

Institute of Computational Linguistics

Machine Translation

6 Linear Models

Mathias Müller

Last time

Started my Youtube career

Topics of today

- learn about a class of machine learning algorithms: linear models
- specific instances of linear models:
 - linear regression
 - logistic regression

Why those topics

- NMT systems are built with neural networks
- neural networks are logistic regression with a twist nn = several nested ogistic regression
- logistic regression is linear regression with a twist

How we represent data for ML problems

Regression vs. classification problems logistic regression

sugar	vitamin C	beverage
55.0	0.04	?

4.0

sugar	vitamin C	heart failures / year
67.0	0.01	1234
0.2	0.00	1
4.0	0.98	3

sugar	vitamin C	heart failures / year
67.0	0.01	?

test set

0.98

"Milk"

Institute of Computational Linguistics

Linear Regression

Regression Problems

- Assumption: data-generating process is a function
- fitting a regression model: approximating this unknown function

 fitting a regression model: 1) decide on a class of functions, 2) set all parameters that fully describe the function

Parameters that describe functions

intercept (bigs) y = -2x + 3z + 4roefficients (weights)

- function class: linear
- linear functions describe lines or hyperplanes

20

30

plane

 parameters to be learned: 1 weight for each feature in X, optionally 1 intercept

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{sugar} \qquad Y = C_1 * X_1 + C_2 * X_2 + C_1$$

メ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{X_2}^{X_1}$ 3×1 + 5×5

Simple linear regression problem: one feature, one target variable, no intercept

Residuals

Goodness of fit: sum of squared residuals

f(x) = 3x $\sum_{x,y} (y - f(x))^{2}$

How to find best line? Let's analyze sum of squared residuals

Least squares solution

- closed form, analytical solution for linear regression
- solution is called normal equations

Summary Linear Regression

- Regression approximates functions that generated the data
- functions are defined by their parameters
- linear regression approximates linear functions

with

- linear functions are lines or hyperplanes
- model fitting means finding parameters that minimize sum of squared residuals, with a least squares solution

Institute of Computational Linguistics

Logistic Regression

for classification.

Vector notation for linear regression

$$x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \quad c = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} \qquad b$$
non-vector
$$y = C_{1} \times_{1} + C_{2} \times_{2} + b$$

$$x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \qquad c = \begin{bmatrix} c_{1} \\ c_{2} \\ b \end{bmatrix}$$
vector +

$$qbsorb bias \qquad y = \vec{x} \cdot \vec{c}$$

Optimizing Logistic Regression

- Logistic regression does not have a closed form solution
- but it is a convex optimization problem

Summary

- linear models are algorithms that apply only linear transformations to input features
- **linear regression** solves a regression problem in closed form
- logistic regression solves a classification problem with convex optimization

Next time

Termin	Thema	
19.02.	Einführung; regelbasierte vs. datengetriebene Modelle	EVALUATION
26.02.	Evaluation	ERCON
05.03.	Trainingsdaten, Vor- und Nachverarbeitung	D - NULLIC DATA
12.03.	N-Gramm-Sprachmodelle, statistische Maschinelle Übersetzung	C TICAINING DAM
19.03.	Grundlagen Lineare Algebra und Analysis, Numpy	
26.03.	Lineare Modelle: lineare Regression, logistische Regression	
02.04.	Neuronale Netzwerke: MLPs, Backpropagation,	
	Gradient Descent	
09.04.	Word Embeddings, Recurrent neural networks	X VI
16.04.	Tensorflow und Google Cloud Platform	
30.04.	Encoder-Decoder-Modell	
07.05.	Decoding-Strategien	7 Vinda
14.05.	Attention-Mechanismus, bidirektionales Encoding, Byte Pair Encoding	this is the
21.05.	Maschinelle Übersetzung in der Praxis (Anwendungen)	important
28.05.	Zusammenfassung, Q&A Prüfung	
Eventuell: Gastvo	rtrag Prof. Artem Sokolov	
04.06., Raum TBA	, 16:15 bis 18:00 Uhr	m
Prüfung (schriftlig	ch)	
18.06., AND-2-48,	16.15 bis 18:00 Uhr	

Institute of Computational Linguistics

Bonus Material: Logistic Regression for multiclass problems

2 ways to extend binary logistic regression

- 1) One-versus-all logistic regression
- 2) Softmax regression

One-versus-all multi-class logistic regression

Softmax regression (= Maximum Entropy)

$$X = \begin{bmatrix} x_{1} \\ x_{2} \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} c_{11} & c_{12} \cdots & c_{1n} \\ c_{2n} & c_{22} \cdots & c_{2n} \\ c_{nn} & c_{n2} \cdots & c_{nn} \end{bmatrix}$$

$$Y = S (CX) \qquad S = \frac{e^{2j}}{2e^{2k}}$$

$$extput \quad without \quad softmax \\ extput \quad without \quad softmax \\ CX = \begin{bmatrix} 117 \\ -3 \\ 0.001 \end{bmatrix} \quad cutput \quad with \quad softmax \\ S (CX) = \begin{bmatrix} c_{11} \\ c_{2n} \\ c_{2n$$