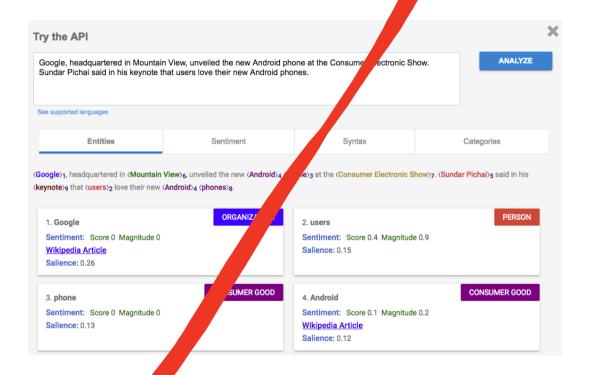
Institute of Computational Linguistics

Introduction to Machine Learning

Lesson 1

Mathias Müller, Phillip Ströbel

Who we are



9HILL19

Purpose of this course

Institute of Computational Linguistics

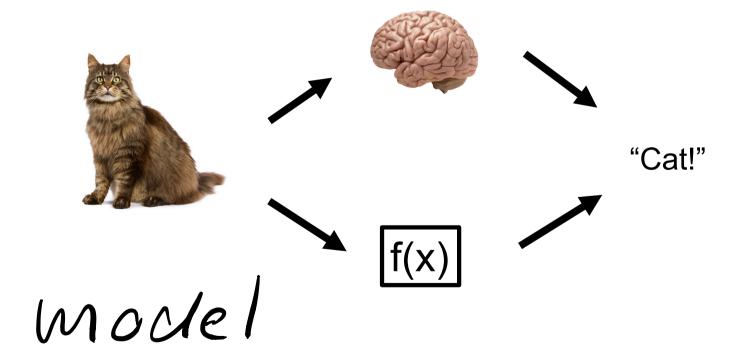
Core Concepts of Machine Learning

Topic of this lesson

 introducing core concepts and terminology of machine learning, namely: models, features, representations

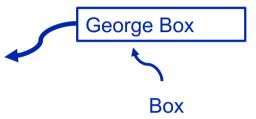
What is Machine Learning?

-leinen aus Mustern


- Daten

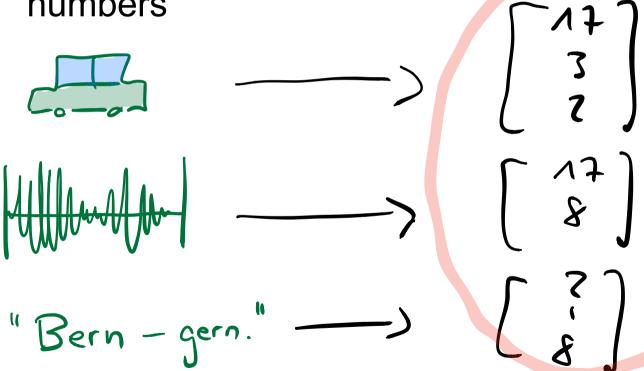
- supervised Us Unsup-

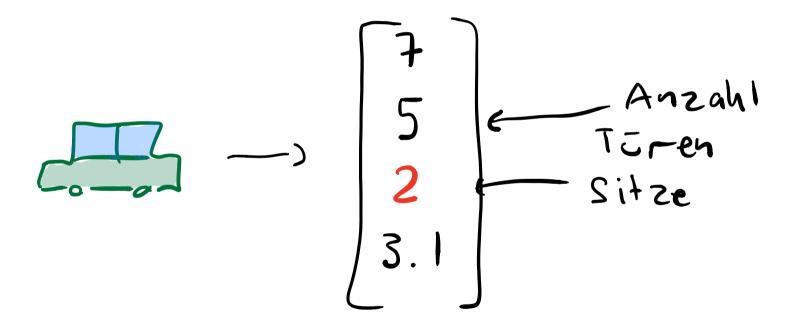
What is Machine Learning?


What is Machine Learning?

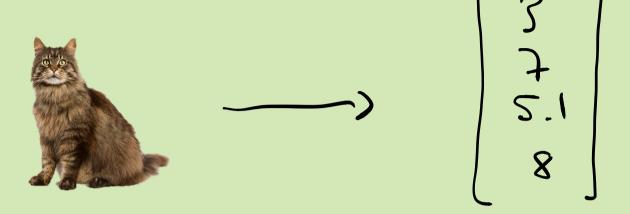
The Real World vs. Models

all models ace wrong, some are useful


The Real World vs. Models


Representations

Objects must be represented as lists of numbers



Features

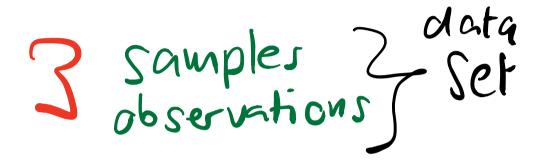
A feature is a single number

Test your understanding

- How many features are there?
- What do the features mean?
- Is this a machine learning model?

Summary

- Machine learning means modelling parts of our world, and learning behaviour
- a model is an imperfect abstraction of reality
- real-world objects are described by features which must be numbers


Institute of Computational Linguistics

Data, Phases and Splits

Topic of this lesson

- how to talk about data
- phases of machine learning
- data set splits

Data: Samples

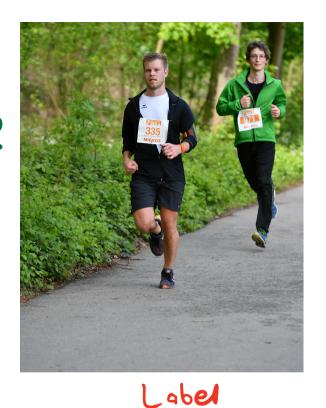
Name of Beverage	Sugar (g)	Vitamin C (mg)
Coke	10	Zero ©
Orange juice	9	120
Tap water	0	0 (traces!)

Further reading: That Sugar Book (2015). Damon Gameau. Pan Macmillan Books, Sidney.

Collecting Data

My employees like me, the percentage is even higher for people with a temporary contract! – Anonymous CEO

We have reached out to our customers about mobile network coverage. Almost 9 out of 10 Americans contacted on their phones are satisfied with coverage.— Telecommunications Corporation



Name of Beverage	Sugar (g)	Vitamin C (mg)
Coke	10	Zero ©
Orange juice	9	120
Tap water	0	0 (traces!)

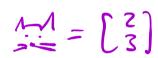
Data: Labels

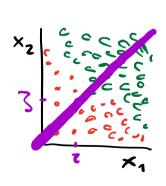
Labels Target Label Response

goldstandard

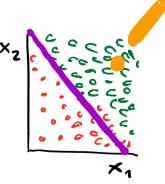
10

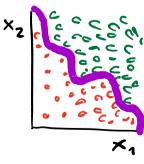
Name of Beverage	Sugar (g)	Vitamin C (mg)	good/bad?
Coke	10	Zero ☺	bad
Orange juice	9	120	bad
Tap water	0	0 (traces!)	good


Phases and Data Set Splits testing training validation validation training set test Set set 1× Generalisierung


traje

Why Validation?


overfitting



under fitting

filling

over fitting

Evaluation

Generalization	Metrics
F= 3,4 1	_
Algorithma	17,18,15
Alg. B	26
Classikia	chara (CCVacy

Summary

- Machine learning typically requires data
- data collection can introduce biases
- data is typically split into:

train valid test

evaluation tests generalization

Institute of Computational Linguistics

Machine Learning Paradigms

Topic of this lesson

- major paradigms of machine learning
- supervised vs. unsupervised algorithms
- classification vs. regression algorithms

Machine Learning Paradigms reinfreeunsupervised supervised learning clustering regression classification KNN Inew regression MLP

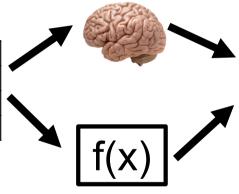
Supervised vs. Reinforcement Learning

e4 e5 — ...

Bc4 Bc5 —) ...

Nc3 Nf6 ---> ···

d3 Nc6 —) V

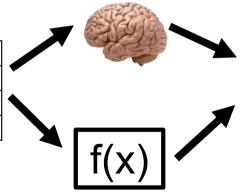

Supervised vs. unsupervised: Demo

Unsupervised learning Pleiaden clustering dimensionality reduction

Classification vs. regression

Classification ("group membership")

Name of Beverage	Sugar	Vitamin C
Coke	10	Zero ☺
Orange juice	9	120
Tap water	0	0 (traces!)



good/bad?	
	bad
	bad
	good

2

Regression (value prediction)

Name of Beverage	Sugar	Vitamin C
Coke	10	Zero ©
Orange juice	9	120
Tap water	0	0 (traces!)

body temperature	
	40
	39
	37

Where does Deep Learning fit in?

Summary

major paradigms are:

 main difference between supervised and unsupervised methods:

 main difference between classification and regression:

fixed list of classes

Clanification

regressich