plugging P for a proper USR must also fulfill scope con-
straints, namely: k ≤ k′ ∈ CU =⇒ k′ P -dominates k, where P -domination is
defined below:

Definition 10 (P -domination) If k and k ′ are holes or labels of some USR U ,
P a plugging on U , then k P -dominates k ′ if either:

1. k : F ∈ LU and k′ occurs in F , or

2. P (k) = k′ if k is a hole, or

3. there is a hole or label k′′ s.t. k P -dominates k′′ and k′′ P -dominates k′.

4.2.2 Translation

A straightforward translation has been exhibited in [KNT03] from proper USRs
to normal dominance constraints:

labeled formula l : F (h1, . . . , hn) 7−→ labeling constraint l : F (h1, . . . , hn)
constraint l ≤ h ∈ CU (h 6= top hole) 7−→ dominance constraint h�∗l

distinct labels l and l′ 7−→ inequality constraint l 6= l′

Labels and holes of the input USR thus become, respectively, roots and holes of
the output constraint, as shown in figure 4.1.

One notices that the constraints obtained are in fact compact (cf. page 14),
since all labeled formulas introduce holes at depth one. In fact, [KNT03] gives a
back-and-forth translation from a proper USR to a compact normal dominance
constraint C, together with proofs of the preservation of their solutions: Pluggings
of U and constructive solutions of C correspond.

Here we pause and notice that only constructive solutions come in question.
They are indeed what one is looking for in solving linguistically ambiguous con-
straints: solution trees with no extraneous material.3

But the satisfiability/enumeration algorithms for Dominance Constraints enu-
merate solely the solved forms of input constraints (cf. §2.3.3, footnote 12). So
the link between solutions and, with it, the gain of efficiency in solving is not clear
yet between Hole Semantics and Dominance Constraints.

In the same paper, however, it is proved that under certain well-formedness
conditions, the notion of satisfiability for constructive solutions and solved forms
coincide.

The final theorem states: Every solved form of a hypernormally connected
(defined below), leaf-labeled normal dominance constraint has a constructive so-
lution.4

3As a counterexample, the left constraint on figure 4.2 admits no constructive solution; the
tree on the right is a solution, yet a node not explicitly stated as a label (g) had to be added.

4 Actually, in place of “hypernormally connected” is stated another property: “chain-
connected”, but these notions are equivalent for normal constraints ([Kol04, chap. 6]). Leaf-
labeledness is a property empirically verified in linguistic syntax-semantics interfaces ([KNT03]).

44 CHAPTER 4. TRANSLATIONS

f • X

• Y

a • Z b • Z′

f •

g •

a • b •

Figure 4.2: A dominance graph that is not hypernormally connected, and a solu-
tion thereof. The only edges connecting hole Y are dominance edges. The solution
is not constructive—g added.

This closes, in a restricting fashion, the issue pointed at in the introduction of a
translation with conservation of solutions: When considering only hypernormally
connected constraints, the enumeration/satisfiability algorithms from DC may be
used.

4.2.3 Towards the Net Hypothesis

The empirical restriction to the translation just mentioned is defined here.

Definition 11 (Hypernormal connexity) A path in a dominance graph is
hypernormal if it does not comprise two incident dominance edges out of a
non-root node.

Constraint C is hypernormally connected—or C is a net—if there is an hy-
pernormal path between every two nodes of C.

Now we see under a different light what was wrong with the constraint from
figure 4.2: it is not hypernormally connected, since the only path from Z to Z ′

uses two adjacent dominant edges, both out of hole Y .
But it is strongly believed, and the next section will make it yet clearer, that

the theoretical restriction of considering only hypernormally connected constraints
is not a restriction in practice: For linguistic purposes, we will in fact always
encounter nets. This is the statement of the following conjecture.

Conjecture 2 (Net Hypothesis) All dominance graphs issued from linguistic
syntax-semantics interfaces are nets.

4.3 From Minimal Recursion Semantics to Dominance
Constraints

Minimal Recursion Semantics ([CFS01], algebraically and uniformly specified in
[CLF01]) is a semantic formalism originally developed for HPSG, although it has
proved, even more than Glue, really autonomous, as a “flatter semantics” formal-
ism. The stress there lies on the efficiency of semantic construction, and it could
thus be successfully incorporated in large-scale grammars (as the English Resource
Grammar [CF00]).

But more importantly for us, it works with low-depth semantics. To this ex-
tent, it resembles much compactified dominance constraints, or even perhaps Hole

4.3. FROM MRS TO DOMINANCE CONSTRAINTS 45

Semantics; The eponymous “minimal recursion” constrains the MRS representa-
tion in a way that no logical predicate have a recursion depth of more than one.
Quantifiers are a particular type of predicates, which appear to be “floating” be-
tween pieces of meaning (cf. figure 4.3, left), whence ambiguity underspecification
is realised. A particular reading, or configuration, is then a choice of where
quantifiers shall attach.

Some design peculiarity, however, prevent a “naive” translation to be used in
practice: MRS’ conjoining of predicates must be somehow accommodated, hence
a two-step translation.

4.3.1 Minimal Recursion Semantics

MRS is a constraint language on formulas defined over a vocabulary of

1. Metalanguage variables, called handles;

2. Meaning language variables, that is, metalanguage constants, split into in-
dividual variables x, y, z, . . . and event variables e, e′, . . .;

3. Functions symbols P , among which binary quantifier symbols Qx are distin-
guished;

4. The qeq relation symbol =q.

Literals of MRS formulas consist of elementary predications (first two),
with handle and argument positions (resp. left and right of the :), and handle
constraints (third one):

1. h : P(x1, . . . , xn, h1, . . . , hm): with n,m ≥ 0

2. h : Qx (h1, h2)

3. h1 =q h2

Sets of such literals yield well-formed representations (called MRS as well) if
they further verify:

1. Every handle occurs at most once in argument position;

2. Every handle constraint h =q h
′ relates a handle argument h to a label h′;

3. Every individual variable x in argument position induces a unique literal
h : Qx (h1, h2) that quantifies over x.5

MRSs admit a straightforward graphic representation by encod-
ing EPs h : P(x1, . . . , xn, h1, . . . , hm) into solid directed tree edges
(Px1,...,xn , h1), . . . , (Px1,...,xn , hm), and implicit binding constraints in explicit
dotted edges (unless transitively redundant). See for example the left picture on

5This version (taken over from [FKNT04]) slightly differs from the original definition
([CFS01]), where MRSs are seen as triples 〈h0, {〈EPs〉}, {〈handle constraints〉}〉, with h0 be-
ing distinguished as the top handle. However, top handles are only relevant to MRSs with
unconnected graph (cf. [BDNM04]), which is reasonably enough never the case in linguistic
applications.

46 CHAPTER 4. TRANSLATIONS

Figure 4.3: Graphical representation of an MRS and its two configurations for
Every student read a book.

figure 4.3 that represents, without scope commitment, Every student read some
book, whose MRS would be as following:

{h5 : somey(h6, h8), h7 : book (y), h1 : everyx (h2, h4),

h3 : student(x), h9 : read (x, y), h2 =q h3, h6 =q h7}

Without going further into details, one may guess what resolution of ambiguity
amounts to:

• Connecting all handles pairwise with arguments, whereat ensuring that

• All quantifier EPs Qx outscope all EPs containing their x (outscoping is
defined in an intuitive, similar way as P -domination above);

• EPs do not outscope themselves;

• All EPs are connected;

• Handle constraints are satisfied: h =q h
′ =⇒ h outscopes h′.

Such solutions to an MRS M are called configurations of M , or scope-resolved
MRSs (they are MRSs of a certain form, with no pending handle constraints). For
instance, figure 4.3 represents an MRS (left) for the ambiguous sentence Every stu-
dent read some book and the two configurations it admits (right). These obviously
correspond to the two readings (resp. ∃∀ and ∀∃) of the sentence.

We already encountered conjunction in MRSs implicitly: all constraints from
the set M are understood as conjoined (Dominance Constraints, e.g., would make
the conjunction explicit). But conjunction may also appear, necessarily, in con-
figurations of an MRS M which does not involve any conjunction itself. (Cf. fig-
ure 4.4: any solution there necessarily implies P3 and P2 be conjoined as {P2, P3}.)
Configurations involving (implicit) conjunction of EPs are called merging con-
figurations.

W.r.t. the Net Hypothesis, a translation would more easily accommodate such
MRSs as in fig. 4.4 as unsolvable, but this is not the case.

4.3. FROM MRS TO DOMINANCE CONSTRAINTS 47

{h : P1 (h′), h′ : P1, h
′ : P2}

Figure 4.4: An MRS that is no MRS-net (left). A solution necessary involves
conjunction (right).

4.3.2 Translation

MRSs as in figure 4.4 represent a problem. As it happens, the shape of the MRS
graph looks familiar: it reminds of that of the dominance graph from figure 4.2
above, which is not hypernormally connected.

The analogy is not fortuitous, and such MRSs are called MRS-non-nets: their
translation onto dominance constraints (see below) would yield non-nets. Whereas
Dominance Constraints accommodates them in introducing extra material and
producing non-constructive solutions, MRS necessitates merging configurations.

But again, the Net Hypothesis allows then to forget about such structures.
In fact, the second important result in [FKNT04] is that the merging semantics
of MRSs can be skipped altogether, for nets. Conjunctions are eliminated in a
preliminary step, and nets will never yield further conjunctions in their solutions.
The translation is therefore a two-step process:

Resolving conjunctions. The following rule is exhaustively applied to MRS
M , involving a new binary function symbol & and two fresh variables:

h : E, h : E′ =⇒ h : &(h1, h2), h1 : E, h2 : E′

The depth 1 property is lost through this process, so MRSs shall be com-
pactified afterwards (where compactification is defined similarly as for dominance
constraints).

Translating and normalising. After this pre-normalisation step, a translation
from MRS literals onto dominance constraints consists of the following:

EP h : P(x1, . . . , xn, h1, . . . , hm) 7−→ labeling constraint l : F (h1, . . . , hn)
quantifier EP h : Qx (h1, h2) 7−→ labeling constraint h : Qx(h1, h2)

handle constraint h =q h
′ 7−→ dominance constraint h�∗h′

h : Qx (h1, h2) and h0 : P(. . . , x, . . .) ; dominance constraint h�∗h0

handles h and h′ in distinct label positions ; inequality constraint h 6= h′

Assessment. The important statement of the paper is that the translation’s
first step is no restriction, provided only nets are considered. The successive proofs
involve, again (cf. §4.2), the crucial property that solved forms and constructive
solutions coincide on nets.

48 CHAPTER 4. TRANSLATIONS

As a conclusive interrogation to the “net issue”: An empirical study conducted
on outputs of ERG outputs—MRSs, then—originally in order to test the trans-
lation pointed at mistakes and incoherences in the outputs: an analysis of the
non-nets showed that they were either false or genuine non-nets that are incom-
plete ([FKT05], cf. also [FKNT04]). This led to considering hypernormal connec-
tivity as a linguistically reliable condition: “All linguistically correct expressions
are nets.” Hence, could the Net Hypothesis be used as a “safety criterion” for
syntax-semantics interfaces in the future?

4.4 Other examples

Several other translations between underspecification formalisms, connecting some-
what older formalisms, are found and investigated in the literature.

From QLF to Hole Semantics. Quasi-Logical Forms ([Als92]) are one of the
first underspecified semantic formalisms. However, [Lev05] remarks that under-
specification, more precisely, the dominance relation, is only implicitly stated in
QLF.

The author thus proposes a translation that “decouples” dominance from
meaning relations in sentence representations, so as to make dominance explicit
and directly expressible as HS pluggings.

The gain in translating between formalisms is explicitly stressed: it is argued
that QLF representations are more intuitive and easier to construct, while Hole
Semantics makes ambiguity more apparent.

From f-structures to UDRSs and QLFs. Underspecified Discourse Repre-
sentation Theory ([Rey93]) is yet another a pioneering formalism realising un-
derspecification. Its representations rely on Discourse Representation Theory
([KR93]), and expand its objects by stating scope relations. In [vGC99] two back-
and-forth translations are exhibited from LFG’s f -structures (cf. §3.2.1) onto,
respectively, UDRSs and QLFs.

The translations take advantage of the peculiar layer structure of LFG, in that
it uses the higher-level, syntactically underspecified f -layer (as opposed to strongly
hierarchical structures (e.g. trees) usually needed to steer composition in syntax-
semantics interfaces). The translation is a direct mapping of LFG’s objects onto
UDRT (resp. QLF) semantically underspecified representations (i.e. not relying
on an actual semantic layer, like Glue).

Chapter 5

A translation from Glue
Semantics to Dominance
Constraints

5.1 Introduction

The following chapter presents the theoretical work achieved towards a working
translation form Glue Semantics to Dominance Constraints.

In a nutshell. The main ideas of this chapter are that we will:

1. Translate Glue derivations trees into trees over a language of Glue rule
names;

2. Translate Glue axioms’ logical dependencies on one another into dominance
constraints;

3. Identify every solution of the output dominance graph with a Glue deriva-
tion.

To illustrate these three points on an example, let us return to the ambiguous
sentence referred to in the previous chapters: Every woman loves a man. The input

((e) •

(ax)1 • ((i)w •

•

((e) •

(ax)3 • ((i)m •

•

((e) •

((e) •

(ax)2 • [m] •

[w] •

Figure 5.1: Translation output for Every woman loves a man.

49

50 CHAPTER 5. CONTRIBUTION

A1 [every-woman] λS.every(woman, S) : (w (W) (W
A2 [loves] λy.λx.love(x, y) : m ((w (f)
A3 [a-man] λS.a(man, S) : (m (M) (M

(w (W) (W
W

w (W

W

m ((w (f)
(ax)2

[m]

w (f [w]

f

(m (M) (M
M

m (M

M

A1 A2 A3

Table 5.1: Translation input for Every woman loves a man (simplified version:
QNPs are considered as one block).

((e) •

(ax)1 • ((i)w •

((e) •

(ax)3 • ((i)m •

((e) •

((e) •

(ax)2 • [m] •

[w] •
(w (W) (W

(ax)1

(m (M) (M
(ax)3

m (w (f
(ax)2 [m]

w (f [w]

f

m (f
((i)m

f

w (f
((i)w

f

Figure 5.2: Correspondence between output solutions and Glue derivations.
The ∀∃ reading of Every woman loves a man is considered here.

to consider will consist of the Glue axioms, displayed and exhaustively decomposed
(cf. §3.5.4) as in table 5.1.

As for the output, it would be expected to have at least the dominance struc-
ture of the graph from figure 2.2, that is, one would like it to admit exactly two
constructive solutions, respectively corresponding to the ∀∃ and ∃∀ readings.

In fact, the output will have the form depicted in figure 5.1: Labels of the
dominance graph are Glue rule names, so that the fragments’ structures are
exactly those of the corresponding derivations; Fragment leaves correspond to the
“leaves” of a derivation tree, i.e. to the use of either axiom rules or hypotheses.

Assumed intermediate results in subproofs (here the A1 (resp. A3) supposes
a proof of W (resp. M) be available) correspond to holes (unlabelled nodes).
Dominance arises from that dependence on an intermediate result. Here
variables W and M may both instantiate to f , so that the dominance behavior is
exactly that of figure 2.2.

The question remains of how to accommodate the solution concept (cf. §4.1)
to this output dominance graph: this is the soundness issue (and in the ideal
case, the completeness issue as well). Because: what do solutions of the output
graph represent? How are they related to Glue’s notion of solution? It suffices
to remark that any constructive solution of the output graph may be one-to-one
mapped onto a derivation tree, as suggested in figure 5.2.

5.1. INTRODUCTION 51

Before the translation. One may notice in the derivation tree that two deriva-
tion steps do not correspond to any specified in Core Glue (table 3.2). For instance:

(w (W) (W w (f

f

is strictly speaking not a modus ponens application; it actually consists of two steps
condensed in one rule: Instantiation of variable W to f (i.e., (∀i)[f/W]-application)
and afterwards modus ponens (((e)-application) as f inferred from (w (f) (f
and w (f . This rule is called modus ponens modulo unification: ((e)u,
and is introduced in section 5.2.2, as well as the justifications for getting rid of
the quantifiers (Glue variables stand free in our translation’s input).

The correspondence between the solutions of the output graph and the deriva-
tion trees (resp. left and right in figure 5.2) is made explicit in section 5.2.3,
where modified versions of the notion of derivation tree are introduced, tailored
for our translation’s output. In particular, the correctness of a derivation tree is
redefined, so as to take into account the new modus ponens introduced.

A few empirical observations in the Glue literature, about what form the ax-
ioms provided by the syntax-semantics interface may take, allow us to make some
assumptions on the input axioms, useful for later uses. They are exposed in sec-
tion 5.2.1.

Rules as labels. Thereafter, section 5.3 introduces the translation, in two steps:
outputting firstly plain fragments of Dominance Constraints (§5.3.1) and sec-
ondly the actual dominance constraints between these fragments (§5.3.4).

From the fragments alone, several useful properties can already be extracted
(§5.3.2 and §5.3.3), which are meant to converge towards one result, the main
contribution—soundness.

Architecture of soundness. As evoked above, the translation is only satisfying
insofar as the notion of solution between the two formalisms is translated as well;
thus we will have to ensure that every solution of the output graph is indeed a
correct derivation tree as redefined in §5.2.3—that the translation is sound.

The proof of soundness itself may be decomposed along the steps illustrated
in figure 5.1: The properties are all embedded in one another, because every step
further in the proof demonstrates one more general property of the output graphs.

For instance, we call local soundness a satisfying behavior of the fragments
output, with no statement yet about dominance. This can be proved already after
introducing the mere fragments (§5.3.3).

For the solutions of the output graphs to be correct derivations trees, they
have to : firstly, pass up the right formulas at each rule; but also, secondly, keep
track of hypotheses made throughout the derivation: A ((i)ϕ-rule may only be
applied if a so far unused hypothesis ϕ has been made up the derivation tree.1

Weak soundness refers then to output solutions which fulfill only the former,
and thus are possibly incorrect w.r.t. to hypothesis book-keeping. Soundness

1And in Linear Logic it is also important that there be not too many hypotheses made either
(unlike First-Order Logic): All hypotheses made must thus be matched pairwise by ((i)-rules,
hence a careful book-keeping of them is needed.

52 CHAPTER 5. CONTRIBUTION

will be only partial when one is only able to ensure that parts of a solution tree
are well-formed, but not the tree as a whole (for example if it keeps too many
hypotheses).

Important results inherited from the polarity aspect of Linear Logic are also
cited and used in §5.4.2, and a well-formedness result w.r.t. Dominance Con-
straints (§5.4.1) is brought: the output dominance graphs are there proved nor-
mal. The last steps of the soundness proof are made in the final section (§5.4.3).

Soundness (Theorem 20)

Partial soundness (Proposition 19)

Weak partial soundness (Proposition 18) (§5.4.3)

Weak local soundness (Proposition 10) (§5.3.3)

Type inference tool-box (§5.3.2)

Type inference tool-box (Proposition 7)

Polarity corollary (15:1) (§5.4.2)

Polarity corollary (15:2)

Figure 5.3: Proof architecture for soundness.
Every boxed property is proved using results in the adjacent rectangle; All boxed
properties of the translation thus chainwise imply each other: Soundness ⇒
Partial soundness ⇒ Partial weak soundness ⇒ Weak local soundness.

The closing section (§5.5) hints at what misses for a completely satisfactory
translation, among which completeness, and shows how this is nevertheless em-
pirically verified.

5.2 Formal preliminaries

The following section presents all the material necessary to introduce the trans-
lation itself: theoretical assumptions issued from empirical observations (§5.2.1),
accommodation of quantifiers in Glue formulas, and redefinition of derivation trees.

Convention.

• We will the term “derivation (tree)” as a synonym for “proof (tree)”.

• Unless there is need to make it explicit, A = A1, . . . ,An will designate the
sequence of all axioms for the given sentence to be analysed. Although actual
Glue axioms comprehend both sides of the CHI (cf. §3.2.3), all the work in
this chapter relies on the sole LL parts (right-hand sides) of these. Thus, LL
formulas will be implicitly understood in A.

• Besides, unless otherwise stated, the LL formulas considered in the following
are taken among the Core Glue Fragment (defined in table 3.2 above),
after undergoing the small modifications described in subsection 5.2.2.

The need for such modifications has motivated the theoretical assumptions from
the next section.

5.2. FORMAL PRELIMINARIES 53

5.2.1 Theoretical Assumptions on Glue

As for the linguistic phenomena to be accounted for, we restrict ourselves to those
exposed in chapters 6–10 from [Dal99]. This is particularly important insofar as
the following assumptions rely, from the empirical side, on the treatment of those
phenomena observed in the Glue literature (as presented in §3.6 above).

The following assumptions restrict the types of Core Glue derivations which
we will consider as input to the translation. We argue that, from an empirical
point of view, they do not constitute a restriction, though, and show most make
linguistic sense, too.

Assumption 3 No ∀-introduction step is ever used.

Remark. We conjecture there exists a simple proof-normalising method to
eliminate all (∀i)-rules from any Glue derivation. It would allow us not to merely
assume the (∀i)-free form of derivations, but to prove this can be obtained sys-
tematically; that is not going to be done in this thesis.

The following assumption is needed to get rid of quantifiers (cf. next section).

Assumption 4 No ∀ quantifier is ever left-embedded. That is, any ∀ quantifier
appearing in an implicative formula ϕ = ψ (χ must appear in the right-hand
term χ of the implication.

Since linear implication in Glue axioms means dependency on a particular resource,
that means that no semantic predicate should itself put a scope restriction on one
of its arguments, but only these arguments themselves may.

For instance, the entry for a quantifying determiner, as for the LL part, takes
the form

∀S (s (S) (S,

where S is the scope variable, modified by the noun resource s. Were there a
variable T quantified within the parenthesis, as in, say, (∀T (s (T) (S) (

S, the final resource passed upward in the LFG σ-structure: S, would overlook
altogether its argument s; in (∀T (T (s) (S) (S, the final scope resource
S would only have a dummy argument T ; In any way, any potential new scope
information induced by T is lost outside its quantifier’s scope.

The purpose of quantifiers in Glue is to allow free instantiation of scope vari-
ables (S) and then just pass forward this scope information—possibly modified
(as s (S), in which case it depends on one or several arguments (here s).
But it would make no linguistic sense not to reuse the scope information, which
would be the case if the arguments themselves bore their own scope (as T in
(∀T Φ(T)) (S).

Assumption 5 There is at most one variable in any axiom.

Remark. This assumption is purely technical, and it might a priori well happen
that two variables or more be needed for the treatment of a particular linguistic
phenomenon. Nevertheless, we at present do not know of any such phenomena. It
is, besides, probably implied by the polarity pattern defined above (assumption 1).

54 CHAPTER 5. CONTRIBUTION

Assumption 6 Formulas appearing as ϕ in rules ((i)ϕ do not contain any vari-
able.

Remark. Again, we conjecture this to be provable, actually: to be accommo-
dated by some proof-normalising step.2

Yet another assumption is needed in the definition of the output fragments.

Assumption 7 (Conclusion of type t) For any axiom sequence A, cc+(A) only
consists of atoms of type t or variables.

This is arguably a purely linguistic assumption (definition 19 could probably be
modified to handle any type of conclusion); it has no influence on the structure of
the translation. But it is coherent with the treatment of noun phrases in Montague
Semantics ([Mon74]) and the fact that scope variables are assigned type t in the
Glue literature (cf. sortal restrictions in §3.4, page 29). 3

5.2.2 Glue and quantifiers

In Glue derivations as shown in the literature, substitution of variables (only
universally quantified in the Core Glue Fragment) and modus ponens (i.e. the ap-
plication of, respectively, ∀-elimination and (-elimination) are mostly performed
in one step instead of two, often for the sake of displayability of the derivation
trees. This we also want our input formalism to do, which led to the formal intro-
duction of a simplification rule, a modus ponens tailored for direct substitution:
a (-elimination rule modulo unification (((e)u).

It relies on there not being any quantifiers in the input formulas. We thus
translate every Glue axiom the following way: All quantified variables appearing
in axioms are replaced by pairwise distinct, new symbols (variable symbols;
there is thus only a finite number for any axiom sequence).

Any of these newly introduced variable symbols S1, . . . , Sk may be instantiated
by ((e)u application to any other Glue formula from L (including those containing
other Si symbols as well).

2An idea would be that any candidate, say, ((i)Φ(G), necessary implies an hypothesis [Φ(G)]
up the derivation tree. But the variable G introduced by the rule will be eventually instantiated,
say, to ϕ. It probably amounts to the same (yields equivalent proofs), then, to directly hypothesise
the instantiated form: [Φ(ϕ)], since Φ(G) subsumes (is more general than) Φ(ϕ):

[Φ(G)] · · ·
....
ψ

Φ(G) (ψ
((i)Φ(G)

Φ(G) (ψ
[ϕ/G]

;

[Φ(ϕ)] · · ·
....
ψ

Φ(ϕ) (ψ
((i)Φ(ϕ)

3The notable exception to the assumption are the axioms for proper nouns found in the
Glue literature (e.g., [Dal01]), which consist of a type e atom. Hereto the solution is to raise
them, as we saw in §3.6, which exactly corresponds to the treatment in Montague Semantics.
(Another solution could consist in introducing a special case of definition 19 for axioms consisting
of a single type e atom.)

5.2. FORMAL PRELIMINARIES 55

We say that formula ϕ subsumes ψ if there is a substitution of variables to
formulas that maps ϕ to ψ.4 We denote by mgu(ψ,ψ′) the most general unifier
of ψ and ψ′. It is the most general (i.e. smallest, in terms of number of mapped
variables) substitution of variables of both ψ and ψ ′.

The subsequent theoretical argument is that any derivation obtained this way
is equivalent to the original Glue derivation in two steps:

Quantifier elimination

Every axiom Φ involving a variable (unique under assumption 5) undergoes the
following customised ∀-elimination step:

Ψ(∀X Φ(X))

Ψ(Φ(S))
for any variable X and S a fresh variable symbol,

where Ψ thus substitutes all occurrences of its (universal) quantifier with quantifier-
free Φ(S) and replaces the formerly bound variable with a fresh one.

In the Glue literature, these substitutions would be performed just before an
application of ((e)u (so as to stick to the Core Glue schema (∀e)-((e)). However,
the order in which metavariables are introduced to the axiom is irrelevant: Thanks
to the identity (true in Linear and in First-Order Logic):

ϕ (∀P ψ(P) ≡ ∀P ϕ (ψ(P) if P does not appear free in ϕ, (5.1)

all embedded quantifiers can be extracted “in-outward” in the structure of all
axioms, thus allowing the quantifier-elimination process to be performed prior to
any actual proof.

Assumption 4 ensures that this elimination does not interfere with modus
ponens; assumption 6 ensures it does not interfere with ((i) either: they imply
that identity (5.1) covers all cases of quantifier extraction.

This was but the first step of the process, for now these new variable symbols
must be accommodated, more accurately: instantiated, in the modified modus
ponens, just the same way as ∀-elimination is performed in Core Glue.

Modus ponens with built-in unification

Every modus ponens (or ((e), or (-elimination) step is replaced by a modus
ponens modulo unification:

ψ (χ ψ′

mgu(ψ,ψ′)(χ)
((e)u if ψ subsumes ψ′,

(in which case mgu(ψ,ψ′) is defined),

where mgu(ψ,ψ′) leaves ψ′ invariant, since ψ′ is subsumed by ψ.

4A substitution as a formula mapping f : L → L is just the function canonically induced
by the actual substitution of a set T ⊆ L of variables σ : T → L: For every formula ϕ ∈ L,
f(S) := σ(S) if S ∈ T and f(ϕ (ψ) := f(ϕ) (f(ψ). Both will be called substitutions in an
unambiguous context.

56 CHAPTER 5. CONTRIBUTION

Convention. Henceforth, for convenience, all the new variable symbols (from
now on short: variables) and only these will be designated by capital Roman
letters in Glue formulas.

Generic Glue formulas will be designated by Greek letters ϕ,ψ, χ, . . . and atoms
that are no variables by lower-case Roman letters: a, b, f, g, . . .

5.2.3 Modelling derivation trees

In this subsection we adapt the notion of derivation tree to solutions of domi-
nance graphs (as shown in figure 5.2, left) and thereby formalise what is intuitively
performed upon verifying a proof tree.

This process not only consists in local applications of rules (thanks to quantifier
elimination: only (-elimination, (-introduction, axiom and hypothesis introduc-
tion), but also in global book-keeping of formulas, in that one has to keep track
of all hypotheses introduced at each node (to determine whether (-introduction
is valid). Since the same hypothesis may a priori be introduced more than once
before use in the same derivation tree, the book-keeping information must be more
than binary (hypothesis ϕ either bound or free): it must include the actual number
of occurrences of ϕ introduced and not yet bound.

For this specific purpose we introduce the handy notion of multisets5, an in-
tuitive generalization of classic sets.

Definition 12 (Multisets) A multiset over the base set X is a function
X → N. If A and B are two multisets over X: A,B ∈ Multiset(X), then A]B is
the multiset over X defined by: (A]B) : x 7→ A(x) +B(x) for all x ∈ X.

∅X is the empty multiset over X defined by: ∅X : x 7→ 0 for all x ∈ X, and if
a ∈ X, {a}X is the function A ∈ Multiset(X) s.t. A(x) = 1 if x = a and A(x) = 0
otherwise.

The objects considered here are those over which Dominance Constraints are
expressed: finite constructor trees (i.e. the trees mentioned in §2.2.1, defined
in [Kol04, chap. 2]). They are thus trees τ equipped with a canonical tree structure
Mτ and decorated with labels (over a given signature Σ) and node addresses.

With the following definition, the formal stepwise, bottom-up6 process of proof-
checking is defined, ensuring that:

1. With F: The formulas obtained at each step actually correspond to intro-
duction or elimination of linear implication;7

2. With ft, additionally: One keeps track of hypotheses all along the process.

Function ft emulates the structurally inductive verification of the derivation tree:

5In all empirical cases the occurrences of modifiers will be just free or bound, actually, but
multisets must be kept, for the sake of generality.

6Trees are usually displayed with leaves down, but proofs (derivations) the other way around,
so “bottom-up” refers to solution trees.

7Implication elimination demands that the formula currently obtained actually be an impli-
cation.

5.2. FORMAL PRELIMINARIES 57

• The axiom part passes the corresponding formula and no hypothesis to keep
track of;

• The hypothesis part also passes the corresponding formula but initialises the
hypothesis counter to one;

• The implication elimination part verifies that unification is possible and
performs it when possible, while it just combines the bags of hypotheses
together (there comes the handiness of multisets at play);

• Finally, the implication introduction part just augments the formula with a
premiss while it actually checks that hypotheses are sufficient for enabling
the rule.

We allow the definition to be generally defined over any given set of formulas,8

although it will for us turn out to be Core Glue without quantifiers.

Definition 13 (Tree-to-formula mappings) Let L be a set of linear logic for-
mulas. Let T be the set of finite constructor trees over the (possibly infinite)
signature Σ = {((e)

2} ∪ {((i)
1
ϕ;ϕ ∈ L} ∪ {(ax)0ϕ;ϕ ∈ L} ∪ {[ϕ]0;ϕ ∈ L}.

Then ft and F are the partial functions from T onto, respectively, L×Multiset(L)
and L, inductively defined by:

• F((ax)j) := α and ft((ax)j) := (α, ∅) if the j-th axiom Aj is formula α;

• F([ϕ]) := ϕ and ft([ϕ]) := (ϕ, {ϕ});

• F(((e)(x, y)) := χ′ if F(x) = ϕ (χ and F(y) = ψ, and ft(((e)(x, y)) :=
(χ′, A]B) if ft(x) = (ψ (χ,A) and ft(y) = (ψ ′, B); where χ′ := mgu(ψ,ψ′)(χ)
and ψ subsumes ψ′—both ft and F are undefined otherwise;

That is, ft(((e)(x, y)) is defined if

F(x) F(y)

F(((e)(x, y))
((e)u

is a valid application of modus ponens modulo unification;

• F(((i)ϕ(x)) := ϕ (F(x); If ft(x) = (ψ, {ϕ}L] A), then ft(((i)ϕ(x)) :=
(ϕ (ψ,A);

That is, ft(((i)ϕ(x)) is defined if

[ϕ]
....

F(x)

F(((i)ϕ(x))
((i)ϕ

is a valid implication introduction rule for linear logic.

The modelling of a proof by our new derivation trees is illustrated in figure 5.4. If
both are defined, F(τ) always is the first projection of the pair: F(τ) = pr1(ft(τ)).

8A sublogic (viz., a set of formulas) is usually referred to as a fragment, too. We will not use
“fragment” in this latter sense, in order not to confuse with the sense pertaining to Dominance
Constraints.

58 CHAPTER 5. CONTRIBUTION

((i)ϕ • (ϕ (ψ,{ϕ}∪ /0)

((e)u • ϕ (ψ
(ax) j • (ϕ (ψ, /0) [ϕ] • (ϕ,{ϕ}) if Aj := ϕ (ψ

ϕ (ψ
(ax)j [ϕ]

ψ
((e)u

ϕ (ψ
((i)ϕ

Figure 5.4: Behavior of the tree-to-formula mappings ft and F. Modeling of the
proof (right) is achieved by bottom-up recursion (left): The nodes are displayed
with their labels on the left and their images under ft on the right.

Remark. Interestingly, both last inductive cases are opposed as for their be-
havior w.r.t. LL formula checking and hypothesis book-keeping, respectively: The
implication elimination ((e)u does not put any constraint on hypotheses but de-
mands the formula F(x) be an implication, and F(y) be unifiable with its premiss;
Conversely, the implication introduction ((i)ϕ augments any formula with pre-
miss ϕ (no LL-structural constraint), but demands an according hypothesis [ϕ]
be present. We will notice how important this is later in the technicalities of the
proof: It points at the difference between a partial correct and a correct derivation
tree (defined below).

At this point we want to express how the machinery just introduced corresponds
to our intuitive notion of a correct derivation tree: For the proof of ϕ to be correct,
all hypotheses must have been discharged at its root.

Definition 14 (Correct derivation) A correct derivation tree for Glue for-
mulas is a finite constructor tree τ over Σ such that:

ft(R(τ)) = (ϕ, ∅L) for some formula ϕ

For instance, the derivation tree shown in figure 5.4 is not correct, because hy-
pothesis ϕ is still pending at the root. It is a partial correct tree, though, since
all nodes correspond to valid rules (definition 16 below).

Furthermore, a crucial condition on Glue derivations is that all axioms must
be used and only once (cf. §3.1).

Definition 15 (Correct derivation from axioms) Let A = A1, . . . ,An be a
sequence of Glue axioms, ϕ a Glue formula. A correct derivation tree for ϕ
from A is a correct derivation tree τ with ft(R(τ)) = ϕ and such that the multiset
of all axiom nodes (ax)j from τ contains exactly the elements A1, . . . ,An.

The following definitions introduce incomplete derivation trees, that will be useful
in the forthcoming details of the proof, as a transition toward a fully correct tree:
A correct derivation tree will be a partial correct derivation tree whose root has
no hypothesis pending.

Definition 16 (Partial correct derivation tree) A partial correct deriva-
tion tree is a tree τ for which mapping ft from definition 13 is well-defined.

That is, the set T ′ ⊆ T of partial correct derivation trees is the greatest subset
of T that makes ft a total function.

5.3. THE TRANSLATION ITSELF 59

The weak version of the definition above is meant to ensure the same conditions
up to hypothesis book-keeping.

Definition 17 (Partial weakly correct derivation tree) A tree τ ∈ T is a
partial weakly correct derivation tree if F(τ) is well-defined.

Remark. Obviously, if ft(τ) is well-defined, so is F(τ). In other words, any
partial correct derivation tree is a partial weakly correct derivation tree. The
latter type of tree merely checks the formulas passed upward have the right form,
while the former additionally checks whether hypotheses are properly updated.

5.3 The translation itself

Having formalised the notions of correct derivation trees, we have set the stage
for our translation: a Glue axiom sequence A = A1, . . . ,An as input and a
dominance constraint as output (as shown in figure 5.1), whose solutions will
be proved correct derivation trees.

The translation itself is decomposed in two distinct steps, accordingly to the
segregation of constraint atoms (or dominance graph edges) into labelling con-
straints (resp. tree edges) and proper dominance constraints (resp. dominance
edges); Thus, properties of the translation will also fall into two categories: those
which hold for the mere fragments (which correspond to labelling constraints):
§5.3, and those which apply to the global output constraint: §5.4.

1. First, the fragments are obtained (definition 19): §5.3.1. Their definition
extracts the logical structure of the axioms to rebuild it as a (piece of) deriva-
tion tree, with distinct treatments according to whether logical resources
correspond between axioms of the global axiom sequence A. The criterion
is whether premisses of an axiom Ai match the suffix of another axiom Aj

(in a sense to be defined below), and the goal is to introduce dependencies
“hypothesis ([ϕ]) vs. binding (((i)ϕ)” in the output derivation.

Such a definition induces an intuitive induction scheme: left-leaf-root induc-
tion (proposition 4), whose structure clings to definition 19. It is used to
prove the numerous properties which can already be stated from fragments
alone (constraint fragm(A)): §5.3.2.

The most important of these are stated in §5.3.3, concluding the fragment
part: proposition 10 provides a restricted correctness of the output frag-
ments (weak local soundness), while lemma 11 makes the relations between
fragments explicit.

2. Then dominance is expressed between fragments (definition 25). This pre-
supposes a classification of fragments according to their logical content: def-
inition 23.

The resulting constraint T(A) is proved to be well-formed w.r.t. Dominance
Constraints: normality (proposition 13) and leaf-labeledness are obtained.
In particular, they justify the use of dominance graphs in place of constraints.

60 CHAPTER 5. CONTRIBUTION

In §5.4.2, the connection is made to the polarity of Implicative Linear Logic
formulas (theorem 1), and a strengthened version is used as a crucial as-
sumption (a polarity pattern (1) tailored for Glue, taken over from [GL98])
to restrict the polarities in fragm(A) and therefore to further constrain T(A)
(corollaries 15 and 16).

In §5.4.3, finally, soundness is gradually proved: via partial weak soundness
(proposition 18) and partial soundness (proposition 19), i.e. firstly with-
out taking hypothesis book-keeping into account, and secondly doing it, but
overlooking superfluous hypotheses; Thus, the final result (theorem 20) just
says that all hypotheses must have been consumed when the root of a solu-
tion derivation tree is reached.

5.3.1 Translation—fragments

Implicative formulas Here a further structural definition on formulas is needed
in the theoretical apparatus, additionally to those from §3.5.2.

Definition 18 (Non-ψ-modifying axioms) If L is a set of formulas, ψ a for-
mula, let Nψ(L) denote {ϕ ∈ L; ψ 6∈ Suf(ϕ) ∩ Prmr(ϕ)}, that is, the set of
formulas which ψ is not both a suffix and a right-branching premiss of.

The “non-modifying” restriction to definition 19 below proves useful in §5.4.2.

Computing fragments. The fragment translation of a Glue axiom set A will
firstly extract the tree structure of all LL axioms and translate it in the constraint
language: rule names as labels and branching numbers of these rules as label
arities (that is: 0 for an axiom introduction, 1 for a implication introduction and
2 for an implication elimination).

We denote by 1depth(ϕ) a word over the alphabet {1, 2} constituted of as many
1s as the (implicational) depth of the axiom ϕ.9 It is thus the address of node
(ax)j in fragment fragm(Aj).

Definition 19 (Translation—labelling constraints) If ϕ is the j-th axiom in
A (ϕ = Aj), then

fragm(ϕ) := Xs
j : (ax)j ∧ zsj (ϕ), where s = 1depth(ϕ) and (5.2)

zεj (a) := > if a is an atom of type t or a variable; (5.3)

Xu
j : ((e)(X

u1
j , Xu2

j) ∧ zuj (χ) ∧ Xu2
j : [ψ] (5.4)

if ψ does not subsume any ψ′ ∈ Suf(Nψ(A\Aj))zu1
j (ψ (χ) :=







Xu
j : ((e)(X

u1
j , Xu2

j) ∧ zuj (χ) ∧ wu2(ψ′) (5.5)

if ψ subsumes some ψ′ ∈ Suf(Nψ(A\Aj))

with

wu(ψ (χ) := Xu
j : ((i)ψ(Xu1

j) ∧ wu1(χ) (5.6)

and wu(a) := > if a is an atom of type t or a variable. (5.7)

9If the logic L is purely implicative, the (implicational) depth of a formula ϕ ∈ L is
depth(ϕ) := 0 if ϕ is an atom or a variable, and depth(χ) + 1 if ϕ = ψ (χ. It will also be
abbreviated in δ when the context is clear.

5.3. THE TRANSLATION ITSELF 61

((e) •

((e) •

(ax)i • ((i) •

() •

((i) •

() •

((e) •

((e) •

(ax) j • () •

[] •

Figure 5.5: Inductive definition of fragments: path.

The definition shows how the tree structure implicit in each formula Aj is
inductively reconstructed. Yet it does not start from the root, but from the ax-
iom node, along the scheme suggested in figure 5.5, which shows the form of the
output fragments.. This path is directed “from left to leaf (downward) and root
(upward)”.

Remark. Both indices involved in the notations (for z and X) are necessary:
One needs to keep track of the axiom number, so as not to confound the Xjs with
some Xis from another fragment, but above all of the current position in the tree
so far (the addresses of nodes in a finite constructor tree): At the beginning,
position is set at the position the axiom node is known to occupy—the axiom’s
depth (5.2), only to be decremented upward (lines (5.4) and (5.5)) or incremented
downward (line (5.6)). Addressing stops upon encountering a leaf (5.7) or the root
(5.3).

Example 1 Let us see on the example of two actual Glue entries how the fragment
is built step by step; This is illustrated in figure 5.6. Entries are taken from the
embassy axiom set (simplified QNP form), standing for Every man believes that a
student yawns (cf. figure 3.11, §3.6):

[every-man] : A′
1 = ∀M (m (M) (M

[believes] : A3 = y (m (f

[a-student] : A′
4 = ∀S (s (S) (S

[yawns] : A6 = s (y

1. QNP: A′
1 = (m (M) (M

Firstly let us recall that we consider only quantifier-free formulas, i.e. func-
tion fragm will actually process (m (M) (M Secondly, in a well-formed
Glue axiom sequence, the QNP is known to match its verb. This is expressed
as modified scope resource m (M matching (subsuming) the suffix m (f
of the verb’s axiom y (m (f . Therefore:

z11
1 ((m (M) (M) := X : ((e)(Xδ , Z) ∧ z1

1(m (M)

with z1
1(m (M) = Y : ((e)(X,Θ) ∧ w2(m (M) ∧ zε1(M)

︸ ︷︷ ︸

ε

62 CHAPTER 5. CONTRIBUTION

[every-man]: A1
′ = (m (M) (M line [believes]: A3 = y (m (f

(m (M) (M = A1 : (ax)1 • X1
1

(5.2) y (m (f = (ax)3 • X11
3

M • X ε
1

(m (M) (M • X1
1 m (M • X2

1

(5.3)
(5.5)

m (f • X1
3

y (m (f • X11
3 y • X12

3
(5.3)
(5.4)

(5.7)

f • X ε
3

m (f • X1
3

y (m (f • X11
3 y • X12

3

[m] • X2
3

M • X ε
1

(m (M) (M • X1
1 m (M • X2

1

M • X21
1

(5.6)
(5.7)

Figure 5.6: Piecemeal fragment construction from axioms: a quantified noun
phrase and a sentence-embedding verb.
The formulas passed up to zuj (resp. the variables involved) are displayed on the
left (resp. on the right) of each node.

where w2(m (M) = Z : ((i)m(Z ′) ∧ w21(M)
︸ ︷︷ ︸

ε

2. Sentence-embedding verb: A3 = y (m (f

This class of verbs has the particularity in Glue that the final resource y for
the embedded sentence is matched: y is also the suffix of the axiom A6, while
the resource s for the subject does not (only quantified in A′

1). This results
in differentiated treatment of these two premisses y and m: one as a hole
(y) and the other one as a hypothesis [m].

z11
3 (y (m (f) := X : ((e)(Xδ , Z) ∧ w(y) ∧

(Y : ((e)(X,Θ : [m]) ∧ (zε3(f)
︸ ︷︷ ︸

>

))

Proposition 2 Under assumption 7, the function fragm of Glue axioms from
definition 19 is totally defined.

Proof. It is enough to show that zsj (ϕ) is defined for any formula ϕ whose
implicational depth is |s|. Structural induction on ϕ:

• base case: if ϕ is an atom of type t or a variable, then its implicational depth
is 0, so that s = ε and line 5.3 applies and stops the recursion.

• otherwise: ϕ = ψ (χ (lines (5.4) and (5.5))

5.3. THE TRANSLATION ITSELF 63

ε •

• 1
• 11

• . . .

• 1δ−1

(ax) j • 1δ () • 1δ−12
•

...
[ϕ] • 112

• 12
• 121

() • 1211

• 2
() • 21

backbone

right branches

Figure 5.7: The comb structure of output fragments: the backbone and the dents
(right-branch variables), which lead either to hypotheses: [ϕ], or to unlabelled
variables (viz. holes): ().

(5.4) if ψ does not subsume any element in Suf(A), then zu1
j (ψ (χ) is

defined, because so is zuj (χ) (IH) and depth(χ) = depth(ψ (χ) − 1;

(5.5) if ψ subsumes some ψ′ ∈ Suf(A), then this time zu1
j (ψ (χ) is defined

iff wu2(ψ′) is also defined. By induction (lines (5.6) and (5.7)), one sees
that, for any u, wu(ψ′) is defined iff cc+(ψ′) is an atom of type t or a
variable. But since ψ′ ∈ Suf(A), cc+(ψ′) is the conclusion of a formula
of A, and thus, by assumption 7, of the required form.

2

Definition 20 (Resulting fragments) If ϕ = Aj is an axiom, then Fj :=
fragm(ϕ) is the fragment associated to it.

Definition 21 (Variable types) Variables of the form Xu
j with u ∈ 1∗ are called

backbone variables; Those of the form Xu
j with u ∈ 1∗21∗ are called right-

branch variables.
Dominance atoms where a backbone (resp. right-branch) variable occurs are

called backbone (resp. right-branch) atoms.

The following lemma shows that all variables of a fragment are actually of either
one type. We see that the choice of the variable exponents in definition 19 was
not casual: These happen to be exactly the addresses of nodes in their respective
fragments. Thus, these addresses are as restricted as their variables, according to
the inductive cases of definition 19:

Lemma 3 (Atom addresses) For every j and every Xu
j ∈ V(Aj), u ∈ 1∗|1∗21∗,

i.e. there may be at most one 2 in any variable’s address.

Proof. In definition 19, the second case (5.4 and 5.5) is the only one introducing
a 2 (in u2). It cannot be applied twice, since (5.4) yields a recursive call over a
strictly smaller 2-free word (u); and so does (5.5), plus a function (wu2) that does
not yield any other 2 (induction cannot escape (5.6) and (5.7)). 2

64 CHAPTER 5. CONTRIBUTION

(base case)
(ax) j • Xδ

j (a)

((e)u • Xu
j

. . . • Xu1
j • Xu2

j (b)

((e)u •

• ((i) • Xu2
j

•

...
((i) • Xu2v

j

• Xu2v1
j

Figure 5.8: The left-leaf-root induction along fragments: two induction cases.

Remark. As for the structure of the fragments, the lemma implies that right-
branching occurs at most once in any root-leaf path of the fragments. Hence, all
output fragments are comb-shaped, where dents of the comb lead either to an
hypothesis (short) or to a hole (short or long): cf. figure 5.7.

5.3.2 Properties of the labelling constraints

An induction tailored for fragm. In the subsequent properties and proofs, a
lot of induction will be used on the outputs of function fragm from definition 19.
Basically, all proofs are alike, or more precisely proceed of an induction along the
same path in the outcoming tree, as illustrated in figure 5.8.

Therefore, we design our own induction scheme to help clarify the proofs fol-
lowing. It is defined and proved a valid induction scheme (in terms to be defined
below), and then it will be easily and visually checked that the properties to be
proved comply to it.

Proposition 4 (Left-leaf-root induction schema) Let P be a property of con-
straint variables and Fj a fragment. If P verifies:

1. (base case) P(Xδ
j) (true for the axiom node);

2. (induction case)

(a) if P holds for a non-root backbone variable (i.e. for a Xu1
j with u ∈ 1∗),

then it holds for its parent Xu
j and for its (only) sibling Xu2

j :

(P(Xu1
j) ∧ u ∈ 1∗) =⇒ (P(Xu

j) ∧ P(Xu2
j));

(b) if P holds for a right-branch variable (i.e. for a Xu2v
j with u, v ∈ 1∗),

then it holds for its child Xu2v1
j , if it exists:

P(Xu2v
j)

!
=⇒ P(Xu2v1

j);

then P holds for all variables of fragment Fj.

Now we also have to prove that this is indeed a proper induction scheme
w.r.t. the fragments obtained on output of definition 19, that is, that all variables
X = Xu

j of any fragment are hit by the induction.
Proof. Let us define I as the smallest set of variables of fragm(Aj)

5.3. THE TRANSLATION ITSELF 65

• containing I0 := {X1depth(Aj)

j } and

• closed under

(a) parent and sibling relations for u ∈ 1∗:

Xu1
j ∈ I ∧ u ∈ 1∗ =⇒ Xu

j , X
u2
j ∈ I

(b) child relation for u ∈ 1∗21∗:

Xu2v
j ∈ I ∧Xu2v1

j ∈ V(fragm(A)) =⇒ Xu2v1
j ∈ I

Now, to prove remains only:

Lemma 5 {X; X ∈ V(Fj)} ⊆ I, that is, all nodes of fragment j are touched by
the span set I of left-leaf-root induction.

The proof consists of two separate inductions, respectively:

1. for all backbone atoms, i.e. variables X = Xu
j s.t. u ∈ 1∗: induction on

n = δ − |u|:

• n = 0

u = 1δ: this is also the base case of left-leaf-root induction and means
that X ∈ I0 ⊆ I;

• n ; n+ 1

Let u′ be such that n + 1 = δ − |u′|; this u′ with |u′| := δ − n − 1
then verifies u = u′1 (and in particular u′ ∈ 1∗) and matches (5.4)
from definition 19. Therefore, Xu′

j is parent of Xu
j and, since Xu

j ∈ I

(induction hypothesis), Xu′
j ∈ I (definition of I, (a));

2. for all right-branch variables, Xu
j s.t. u = v2w (v, w ∈ 1∗): induction on

n = |w|:

• n = 0

w = ε, so that u = v2 with v ∈ 1∗.

The first point of this very proof tells us that X t
j ∈ I for all t ∈ 1∗, in

particular for t = v1. Case (a) of definition of I says then that it also
holds for the sibling Xv2

j = Xu
j ;

• n ; n+ 1

Suppose the property true for u = v2w with |w| = n, then consider
u′ := u1 = v2w1 (only possibility since there is at most one 2 in each
address); by case (b) of definition of I and induction hypothesis, Xu1

j ∈
I.

By lemma 3, the two inductions cover all possible cases. 2

Remark. The proof just exposed is the core and the justification of the whole
induction scheme. It would be therefore strictly equivalent, albeit less intuitive,
to prove the forthcoming properties by means of the two separate inductions from
above.

66 CHAPTER 5. CONTRIBUTION

Unicity of variables. The next proposition constitutes a preliminary step to-
ward a correct output, by giving a first well-formedness property of output frag-
ments: All variables issued from fragm uniquely label the output constraint, if at
all.

Proposition 6 (First well-formedness property) Any variable X ∈ V(Fj)
appears at most once on the left-hand side of a labelling atom in Fj.

Since different fragments are also distinctively indexed, the property will extend
to the greater constraint fragm(A) :=

∧

j Fj.

Proof. The left-leaf-root induction proof that any X = Xu
j appears at most

once on the left is merely a rereading of definition 19:
Every recursive call via zuj makes the address u borne by labelling variables

strictly smaller (backbone: (5.4) and (5.5)). Every recursive call via wu
j makes

addresses strictly longer, but with a unique 2 (right branches: (5.6)).
Besides: (base case) The axiom node X = Xu

j with u = 1depth(Aj) obviously

appears only in the first atom Xδ
j : (ax)j . Hence, all variables uniquely introduce

labels. 2

“Type” inference. What the translation outputs so far for each axiom, via
fragm, is a tree labelled with LL rule names: a piece of derivation tree, as defined
in §5.2. But only the leaves (up to those that are holes) give information about the
actual formula meant to appear (as an intermediate conclusion of the derivation
tree).

It probably appeals more to the intuition to give trees labelled with the for-
mulas, which are piecemeal derived with every derivation step performed. For
instance, in figure 5.9 one would like to be able to infer, from the tree on the left,
the tree on the right, which directly shows that W is derived from (v (r) (

(w (W) (W (provided proofs for W and r are already present).
In fact, the following definition introduces type inference10, a mapping that

can infer the formula (type) expected at any node, from the mere hypotheses and
axiom node. In particular, type inference is able to return the formula expected
at the holes, too; It thus happens to be a necessary criterion for linking fragments
together (in terms to be defined below, §5.3.4): formulas for holes may not be
apparent otherwise.

Type inference starts from the axiom formula and for each ((e)-node infers
formulas for the parent (conclusion of the implication) and the sibling (premiss)
nodes; for each ((i)-node it simply infers the child node (conclusion); That is,
its computing follows exactly the left-leaf-root path introduced in the induction
scheme above (proposition 4).

Definition 22 (Type inference) We define the following procedure construct-
ing subformulas of axioms from the variables ti :

⋃

j V(Fj) → L:

1. ti(Xs
j) := Aj if s = 1depth(Aj) (axiom node);

10Type inference is actually a concept of computer science, one of the numerous interesting
parallelisms the Curry-Howard Correspondence offers (cf. §3.3.2): The structure of λ-terms may
similarly be retrieved from the formulas labelling the leaves (their types) and the rule names
decorating the type-checking tree.

5.3. THE TRANSLATION ITSELF 67

Aj

·
v (· ((i)v

· ((e)
·

w (· ((i)w
· ((e)

ti
;

(v (r) ((w (W) (W
r

v (r

(w (W) (W
W

w (W

W

((e) •

((e) •

(ax) j • ((i)v •

() •

((i)w •

() •

W •

(w (W) (W •

(v (r) ((w (W) (W • v (r •

(r) •

w (W •

(W) •

Figure 5.9: Type inference—the actual output for the determiner axiom [every]:
Aj := (v (r) ((w (W) (W induces an injective mapping onto (occurrences
of) subformulas of Aj.

2. ti(Xu
j) := ψ and ti(Xu2

j) := ϕ if ti(Xu1
j) = ϕ (ψ with u ∈ 1∗ (backbone);

3. ti(Xu1
j) := ψ if ti(Xu

j) = ϕ (ψ with u ∈ 1∗21∗ (right branch).

The procedure, given as such, is not genuinely functional, we therefore prove in
the next proposition it is indeed a function. Furthermore, the proposition provides
a small “tool-box” that ensures that everything behaves as expected: ti returns the
subformulas of each axiom decomposed in definition 19 (2.), and thereby returns
the right LL-structure (3.).

Proposition 7 (Properties of type inference)

1. Thus defined, ti : V(A) → L is a function defined for any fragments stem-
ming from A1, . . . ,An ∈ L. That is, for any X t

j ∈ V(Fj), ti(X t
j) is uniquely

defined.

2. It is such that every recursive call of a zuj in definition 19 is performed with
ti(Xu

j) as argument. In other words: for all j, u and ϕ, if zuj (ϕ) appears in
fragm(Aj), then ϕ = ti(Xu

j).

Likewise, if wu(ϕ) appears in fragm(Aj), then ϕ = ti(Xu
j).

3. It furthermore verifies: For all X,Y,Z ∈ V(Fj),

(a) if X : (ax)j appears in fragm(A), then ti(X) = Aj;

(b) if X : [ϕ] appears in fragm(A), then ti(X) = ϕ;

(c) if X : ((e)(Y,Z) appears in fragm(A), then ti(Y) = ti(Z) (ti(X)

(d) if X : ((i)ϕ(Y) appears in fragm(A),then ti(X) = ϕ (ti(Y).

Proof. All three results are easily obtained via left-leaf-root induction, since
definition of ti follows the same left-leaf-root path. 2

68 CHAPTER 5. CONTRIBUTION

Characterisation of variables

The following two lemmas provide a summary of how variable addresses relate to,
respectively, their position in the dominance graph (fragment, actually), and via
type inference their LL-structural properties.

Lemma 8 Let Fj be a fragment. For any variable X = Xu
j appearing in V(Fj),

X is

1. the root of Fj iff u = ε;

2. a hole of Fj iff u ∈ 1∗21∗ and Xu1
j 6∈ V(Fj);

3. labelled with ((i) iff u ∈ 1∗21∗ and Xu1
j ∈ V(Fj);

4. a hypothesis of Fj iff u ∈ 1∗2 and ti(X) subsumes some suffix of a non-
ti(X)-modifying axiom.

Proof. A simple rereading of definition 19 should convince that addresses fulfill
this distribution.

In particular, with a little help from proposition 6 about unicity one sees that:

1. the only occurrence of Xε
j appears when line (5.3) is called, that is, instan-

tiated in Xε
j : ((e)(X

1
j , X

2
j) ∧ > ∧ · · ·; therefore, such a Xε

j does not have
any parent, and is thus the root (and conversely Fj ’s root may occur only
in this line).

2. A hole of a dominance graph is a node with incoming but no outcoming
tree edges, so a hole in the corresponding dominance constraint (cf. §2.2) is
unlabelled but appears in one variable’s label (at most one due to proposi-
tion 6). The only possibility for this to occur is in (5.7), which instantiates
line (5.6) in Xv

j : ((i)ψ(Xv1
j) ∧ >; again, this is the only case where this

labelling atom may occur, and Xv11
j obviously does not exist then.

3. Labels of the type ((i) obviously occur only in (5.6) are exactly those
variables that occur in (5.6) and are not covered by the case above; the
same holds for variable addresses, hence the equivalence.

4. A hypothesis label occurs in (5.4), if the subsumption condition is verified,
and only then; obviously, these atoms exactly yield those addresses of the
form 1u2 for which the subsumption condition is verified: 〈qed〉.

2

Structurally distinguished subformulas of Glue axioms, as defined in §3.5.2,
are also reflected in the output fragment, via ti: The backbone are mapped to
suffixes and right branches to right-branching premisses.

Lemma 9 Let Fj = fragm(ϕ) be a fragment. For any variable X = Xu
j ,

1. ti(X) = cc+(ϕ) iff u = ε;

2. ti(X) ∈ Suf(ϕ) iff u ∈ 1∗;

3. if furthermore X appears in Fj, then ti(X) ∈ Prmr(ϕ) iff u ∈ 1∗21∗.

5.3. THE TRANSLATION ITSELF 69

Proof. It is easy to see that any suffix of an axiom has an antecedent variable
under ti, because definition 19 exhaustively decomposes conclusions, via zuj in (5.4)
and (5.5); so that the whole backbone of a fragment bijectively corresponds to the
axiom’s suffixes.

1. From proposition 7(3c and 3a) we easily see that ti(X) = cc+(ϕ) iff X is the
root of Fj ;

2. Likewise, proposition 7(3c, 3a) together with definition 22(2) inductively
yield the result;

3. The very same points yield the result for u ∈ 1∗2. For u ∈ 1∗21+, proposi-
tion 7(3d) and definition 22(3) also inductively yield the needed remaining
result. Notice w.r.t. this that the set Prmr(ϕ) recursively branches to the
right of the linear implication and thus only in the ti(Y) in prop. 7(3d), so
that any Xu

j with such u appearing in Fj is in Prmr(ϕ).

2

5.3.3 Properties of the labelling constraints—weak local sound-
ness

A first brick in the wall. The following proposition is the first important
result of this section and represents about as much theoretical content as can
be extracted from mere fragments, the constraint fragm(A) obtained so far still
lacking the actual dominance information. No verification is performed yet on
introduction or elimination of hypotheses (premature, too, as long as dominance
has not been introduced).

It states that, up to subsumption, if any, the formulas obtained from any frag-
ment node either through type inference (that is, unknowingly of what formulas
are supposed to instantiate the Glue variables mapped from holes—the other
holes are mapped to type t atoms and thus wholly determined) or through F (that
is, with subsumption performed at ((e)-labeling atoms, and instantiating these
variables) are the same.

Proposition 10 (Weak local soundness) Let Fj be a fragment and Mτ a con-
structive solution thereof (viz. a tree structure with τ a derivation tree, which
together with an assignment α verify (Mτ , α) |= Fj). Suppose F (τ.α(X)) defined
for all X ∈ V(Fj).

If Aj contains a Glue variable S, then there is a substitution σ of S and an
address u ∈ 1∗ such that for every X ∈ V(Fj):

11 F(τ.α(X)) =

{
σ(ti(X)) if X = Xu2v

j with v ∈ 1∗

ti(X) otherwise

If Aj does not contain any variable, then for every X ∈ V(Fj):

F(τ.α(X)) = ti(X).

11The selection τ.ν of a tree τ and one of its nodes ν denotes the greatest subtree of τ rooted
in ν.

70 CHAPTER 5. CONTRIBUTION

Φ′
• Xu

j

Φ (Φ′
• Xu′

j

. . . • ϕ (. . . (r • Xu′2
j

•

r •

ψ (ψ′
(. . . (ω • Xu2

j

ψ′
. . . (ω • Xu21

j

•

ω • Xu2v
j

Φ′
•

Φ (Φ′
• Xu′

j

. . . • ϕ (. . . (r • Xu′2
j

•

(r) •

Φ
︷ ︸︸ ︷

ψ (ψ′
(. . . (S • Xu2

j

ψ′
. . . (S • Xu21

j

•

(S) • Xu2v
j

F ti

Figure 5.10: Weak local soundness.
F and ti coincide everywhere but on the rightmost right branch (starting at X u

j):
there substitution S 7→ ω applies (yet only to the common conclusion S/ω of those
formulas, because formulas ψ,ψ′, . . . are variable-free (assumption 6)).
At the ((e)-node (Xu

j) substitution is performed for F (according to the definition
of ((e)u), so that both functions coincide on the whole backbone.
The example here would be an axiom Fj such that Suf(Aj) 3 Φ (Φ′. 12

That is, for any right branch of the tree but possibly one, F and ti coincide; for
that other possible branch, they coincide modulo subsumption. This is illustrated
in figure 5.10.
Proof. Let Fj be a fragment and (Mτ , α) a constructive solution of Fj .

In accordance with assumption 5, let S be the unique variable appearing in
axiom Aj, if there is one. So there is one unlabelled variable Xh in Fj . A solution
implies that hole Xh is instantiated under F, too: F(τ.α(Xh)) := ω.

Let us then define a substitution, that is, an inductive mapping of formulas
replacing variables with formulas: σ : V(L) → L:

σ(T) :=

{
ω if T is variable S
T if T is a variable distinct from S

(5.8)

Using left-leaf-root induction for all X ∈ V(Fj):

• (base case) If X = Xδ
j := X

depth(Aj)
j , definition 22 of type inference yields

ti(X) = Aj.

From the F side, since Xδ
j : (ax)j appears in Fj and (Mτ , α) |= Fj , we

know that τ.α(Xδ
j) = (ax)j and definition 17 of F then yields F(τ.α(X δ

j)) =

F((ax)j) := Aj, the last being equal to ti(Xδ
j): 〈qed〉.

• (induction case)

(a) Suppose the property true for Y = Xu
j with u ∈ 1+, i.e. u = v1 for some

v ∈ 1∗. Definition 19 uniquely (prop. 6) assigns labels to parent and sib-
ling of Y the following way: X := Xv

j (χ′)

Y := Xu1
j (ψ (χ) Z := Xv2

j (ψ′)

12Dotted edges just indicate here an ellipsis in the node structure, not dominance edges.

5.3. THE TRANSLATION ITSELF 71

From definition 22, we get thus ti(Y) = ti(Z) (ti(X); σ being a mere
substitution, this also implies σ(ti(Y)) = σ(ti(Z)) (σ(ti(X)).

From the other side, since we have a constructive solution through
τ and α, we know that τ.α(X) = ((e)(τ.α(Y), τ.α(Z)) and therefore,
by definition of F and because F(τ.α(X)) is defined:

F(τ.α(Y)) = ψ (χ

F(τ.α(Z)) = ψ′, subsumed by ψ (mgu(ψ,ψ′)(ψ) = ψ′)

F(τ.α(X)) = χ′ := mgu(ψ,ψ′)(χ)

Starting from the Induction Hypothesis F(τ.α(Y)) = ti(Y) one notes
that ti(Z) = ψ and ti(X) = χ; to prove is:

i F(τ.α(X)) = ti(X) = χ and

ii F(τ.α(Z)) = σ(ti(Z)) = σ(ψ).

It suffices to notice that mgu(ψ,ψ′) and σ coincide on {ψ, χ} (because if
there is a variable in ψ, it is S and ω = cc+(ψ′)), whence F(τ.α(X)) =
σ(ψ) = ψ′; likewise F(τ.α(Z)) = χ = χ′.

(b) Suppose the property true for Y = Xu
j with u ∈ 1∗21∗, i.e. u = v2w for

some v, w ∈ 1∗; let Y ′ be the child of Y , if it exists: Y ′ := Xu1
j = Xv2w1

j

(if it does not exist, induction trivially stops).

Then by definition 22, ti(Y ′) := ϕ (ti(Y) for some ϕ ∈ L, and also
σ(ti(Y ′)) := σ(ϕ) (σ(ti(Y)). That is, by IH, σ(ti(Y ′)) = σ(ϕ) (

F(Y).

But then assumption 6 compels ϕ to be variable-free, and thus σ(ϕ) =
ϕ, and σ(ti(Y ′)) = ϕ (F(Y), which by definition of F (def. 17) yields
σ(ti(Y ′)) = F(Y ′): 〈qed〉.

2

A glimpse at fragment relations. The lemma below is crucial, as will be seen
further on in section 5.4, for linking different fragments with one another (unlike
proposition 10 above, whose realm is a single fragment) and justifying dominance
between them (to be introduced in §5.3.4). As such, it constitutes the most that
the translation fragm can express about dominance—without having actually de-
fined dominance yet; It also makes explicit the so far implicit dependencies among
fragments needed in definition 19 (the difference between (5.4) and (5.5)).

Reusing the image of the comb structure of fragments (cf. figure 5.7), the
lemma may be paraphrased as “type inference maps each dent of an axiom’s
fragment to a another axiom’s backbone—modulo subsumption”. Or: all right
branches correspond each to an equally long (in terms of number of variables)
part of another fragment’s backbone. This is illustrated in figure 5.11.

Assumption 6 reveals here its purpose, in that it restricts the “modulo sub-
sumption” proviso to the sole conclusion of an axiom (top node of the fragment).

Lemma 11 (Fragment linking) For every hole X ∈ V(Fj), there exists a frag-
ment Fi and a substitution σ of Glue variables such that σ(ti(X)) ∈ Suf(Ai).

13Again, dotted edges indicate here only an ellipsis of fragment nodes, not dominance edges.

72 CHAPTER 5. CONTRIBUTION

((e) • ψ′

•

((e) •

((e) •

• Ψ [ϕ1] •

[ϕ2] •

•

[ϕk] •

((e) • χ
• Ψ (χ ((i)ϕ1 •

Ψ
︷ ︸︸ ︷

ϕ1 (ϕ2 (. . . (ϕk (ψ
((i)ϕ2 • ϕ2 (. . . (ϕk (ψ

•

((i)ϕk • ϕk (ψ
() • ψ

Fi Fj

ti

Figure 5.11: Fj ’s right branch must match the backbone of some Fi. The variables’
labels are indicated on the left, their images under ti on the right.13 There is
matching up to subsumption: ψ = σ(ψ′) for some substitution σ.

((e) •

((e) •

(ax)1 • A1 ((i)v • v (r

() • r

((i)w •

() •

7−→

ti

((e) • r

(ax)2 • v (r [v] • v

Figure 5.12: Fragment linking between the two entries for every woman.
Axiom A1 (every) depends on resource v from A2 (woman): fragment F1 has a
depth 2 right branch, which is thus to be found as a 2-node backbone part in
fragment F2.

In particular, for such a fragment, ti(R(Fi)) = cc+(σ(ti(X))) for the same
substitution σ.

Proof. If X = Xu
j is a hole, then (lemma 8) u = vw with v ∈ 1∗2, w ∈ 1∗, so

that the ancestor Y = Xv
j of X verifies: ti(Y) subsumes some suffix ψ of Ai with

i 6= j (otherwise there would not be an Xvw
j : zvj |= zvwj): there is a substitution σ

s.t. σ(ti(Y)) = ψ.
We then have ti(Xu′

i) = ψ for some u′ ∈ 1∗. But Fi’s root is Xε
i , s.t. ti(Xε

i) =
cc+(Ai) = cc+(ψ) = cc+(σ(ti(Y))) (since ψ ∈ Suf(Ai)). Under assumption 6,
only suffixes of ti(Y) may contain variables, so that eventually at most its final
conclusion is a variable and has a non-identical image under σ; hence σ(ti(Y)) =
σ(cc+(ti(Y))).

Besides, ti(X) happens to be this final conclusion cc+(ti(Y)), which yields
ti(R(Fi)) = cc+(σ(cc+(ti(Y)))) = cc+(σ(ti(X))). 2

For instance, the meaning entries a noun and its determiner (cf. §3.6) exhibit
such a relation, as shown in figure 5.12.

A quick look back on section 5.3 shows what has been achieved so far: a defi-
nition of output fragments for each axiom, equipped with type inference, to make

5.3. THE TRANSLATION ITSELF 73

their LL content always available; this content was shown to comply to any con-
structive solution of a fragment (weak local soundness), and to already give hints
at what is left to construct (fragment linking).

5.3.4 Translation—proper dominance

The constraint obtained so far, possibly seen as the conjunction fragm(A) :=
∧n
i=1 fragm(Ai) of all axioms’ fragments, only give information about the inner

structure of axioms, in a word: their semantic argument structure. A con-
structive solution of a fragment is, up to the nodes that fill the holes, still unique,
yet ambiguity appears when multiple solutions are allowed, i.e. when constraints
permit several plugging configurations (cf. Hole Semantics and MRS, chapter 4).
This constitutes the key feature of dominance constraints: representing global
scopal structure.

The next few steps will make explicit how our translation achieves it, and we
will see that getting the global proper dominance constraint together requires a
bit more designing than plain “plugging” of roots and holes.

In fact: not enough dominance atoms would mean less constraints on the
output solution trees, and thus possibly more solutions than wanted, including
spurious solutions; and so would misplaced dominance atoms. The design of dom-
inance relations is therefore to be carefully examined.

We want our translation:

1. To “fill the holes” left open by fragm; the edges will thus have to connect
these holes with adequate roots—the criterion of adequateness will be sub-
sumption of both images under ti;

2. But also to express the relation between fragments exhibited in lemma 11 as
genuine dominance: this relation stems from hypotheses made in fragments
([ϕ]) and used in others (((i)ϕ); the latter should thus be found above the
former in a solution tree, hence a constraint on dominance.

Accordingly, each output fragment will be classified as producing or consuming a
semantic resource ϕ (a LL formula): cf. definition 23.

The relation between producers and consumers is both theoretically (theo-
rem 1) and empirically (assumption 1) described. It relies on the polarity struc-
ture of Glue axioms (result inherited from linear proof theory, and the strength-
ened version thereof, an assumption tailored for Glue Semantics, first encountered
in [GL98]). This will prove crucial in the final soundness steps (§5.4), because
it formally justifies that the way dominance atoms are defined induces correct
solutions to the output constraint.

Assign types to each fragment

The first step towards dominance between fragments is to identify and classify
all fragments according to their behavior w.r.t. resources, that is, as to whether
hypotheses introduction ([ϕ]) or binding (((i)ϕ) are present, and what kind of
holes and roots equip the fragments:

Definition 23 Let fragment F be a

74 CHAPTER 5. CONTRIBUTION

((e) • S

((e) •

(ax)1 • A1 ((i)v •

() • r

((i)s • s (S

() • S

((e) • r

((e) •

(ax)2 • A2 ((i)v •

() • r

[v] •

((e) • r

(ax)3 • A3 [v] •

consumes v, s v -

produces - v v

(r, v)-consumer, (S, s)-consumer (r, v)-replacer (r, v)-producer

Figure 5.13: Fragment classification.

• (r, ϕ)-consumer if it contains a hole X s.t. ti(X) = r with an ancestor of
the same right branch14 that is labelled ((i)ϕ and no [ϕ]-labelled node;15

• (r, ϕ)-producer if ti(R(F)) = r and F contains a labelling atom X : [ϕ],
and is not a (g, ϕ)-replacer;

• (r, ϕ)-replacer if it contains both configurations that would make it both a
(r, ϕ)-consumer and a (r, ϕ)-replacer, respectively:

– a hole mapped to r and a right-branch label ((i)ϕ above.

– a root mapped to r and a [ϕ] label.

In these cases r is an atomic Glue resource (LL atom or variable) (because of
definition 19 type inference maps both holes and roots only to such formulas).

Remark. Note the definition stated here is a circular recursion, so that all
three cases are mutually exclusive (that corresponds to how we would intuitively
implement it).

Not all right branches comprise a ((i)-label, so that we will also classify fragments
with depth-one right branches along the same scheme, with the dummy formula
>: Fragment F will be called a (r,>)-consumer (resp., -producer, -replacer)
if it fulfills definition 23 up to the conditions on ϕ.

Example 2 The fragment for a sentence-embedding verb axiom (cf. believes in
the embassy sentence (3.11)) does no have any ((i)-label, and is thus a (m,>)-
consumer (as well as a (f,m)-producer): y (m (f (cf. figure 5.5).

The combinatorial constraint of polarity matching between fragments (§5.4.2)
is so strong that it will often suffice to classify fragment after only one of their
consumed (resp. produced) hypotheses (and root/hole checking will be superflu-
ous):

Definition 24 Fragment F is a consumer (resp., producer, replacer) for ϕ
if there is a r s.t. F is a (r, ϕ)-consumer (resp. -producer, -replacer).

14That is, if X = Xu2v
j with u ∈ 1∗: a node Xu2v′

j with v′ ≤ v (“prefix of”).
15In fact, such a hole X := Hϕ

j is known to be unique, not only within the right branch starting
at Xu

j (due to the structure of definition 19), but also within the whole fragment Fj (yet only
thanks to the polarity pattern—assumption 1).

5.3. THE TRANSLATION ITSELF 75

Example 3 Fragments thus classified may be assigned several types. For instance,
the axioms for the quantified noun phrase a sleepy student yields fragments of all
three types (cf. figure 5.13):

[a] : A1 = (v (r) ((s (S) (S
[sleepy] : A2 = (v (r) ((v (r)
[student]: A3 = v (r
[yawns] : A4 = s (y

Yet the fragment for the determiner also is a consumer for the verbal resource s,
but this relates to its relation to F4 (which corresponds to its scopal behavior): F1

is both a consumer for r and for s.

Adding constraints

Let us now informally expose which fragments may dominate which others: com-
plementary hypothesis behavior (if any)—as [ϕ] vs. ((i)ϕ—induces dominance,
but only if the hole and the root may actually be plugged (either equality of ti

images, or subsumption):

1. Add a dominance constraint from every (r,Φ)-consumer to every (r,Φ)-
replacer and every (r,Φ)-producer such that r ′ subsumes r;

2. Add a dominance constraint from every (r,Φ)-replacer (and every (r,Φ)-
producer) to every (g,Φ)-consumer such that g ′ subsumes g;

3. No dominance constraint may ever join one fragment with itself; as it hap-
pens here, replacers may not dominate themselves;

where Φ may be > or an actual (variable-free) formula.
This is formally incorporated in the global dominance constraint as following:

Definition 25 (Translation—global) Let A be a sequence of axioms. If
fragm(A) is the conjunction

∧

j fragm(Aj), then T(A) := fragm(A) ∧ ∆, where:

∆ :=
∧

r

∧

Φ∈{>,L}

∧

r′ subsumes r


∧

Fk(r,Φ)-consumer




∧

Fj (r′,Φ)-producer or -replacer
Hk,g�

∗R(Aj)



∧

∧

Fk(r′,Φ)-producer




∧

Fj (r,Φ)-consumer or -replacer
Hk,g�

∗R(Aj)









Remark. The above conjunction looks a priori computationally hazardous
because of the distributed conjunctions, but it is all for the sake of rigor. The
practical determination of constraints for a given axiom sequence A just pro-
ceeds by scanning all fragments and checking for other fragments matching, which
amounts to the same, but yields a merely quadratic procedure in the number
of fragments (that is, really tractable), as well as a quadratically expanded new
constraint T(A).

76 CHAPTER 5. CONTRIBUTION

((e) • S

((e) •

(ax)1 • A1 ((i)v •

() • r

((i)s • s (S

() • S

((e) • r

((e) •

(ax)2 • A2 ((i)v •

() • r

[v] •

((e) • r

(ax)3 • A3 [v] •

Figure 5.14: Dominances generated for A sleepy student.

The constraint T(A) being proved normal (next section), results from [Kol04,
chap. 5] will almost directly provide the equivalence between dominance graphs
and dominance constraints: modulo compactification of the constraint, T(A)
has a solution iff its associated dominance graph has a solution.

And thus T(A) enjoys the advantages of being (equivalent to) a dominance
graph: If the conjunction above were to produce any doubly defined dominance
edges, they would just be skipped, because this does not make any difference for
the graph. Likewise, the solving procedure sketched in §2.3.3 will eliminate redun-
dant dominance edges/atoms, as are those between a producer and a consumer in
presence of a replacer (cf., respectively, F3, F1 and F2 in figure 5.14).

LL-structural consequence. The matching relation between a hole and a dom-
inated root will be useful (cf. subsequent proofs) in the form of the following result.

Proposition 12 (Type inference for roots and holes) If X�
∗Y appears in

T(A), then ti(Y) subsumes ti(X).

Proof. This is evident from the definition of dominance atoms and from the
fact that these solely connect holes to roots. 2

5.4 Results

The following section offers, so to speak, the reward of the tortuous path we have
just followed in the previous sections. Our theoretical artefact from section 5.3
meets here its purpose: a sound translation from Glue Semantics to Dominance
Constraints, in section 5.4.3. The proof itself is decomposed in three subresults:
Correctness of the output trees up to hypotheses book-keeping: partial weak
soundness (18); Correctness up to the root node: partial soundness (19);
Unconditional correctness of the output trees: soundness (20).

5.4. RESULTS 77

Connection is made to both the input and the output formalism, too: with
dominance graphs in section 5.4.1 on normality as a well-formedness result, and
with Glue Semantics in section 5.4.2 on polarity as a crucial proof argument in
the last two results.

5.4.1 Normality

Here is where the first important connection is made between the two distinct
formalisms—Glue and Dominance Constraints: Normality is a crucial well-formed-
ness condition on dominance constraints for properties to apply such as equiva-
lence with dominance graphs or the equivalence of solvability notions (cf. chain-
connectedness, footnote 4).

Proposition 13 T(A) is leaf-labeled and normal.

Proof.

1. Leaf-labeledness amounts to: every unlabeled variable (hole) must be the
head of a dominance atom.

If X is a hole in Fj , then either Fj is a consumer for some resource (X =
Xu21v
j , u, v ∈ 1∗) or Fj is a (ti(X),>)-consumer (X = Xu2

j). In either case,
lemma 11 is applicable and exhibits a fragment Fi that is a producer or a
replacer of the adequate type. There is then according to definition (25) a
dominance atom X�

∗R(Fi): 〈qed〉.

2. Normality (definition 5, §2.2.3) demands a “checklist” for a given contraint
C to be normal, consisting of the following four points:

(a) (no overlap) This condition is obviously fulfilled because of how variable
indices were chosen (in definition 19), namely, all different for all nodes;
Besides, as evoked in §2.2.3, C may undergo · 6=-normalisation, which
adds inequality atoms X i

j 6= Xi′

j′ for all (i, j) 6= (i′, j′).

(b) (tree-shaped fragments) The well-formedness proposition 6 claims unic-
ity of labelling heads as well as holes. The absence of cycles is granted
by unicity of variable names and the structure of definition 19: nei-
ther dominance (different fragments) nor labelling atoms (different ad-
dresses) may branch to the same atom.

(c) (dominances out of holes) Definition 25 clearly only states dominance
as going from holes to roots.

(d) (no empty fragments) Since holes can only introduced via ((e)-labels
(only (5.4) and (5.7) may introduce an unlabelled dominance variable),
and not via dominance atoms, there may not be any variable not ap-
pearing as the head of a labelling atom (that is, a hole), without having
been itself introduced by a non-zero arity labelling atom (as child, then).

2

78 CHAPTER 5. CONTRIBUTION

5.4.2 Polarity

This section utilises the results on polarised Glue Semantics (§3.5.3). We use
polarity of formulas’ occurrences as introduced in definition 9. with the same
convention about polarised “formulas”. 16

In fact, we may now speak of the polarity of a particular node (viz. a vari-
able from fragm(Aj)) from a fragment Fj , since all variables from fragm(Aj) are
injectively mapped to occurrences of subformulas of Aj: we will write pol(X) :=
pol(ti(X)) for X ∈ V(Aj), thus avoiding confusion between occurrence and for-
mula.

A straightforward corollary of definition 9 and the structural lemma 9 thus
assigns polarities to the nodes—via type inference:

Corollary 14 Let Fj be a fragment and X ∈ V(Fj) a node thereof. If X is

• a hole, then pol(ti(X)) = −;

• a backbone node, then pol(ti(X)) = −;

• a hypothesis node, then pol(ti(X)) = +;

• labelled with ((i)ϕ, then pol(ϕ) = − (this particular occurrence of ϕ in Aj

has no antecedent under ti) and pol(X) = +.

All possible nodes of a fragment are thereby “polarised” (cf. figure 5.15).

Proof. Easy left-leaf-root induction utilising properties of type inference (propo-
sition 7). 2

M • −

(m (M) (M • − ((i)m− • +

(M) • +

f • −

m (f • −

y (m (f • − (y) • +

[m] • +

Figure 5.15: Distribution of polarities among graph nodes from fragments (QNP
and sentence-embedding verb, cf. figure 5.5).

Remark. A rereading of the structural definitions from §3.5.2 (7 and 6) then
also yields as a corollary: For a fragment Fj, pol(ϕ) = + iff ϕ ∈ Prmr(Aj) and
pol(ϕ) = − iff ϕ ∈ Suf(Aj)

A more useful version of the polarity pattern is given by the following corollar-
ies, that thus leave little combinatoric liberty for dominances between fragments
(cf. definition 25):

Corollary 15 In any satisfiable Glue derivation and if ϕ is not a variable,

1. For any fragment that is a producer for ϕ, there is a unique consumer for
ϕ;

16Subformulas of an axiom are indeed very likely to be found in several occurrences, not least
in the case of replacers (definition 23), which oppose polarities of the resource they replace.

5.4. RESULTS 79

2. For any fragment that is a consumer for ϕ, there is a producer for ϕ.17

Corollary 16 For any fragment that is a replacer for ϕ, there are both a replacer
for ϕ and a unique consumer for ϕ.

Proof.

1. Let Fj be a consumer for ψ. Let then X = Xuv
j (u ∈ 1∗2 and v ∈ 1∗) be

a hole having per definition an ancestor Y := Xuv′
j , v′ ≤ v, bearing label

((i)ψ. Following the proof of lemma 11, we see that there exists a non-ψ-
modifier fragment Fi and a substitution σ such that the ancestor Y of X
verifies σ(ti(Y)) = ϕ′ ∈ Suf(Ai) (a lower ancestor of X (than Xu

j) obviously
maps a smaller suffix of Ai (than σ(ti(Xu

j)))).

Let ϕ := ti(Y) := ti(Xuv′
j) = ψ (χ with χ = ti(Xuv′1

j). Because of
its ((i)-status, ψ cannot contain any variable (assumption 6), therefore
ϕ′ = ψ (σ(χ) ∈ Suf(Ai). Besides, the Fj occurrence of ψ is negative
(lemma 15 for ((i)ψ).

Now, Fi being a non-ψ-modifier yet containing another occurrence of ψ,
this other occurrence of ψ must be positive, and unique in Fi (polarity
pattern).

And because ϕ′− = ψ+
(σ(χ)− is a suffix of Ai, there is a node Y ′ := Xw1

i

s.t. w ∈ 1∗ and ti(Y ′) = ϕ′− (after lemma 9, all suffixes of a given axiom
have a backbone antecedent under ti); Its sibling Z ′ := Xw2

i then verifies
ti(Z ′) = ψ+. 18

But then Z ′ must be labelled with [ψ+], because its only other occurrence (no
need to take subsumption into account since it does not contain any variable)
in a non-ψ-modifier is a right-branch premiss Xuv′1

j , i.e. is contained in
Prmr(Aj). This is disjoint with Suf(Aj) for Aj is a non-ψ-modifier (as a
consumer for ψ). Therefore only (5.4) may apply: 〈qed〉.

2. Let Fi be a producer for ϕ. Let then X = Xu2
i (u ∈ 1∗) be its [ϕ+]-labelled

node, thus the only positive occurrence of ϕ in Fi.

There must then be another unique fragment with a unique negative occur-
rence of ϕ (polarity pattern), let us call it Fj .

X stems from (5.4) in the definition 19 of fragm, which implies that ϕ does
not subsume any suffix of any non-ϕ-modifier. This again implies that ϕ’s
occurrence in Fj cannot be a backbone variable, but necessarily in a right-
branching premiss. Since all suffixes of right-branching premisses are of
positive polarity, the missing negative occurrence of ϕ appears in one of the
ψs of ((i)ψ-labels.

But we show it must actually be one of these ψs: Were it a proper subformula
of a ψ (a proper suffix for polarity reasons), the first part of this corollary

17We conjecture such a producer could be proved unique modulo subsumption. However, the
final soundness proof just requires its existence.

18In fact, one could prove that the word w is exactly v; that is, the right-branch path in Aj

is really one-to-one mapped onto a backbone path in Aj (cf. figure 5.11). This is where the
correspondence between fragments evoked in lemma 11 is so strong.

80 CHAPTER 5. CONTRIBUTION

proved above would compel ψ to appear as a [ψ]-labelled node in another
unique fragment. But then the fragment would also be Fi, for it would have
a positive occurrence of ϕ: as [ψ+ = χ−

(ϕ+].

So this occurrence could not be as [ϕ], although it be unique: this is a
contradiction.

Altogether: Fj is a consumer for ϕ, 〈qed〉.

2

Proof. Similar reasoning as in the proofs above yields unicity of the producer
and existence of the consumer for any replacer. 2

A similar reasoning also constrains those dominance edges that do not arise
from hypothesis dependency:

Corollary 17 For every (ϕ,>)-consumer there is a (ϕ′,>)-producer where g′ sub-
sumes g.

Proof. The setting is the same as in the proof above, but the ancestor Y := X u
j

(u ∈ 1∗) and the hole Xuv
j are one and the same: v = ε. There is again a non-ψ-

modifier Ai s.t. σ(ti(Y)) ∈ Suf(Ai), but since ϕ = ti(Y) is an atom or a variable
(easily inferred from definition 19), so is σ(ti(Y)), which is either ϕ itself if atomic,
or σ(X) if ϕ = X, thus in any case subsumed by ϕ.

Therefore, σ(ϕ) = R(Ai) (under definition 19 only the last suffix of an axiom
cannot be split), and Ai is a (ϕ′, ∅)-producer. 2

5.4.3 Soundness

Firstly, we see how partial weak soundness (proposition 18) almost directly follows
from weak local soundness (proposition 10, §5.3.3) and the results from §5.4.1.

It roughly means that “everything is correct up to hypothesis book-keeping”.
As such it does not need the polarity pattern from subsection 5.4.2, that con-
straints the hypothesis behavior of fragments.

Proposition 18 (Partial weak soundness) Let A be a satisfiable sequence of
Glue axioms and (Mτ , α) a constructive solution of T(A). Then τ is a partial
weakly correct derivation tree.

Proof. Let A be a sequence of Glue axioms and (Mτ , α) a constructive solution
of T(A). We prove by structural induction on τ that F(τ) is defined:

1. If τ = (ax)j , then ft(τ) is always defined (definition 13), and then so is F(τ)
(definition 17).

2. If τ = [ϕ], then likewise, ft(τ) is defined.

3. If τ = ((e)(τ1, τ2) with τ1 and τ2 partial correct derivations trees (Induction

Hypothesis), then F(τ) is by definition 17 well-defined if

{
F(τ1) = ψ (χ
and F(τ2) = ψ′ ,

where ψ′ subsumes ψ, (in which case F(τ) = mgu(ψ,ψ ′)(χ)).

5.4. RESULTS 81

Since we have a constructive solution, let us choose X, Y and Z such that
α(X) = τ , α(Y) = τ1 and α(Z) = τ2. Hence, necessarily, (Mτ , α) |= X :
((e)(Y,Z) and X = Xu

j implies Y = Xu1
j and Z = Xu2

j . 19 Proposition 10
(weak local soundness for fragment Fj) then says that F(τ1) = ti(Y) and
F(τ2) = σ(ti(Z)) for some substitution σ of variables.

According to definition 19, Z = Xu2
j is labelled either as [ψ], as ((i)χ if ψ

is an implication χ (ω, or is a hole (without label).

The properties of type inference (proposition 7:3.) yield in any case ti(Y) =
ti(Z) (ti(X), so that F(τ1) always is an implication ψ (χ with ψ = ti(Z).
Then F(τ2) = σ(ti(Z)) = σ(ψ): ψ subsumes F(τ2); 〈qed〉.

4. If τ = ((i)ϕ(τ ′) with τ ′ partial correct derivation tree (IH), then F(τ) is after
definition 17 always defined (no LL-structural conditions in this subcase).

This means that τ is partial weakly correct. 2

Secondly, we need here let the polarity results (corollary 15) play their role,
finally: They will further ensure that bookkeeping of hypotheses be correct, too.
In fact, partial soundness here could mean that “everything is correct up to the
number of hanging hypotheses at the root.”

Proposition 19 (Partial soundness) If A is a satisfiable sequence of Glue ax-
ioms and (Mτ , α) a constructive solution of T(A), then τ is a partial correct
derivation tree.

Proof. In the inductive cases checked for partial weak soundness (proposi-
tion 18), it suffices to show that not only F(τ), but also ft(τ), is defined, i.e., that
pr2(ft(τ)) is always well-defined: this is a test on the multiset of hypotheses.

3. no checking to perform, since the union AL]BL is always defined, provided
AL and BL are;

4. to be checked: pr2(ft(τ
′)) = {ϕ}L] AL (at least one ϕ must still pend in

hypothesis storage) with τ ′ partial correct derivation tree (IH).

We know that τ = ((i)ϕ(τ ′) is a partial weakly correct derivation tree.

Since (Mτ , α) is a constructive solution of T(A), there are variables Xu
j

and Xu1
j (u ∈ 1∗21∗—lemma 8) with Xu

j : ((i)ϕ(Xu1
j) ∈ T(A). Either Xu1

j

is a hole, or it is labelled ((i)ϕ′(Xu11
j). In the second case, the inductive def-

inition of wj ((5.6) and (5.7)) ensures that the last such variable introduced
will eventually be a hole.

Let X be the hole, then, s.t. X = Xv1
j (with u prefix of v) andXv11

j 6∈ V(Fj).
Then Xv

j is labelled ((i)ψ(X) for some variable-free (assumption 6) ψ.

This means that fragment Fj is a consumer for ϕ). Corollary 15 says then
that there is a (unique) fragment Fi that is a consumer for ϕ.

According to the definition 25 of dominance atoms, there must be then an
atom X�

∗Y in T(A), where Y = R(Fi). In fact, there is such an atom

19One can always assume that all three nodes belong to the same fragment, because any non-
hole (as X must be for at least one fragment) branches at least one level deeper in the same
fragment (again, by definition 19).

82 CHAPTER 5. CONTRIBUTION

to every (root of) replacer for ϕ as well (corollary 16), and the polarity
pattern ensures us that all fragments using ϕ as a hypothesis resource
(consumers, producers and replacers) are thereby exhaustively considered.

Likewise, all fragments dominated by this particular hole X of Fj are thereby
considered: Let τ ′′ be the finite constructor tree rooted in α(Y). We know
that τ ′�∗τ ′′, i.e. there is a path between α(X) and α(Y). It is to prove that
there are “enough” labels [ϕ] along this path, at any rate at least one just
under X.

Fi provides one such label (from its unique occurrence of ϕ as [ϕ] up to its
root Y).

Whatever comes in between X and Y is a replacer for ϕ or some other
fragment not involving ϕ, but may not be a consumer for ϕ, since this one
is unique. Yet a ϕ-replacer is not bothering either: it will also pass a [ϕ]-
labelled node up to the root, as well as “consume” the other occurrence of
ϕ in form of its ((i)ϕ-labelled node (cf. fragment for sleepy in figure 5.14).

All this ensures that ft(τ) is fully defined, making τ a correct partial derivation
tree as well. 2

Looking back at the consequence of the polarity pattern (corollary 15), one
notices that only the first direction has been used (i.e. the “top-down” version:
unicity of consumers to a given producer). The “bottom-up” version, that any
hypothesis producer admits a unique consumer, will be, logically enough, used by
the next and last result, thus closing the soundness issue.

By now, the only thing that could run awry in a solution derivation tree would
be there be too many hypotheses pending at the root (i.e. when the proof is meant
to be over). Classical logic would not be too fussy about that (it merely means
some weakening of hypotheses is possible, cf. §3.3.1), but this is a major and
grounding issue in Linear Logic derivations, which indeed we do not want our
translation to let go of.

Theorem 20 (Soundness of the translation) If A is a satisfiable sequence of
Glue axioms and (Mτ , α) a constructive solution of T(A), then τ is a correct
derivation tree from A.

Proof. From the results above we know that in these conditions, we already
know that τ is a correct partial derivation tree. To prove remains then that it
is plain correct, having bound all its hypotheses when finally reaching its (only)
root: pr2(ft(τ))=∅L.

Suppose the multiset of hypotheses is not empty, i.e. there is some ϕ ∈
pr2(ft(τ)). This hypothesis may only have been introduced by a [ϕ]-labelled node;
let F be a highest fragment containing such a node: τ�∗τ ′ := α(R(F)).

It could be either a replacer or a producer for ϕ, but in either case then F is
again dominated by a consumer for ϕ or a replacer for ϕ (existing by the second
direction of corollary 15 (resp. by corollary 16)). This domination of this fragment
G implies that in the solution tree τ there is a node above τ passing a label [ϕ] up
to the root, i.e. τ�∗τ ′′�∗τ ′ for τ ′′ := α(R(G)).

This is in contradiction with F ’s being a highest fragment introducing a label
[ϕ]: 〈qed〉. 2

5.5. CONCLUSION: COMPLETENESS? 83

Therefore, the translation is sound if one restricts oneself to satisfiable LL
derivations (needed by the last three global results, but which is always the case
for Glue axiom sets extracted from actual sentences) and under compliance to the
theoretical assumptions (in particular assumption 1 from [GL98] which does
exclude some more elaborated aspects of Glue).

5.5 Conclusion: completeness?

We have proved the translation as defined in the two steps (fragments and domi-
nance, definitions 19 and 25, respectively) above sound. That is, of the constraint
T(A) output by the translation, all constructive solutions are indeed correct deriva-
tion trees from A (definition 15).

Another interesting issue upon forging translations is completeness: So far we
have not proved that all expected readings of an ambiguous sentence are actually
accessible via our translation, only that everything that is accessible is a valid
reading. So the next theoretical step to achieve would be to prove: Every correct
derivation tree from axioms A is a solution of T(A).

Since several derivation trees in Glue Semantics do not necessarily yield dif-
ferent meaning terms, a lot of proof normalisation in Linear Logic would be
involved, so as to consider only the essential derivations from an axiom sequence
A, and thus to render a proper notion of solution between both the input and the
output of T.

This could not be proved so far; Nevertheless, we obtained empirical con-
firmation that all expected readings are faithfully output by the translation’s
output solution space. This has been observed on the whole range of linguistic
phenomena the translation strives to account for (as described in §3.6), and which
its soundness proof relies on (cf. theoretical assumptions, §5.2.1).

Empirical completeness is a first satisfactory step toward a hopefully forth-
coming theoretical confirmation.

84 CHAPTER 5. CONTRIBUTION

Chapter 6

Conclusion

6.1 Wrapping up

We described and proved sound a translation from a standard fragment of Glue
Semantics. After arguing in favor of underspecification when coping with semantic
ambiguity, and the search for correspondences between its instances in several for-
malisms (chapter 1), we focused on the output formalism of our own contribution:
Dominance Constraints (chapter 2). There we stressed in particular the handiness
of the more intuitive dominance graphs, and the striking advantage there to exist
tractable solving algorithms for these. The second formalism we focused on is the
input of the contribution: Glue Semantics (chapter 3). We described the resource-
conscious approach it owes to Linear Logic, and how ambiguity is implicitly raised
by performing a proof. The link between its proofs and meaning construction
is just another instance of the Curry-Howard Correspondence. In chapter 4, we
reviewed some similar translations found in the literature, in particular two recent
ones producing Dominance Constraints, from well-known and broadly used for-
malisms: Hole Semantics and Minimal Recursion Semantics. The interest in new
translations was all the more evident then, since efficient solving algorithms con-
sequently apply to both. Eventually, in chapter 5 our contribution was exposed.
After introducing necessary preliminaries and in particular assumptions on the
Glue inputs, we presented the translation itself and some properties thereof. Fi-
nally a step-wise soundness proof was offered, along with a few well-formedness
properties.

6.2 Open issues, future work

Open issues

The contribution developed in chapter 5 leaves a few issues open, as well as per-
spectives of further development.

Validity of the polarity pattern. The uniform theory of adverbs developed
in [Dal01, chap. 10] provides a counterexample to assumption 1 (cf. footnote 12,
§5.4.2): an axiom with three occurrences of the same resource. It thus would not
be possible to classify the axiom according to definition 23. Yet it was possible,

85

86 CHAPTER 6. CONCLUSION

experimentally, to produce a dominance graph for the sentence it is extracted
from. The solutions were the readings expected for the sentence.

A natural interrogation then is whether this problem can be raised, or perhaps
the assumption modified (weakened), in order to accommodate this more uniform
theory of modification.

Likewise, non-standard extensions of Glue go beyond the implicative fragment
of Linear Logic (for the treatment of anaphora, say, or dynamic semantics). It is
not clear how assumption 1 could be, if at all, sustained when more LL operators
are present.

Completeness. The empirical completeness was assessed, but a proof misses.
We believe the proof is accessible, perhaps via a thorougher proof-theoretical

study of our version of Glue. To this extent, an approach that base on the sequent
style of Glue Semantics could be envisaged. The natural deduction fashion of
Linear Logic, exposed throughout chapters 3 and 5, probably gives a clearer global
visions of the proofs, but sequent deductions are actually more general: they
constitute a kind of metatheory of the resources utilised in a proof ([CvG00]).

In any case, a proper completeness proof involves a thorougher proof-theoretical
study, in particular proof-normalisation ([CvG00]).

Simplification of the translation We conjecture another, simpler version a
different translation could be stated, that would greatly simplify the proving of
soundness. This translation would produce only compact fragments: by out-
putting for each axiom the conclusion as the root and each premiss as a direct
child. This way, the translation would be reduced to the strict transcription of
the scopal behavior, without interfering from the meaning part.

Arguably, though, we foresee it could displace the complexity of the soundness
proof towards the completeness issue.

Axiomatic weakening of theoretical assumptions. It would be interesting
to study more in details the proofs from chapter 5 in order to reduce them to their
most general version: In the axiomatic tradition, try to determine which part of
each assumption is perhaps provable, and which is not. For instance, could the
central assumption 1 be actually inferred from theorem 1?

Hypernormal connexity. We already saw the relevance of the Net Hypothesis
for Dominance Constraints (chapter 4). To this extent, it would be interesting to
prove the output graphs T(A) hypernormally connected, as a further corroborating
step of the Net Hypothesis.

All implemented outputs of our translation (cf. Utool in §2.3.3) were nets, and
we conjecture a proof may confirm this empirical observation.

Bibliography

[AC02a] A. Asudeh and R. Crouch. Coordination and Parallelism in Glue Se-
mantics: Integrating Discourse Cohesion and the Element Constraint.
In Miriam Butt and Tracy Holloway King, editors, Proceedings of the
LFG02 Conference, CSLI publications, National Technical University
of Athens, Athens, 2002.

[AC02b] A. Asudeh and R. Crouch. Glue semantics for HPSG. In F. van
Eynde, L. Hellan, and D. Beermann, editors, on-line Proceedings of
the HPSG ’01 Conference, Norwegian University of Science and Tech-
nology, Trondheim, Norway, 2002.

[Als92] H. Alshawi, editor. The Core Language Engine. MIT Press, Cam-
bridge/London, 1992.

[BDNM04] Manuel Bodirsky, Denys Duchier, Joachim Niehren, and Sebastian
Miele. A new algorithm for normal dominance constraints. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
2004.

[Bos96] Johan Bos. Predicate logic unplugged. In Proceedings of the 10th
Amsterdam Colloquium, pages 133–143, 1996.

[Bos02] Johan Bos. Underspecification and resolution in discourse semantics.
PhD thesis, Saarland University, 2002.

[CF00] Ann Copestake and Dan Flickinger. An open-source grammar develop-
ment environment and broad-coverage english grammar using HPSG.
In Conference on Language Resources and Evaluation, 2000.

[CFS01] A. Copestake, D. Flickinger, and I. Sag. Minimal Recursion Semantics.
An Introduction. Language and Computation, 1(3):1–47, 2001.

[CFvG99] R. Crouch, A. Frank, and J. van Genabith. Glue, underspecification
and translation. In H. Bunt and R. Muskens, editors, Computing
Meaning, volume 2. Kluwer Academic Press, 1999.

[CLF01] A. Copestake, A. Lascarides, and D. Flickinger. An algebra for se-
mantic construction in constraint-based grammars. In Proceedings of
the ACL-01, Toulouse, France, 2001.

[CvG99] R. Crouch and J. van Genabith. Context change, underspecification,
and the structure of glue language derivations. In Dalrymple [Dal99],
pages 117–189.

87

88 BIBLIOGRAPHY

[CvG00] R. Crouch and J. van Genabith. Linear logic for linguists. Introductory
course to ESSLLI-00, 2000.

[Dal99] M. Dalrymple, editor. Semantics and Syntax in Lexical Functional
Grammar: The Resource Logic Approach. MIT Press, Cambridge,
MA, 1999.

[Dal01] M. Dalrymple. Lexical Functional Grammar, volume 34 of Syntax and
Semantics. Academic Press, 2001.

[DGLS99] M. Dalrymple, V. Gupta, J. Lamping, and V. Saraswat. Relat-
ing resource-based semantics to categorial semantics. In Dalrymple
[Dal99], pages 261–280.

[DKIZ95] M. Dalrymple, R. Kaplan, J.T. Maxwell III, and A. Zaenen, editors.
Formal Issues in Lexical-Functional Grammar. Stanford Unifersity,
1995.

[DKMZ95] M. Dalrymple, R. Kaplan, J.T. Maxwell, and A. Zaenen, editors. The
Formal Architecture of Lexical-Functional Grammar, chapter 1, pages
7–28. In Dalrymple et al. [DKIZ95], 1995.

[DLS93] M. Dalrymple, J. Lamping, and V. Saraswat. LFG Semantics via
Constraints. In Proceedings of the Sixth Conference of the European
Association for Computational Linguistics, 1993.

[EKN01] M. Egg, A. Koller, and J. Niehren. The constraint language for lambda
structures. Journal of Logic, Language, and Information, 10:457–485,
2001.

[FKNT04] Ruth Fuchss, Alexander Koller, Joachim Niehren, and Stefan Thater.
Minimal recursion semantics as dominance constraints: Translation,
evaluation, and analysis. In Proceedings of the 42nd ACL, Barcelona,
2004.

[FKT05] Dan Flickinger, Alexander Koller, and Stefan Thater. A new well-
formedness criterion for semantics debugging. In Proceedings of the
12th International Conference on HPSG, Lisbon, 2005.

[Gal91] Jean Gallier. Constructive Logics. Part II: Linear
Logic and Proof Nets. Technical report, CIS De-
partment, University of Pennsylvania, 1991. URL:
ftp://ftp.cis.upenn.edu/pub/papers/gallier/conslog2.ps.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 45:1–102,
1987.

[Gir95] J.-Y. Girard. Linear logic: its syntax and semantics. In J.-Y. Gi-
rard, Y. Lafont, and L. Régnier, editors, Advances in Linear Logic.
Cambridge University Press, 1995.

[GL98] Vineet Gupta and John Lamping. Efficient linear logic meaning as-
sembly. In Proceedings ACL’98, pages 464–470, Montreal, 1998.

BIBLIOGRAPHY 89

[Gri90] Timothy G. Griffin. A Formulae-as-Types Notion of Control. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages, pages 47–58, San Fransisco, CA, 1990. ACM
Press.

[Kel88] William R. Keller. Nested Cooper Storage: The proper treatment of
quantification in ordinary noun phrases. In U. Reyle and C. Rohrer,
editors, Natural Language and Linguistic Theories, volume 35 of Stud-
ies in Linguistics and Philosophy, pages 432–447. Reidel, 1988.

[KMN00] Alexander Koller, Kurt Mehlhorn, and Joachim Niehren. A
polynomial-time fragment of dominance constraints. In Proceedings
of the 38th Annual Meeting of the Association of Computational Lin-
guistics, pages 368–375, 2000.

[KNS00] A. Koller, J. Niehren, and K. Striegnitz. Relaxing underspecified se-
mantic representations for reinterpretation. Grammars, 3(2-3), 2000.

[KNT03] Alexander Koller, Joachim Niehren, and Stefan Thater. Bridging the
gap between underspecification formalisms: Hole semantics as domi-
nance constraints. In Proceedings of the 11th EACL, Budapest, 2003.

[Kol04] Alexander Koller. Constraint-based and graph-based resolution of am-
biguities in natural language. PhD thesis, Universität des Saarlandes,
2004.

[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic. Kluwer, Dor-
drecht, 1993.

[Kri03] J.-L. Krivine. Dependent choice, ‘quote’ and the clock. Theoretical
Computer Science, 308:259–273, 2003.

[Lev05] Iddo Lev. Decoupling Scope Resolution from Semantic Composition.
In Proc. of the 6th International Workshop on Computational Seman-
tics (IWCS-6), pages 139–150, 2005.

[Mon74] Richard Montague. The proper treatment of quantification in ordinary
English. In R. Thomason, editor, Formal Philosophy. Selected Papers
of Richard Montague. Yale University Press, New Haven, 1974.

[Per00] Guy Perrier. From intuitionistic proof nets to interaction grammars.
In Proceedings of the 5th TAG+ Workshop, Paris, 2000.

[Rey93] Uwe Reyle. Dealing with ambiguities by underspecification: construc-
tion, representation, and deduction. Journal of Semantics, 10:123–179,
1993.

[vGC99] J. van Genabith and R. Crouch. Dynamic and underspecified seman-
tics for LFG. In Dalrymple [Dal99], pages 209–260.

