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Abstract

This thesis considers the shortening of a sentence while retaining the essence of the

source sentence, so-called sentence compression, not as a monolingual task, but in

the context of machine translation. Ideally, a model would be taught the ability

to compress sentences using bilingual data with compressed and uncompressed seg-

ments aligned. However, monolingual corpora with compression data are already

rare, and multilingual compression data is even rarer. We propose three approaches

that consist of the specific augmentation and preprocessing of training data, and

one approach that introduces a new length penalty within the decoding algorithm.

In contrast to the latter approach, which is not very promising in this form, we

show that the data-driven approaches can achieve good results even without the

availability of multilingual compression data as training data. Moreover, we found

that the ability of a translation model to compress sentences does not reduce the

translation quality of uncompressed translations, but rather improves them.

Zusammenfassung

Diese Arbeit behandelt die Kürzung eines Satzes unter Beibehaltung von dessen

Kerninhalt, die so genannte Satzkompression, nicht als monolinguale Aufgabe, son-

dern im Kontext der maschinellen Übersetzung. Idealerweise würde einem Modell

mittels bilingualer Kompressionsdaten, die sowohl in Originallänge wie auch kom-

primiert vorliegen, die Fähigkeit beigebracht werden, Sätze zu komprimieren. Mo-

nolinguale Korpora, die solche Satzkompressionen beinhalten, sind jedoch rar und

mehrsprachige Datensätze dieser Art sind noch seltener. Wir schlagen deshalb drei

Ansätze vor, die auf der gezielten Auswahl und Vorverarbeitung von Trainingsdaten

basieren, und einen, der eine neue Längenstrafe innerhalb des Decoding einführt. Im

Gegensatz zum letztgenannten Ansatz, der in dieser Form nicht überzeugt, zeigen

wir, dass die datengetriebenen Ansätze trotz geringer Verfügbarkeit mehrsprachi-

ger Kompressionsdaten gute Ergebnisse erzielen können. Darüber hinaus haben wir

festgestellt, dass die Fähigkeit eines Übersetzungsmodells, Sätze zu komprimieren,

die Übersetzungsqualität unkomprimierter Übersetzungen nicht senkt, sondern im

Gegenteil sogar verbessern kann.
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1 Introduction

1.1 Motivation

Thanks to deep learning, machine translation is now reaching a level of translation

quality that would have been unthinkable just a few years ago. While improving

translation quality remains the main topic of machine translation research, the many

possibilities offered by neural networks for machine translation are increasingly being

explored. These include new features that focus on users influencing the translation

output, e.g. by controlling the honorifics of a translation, i.e. setting the desired

level of politeness (Sennrich et al., 2016a), by integrating custom terminology into

a translation segment at run time (Dinu et al., 2019), or even by simply controlling

the preferred language of the translation (Johnson et al., 2017).

In theory, there are countless so-called constraints conceivable to control different

aspects of machine translation output, whether useful in practice or not. However,

one aspect of great practical relevance is controlling the length of machine translation

output. Because neural machine translation is prone to generating hypotheses that

are too short (Murray and Chiang, 2018), length control has been in the focus of

research since the early days of neural machine translation (e.g. Wu et al., 2016)),

usually with the goal to generate translations that match the length of a reference

translation.

One particular form of length control is sentence compression, which aims at (signif-

icantly) shortening or summarising an existing text. While this usually is a mono-

lingual task, when combined with machine translation, sentence compression means

that a sentence in one language gets compressed during the translation process.

This is called an end-to-end approach, as the translation and compression happen

simultaneously. Compared to cascaded process consisting of two or more steps, this

approach has the advantage of being faster and less error-prone due to the lack of

error multiplication between the indivudal steps.

Two main approaches can be distinguished for this thesis: With the data-driven

approach, we aim at achieving sentence compression by augmenting the training

1



Chapter 1. Introduction

data (see Lakew et al., 2019), and with the decoding approach, the goal is to generate

compressed sentences by modifying the decoding algorithm (see Niehues, 2020).

Assessing sentence compression across language boundaries poses some difficulties:

Firstly, multilingual corpora containing sentence compression are very rare. Sec-

ondly, while the subword is generally the smallest unit in neural machine translation

(NMT), the number of letters is much more appropriate as a metric to measure the

length of a sentence.

1.2 Research Questions

The objective of this thesis is to answer the following research questions:

1. Can a successful approach be found to develop a data-driven model for sen-

tence compression in spite of the limited availability of multilingual sentence

compressions?

2. How promising is a decoding approach that focuses solely on modifying the

decoding algorithm during inference?

1.3 Thesis Structure

This first chapter served as an introduction to the topic and the objectives of this

thesis. Chapter 2 contains a review of previous work and highlights the challenges of

multilingual sentence compression. Chapter 3 provides an overview over the different

corpora that are used as training and evaluation data for the experiments described

in Chapter 4. The results of these experiments are presented in Chapter 5, followed

by a discussion of the results in Chapter 6. The final chapter, Chapter 7, brings the

thesis to a close.
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2 Background

2.1 Sentence Length in Machine Translation

Generating a translation with the correct length has been a challenge since the early

beginnings of NMT. This phenomenon is called length bias and stems from the fact

that the hypotheses generated by NMT systems are, on average, shorter than their

references (Müller and Sennrich, 2021). The preliminary reason for this is that

during beam search, the probability of each (additional) token in a hypothesis is

multiplied with the probability of the hypothesis. This leads to a lower probability

of longer hypotheses compared to shorter ones, hence shorter hypotheses are, on

average, favoured (Wu et al., 2016). Therefore, a technique called length normalisa-

tion was introduced by Wu et al. (2016) to mitigate the length bias, and nowadays,

NMT toolkits such as Sockeye (Hieber et al., 2022) contain a variety of mechanisms

and hyperparameters to ensure the correct translation length.

Within the context of the length bias, the length of a translation is compared to

that of its reference. However, research has also been conducted to match the length

of the source text. This comparison is usually not of interest, but under certain

circumstances it is desirable for the translated segment to be of the same length (or

shorter) as the source segment. If, for example, a certain layout has to be adhered

to or in the case of subtitles, only a limited number of characters are available.

Under these circumstances, we would like to obtain translations that match length

of the source text, even though this may mean that we generate a translation that

is shorter than its reference. Since in these use cases the complete information of

the original sentence should be represented in the translation, it is noteworthy that

this is not a form of sentence compression.

Lakew et al. (2019) and Niehues (2020) both proposed an approach to maintain the

length of a source segment in the translation process: While Lakew et al. (2019)

combines a data-driven approach with the integration of length information into

the positional embedding of the transformer, Niehues (2020) is integrating various

additional constraints into the model to make it length aware.

3



Chapter 2. Background

One key difference between the two approaches is that Lakew et al. (2019) evaluates

the sentence length on character level, whereas Niehues (2020) measures the segment

length in number of subword tokens. Furthermore, while Lakew et al. (2019) only

uses soft constraints, Niehues (2020) also restricts the search space to only include

hypotheses that exactly match the desired length. The difference between these

approaches can be seen in the results: While the hard constraint by Niehues (2020)

seems to substantially lower the translation quality, the results by Lakew et al.

(2019) look promising.

2.2 Constraints in Machine Translation

In general , the term constraint refers to a certain requirement that should be fulfilled

during the translation process. Constraints can take various forms and enable the

user, for example, to integrate or avoid certain words in a generated target sentence

using lexical constraints (Jon et al., 2021). Other types of constraints allow the user

to select the politeness level of a translation (Sennrich et al., 2016a) or to choose

either the active or passive voice for a target sentence (Yamagishi et al., 2016).

Two main types of constraints can be distinguished: hard constraints and soft con-

straints. Hard constraints are guaranteed to be achieved, while soft constraints try

to nudge a model into the fulfilment of the constraint, but can also be ignored. In

short, hard constraints enforce a certain constraint, while soft constraints merely

try to provoke the model to be fulfilled.

Matching a certain requirement can often be achieved by both hard and soft con-

straints, both of which usually have their advantages and disadvantages. For ex-

ample, both soft and hard constraints have been implemented to allow lexical con-

straints to be integrated into machine translation. While Grid Beam Search by

(Hokamp and Liu, 2017) guarantees that a certain term is inserted into a transla-

tion, this approach results in a slow decoding speed. The approach by (Dinu et al.,

2019) on the other hand does not guarantee that a certain term is inserted into a

translation, but does not impact decoding speed. This shows that choosing the right

type of constraint is usually a trade-off between several factors.
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Chapter 2. Background

2.3 Sentence Compression as a Task

Sentence compression is the task of shortening a sentence while preserving the

essence of the source sentence. Two main approaches can be found: The deletion-

based approach is based on omitting unncessary words, whereas the abstractive

approach involves rewriting the compressed sentence from scratch, therefore substi-

tuting words and rephrasing the entire sentence (Yu et al., 2018). As such, sentence

compression has been a standard NLP task for a long time (Filippova et al., 2015).

Following Pitler (2010), a compressed sentence should fulfil the following three re-

quirements1:

It should

• be shorter than the source sentence

• preserve the most important information of the source sentence

• itself be grammatical.

Sentence compression has traditionally been a monolingual task as part of different

fields in NLP, such as text summarisation and text simplification. While in text

summarisation, the goal is to summarise a certain sentence or document, thereby

reducing its length while maintaining key information (Filippova, 2010; Roy, 2020),

in text simplification, sentence compression is just a means to an end: By reducing

the length of the text through the removal of non-essential information, the text

becomes more accessible to people with reduced literacy (Angrosh et al., 2014).

The potential of encoder-decoder models (Sutskever et al., 2014) was also applied

on monolingual sentence compression: Kikuchi et al. (2016) evaluated methods to

control the length of encoder-decoder output in a text summarisation task, using

two learning-based and two decoding-based approaches. The key difference between

these two methods is that the learning-based method receives a requested length as

input, while the decoding-based method only receives this crucial information during

the decoding process. The results showed that the learning-based methods were able

to control length without affecting the summary quality in a text summarisation

task.

1See also the following instructions for human annotators to create valid sentence compressions:
https://homepages.inf.ed.ac.uk/mlap/cgi-exp/annotators1.html
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Chapter 2. Background

2.4 Sentence Compression in Machine Translation

In contrast to sentence compression discussed so far, sentence compression in ma-

chine translation is not a monolingual task, but a multilingual one. According to our

definition of sentence compression in Section 2.3, sentence compression occurs only

when a translated sentence is shorter than the source sentence. Thus, methods for

length control, such as the approach by Lakew et al. (2019), which aim at matching

the length of the source sentence, do not count as sentence compression.

Approaches to multilingual sentence compression are difficult to find in research:

Mallinson et al. (2018) applied a combination of machine translation and a length

control approach similar to Kikuchi et al. (2016) to achieve monolingual sentence

compression. By controlling the sentence length during the translation process to

and from a second language (bilingual pivoting), sentence compression was achieved

in English, French, and German and for different compression ratios. While the

approach proved successful in general, it only performed well up to a certain degree of

compression. Li et al. (2019) proposed to enhance the source sentence representation

within a translation model using a compressed version of said sentence, thereby

providing the model with the gist of the source segment. The objective of this

approach was not to generate compressed translations, but to improve the overall

translation quality. Niehues (2020) successfully applied his approach for length

control described in Section 2.1 also on sentence compression.

6



3 Data

3.1 Parallel Data

Following Lakew et al. (2019), we chose to to use MuST-C1 (Di Gangi et al., 2019), a

corpus containing multilingual speech translations based on English TED talks. We

utilised the data available for the language pair English–German for the language

direction German–English. The data in the corpus came divided into a training,

validation, and test set as shown in table 1. We left this split of the data set

unchanged. In line with the preprocessing steps described in Lakew et al. (2019),

we tokenised the data with the Moses tokeniser (Koehn, 2005) and learnt byte-pair

encoding (BPE; Sennrich et al., 2016c) on the training data on a joint vocabulary

with 32,000 merge operations. This joint vocabulary was then used to split the

tokenised data into subwords.

Train Val Test Total

MuST-C De-En 229,703 1,423 2,641 233,767

Table 1: Number of training, validation, and test segments in the MuST-C corpus.

To create our back-translations (Sennrich et al., 2016b), we trained an auxiliary

En-De model with significantly more data to increase the translation quality of

our back-translations. For this, we used the English-German data of the following

three corpora: Common Crawl,2 Europarl v7,3 and News Commentary v9.4 A

strict ratio filtering with a maximum length ratio of 1.5 was applied to remove

potentially low-quality segments, which left us with a total of 3,898,156 segments,

1Publicly available for download at https://ict.fbk.eu/must-c
2Publicly available for download at
http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz

3Publicly available for download at
http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz

4Publicly available for download at
http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz
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Chapter 3. Data

divided into 3,895,656 training, 1,000 validation, and 1,500 test segments. Besides

the additional filtering step, we applied the same preprocessing steps (tokenisation

as well as learning and applying BPE) as described for the MuST-C corpus.

Unfiltered Filtered

Common Crawl De-En 2,399,123 1,895,975

Europarl v7 De-En 1,920,209 1,814,427

News Commentary v9 De-En 201,288 88,347

Total 4,520,620 3,798,749

Table 2: Number of sentence pairs to train the auxiliary model.

3.2 Monolingual Data

Corpora containing parallel data with uncompressed and compressed sentences are

very scarce. For our experiment with compressed data, we used the monolingual

corpus built by Filippova and Altun (2013).5 This corpus is by far the largest

one in the field of sentence compression. The approach behind this automatically

created corpus is to leverage the relationship between headlines of news articles and

their first sentences. Given a sufficient similarity, this can be used to extract a

compression of the sentence. We extracted both the uncompressed and compressed

parallel sentences. While Filippova and Altun (2013) note that the corpus contains

250,000 parallel segments, we were only able to extract a total of 210,000 segments.

Train Val Total

Sentence Compression corpus 200,000 10,000 210,000

Table 3: Number of parallel sentences in the Sentence Compression corpus.

3.3 Test Sets

Compared to corpora containing monolingual compression data, bilingual data where

the uncompressed and compressed data are held in a different language are even more

5Publicly available for download at
https://github.com/google-research-datasets/sentence-compression
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Chapter 3. Data

difficult to find. However, this kind of data is essential to properly evaluate sentence

compression in the context of automatically translated text.

One such corpus is MOSS (Mallinson et al., 2018), a multilingual parallel corpus

containing documents in English, French, and German. The documents stem from

the European parliament proceedings, TED talks, news commentaries, and the EU

bookshop. Each document comprises 100 segments. For each language, five native

speakers created one compression for each of the four documents, leading to 2,000

compressed sentences per language aligned with their source sentences. It should

be noted that the documents in the three languages are not aligned at the sentence

level, as one German sentence could be aligned to multiple English sentences (or

vice versa) (J. Mallinson, personal communication, 7 September 2022).

We downloaded the corpus6 and reviewed both the English and German compres-

sions:

• Eubook : The 5 compressions of the German version all showed repeated errors:

omission of necessary nouns, orthographic errors (including lack of upper and

lower case), and misalignments between the original document and the com-

pression. The English version also shows some shortcomings, especially in

the compressed reference labeled task1 ref1, which not only contains linguis-

tic errors, but also partly misrepresents the meaning of the source segment.

Compared to the German version, however, the shortcomings overall are more

minor. As the documents are not aligned on the sentence level, we translated

the original (uncompressed) English document from English into German. As

there were only a total of 100 segments to translate from English into Ger-

man and translation quality is of the upmost essence in this case, we used a

commercially available translation model7 to create a back-translated version

of the document.

• Europarl : In the German versions, there were minor punctuation errors, as

well as other minor punctuation errors in every text. However, task1 ref4

was bursting with spelling errors, missing capitalisation and content errors,

so we decided to use only the other documents. Interestingly, task1 ref4 for

English was significantly shorter than the other compressions and had repeated

missing punctuation. However, because the compressions seemed accurate,

this reference document was not removed. As for Eubooks, we again created

back-translated version of the original English document.

6Publicly available for download at https://github.com/Jmallins/MOSS
7Model developed by the Swiss Machine Translation company TextShuttle AG (https://
textshuttle.ai.
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Chapter 3. Data

• News : By and large, both the English and the German versions were accept-

able, except for the German task1 ref4, which again showed the problems al-

ready known from the Europarl document. Although the English and German

versions are not aligned, the same sentences can be found in both versions,

only in different order. Therefore, we managed to create a sentence-based

alignment by manually rearranging the German version.

• Ted : Interestingly, in both the English and German versions, except for very

short sentences, each sentence was spread over several lines. A document with

such segmentation is not suitable as input for a machine translation model,

which is why we omitted this document from the test set.

Eubook Europarl News

Reference 0 0.79 0.7 0.74

Reference 1 0.77 0.63 0.77

Reference 2 0.78 0.74 0.74

Reference 3 0.79 0.7 0.74

Reference 4 0.78 0.41 0.7

Average 0.78 0.64 0.79

Table 4: Compression ratios for the MOSS corpus in English.

Eubook Europarl News

Reference 0 0.69 0.62 0.6

Reference 1 0.68 0.57 0.63

Reference 2 0.69 0.66 0.6

Reference 3 0.69 0.62 0.6

Reference 4 0.68 0.37 0.57

Average

Table 5: Compression ratios for the compressions in the MOSS corpus in English,
compared to the uncompressed German versions (Europarl and Eubook are
back-translations).

As we can see from Tables 4 and 5, the compression ratio varies between each domain

and annotator, and also substantially between monolingual (English–English, Table

4) and multilingual (German–English, Table 5) sentence compression. For the Eu-

book document, however, the compression ratios between the individual annotators

are surprisingly similar. We verified this and could not detect any irregularities.
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4 Methods

4.1 General Model Architecture and Hyperparameters

All models trained for this thesis were based on the Transformer architecture (Vaswani

et al., 2017). We followed Lakew et al. (2019) for the hyperparameter settings, but

made certain adjustments to the configuration to increase training speed. All of

our models consisted of 6 encoding and decoding layers, 8 attention heads, a hid-

den/embedding size of 512, and a feed forward layers size of 2048. This corresponds

to the Transformer Base Model configuration in Vaswani et al. (2017). The batch

size was set to 4500 tokens. All models are trained on one NVIDIA GeForce GTX

TITAN X GPU.

We used two toolkits: Sockeye 3 (Hieber et al., 2022) and Joey NMT (Kreutzer et al.,

2019). A key difference between the two toolkits is that Sockye supports factored

NMT, whereas Joey NMT does not. For the Sockeye models, we used early stopping

with validation perplexity as metric to end the training after no improvement for 8

checkpoints. Our Joey NMT models train for a fixed duration of 50 epochs. With

both toolkits, we used the default settings for all hyperparameters not specified

above, including learning rate.

We trained a total of seven models:

• A German–English Sockeye baseline model, referred to as Sockeye Baseline

• AGerman–English Joey NMT baseline model, referred to as Joey NMT Baseline

• A German–English Sockeye model with length tags, referred to as LengthTag

• AGerman–English Sockeye model with length factors, referred to as LengthFactors

• AGerman–English Sockeye model with compression tags, referred to as CompTag

• A German–English Sockeye model with compression tags and length factors,

referred to as CompFactors

• A English–German Sockeye model for back-translations

11



Chapter 4. Methods

4.2 Data-driven Approaches

The idea behind our data-driven approach was to leverage data to teach a model to

shorten a source segment while translating it. All of the following approaches were

based on the model learning from existing (un)compressed data. The focus lied

therefore on the selection of training data and the necessary preprocessing steps;

changes to the decoding algorithm were not necessary.

4.2.1 Annotation of Training Data with a Length Tag

As we have seen, corpora with long-short sentence pairs are very rare. However,

we have a large amount of bilingual data. It is the intrinsic nature of translation

that the length ratio between a source sentence and its translation varies. We can

therefore try to use this variation in length ratio to shorten sentences.

As our first data-driven approach, we implemented a variaton of the length token

method described in Lakew et al. (2019).

We followed Lakew et al. (2019) and divided our training data into three distinct

length categories, each with a specific length ratio. Lakew et al. (2019) set the length

ratios for the categories to [0,1], [1,1.2], and (1.2,∞) for the language directions

English–Italian and English–German. In order to encourage shorter translations,

we defined lower ratio bounds. Of course, the more the length ratio deviates from

the natural length ratio of a language direction, the more difficult it becomes to find

matching segments in the training data. However, in contrast to the two language

directions chosen by Lakew et al. (2019), English translations tend to be shorter

than their German source sentences. This allowed us to choose lower length ratios

overall.

The first category short consisted of source-target pairs where the target segment

was significantly shorter than the source segment. As we were just exploiting the

natural variance in length ratios, we hypothesized that the target segments in this

category would still fully cover the content of the source segment and would therefore

not be a compressed version of the source segment, but just short translations. The

second category normal contained parallel segments where the target side was only

slightly shorter than the source side, and the third category long contained the

segments where the target segment was longer than the source segment.

As training data, we used the MuST-C corpus described in section 3.1. We an-

notated the training data by prepending the appropriate length tag (depending on
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Set Short Normal Long

train 41,164 123,098 65,441

val 295 826 302

test 516 1,542 583

Length ratio [0,0.8] (0.8,1] (1,∞)

Table 6: Training, validation, and test set divided into each length ratio category
(measured by number of characters).

the length ratio between each target and source) to each source segment. Once the

training data was tagged, the training was carried out normally. During inference,

we were then able to set the approximate length of the text translation by adding

the corresponding tag to the segment to give the model an indication of the desired

length ratio.

Length ratio

Source Go away ! Target Hau ab ! 0.88

Source with tag <short> Go away !

Source Go away ! Target Verschwinde ! 1.5

Source with tag <long > Go away !

Table 7: Example of length tag prepended to source segment for training.

4.2.2 Back-Translations with Compressed Segments

We have described a large monolingual corpus with uncompressed and compressed

sentence pairs in section 3.2. In order to train a machine translation model, though,

bilingual data is required. Thankfully, it is possible to leverage monolingual data for

machine translation by automatically translating the future target side of the train-

ing data into the source language in a process called back-translation (Sennrich et al.,

2016b; Edunov et al., 2018; Caswell et al., 2019). This way, we can generate syn-

thetic training data that we can use alongside the original training data. Of course,

an existing translation model (in this case for English–German) is a prerequisite for

this.

It has been shown by Edunov et al. (2018) that adding noise to the back-translations
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by sampling from the model distribution during back-translation outperforms reg-

ular beam search, because this way, a stronger training signal is provided to the

model. Caswell et al. (2019) argued, though, that this added noise in the synthetic

data simply serves as an indicator to a model trained with back-translations that

a certain source segment stems from synthetic data. For that reason, they pro-

posed adding a <BT> tag to the back-translations to signal to the model that a

segment was back-translated. As we show below, we labeled the segments gener-

ated via back-translations with a compression tag, which implicitly also served as

a label indicating back-translation. Hence, we refrained from sampling and used

regular beam search (with beam size 5) to create our back-translations from the

Sentence Compression corpus. The model used for this was an auxiliary model for

English–German trained on significantly more data described in Table 2 than our

other models to ensure better translation quality.

Train Val Test

Sentence Compression corpus 200,000 750 1,500

MuST-C corpus 200,000 750 1,500

Total 400,000 1,500 3,000

Table 8: Composition of training data for CompTag.

Instead of using only the back-translations to train our compression model, we

also added the MuST-C corpus to the training data. This served two purposes:

Firstly, we wanted our model to not only create compressions while translating, but

also to be able to translate sentences without shortening them. Secondly, Caswell

et al. (2019) brought forward that back-translations amplify the already existing

underlying biases in machine translations. These biases could be detrimental to

the overall translation quality, which is another reason for including non-synthetic

data. We used a 1:1 ratio of back-translated compression data to segments from the

MuST-C corpus.

Source <U> Der Hund, der den Nachbarn gehört, hat mich gebissen .

Uncompressed target The dog that belongs to the neighbors barked at me .

Source <C> Der Hund, der den Nachbarn gehört, hat mich gebissen .

Compressed target The dog barked at me .

Table 9: Example of expected behaviour of the compress and uncompress tag.

We then annotated the data with a tag labeling if the target side of a parallel
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segment was a back-translation segment and compressed (<C>) or came from the

MuST-C corpus and was therefore uncompressed (<U>). Similar to the approach

using length tags in subsection 4.2.1, we tried to train the model to compress a

sentence by prepending the <C> tag to a source segment. Choosing the appropriate

compression ratio for each segment was left to the model.

4.2.3 Target Factors with Token Length

Factored machine translation is a method that allows us to incorporate additional

input and output streams into a model. This way, the model receives additional

information for each token. Depending on whether these streams are provided on

the source or target side, they are either called source factors or target factors. In

NMT, factors can be used to integrate various different kinds of information, such

as linguistic features (Sennrich and Haddow, 2016), terminology integration (Dinu

et al., 2019), and casing information (Etchegoyhen and Gete, 2020).

Our approach was to make a model aware of the length of each subword token in the

target segment by providing this information during training as length factors on

the target side for each target segment. During training, the model should learn the

length of each subword. We then added a tag on the source side that contained the

sum of all length factors, i.e. the length of the entire target segment (measured in

characters). This way, the model should learn to make the link between the length

token on the source side and the sum of the length factors on the target side. We

hypothesised that during inference, the model would know from the tag how long

the target segment should be.

When calculating the length of our subword tokens, we cannot just count the sub-

words themselves, because then the spaces would not be considered. We also need

to be mindful of the BPE word divider symbol @@ that indicates that the subword

is at the beginning or in the middle of a word and is therefore not followed by a

space. We follow these steps to determine the length of a subword:

• We calculated +1 to the length of each subword to account for the subsequent

space, except in the following two cases:

– The symbol @@ was not counted, and no space was added to the calcula-

tion of the subword length.

– We also did not add the space to the length of the last subword of a

segment (usually a period).
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For punctuation marks such as commas and semicolons in the sentence, the segment

length contained spaces that did not actually exist in the source segment. As we

tried to achieve (significant) compression, this was not a problem, however, because

it would only result in the generated translation being at most a few characters

shorter.

Source <31> The price of natural gas has increased .

Target Der Erd@@ gas@@ preis ist gestiegen .

Length factors 4 3 3 6 4 10 1

Table 10: Example of length factors for each subword token in the target segment.

We used the MuST-C corpus, created length factors for the target side and an-

notated the source side with a tag containing the target length. We also trained

a German–English model that combined this approach with the back-translations

approach described in subsection 4.2.2. We were able to use the data that had been

annotated with the compression tag to create the corresponding length factors. On

the source side, this meant that there were two tags at the beginning of each source

segment: one tag that entailed the target segment length and another other tag that

represented the compression tag (e.g. <115> <U>).

4.3 Constrained Decoding Approach

In contrast to the data-driven approaches, our constrained decoding approach tries

to modify the decoding algorithm to generate shorter hypotheses. Thus, the com-

pression is not learned from training data. In the present case, we only tried to

make changes to the beam search so that a model training or finetuning would not

be required. Hence, even existing models with the proposed modifications would be

able to generate sentence compressions without having to be retrained or fine-tuned.

A model based on the transformer architecture is not aware of translation length. As

we have shown in 2.1, this is why achieving the right target length has been a research

topic since the early beginnings of NMT. Lakew et al. (2019) and Niehues (2020)

have shown that one way to achieve length-awareness in a transformer architecture

is to modify the positional encoding, with some kind of training involved in both

methods. Therefore, mere modifications to beam search to create length awareness

within the model are not technically feasible, as length awareness of a model would

require new training or at least fine-tuning.
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Computing the all possible hypotheses |V |L during the generation of a translation,

with |V | being the target vocabulary and L being the maximal sequence length, is

intractable (Hokamp and Liu, 2017). Greedy decoding as an alternative decoding

strategy selects the subword with the highest probability at each time step, but

does not lead to a globally optimal solution. As a compromise between these two

strategies, beam search only keeps k hypotheses at each time step, k being the beam

size. At each time step, the k partial hypotheses are extended with every possible

element of the vocabulary, and only the best k hypotheses are kept. This continues

for each of the hypotheses until the end-of-sequence symbol is generated (Sutskever

et al., 2014). At each timestep, the activation function Softmax in the last layer of

the neural network outputs a probability distribution over the target vocabulary at

each time step. This distribution serves as the basis for adding up the probability

of each newly added token to the probability of the beam.

We hypothesized that modifying this probability distribution to favour shorter sub-

words enables a model to generate shorter hypotheses. To achieve this, we intro-

duced a length penalty for each subword in a vocabulary V depending on its length:

By dividing the probability p(y) of each subword y where y ∈ V with its length l so

that with each character in a subword, we lowered the probability of generating it.

This results in the modified probability ppen(y) for a subword with each additional

character that it contains. When calculating the length of each subword, the word

divison symbol @@ was disregarded. The probability of special symbols such as the

end-of-sequence symbol was left unmodified.

Furthermore, we the probabilities of subwords that contained the BPE tag @@ and

therefore are at the beginning or in the middle of a word to −∞, thereby avoiding

complex words consisting of several subwords.

The following experiments were conducted with the Joey NMT toolkit Kreutzer

et al. (2019):

1. No length normalisation: In this experiment, we set the hyperparameter for

length normalisation α to 0, thus deactivated it. We named it in the evaluation

No length norm.

2. Linear length penalty : We introduced a linear length penalty ppen(y) = p(y)/l s.t.

l ≥ 1 and referred to this experiment as LP linear .

3. Linear length penalty & no BPE tags : Besides applying a linear length penalty,

we also avoid the generating of subwords containing BPE tags. This model

named LP linear & no BPE tags .
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4. Exponential length penalty : We modified our linear length penalty by making

it exponential with l being the exponent of e: ppen(y) = p(y)/ exp (l) s.t.

l ≥ 1 and refer to this model as LP linear. We referred to this experiment as

LP exp.

5. Exponential length penalty no BPE tags : This experiment was a combintion

of LP exp. and the suppression of BPE tags. This experiment was called

LP exp. & no BPE tags .

4.4 Evaluation Setup

In line with our research questions, we evaluated each experiment according to two

main points:

1. What compression ratio is the model able to achieve?

2. What is the translation quality for compressed and uncompressed translations?

We evaluated on the following metrics:

• BLEU: BLEU (Papineni et al., 2002) is still one of the most widely used metrics

to automatically evaluate translation quality. BLEU measures the similarity

between a hypothesis and one or multiple references based on n-gram matches.

We measured BLEU with the sacreBLEU implementation1 by Post (2018).

• BLEU*: Because BLEU is precision-based, hypotheses that are shorter than

the reference would have an advantage. To offset this, BLEU includes a brevity

penalty, which penalizes hypotheses that are shorter than their references. In

the case of compressed sentences, however, it is desirable for the hypotheses to

be shorter than their references. Inspired by Lakew et al. (2019), we therefore

deactivated the brevity penalty and called this modified BLEU version BLEU*.

• Length ratio: We measured the average length ratio both between hypothesis

and source (LRsrc) and between hypothesis and reference (LRref).

• Avrg. chars/word: To evaluate our decoding approach, we reported the aver-

age number of characters per word.

We used the test sets described in Section 3.3 and, when evaluating on the MOSS

test set, compared each hypothesis to all available references of a document. The

results for the data-driven and the decoding based approaches were kept separate.

1Publicly available for download at https://github.com/mjpost/sacrebleu
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We also trained a baseline with each toolkit with the hyperparameters set out in

Section 4.1. For all tranlations, beam size was set to 5.
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5 Results

5.1 MOSS Test Set

We evaluated our models according to the evaluation setup proposed in Section 4.4

and discuss the model performances on three German–English documents from the

MOSS corpus. It is worth to note that Europarl and Eubook are back-translations.

We report for each model the constraint that has been given to it as input. Be-

cause we use multiple references, LRref is an average of the length ratio between

the hypothesis and each reference. Input for sacreBLEU is provided as detokenised

text.1.

MOSS News De-En

Model Constraint BLEU BLEU* LRsrc LRref

LengthTag short 21.2 21.2 0.77 1.40

Baseline truncated 80.5

CompTag compression 18.3 24.4 0.46 0.71

Baseline truncated 50.2

LengthFactors CR = 0.75 19.9 19.9 0.85 1.54

Baseline truncated 81.8

LengthFactors CR = 0.5 20.5 20.5 0.61 1.11

Baseline truncated 78.8

CompFactors comp. & CR = 0.75 23.2 23.2 0.82 1.49

Baseline truncated 81.2

CompFactors comp. & CR = 0.5 22.7 22.7 0.57 1.03

Baseline truncated 75.9

Table 11: Results for the evaluation of the data-driven approaches on the MOSS
News document.

For the evaluation on the News document, the results in Table 11 show that all

models have achieved some level of sentence compression, varying from a very low

1nrefs:5|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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compression ratio of 0.85 by LengthFactors compared to 0.46 by CompTag. The

latter model is also the only one that has succeeded in outperforming the average

compression ratio of the reference documents. Looking at the BLEU scores, it is

immediately noticeable that the baseline, in which each segment is shortened to the

length of the hypothesis of each model, was significantly better than the hypotheses.

This will be discussed in Chapter 6. With regards to the translation quality of the

models, CompTag is back to the top: although its BLEU score is the lowest, this is

due to the strong compression ratio and the brevity penalty associated with it. We

also see that with BLEU*, CompTag scored the highest.

The LengthTag model showed a solid result with a compression ratio of less than

0.8. This is the threshold below which the training data for the short category had

to be. Interesting are the values for the Length Factor model, which received two

different compression ratios as input: Although the use of target factors seems to

influence length, the compression is below the desired compression. Finally, the

results show that CompFactors, a combination of the approaches for LengthFactors

and CompTag, generated a compression ratio that lied between the results of the

two approaches, but achieved the best result on BLEU.

MOSS Europarl De-En

Model Constraint BLEU BLEU* LRsrc LRref

LengthTag short 24.1 24.1 0.79 1.87

CompTag compression 35.0 36.8 0.44 0.93

LengthFactors CR = 0.75 26.0 26.0 0.86 2.04

LengthFactors CR = 0.5 24.1 24.1 0.61 1.45

CompFactors comp. & CR = 0.75 30.8 30.8 0.8 1.91

CompFactors comp. & CR = 0.5 31.2 31.6 0.54 1.28

Table 12: Results for the evaluation of the data-driven approaches on the MOSS
Europarl document.

The results of the Europarl evaluation are very similar to those of Table 11. Comp-

Tag was able to achieve the highest BLEU score while simultaneously having gener-

ated the translation with the highest compression rate. The results also shows again

that LengthFactors failed to match the expected the compression ratio and that the

compression achieved is at the expense of translation quality. LengthTag scored the
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worst on the Europarl document.

MOSS Eubook De-En

Model Constraint BLEU BLEU* LRsrc LRref

LengthTag short 22.5 22.5 0.78 1.27

CompTag compression 24.9 29.3 0.55 0.85

LengthFactors CR = 0.75 22.1 22.1 0.89 1.44

LengthFactors CR = 0.5 22.5 22.5 0.66 1.07

CompFactors comp. & CR = 0.75 27.9 27.9 0.82 1.33

CompFactors comp. & CR = 0.5 26.1 27.9 0.56 0.91

Table 13: Results for the evaluation of the data-driven approaches on the MOSS
Eubook document.

The evaluation on the Eubook document resembles that of the other two documents.

To sum up the evaluation on the MOSS test set, it can be said that with Comp-

Tag, only the approach that was only trained on compressed sentence without other

constraints, consistently undercut the length of the reference compressions. Al-

though CompFactors also was trained on compressed data and surpasses CompTag

on BLEU in two occasions, it falls short regarding the compression ratio.

5.2 MuST-C Test Set

The evaluation on the MuST-C test set serves as an assessment of the general (un-

compressed) translation quality. Therefore, the models only receive input constraints

that should not result in compressed sentences. Furthermore, because we want full

coverage of the content source segment, we refrain from evaluating on BLEU*.

For LengthFactors and CompFactors, the constraint was to generate translations of

the same length as the source segment. However, in an additional oracle experiment,

each constraint was chosen according to the length of each target segment; hence,

the models were aware of the reference length. Unsurprisingly, this information

helped to ensure that the models not only matched the reference length better than

the other models, but also led to them surpassing the baseline in terms of BLEU.

Five out of eight models managed to exceed the baseline. In the case of the other

three (LengthTag, LengthFactors and CompFactors), the constraint caused the gen-

eration of too long translations, which is a disadvantage when calculating BLEU.

Somewhat surprisingly, CompTag also scored best on the uncompressed test set.
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MuST-C Test Set De-En

Model Constraint BLEU LRsrc LRref

Sockeye baseline 33.0 0.87 0.96

LengthTag oracle 34.0 0.87 0.96

LengthTag normal 33.8 0.87 0.96

LengthTag long 31.9 0.95 1.06

CompTag No compression 36.2 0.88 0.97

LengthFactors oracle 35.8 0.89 0.98

LengthFactors CR = 1 30.2 1.02 1.14

CompFactors No comp. & oracle 35.7 0.90 0.98

CompFactors No comp. & CR = l 30.2 1.01 1.13

Table 14: Results for the evaluation of the data-driven approaches on the MuST-C
test set.

The results for our constrained decoding approaches on the identical test set show

that the Joey NMT baseline model was able to achieve a rather unexpected strong

length ratio compared to the source text of nearly 1, thereby generating longer trans-

lations than the reference. We can also see that deactivating length normalisation

by setting α to 0 helped us to generate shorter translations, while simultaneously

lowering the BLEU score by -0.4.

The introduction of a length penalty resulted in a decrease of translation quality,

while the sentences were not significantly shorter compared to the result with de-

activated length normalisation. we also report that the exponential calculation of

the length penalty had a greater effect, which, in return, significantly reduced the

BLEU score compared to the linear penalty and, by avoiding the use of several

subwords, more than halved the BLEU score (30.1 vs. 14.6). The “Average charac-

ter per word” metric shows that avoiding BPE tags resulted in generating shorter

words, with the average word length being reduced from 4.8 characters (Joey NMT

Baseline) to 3.44 words (LP exp. & no BPE tags).
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MuST-C Test Set De-En

BLEU lrsrc lrref Avrg. chars/word

Joey NMT Baseline 35.8 0.99 1.08 4.8

No length norm. (α = 0) 35.4 0.85 0.95 4.81

LP linear 34.1 0.83 0.92 4.66

LP linear & no BPE tags 30.1 0.84 0.93 4.4

LP exp & 19.5 0.75 0.83 4.16

LP exp. & no BPE tags 14.6 0.79 0.87 3.44

Table 15: Results for the evaluation of the constrained decoding approach on the
MuST-C test set.
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6 Discussion

6.1 Data-driven Approaches

The reported length ratios LRsrc as part of the evaluation of the MOSS corpus show

that each model that was trained with modified training data was able to reduce

the length of the source sentences – albeit with different compression ratios.

Our results for LengthTag are in line with the findings by Lakew et al. (2019) on

adding length tags. The set length ratio ≤ 0.8 for the short token was reproduced

during inference on all three documents of the MOSS corpus (0.77, 0.79, and 0.78).

But because we had annotated a normal corpus where the source and the target page

were supposed to contain the same content, it is unclear whether the target segments

are actually compressed, or just short translations that still fully cover the content of

the source sentence. Because of the nature of the training data, we suspect that the

translations are short but complete. An analysis of translation samples supports

the hypothesis that the translation produced with the short constraint still fully

represent the meaning of the source segment.

Regarding the evaluation of our approach using length tags, the results are mixed:

Although the two constraints to generate translations with a compression ratio of

0.75 and 0.5 each had an impact on the length of the generated translation, they

miss the desired length ratio by at least 0.1 (e.g. 0.85 instead of 0.75 and 0.61 instead

of 0.5 on the News document). Although one could argue that this is because the

LengthFactors did not see any evidence of compressions in training, this argument

falls short: CompFactors, whose length factors were trained with back-translated

compressions, also failed to meet the given compression ratios. This suggests that

this is not due to a data problem. However, LengthFactors and CompFactors per-

formed well on the uncompressed MuST-C test set: Here, they almost reached the

given reference in the oracle experiment, and the constraint to generate sets of the

same length as the source was best met by both models with LRsrc=1.02 (Length-

Factors) and LRsrc=10.2 (CompFactors), respectively.

The approach of using existing compressions as back-translations and tagging them
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was the most successful approach in terms of compression ratio. This is not surpris-

ing, since this model had seen examples of compressed sentences during training.

However, the compression ratio between the back-translated uncompressed side of

the Sentence Compression corpus and the compressed original side shows a com-

pression rate of 0.36. The compression ratio of CompTag on the MOSS corpus are

slightly higher and vary (0.46, 0.44, and 0.55). This raises the question of whether

the model had learned which compression level to apply. We can see from the LRref

of 0.71 for the News document, that this not the case, as the generated translation

is significantly shorter than the average of the five references. With regards to the

good performance of this model on BLEU, one simple reason could be that Comp-

Tag saw almost twice as much training data as the other models, resulting in these

above-average BLEU scores.

We hypothesize that further research on the use of regular bilingual data may lead

to improvements on multilingual sentence compression without integrating actual

compressed data into the training data with an approach that Niehues (2020) calls

”pseudo-supervised training”.

6.2 Constrained Decoding Approach

The results for the experiment with deactivated length normalisation are in line with

expectations and show a length ratio 0.15 lower than the reference. In contrast,

the results for the influence of the implemented length penalty are surprising, as

the influence on the length ratio is less than expected. This suggests that the

probability distribution after the Softmax activation function was very certain about

the probabilities of the appropriate next tokens in the vocabulary. This is also

evident in the different results for the linear and exponential length penalty (without

avoiding BPE tags) (0.83 vs. 0.75): The exponential length penalty had a much

higher impact on avoiding the generation of longer words.

The findings also show that avoiding the generation of words consisting of several

subwords, i.e. words with BPE tags, did not result in shorter translations, but only

in the generation of shorter words, as shown by the exponential length penalty with

and without the avoidance of BPE tags (avrg. chars/word 4.16 vs 3.44). In fact,

with regard to translation length, this seems to have the opposite effect; translations

became slightly longer when avoiding BPE tags. This suggests that a model does not

generate a shorter term as an alternative fora word composed of several subwords,

but rather paraphrases an alternative that consists of more characters, leading to a

longer (and in terms of quality much worse) translation.
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Creating length-awareness within a model does not seem possible at present without

at least some form of training that allows the model to learn the relationship between

a source and target segment and their lengths. A length penalty purely based on

subword length only seems to compromise translation quality without achieving the

desired compression effect and, depending on the implementation, may even have

the opposite effect.

6.3 Limitations of the Evaluation Setup

Our approach to assessing the quality of compressed segments was to truncate each

baseline segment to the length of a model’s hypothesis. However, this BLEU baseline

score was in all cases significantly higher than all the results achieved within our

experiments. In addition to the comparison with several references that are partly

responsible for the extremely high BLEU scores, we suspect that this is because the

annotators did not rephrase the source sentences, but mostly just deleted superfluous

words, resulting in high ngram matches when calculating BLEU. This shows that

evaluating sentence compression remains a difficult task. We propose to evaluate

future experiments using, inter alia, a combination of text simplification metrics and

back-translations to simulate a monolingual evaluation.
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7 Conclusion

In this thesis, we have investigated different approaches to integrate the sentence

compression into machine translation. Firstly, we developed approaches to prepro-

cess training data in a way that a model could gain length awareness and learn to

perform sentence compression. We experimented with different kinds of tags, used

factored machine translation and also included monolingual compression data into

our models. We also implemented a new length penalty that does not require any

training or finetuning, but is solely based on modifying the beam search algorithm.

As for our first research question, all of our data-driven approaches were successful

in teaching the trained models length awareness and the ability to generate com-

pressed translations, albeit with varying degrees of success. The first approach,

which was solely based on annotating existing parallel data based on the length

of each segment, showed surprisingly good ability to generate shorter translations.

However, it remains unclear whether these translations are just short or indeed

compressions. The additional information provided by the length factors only re-

sulted in a suboptimal compression result, which is why this approach fell short of

expectations. However, there are indications that, if the expected target length is

known or anticipated correctly, regular translation quality may benefit from length

factors. Unsurprisingly, the best data-driven approach was the one that was trained

on back-translated compression data, with the added benefit of being trained on

more training segments than the other approaches. We also found that in all of

our models, learning the ability to compress sentences did not impair the quality of

uncompressed translations, but rather improved them.

With regards to our second research question, the limited decoding approach was

unsuccessful: The results showed that significant compression was not possible, while

the translation quality deteriorated significantly. Accordingly, the the introduction

of a new length penalty did have an impact on the decoding algorithm, but not to

the extent hoped for.

In conclusion, it has been shown that integrating (rare) compression data is cur-

rently the best way to achieve multilingual sentence compression. Although a purely
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decoding-based approach would be desirable, it seems not possible to reduce the

translation length without a significant loss of quality without length awareness of

the model. On the positive side, we showed that regular parallel data can also be

used to teach a model to some extent the ability to shorten translations through

data annotation. Future work will have to explore the possibilities of leveraging this

abundant data source.
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