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Abstract

In order to assess different approaches to obtaining word and sentence embedding

vectors, and to form a basis upon which new methods can developed, formal eval-

uation is necessary. Since their inception, embeddings have been evaluated using

extrinsic means, i.e. in downstream tasks, which serve as proxies to real world ap-

plications. More recently, intrinsic evaluation methods have been proposed, which

strive to investigate inherent properties of embedding vectors, but typically only

investigate very specific phenomena and can be subject to individual bias. An al-

ternative is to leverage processes occurring in the human brain whilst reading or

processing speech, in order to obtain a measure of the cognitive plausiblity of em-

bedding approaches. Hollenstein et al. [2019] have shown that word embedding

vectors can be used in a neural regression setting, where embeddings predict cog-

nitive signals aggregated on the word-level. Such signals can be obtained through

recordings of physiological monitoring methods such as eye-tracking, EEG and fMRI.

Tested approaches differ significantly in how well they predict cognitive signals and

rankings correlate between datasets, modalities, as well as with results of extrinsic

evaluations. Furthermore, the authors find many results to be significantly different

from randomly generated baselines. In this thesis, I apply the approach by Hollen-

stein et al. [2019] to sentence embeddings and sentence-level cognitive signals, with

necessary adaptations. I evaluate eight sentence embedding approaches of varying

complexity and select a subset of the cognitive datasets evaluated by Hollenstein

et al. [2019], which offer sufficient data on the sentence level. Between approaches,

I observe distinct rankings, which differ considerably between the modalities eye-

tracking and EEG. For fMRI, results provide limited information, which I mainly

attribute to data sparsity. Skip-Thought [Kiros et al., 2015] and InferSent [Conneau

et al., 2017] stand out across modalities, yielding the lowest overall errors. Unex-

pectedly, two more recent approaches, ELMo [Peters et al., 2018] and particularly

BERT [Devlin et al., 2018] do not reflect observed downstream performance. Lastly,

I informally assess correlation between cognitive and previous intrinsic and extrinsic

evaluation results. Results point toward a potential relationship between EEG and

tasks measuring semantic relatedness and textual similarity, and to a lesser extent,

between eye-tracking and linguistic probing tasks. To adress some of the observed

issues, future work could assess different means of obtaining sentence representa-

tions, (particularly for BERT), as well as alternative regression models. As more

datasets become available, more fine-grained analyses and more robust estimates of

embedding performance will be possible. Finally, cognitive datasets in languages

other than English open up the possibility for multi-lingual studies.
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Zusammenfassung

Um Ansätze zur Gewinnung von Wort- und Satzeinbettungen zu bewerten und ei-

ne Grundlage zu schaffen, auf der neue Methoden entwickelt werden können, ist

es erforderlich, formale Evaluationen durchzuführen. Seit ihrer Einführung wur-

den Einbettungen mit extrinsischen Mitteln evaluiert, d.h. mittels nachgelagerter

Aufgaben, die stellvertretend für reale Anwendungen herangezogen werden. In den

vergangenen Jahren wurden intrinsische Methoden vorgeschlagen, die inhärente Ei-

genschaften von Einbettungen untersuchen, sich jedoch auf spezifische Phänomene

beschränken und einer subjektiven Verzerrung unterliegen können. Eine Alterna-

tive ist, Messungen von Prozessen zu nutzen, die im menschlichen Gehirn beim

Lesen oder Verarbeiten von Sprache ablaufen, um die kognitive Plausibilität von

Einbettungsverfahren zu beurteilen. Hollenstein et al. [2019] zeigen, dass Wortein-

bettungen im Rahmen einer neuronalen Regression kognitive Signale vorhersagen

können. Dabei handelt es sich um Daten, die mittels der physiologischer Messver-

fahren Eye-Tracking, EEG und fMRI gewonnen werden. Die Rangordnung der Per-

formanz korreliert zwischen den Datensätzen, Modalitäten, sowie mit extrinsischen

Evaluationsresultaten. Zudem stellen die Autoren fest, dass sich viele Ergebnisse

signifikant von zufällig generierten Basislinien unterscheiden. In dieser Arbeit wende

ich den Ansatz von Hollenstein et al. [2019] angepasst auf Satzeinbettungen und

Signale auf Satzebene an. Zu diesem Zweck evaluiere ich acht Ansätze anhand einer

Teilmenge der von Hollenstein et al. [2019] ausgewerteten Datensätzen, die ausrei-

chende Daten auf der Satzebene bieten. Sowohl zwischen Ansätzen als auch zwischen

EEG- und fMRI-Daten beobachte ich erhebliche Unterschiede. Die fMRI-Resultate

sind weniger aussagekräftig, was ich hauptsächlich auf Datenknappheit zurückführe.

Skip-Thought [Kiros et al., 2015] und InferSent [Conneau et al., 2017] weisen ge-

samthaft die geringsten Fehler auf. Überraschend widerspiegeln die Resultate nicht

die anwendungsorientierte Performanz zweier neueren Ansätze, ELMo [Peters et al.,

2018] und BERT [Devlin et al., 2018], was die Erfordernis weiterführender Un-

tersuchungen zeigt. Abschliessend bewerte ich informell die Korrelation zwischen

kognitiven und intrinsischen und extrinsischen Evaluationsergebnissen. Die Ergeb-

nisse deuten in erster Linie auf eine mögliche Beziehung zwischen EEG-Daten und

Aufgaben zur Bestimmung semantischer Verwandtschaft und textueller Ähnlichkeit

hin. Zukünftige Arbeiten können alternative Vorverarbeitungsmethoden (insbeson-

dere für ELMo und BERT) sowie ggf. andere Regressionsmodelle überprüfen. Mit

zunehmender Zahl an kognitiven Datensätzen werden Detailanalysen und robuste-

re Performanzschätzungen möglich. Zuletzt schaffen kognitive Korpora in weiteren

Sprachen eine Grundlage für multilinguale Erweiterungen.
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1 Introduction

The innovation of embeddings has greatly contributed to the state of the art of

natural language processing in recent years. Modern embeddings are distributed

representations of textual units, typically words or sentences. As such, their mean-

ing is encoded in the dimensions of the corresponding vector, but also in dimensions

of other vectors. Dimensions are not interpretable (contrasting with distributional

representations where dimensions represent contexts of occurrence). A concept can

be represented by multiple dimensions and conversely, a single dimension can encode

information relating to multiple meanings [Goldberg, 2017]. More specifically, each

unit is represented as a dense, low-dimensional vector encoding a pattern of activa-

tion values, which capture its meaning. The relations between units are determined

by the similarities of their respective vectors [Goldberg, 2017]. Embeddings have

displaced sparse, high-dimensional or one-hot representations of word frequencies

and other manually engineered features, which suffer from what is commonly re-

ferred to as the curse of dimensionality in the context supervised learning, leading

to data sparsity.

Vectors are typically obtained by learning context information from a large corpus of

documents by means of un- or self-supervised learning1, however, some approaches

also leverage supervised data. Models are primarily evaluated by extrinsic means,

i.e. in common downstream tasks such as classification or question answering. More

recently, intrinsic evaluation approaches assessing linguistic aspects have been pro-

posed (see e.g. Conneau and Kiela [2018]). However, as noted by Hollenstein et al.

[2019], conscious judgements of linguistic properties are prone to subjective bias and

are generally not predictive of extrinsic performance. On the sentence level, linguis-

tic probing tasks as present in evaluation tools such as SentEval, test for a battery

of narrowly defined and relatively simple tasks such as the detection of shifted bi-

grams or tense prediction. Recent work (e.g Søgaard [2016], Abnar et al. [2017],

Schwartz and Mitchell [2019] and Hollenstein et al. [2019]) has sought to leverage

recordings of brain activity, in order to relate embeddings directly to the full range

1In keeping with cited literature, I will use the term unsupervised when discussing individual
approaches, however I note that the term self-supervised is technically more accurate and sees
use in literature, e.g. [Perone et al., 2018].
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Chapter 1. Introduction

of cognitive processes, as far as they can be captured by the respective approaches.

Of particular interest are recordings of brain activity when subjects process text

in a natural settings. This is achieved by self-paced reading, or listening to sen-

tences or longer contiguous text segments such as books or chapters thereof. This

allows the most bias-free access to lexical representations in the human brain (e.g

Søgaard [2016]). As studies encompass multiple subjects, aggregate representations

can be obtained that emphasize inter-subject commonalities likely to correspond to

fundamental cognitive processes independent of subjective differences 2.

This thesis continues the work of [Hollenstein et al., 2019], in an effort to evaluate

if and how well sentence embeddings can predict various types of sentence-level

cognitive data.

1.1 Research questions

The following research questions form the basis of this thesis:

1. Can cognitive signals aggregated on the sentence-level be predicted by sen-

tence embeddings in a neural regression setting? In particular, are results

significantly different from a randomly generated baseline?

2. Do performance rankings of sentence embeddings in the present evaluation

correspond to rankings in intrinsic and extrinsic evaluations?

3. There are differences of varying degree between other types of evaluation.

Which are best aligned with the cognitive prediction scores?

4. How do the extrinsically best-performing sentence embeddings compare be-

tween modality?

1.2 Structure of the thesis

In this first chapter, a brief overview was given on the subject of intrinsic embedding

evaluation by means of cognitive signals. Chapter 2 summarizes the various modal-

ities (types) of cognitive signals and the means of their collection in the context of

human text processing. Chapter 3 gives an overview of previous work exploring the

relationship between cognitive signals, language and (artificial) neural networks, as

2Given the very small number and non-random selection of subjects in many studies, I note that
group-related biases may remain manifest in the data.
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Chapter 1. Introduction

well as examples of cognitively informed NLP. The second half introduces various

embedding evaluation approaches, contrasting extrinsic with intrinsic evaluation

modes. It summarizes Hollenstein et al. [2019], where the authors propose an intrin-

sic cognitive evaluation framework which is the foundation of this thesis. Chapter 4

describes the cognitive datasets considererd for the present evaluation, briefly sum-

marizing their curation and general properties. Chapter 5 gives an overview over the

sentence embedding approaches I choose to evaluate against the cognitive dataset.

Chapter 6 outlines the evaluation setup and describes quantitative and qualitative

results. Chapter 7 discusses potential confounding factors and limitations. Finally,

Chapter 8 offers a conclusion and outlook as to potential future developments. A

description of the command-line tool developed in the context of this thesis can be

found in Appendix A.

3



2 Cognitive processes and language

2.1 Human language data and NLP

Mishra and Bhattacharyya [2018] state that “text is a manifestation of thought and

emotion that give rise to cognitive processes in the brain. When a reader reads

a piece of text, she experiences emotions, stances, nuances, subtleties, inferences,

suggestions, and much more. [...] Text reveals its secrets to a willing reader, and the

reader responds by moving or staying the eye, producing brain waves and making

face and body movements, all of which are capturable by the modern-day technology

of eye-trackers, EEGs, and MEGs.” (p. vi)

Hollenstein et al. [2020] note the multiple uses of human cognitive language data. It

can be used to improve NLP tasks such as part-of-speech tagging (e.g. Barrett et al.

[2016]), or sentence compression (e.g. Klerke et al. [2016]). On the other hand, it

can be leveraged to evaluate NLP components such as word embeddings, as done

by [Hollenstein et al., 2019] and continued in this work.

Following, I briefly discuss aspects of speech perception and reading and the cogni-

tive processes, or brain activity, triggered by these processes. I continue by summa-

rizing three major methods of recording this brain activity. Such recordings allow to

curate the cognitive datasets that form the basis of cognitive embedding evaluation.

2.2 Speech perception and reading

Speech perception begins with sound waves representing speech entering the ear of a

listener. The brain extracts speech from sound waves, which in turn activate word

meanings. Processing steps occur at different points in time, ranging from acoustic-

phonetic features (50-100ms), language-specific phonetic-phonological analysis (100-

200ms) and lexical-semantic activation (200ms onwards), the latter being of interest

in the scope of this work [Salmelin, 2007].

In the case of reading, the dual-route model [Coltheart et al., 1993] states that fa-

4



Chapter 2. Cognitive processes and language

miliar and unfamiliar words are processed differently. Familliar ones are assumed

to be processed first at the level of single letters, then as whole word, which acti-

vates its meaning and sound form. For unfamiliar, graphemes are instead mapped

to a phonological representation, which does not necessarily lead to a semantic as-

sociation. Across time, basic visual feature analysis occurs in the brain at 100

milliseconds (ms), and the analysis of letters is observed at 150 ms in the visual

cortex. At 200-600 ms, the temporal lobe shows activation related to reading com-

prehension, distinguishing words from non-words [Salmelin, 2007]. Humans read at

an average speed of three words per second and the reading process involves perceiv-

ing and gradual integration of incoming words in order to obtain a representation

of meaning [Wehbe et al., 2014b].

2.3 Methods of monitoring cognitive processes

related to language

Researching cognitive processes relating to language processing has a long-standing

tradition in psycholinguistics, with first mechanical means of measuring signals ap-

pearing at the start of the 20th century. Following, I summarize three main meth-

ods for recording cognitive signals over time which are in current use: Eye-tracking,

an indirect approach monitoring eye-movement with respect to a visual stimulus;

electroencephalography (EEG), which records electrical brain activity relating to a

stimulus through the scalp and also captures spatial aspects of the brain, and finally

functional Magnetic Resonance Imaging (fMRI), which fully maps all three dimen-

sions of the brain and allows to precisely pinpoint locations of activity triggered by

a stimulus.

This brief overview already illustrates the increasing complexity and expressivity of

these techniques. Furthermore, and somewhat trivially, eye-tracking only operates

on written text in the context of language research, whilst EEG and fMRI can be

used to study both text and speech perception. However, I will highlight through-

out this thesis that both eye-tracking and EEG remain relevant for both intrinsic

and practical reasons. Specifically, the three methods constitute complementary

modalities in the context of cognitive embedding evaluation.
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Chapter 2. Cognitive processes and language

2.3.1 Eye-Tracking

Eye-tracking is the oldest of the presently discussed techniques, with approaches

relying on purely mechanical means such as specialized contact-lenses appearing at

the the beginning of the 20th century (e.g. Huey [1908]). It is also the most indirect

of the three methods discussed here. Modern eye-tracking captures the focus of a

viewer’s gaze on a (visual) stimulus over time [Mishra and Bhattacharyya, 2018].

When reading, eye movements are on one hand influenced by low-level factors such

as what the eye captures during each fixation and the length of a word. On the other

hand, they are also determined by high-level factors such as syntactic processing,

with low- and high-level factors interrelating in a complex way [Barrett et al., 2015].

In the 1980s, systems were developed that could be operated with personal comput-

ers, were capable of high-speed data processing and could be used as “as interface to

facilitate interaction between humans and computer.”[Mishra and Bhattacharyya,

2018][22]. Cop et al. [2017][603] note that “[w]ith modern-day eyetracking [sic]

equipment, the position of the eye can be determined every millisecond with very

high spatial accuracy, resulting in a very rich and detailed dataset”. They further

explain that ”[...] when the goal is to explain how reading occurs in natural con-

texts, the ambition of reading models should also be to expand their generalizability

beyond word-level processes, in order to cover a larger scope of potential interacting

language processes.” In particular, they emphasize the importance of considering

the interaction between word-level and semantic or syntactic processes, which may

be observed when readers process longer text segments. Cop et al. [2017] further

note that eye-tracking allows observation of silent reading and minimizes the need

for instruction or intervention on the researcher’s part. I note in line with [Hollen-

stein et al., 2019] that this allows self-paced, natural reading, which is particularly

beneficial for assessing sentence embeddings in the context of cognitive evaluation.

Typically, both eye and head positions need to be measured to determine the exact

location of the viewer’s gaze. Both invasive and non-invasive methods exist, with

invasive approaches requiring the insertion of objects in the eye, but generally pro-

viding higher measurement accuracy, whilst non-invasive eye-tracking are generally

safer and easier to use. Non-invasive eye-tracking relies on either illuminating the

eyes with infrared light and measuring the intensity of reflected light (IR Oculogra-

phy) or recording eye-movement with one or more cameras (Video-oculography), in

either the visible or infrared spectrum [Mishra and Bhattacharyya, 2018]. The au-

thor notes that inexpensive eye-tracking via built-in cameras in mobile devices such

as tablets is becoming increasingly possible. This has the potential of capturing

eye-tracking data from a large population of online users without requiring a special
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setting1. Mishra emphasizes that this contrasts with EEG and brain imaging (such

as fMRI), which “require a fairly complex and expensive setup and hence may not

be used outside a laboratory” [Mishra and Bhattacharyya, 2018][4].

Mishra and Bhattacharyya [2018] state that while reading text, the relationship

between eye movement and cognitive processes can be explained with the eye-mind

hypothesis (Just and Carpenter 1980). This hypothesis states that “when a subject

views a word/object, he or she also processes it cognitively, for approximately the

same amount of time he or she fixates on it”. In particular, “longer fixations indicate

longer processing caused by the word’s infrequency and its thematic importance”

[Mishra and Bhattacharyya, 2018, 11]. Just and Carpenter state that two central

assumptions determine this link [Mishra and Bhattacharyya, 2018, 24]:

• Immediacy assumption: A reader attempts to interpret each content word

as it is seen, even if he / she must make guesses that may turn out to be

incorrect later.

• The strong eye-mind hypothesis: The eye remains fixated on a word until

its processing is done.

Mishra and Bhattacharyya [2018] notes that gaze patterns and cognitive effort are

believed to correlate with the conceptual difficulty of a text. “Linear and uniform-

speed gaze movement is observed over texts having simple concepts, and often

nonlinear movement with non-uniform speed over more complex concepts [Rayner,

1998]”. According to Rayner and Duffy [1986], fixation time is associated with word

frequency, verb complexity, and lexical ambiguity, all contributing to lexical com-

plexity. Both Demberg and Keller [2008] and Von der Malsburg and Vasishth [2011]

state that complex eye-movement can arise from syntactic complexity, with the lat-

ter showing that “complex saccadic patterns (with higher degree of regression) are

related to syntactic re-analysis arising from various forms of syntactically complex

structures (e.g., garden-path sentence)” [Mishra and Bhattacharyya, 2018, 11].

2.3.2 Electroencephalography (EEG)

Electroencephalography (EEG) is a method that allows recording the spontaneous

electrical activity of the brain over time. It is generally noninvasive, with an array

of electrodes placed on the scalp. EEG detects voltage fluctuations, caused by ionic

1I remark that in recent years, several publications have outlined far-reaching privacy implications
of ubiquitous eye-tracking, in particular regarding sensitive and identifying personal information
that may be inferred from collected data (see e.g. Liebling and Preibusch [2014]). Potential
mitigations are discussed in e.g. Steil et al. [2019].
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current inside brain neurons. (see e.g. Niedermeyer and da Silva [2004]). For various

clinical tasks (e.g. tumor diagnosis), it has been superseded by high-resolution

anatomical imaging techniques, the one discussed in this thesis being functional

magnetic resonance imaging (fMRI). However, despite its lower spatial resolution, it

continues to be in use, due to its high, millisecond-range temporal resolution, among

other, more practical considerations [Wikipedia, 2020]. Compared with eye-tracking,

EEG measures physiological processes more directly Hollenstein et al. [2019] note it

also measures language processing and that invidiual electrodes are related activity

to specific brain regions. As such, it also captures spatial aspects of the brain.

External stimuli trigger what EEG registers as event-related potentials (ERPs),

yielding various components that give insight into different cognitive processes. A

prominent component is P300, referring to a positive deflection of the signal occur-

ring approximately 300 ms after a stimulus is presented. It is considered to measure

allocation of resources when directing attention, as well as speed of cognitive process-

ing [Dietrich and Kanso, 2010]. In the 1980s, the N400 component was discovered,

which peaks at around 400 ms and is related to meaningful stimuli (including words)

and has proven fruitful in studying almost the entire range of human language pro-

cessing [Kutas and Federmeier, 2011]. Hauk and Pulvermüller [2004] also provide

evidence that word frequencies modulate early electrophysiological brain responses,

suggesting that after presentation of written word stimuli, lexical access occurs after

less than 200 ms. When listening to natural speech, electrophysiological responses

are reflective of semantic differences between individual words and the previous con-

texts and are observed after only a brief delay [Broderick et al., 2018].

How EEG signals are mapped to the the stimulus text depends on the stimulus

medium. For an auditive stimulus, signals can be time-locked to the onset time of

each spoken word in the audio file, as done in Huth et al. [2016]. In the case of

self-paced reading of text, a combination with eye-tracking is possible, as seen in

Hollenstein et al. [2018] and Hollenstein et al. [2020]. In this case, the EEG signal

is time-locked to the onset of word fixations.

EEG can be separated into frequency bands using band-pass filtering, obtaining

neural oscillations (brainwaves) at various frequency bands. In Hollenstein et al.

[2019] bands range from theta (4 - 8 Hz) to gamma (30.5 - 49.5 Hz), relating to

different cognitive functions. However, in line with Hollenstein et al. [2019], the

present thesis works with the raw signal, where the activity of electrodes is encoded

by a vector matching their number. I note that further study into the predictability

of specific frequency bands may offer additional insight into specific properties of

embeddings. Contrary to eye-tracking, EEG yields two-dimensional spatial data.
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As such, prediction errors can be related to signals measured by specific electrodes

on the scalp Hollenstein et al. [2019], which are associated with activity in partic-

ular brain regions. In the present evaluation, no such analysis is possible, as an

aggregated, dimensionality-reduced representation is leveraged (see Chapter 6).

2.3.3 Functional Magnetic Resonance Imaging (fMRI)

Functional magnetic resonance imaging (fMRI) measures and maps cognitive activ-

ity by detecting changes that are related to blood flow in the brain. Like EEG,

fMRI is a spatial approach, however as a brain imaging method, it generates a

three-dimensional map of the entire brain with each scan. It segments the brain

into millimeter-sized cube-shaped sections, which are called voxels, the volumetric

equivalent of pixels [Hollenstein et al., 2019]. As such, it is the most direct measure-

ment of cognitive activity presently evaluated, allowing to relate stimuli directly to

specific areas in the brain.

The temporal resolution is significantly lower than for eye-tracking or EEG, with a

scan taking approximately two seconds. Given the focus of this thesis on sentences,

only continuous stimuli are considered, as they are present when listening to spoken

text or performing self-paced natural reading [Hollenstein et al., 2019]. In this case,

a scan encompasses cognitive processing data from multiple words. Another impor-

tant difference is the importance of the body’s haemodynamic response for this

method of measuring cognitive signals. Upon neural activity, it leads to a highly

transient, localized increase in oxygen delivery, blood flow and oxyhemoglobin. This

non-instantaneous physiological response causes the response of the brain to a stim-

ulus being delayed by several seconds and then decaying slowly again over a number

of seconds [Miezin et al., 2000]. The onset delay must be compensated in post-

processing. Hollenstein et al. [2019, 5] further note: “For continuous stimuli, this

means that the response to previous stimuli will have an influence on the current

signal. Thus, context of the previous words is taken into account.”

The explanatory power of fMRI for exploring cognitive semantics is substantiated

by the landmark study carried out by Huth et al. [2016]. The authors investigate

regions of the cerebral cortex which are described as the semantic system. Using

fMRI data obtained from subjects listening to hours of narrated stories, they find

that the semantic system show a high degree of fine-grained organisation and exhibits

patterns which are consistent across individuals. These commonalities allow the

authors to curate a semantic atlas, mapping functional areas in the cortex that are

semantically selective.
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As with EEG, this thesis draws on raw fMRI data (voxel arrays), available ei-

ther already aggregated on the sentence level or as individual scans to be averaged

sentence-wise. This data is then dimensionality-reduced in order to obtain a sen-

tence representation that makes evaluation possible, given the current sparsity of

EEG data on the sentence level (see Chapter 6). As such, spatial properties cannot

be considered. In future work, it could prove fruitful to explore relationships be-

tween word and sentence embeddings and areas of the semantic system. This may

be feasible by aggregating information across regions of interested (ROI) defined in

reference to the previously mentioned atlas 2.

2An example of data ROI-aggregated by the authors themselves is the basis of Brennan et al.
[2016], which could not be considered in this thesis due to there being insufficient data on the
sentence level.
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3 Related work

Following, I first present examples of previous work leveraging recordings of cognitive

data in the context of NLP. I then consider extrinsic and intrinsic methods of sen-

tence evaluation and conclude with a summary of the intrinsic cognitive evaluation

by [Hollenstein et al., 2019], on which this thesis build.

3.1 Cognitive signals, neural networks and semantics

Wehbe et al. [2014b] note that the process of accessing word meanings from mem-

ory and integrating with context mirror how language-processing neural networks

attempt to predict incoming words. They compare the cognitive representation

with latent layer of a network, summarizing pertinent prior information. The output

probability of an input word in a neural network then mirrors the effort expended by

the brain, which according to a commonly held hypothesis, is inversely proportional

to its predictability [Frank et al., 2013]. The authors let subjects read a chapter from

Harry Potter and the Sorcerer’s Stone and extract, among other things, syntactic

and semantic features, as well as discourse level features. Like Huth et al. [2016],

they differentiate areas of the brain based on types of represented information.

[Pereira et al., 2018] develop a decoder for inferring semantics of words, phrases and

sentences from brain activation patterns of subjects as they are reading natural text.

The decoder receives as input brain activation patterns, recorded for each participant

when reading individual words, and predicts a semantic vector. In Hollenstein et al.

[2019] as well as the present work, this relationship is reversed, with embedding

vectors predicting cognitive data in the context of a neural regression. Nonetheless,

the intuition is shared that “variation in each dimension of the semantic space would

correspond to variation in the patterns of activation” and that the relationship

between the two can be learned [Pereira et al., 2018][2]. The authors show that a

decoder trained with limited word-level data can decode sentence-level semantics,

represented as an average of word-level vectors.
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3.2 Embedding evaluation

Hollenstein et al. [2019] broadly distinguish between methods extrinsic and intrinsic

evaluation of embeddings. Extrinsic evaluation measures the quality of embeddings

by their performance in downstream tasks, while intrinsic evaluation is concerned

with inherent properties of embeddings.

3.2.1 Extrinsic evaluation

A large-scale evaluation of extrinsic performance of sentence embeddings can be

found in Perone et al. [2018]. The authors evaluate the main performance measures

in the respective task categories. The datasets are provided by the SentEval frame-

work introduced by Conneau and Kiela [2018] in an effort to curate a standardized

test battery for evaluating sentence embeddings in downstream tasks. Evaluated

tasks categories and measures are:

• Classification tasks (Accuracy) such as sentiment (customer reviews, movie

reviews and Stanford sentiment analysis datasets, see Socher et al. [2013] and

question answering such as MPQA [Wang and Manning, 2012] and TREC [Li

and Roth, 2002].

• Semantic relatedness tasks (Pearson correlation) such as image-caption

retrieval (COCO, Lin et al. [2014]), paraphrase detection (MRPC, Dolan et al.

[2004]) and semantic text similarity (STS, e.g. Agirre et al. [2016]).

• Two information retrieval tasks (Recall at 1, 5 and 1, R @ x ) for caption

retrieval and image retrieval on the COCO dataset.

A full overview of the first two categories, can be found in Appendix B. The authors

find three sentence embedding types to perform best in the context of classification

tasks: The transformer variant of the Universal Sentence Encoder [Cer et al.,

2018] (USE Transformer), InferSent [Conneau et al., 2017], and an average BoW

baseline representation of the largest pretrained ELMo model [Peters et al., 2018].

In the context of semantic relatedness and textual similarity tasks, USE Transformer

performs best in nearly all tasks.

12



Chapter 3. Related work

3.2.2 Intrinsic evaluation

3.2.2.1 Linguistic evaluation

Perone et al. [2018] also evaluate ten linguistic probing tasks, an extension to Sen-

tEval introduced by Conneau et al. [2018]. The authors note that they comprise of

classification tasks capturing simple linguistic properties of a sentence. Every tasks

captures a distinct property, such as the subject or direct object number of the

main clause, the tense of the main verb (past or present) and as well as whether a

frequently occurring constituent sequence is present. Other tasks detect anomalies

such as inversion of two words in a sentence (bigram shift) and random replacements

of nouns and verbs by other nouns and verbs respectively (semantic odd man out).

A full overview of the tasks can be found in Appendix B.

ELMo performs best on seven of the ten linguistic probing tasks. This shows that

intrinsic evaluation results partially match extrinsic results, although with limited

overlap. The transformer variant of USE, which is highly competitive in the extrinsic

evaluation, shows middling to poor performance in most linguistic probing tasks. On

the other hand, the good performance of ELMo in both evaluation speaks to some

correlation between the approaches, suggesting that the probing tasks may suffer

from coverage problems instead, not reflecting the full range of encoded information

benefitting downstream tasks.

For both extrinsic and intrinsic evaluation, no approach performed consistently well

across all tasks, and Perone et al. [2018] argue that the results are mostly influ-

enced by the similarity of the training task of the approaches and the downstream

tasks. Perone et al. [2018] hypothesize that the encoders are too narrowly scoped

in what information they model. They state that language models allow to capture

context and meaning and note that along with sentence encoding techniques used

by the more advanced approaches, this leads to significant improvement of sentence

encoding performance. The authors conclude that context-dependent semantics and

linguistic features can be better captured by incorporating language models as well

as multi-layered representations, as found in ELMo. I note that this would be con-

firmed shortly after with the innovation of BERT [Devlin et al., 2018].

The evaluation by [Perone et al., 2018] predates BERT and more recent develop-

ments with substantial performance improvements. However given that no prior

large-scale cognitive sentence evaluation exists, I argue that is useful to assess a

cross-section of advances in recent years prior to assessing newer approaches. The

results serve as the basis to assess the correlation between predictions of cognitive
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signals and extrinsic performance.

3.2.2.2 Cognitive evaluation

Hollenstein et al. [2019] give a brief summary of previous work relating to cogni-

tive embedding evaluation. The field was pioneered by Mitchell et al. [2008], who

predicted patterns of neural activation obtained through fMRI using embeddings.

Subjects are exposed to 60 word stimuli in isolation (nouns). Various later work

builds on this dataset, such as Abnar et al. [2017], who evaluate a variety of embed-

dings. Søgaard [2016] presents a preliminary evaluation of embeddings with respect

to continuous text stimuli obtained via eye-tracking and fMRI. Beinborn et al. [2019]

evaluate ELMo with respect to its ability to predict brain responses across multiple

datasets. In the context of EEG, e.g. Schwartz and Mitchell [2019] find that aspects

of measured ERP components can be predicted by means of neural networks and

word embeddings.

Hollenstein et al. [2019] motivate their approach by stating that embeddings which

are tailored toward specific tasks lead to good performance within narrow param-

eters, but may not accurately reflect the semantics of words from a linguistic or

cognitive perspective. Existing approaches to linguistic evaluation on the other

hand, focus on linguistic aspects in isolation and is based on conscious human judge-

ment, which is potentially confounded by bias that may arise from both the task

and subjective factors. They note that intrinsic and extrinsic evaluation metrics do

not clearly correlate, as the former fail to predict performance regarding the latter

(e.g Chiu et al. [2016]; Gladkova and Drozd [2016]). Furthermore, they find that

published intrinsic and extrinsic evaluation results are rarely tested for statistical

significance and do not provide a global score regarding quality. I note that both

the unclear correlation, as well as the isolated and somewhat artificial nature of

linguistic evaluation are evident from the linguistic probing tests described in the

previous section, which separately test simple properties.

Søgaard [2016] argues that human brain activity data recorded while language is

processed, is the most accurate mental lexical representation available. Hollenstein

et al. [2019] summarise further evidence from cognitive neuroscience as follows: Mur-

phy et al. [2018] show that words activate neurons in various brain regions depending

on their type. Huth et al. [2016] found semantic maps of the distribution of words

throughout the human cortex for subjects listening to stories while their brains are

scanned using fMRI. Furthermore, [Frank and Willems, 2017] find that the pred-

icatability and semantic similarity of words are reflected in distinct brain activity
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patterns observed during language comprehension. In particular, semantic distance

is found to have distinguishable neural effects. Hollenstein et al. [2019] conclude

that these findings substantiate the theory that brain activity recordings reflect lex-

ical semantics and is therefore a suitable basis to determine the quality of word

embeddings.

To mitigate issues of previous evaluation approaches, Hollenstein et al. [2019] fo-

cus on what [Bakarov, 2018] describes as intrinsic subconscious evaluation. In this

method, word embeddings are evaluated by way of their relationship to lexical repre-

sentations of words in the human brain, which are recorded whilst subject passively

understand language. The authors present the first multi-modal evaluation of En-

glish word embedding vectors leveraging cognitive lexical semantics. Hollenstein

et al. [2019] note that the size of the few publicly available cognitive datasets is

insufficient to be used as training data for advanced machine learning methods.

Particularly, distance correlation between representations has insufficient statistical

power to compare embedding types, as cognitive data contains highly noisy signals

[Frank and Willems, 2017].

Instead, word embeddings (functioning as independent variable) are evaluated by

how well they can predict cognitive language processing data (functioning as de-

pendent variable) in a neural, non-linear regression. The authors build on Søgaard

[2016]’s theory of a task-independent approach to evaluating embeddings by lever-

aging cognitive lexical semantics. [Hollenstein et al., 2019] state the three core prin-

ciples of the CogniVal framework, as established by [Mishra and Bhattacharyya,

2018] and maintained in this work:

• Multi-modality: Evaluating against multiple modalities of recording human

signals to compensate for the noisiness of the data.

• Diversity within modalities: Evaluate against multiple datasets within a sin-

gle modality to ensure the number of samples is as large as possible.

• Correlation of results should be evident across modalities and between datasets

of the same modality.

The authors evaluate six word embeddings, such as GloVe [Pennington et al., 2014],

fastText [Joulin et al., 2017], which captures morphology as well as rare word and

unseen compounds in its subword variant, to the more complex and recent develop-

ments ELMo [Peters et al., 2018] and BERT [Devlin et al., 2018], producing contex-

tual, bidirectional word representations that relate a word to the sequence (typically

a sentence) it occurs in. For the latter, Hollenstein et al. [2019] only leverage the

context-insensitive representations of the encoder given that words are evaluated in
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isolation. I describe all of the stated approaches except word2vec in more detail in

Chapter 5.

Features are aggregated on the word type level (i.e. across all occurrences of a type)

and scaled between 0 and 1. For EEG and eye-tracking, the representations are av-

eraged among subjects prior to scaling. The number of features is determined by the

number of electrodes in the headcap and the number of recorded eye-tracking fea-

tures, respectively. fMRI data differs in that an fMRI scan is a very high-dimensional

array of voxels which the authors reduce through random sampling of. Furthermore,

signals cannot simply be averaged among subjects due to difference in brain mor-

phology, size, etc., thus, each participating subject constitutes a single hypothesis.

The authors test each hypothesis for statistical significance to assess consistency

and in order to advance toward a global quality metric which can be combined with

other modes of evaluation. The tested hypothesis is that the predictive performance

of an embedding in relation to a cognitive data source, is significantly different from

the performance of a randomly generated baseline. I adapt the statistical testing

approach and describe it in detail in Chapter 6.

Embeddings are tested against seven eye-tracking datatsets, as well as four EEG and

fMRI datasets respectively. The datasets encompass varying text material, stimuli

types and experimental parameters. I discuss a subset of these sources in Chapter

4, which are suitable in the context of the present evaluation.

Hollenstein et al. [2019] findings show that more recent developments such as ELMo

and fastText embeddings with subwords achieve the best overall prediction results

across datasets and modalities. With respect to eye-tracking, they observe that

general eye-tracking features accounting for the entire reading process of a word

appear to be the most easily to predict. For fMRI, results improve with an increas-

ing number of voxels randomly sampled from the scans, with the final sample size

chosen being 1000. For EEG, the middle central electrodes see the most accurate

predictions, which are known to register activity in the Perisylvian cortex, a brain

area associated with language-related processing [Catani et al., 2005]. The authors

also find that most embedding types significantly outperform the randomly gener-

ated baselines across a wide range of cognitive features. Furthermore, they observe

a strong correlation between the three modalities eye-tracking, EEG and fMRI, im-

plying that word embeddings predict actual brain acvitiy and not pre-processing

artifacts related to individual modalities. This is substantiated by clear correlation

between datasets within a modality. Finally, the authors also find correlation be-

tween the regression results and the reported performance of the embeddings in two

downstream tasks, question answering and named entity recognition.
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From these results, Hollenstein et al. [2019] infer that their approach may not only

serve as a means of evaluation but also inform the selection of adequate embeddings

for a task, which does not appear to apply to other intrinsic evaluation methods.

The authors emphasize that CogniVal can be effectively combined with other in-

trinsic and extrinsic embedding frameworks. They conclude that for embeddings

to accurately encode word semantics, it is advisable that they reflect mental lexical

representations.

As stated, I base the present assessment of sentence embeddings on this work.
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4 Cognitive data sources

Following, I introduce the cognitive datasets selected for the present evaluation

across each of the previously introduced modalities. For each dataset, two example

sentences are shown to illustrate the text material. I also describe any preparatory

steps applied to datasets in their entirety. Feature-transforming pre-processing steps

are applied on-the-fly during evaluation to avoid unintended inference of unseen data

points. These steps are described in Chapter 6.

Only a subset of datasets evaluated in Hollenstein et al. [2019] are suitable for eval-

uation; I exclude sources with very sparse data on the sentence-level and sources

restricted to the word-level. For eye-tracking, a subset of most commonly occur-

ring features across sources was selected, with several capturing the entire reading

process. Various other features present in some sources, e.g. statistics for words

fixated only once, are omitted, given their unclear potential and the considerable

computational cost of parameter search and significance testing for these datasets,

which are the largest across all modalities.

4.1 Eye-Tracking

4.1.1 ZuCo

(4.1) The director, with his fake backdrops and stately pacing, never settles on a

consistent tone.

(4.2) He flew a P-38 Lightning in the North African campaign of November 1942.

The Zurich Cognitive Language Processing Corpus (ZuCo) is a combined Eye-

Tracking and EEG dataset curated by Hollenstein et al. [2018].

The subjects are healthy adults who read isolated natural English sentences over the

span of four to six hours. The curation of the resource is in line with the long-term

goal to replace manual annotation with physiological activity data. As subjects read

sentences, opinions and sentiments are evoked, which find expression in their brain
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activity. The author’s hypothesis is that the recorded signal should be decodable

with machine learning techniques to obtain the this information, either complement-

ing or replacing manual annotation efforts. The study comprises three tasks, two

normal reading paradigms with different text types and a task-specific paradigm,

which required active subject participation to solve a language comprehension ex-

ercise. Only the normal reading paradigms are considered in [Hollenstein et al.,

2019], which is continued in this thesis. The text material is labelled with relation

types and contains sentences from the Stanford Sentiment Treebank (SST, Socher

et al. [2013]) on one hand, which were extracted from movie reviews. The second

portion consist of biographical sentences obtained from paragraphs about notable

people from the Wikipedia relation extraction corpus [Culotta et al., 2006]. The

authors emphasized naturalistic reading, with the full sentence presented at once.

This allowed subjects to read at their desired speed and to freely choose order and

duration of word fixation. The setting contrasts with word-by-word presentation

which – the authors emphasize – does not reflect normal reading.

400 single sentences were selected from the SST, which have been manually anno-

tated to be neutral (123), negative (137) and positive (14). From the Wikipedia

relation extraction dataset, 300 sentences containing a semantic relation were ran-

domly selected for the normal reading task.

The following eye-tracking features are considered in this thesis: Number of fixations

on a word (nFix), “Gaze duration (GD) (the sum of all fixations on the current

word in the first-pass reading before the eye moves out of the word), first fixation

duration (FFD), the duration of the first fixation on the prevailing word, [and] total

reading time (TRT), the sum of all fixation durations on the current word, including

regressions” [Hollenstein et al., 2018][7]. I note that neither sentiment nor relations

are considered here and sentences from both corpora are combined into one source

in order to maximize available data in the context of this evaluation.

4.1.2 Dundee

(4.3) Ofsted has also found problems with the quality of supply staff, saying that

they often missed out on specialist training and were not as good as

permanent teachers.

(4.4) Certainly, growth slows down but, unlike other countries, there is no

significant contraction in economic activity.

Barrett et al. [2015] state that at the time of writing, the Dundee Corpus [Kennedy
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et al., 2003] was the largest existing eye-movement corpora and a significant resource

for studying through eye movements how language is processed in the context of

psycholinguistics. The authors note that the dataset enabled, among other things,

the study of differences in processing difficulty of words relating to syntax and

semantic aspect.

The native English-speaking subjects read 20 newspaper articles, with the English

portion of the corpus compiled from articles of The Independent. As with ZuCo,

order and duration of fixation is available on the word level and subjects read five

lines of running text per viewing.

As with ZuCo, I select the number of fixations (nFix), first fixation duration (FFD)

and total fixation duration (total reading time, TFD/TRT). Instead of the sum of

all fixations (gaze duration), Dundee provides the mean fixation duration (MFD),

which I use as substitute. Additionally, I consider fixation probability (FP), which

is not available for the the other datasets.

4.1.3 GECO

(4.5) She’s the mater’s factotum, companion, Jack of all trades!

(4.6) We were detained under suspicion by the hospital porter, until Cynthia

appeared to vouch for us, looking very cool and sweet in her long white.

The Ghent Eye-Tracking Corpus (GECO) is a bilingual resource curated by [Cop

et al., 2017]. It stands out in that participants read an entire novel, compared to

short newspaper articles as for Dundee or isolated sentences as in the case of ZuCo.

It has a similar token count as Dundee, but contains twice as many sentences (see be-

low). For the English portion, the subjects are English monolingual undergraduates

from the University of Southampton.

The authors note that additional cognitive processes such as sentence integration

take place when reading longer texts or narratives, which typically cannot be ob-

served when reading isolated sentences. Subjects read The Mysterious Affair at

Styles by Agatha Christie. As with Dundee, only the monolingual (English) paradigm

of the study is considered. Subjects viewed the novel on a screen in paragraphs,

which they could read at their desired speed and advance to the next paragraph at

the press of a button. Approximately a third of the words are skipped by partici-

pants, which the authors find to be in line with other eye-tracking research.

I select the same features for this corpus as for ZuCo. Among these features, the
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authors note that first fixation duration most approximated a normal distribution

and that total reading time is more skewed than both first fixation duration and

gaze duration, with all measures being right-skewed to some extent.

4.1.4 Dataset specifics and preparation

Dundee GECO ZuCo

Tokens 52,524 57,237 14,071

Types 9,560 6,002 4,589

Sentences 2,366 5,073 700

Subjects 10 14 12

Medium text text text

Isolated sent. no no yes

Reading material 20 news articles novel Wikipedia, Movie reviews

Table 1: Descriptive statistics of eye-tracking datasets, excluding punctuation on
the word level. For multilingual datasets, only the English portion is con-
sidered. For ZuCo, only sentences from paradigms relevant to the present
evaluation are considered. Note that values reflect counts after data prepa-
ration and may deviate from statistics reported by the respective authors.

I average word-level features per sentence, among all subjects for whom signals were

recorded for that particular sentence. This leads to variable robustness depending

on the sentence, but maximizes the available data for subsequent model training.

Each of the selected features constitutes a hypothesis and is evaluated individually.

Any null values encountered are filled with zeros. For ZuCo, correctly formatted

sentence strings are obtained by simply reconcatenating token strings, which are

available with trailing punctuation. For Dundee, I use the version provided by

[Barrett et al., 2015], with eye-tracking features extracted from the original corpus.

Punctuation is represented as separate tokens, thus I reconstruct sentences using a

simple heuristic detokenization routine1. For GECO, sentence strings are provided

in a separate file and are mapped to word-level features accordingly. Inexplicably,

more than 10,000 word IDs (scattered seemingly random throughout sentences) do

not map to sentence IDs. I use interpolation to fill in the gaps, as the sentence ID

of a word followed and preceded by words with identical sentence ID can be inferred

readily. Notably, this potentially leads to errors at sentence boundaries.

As eye-tracking features are scalars, the token-level sequence of features can be

used without dimensionality issues, as the vector size is bounded by the maximum

1The routine has been adapted from https://stackoverflow.com/a/59618856
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sequence length2. This contrasts with dimensionality reduced vectors obtained for

the high-dimensional EEG and fMRI data, in that it allows to fully retain sequence

information. The output format is a matrix of zero-padded sequences of eye-tracking

measures per sentence, with one dataset per eye-tracking feature.

4.2 Electroencephalography (EEG)

4.2.1 ZuCo & ZuCo 2

(4.7) The Perrys have four children. (ZuCo 2)

(4.8) She was a researcher and reporter at Thames Television [1980 to 1983].

(ZuCo 2)

I also consider the EEG portion of both ZuCo and the similarly structured exten-

sion ZuCo 2 [Hollenstein et al., 2020]. EEG signals are timelocked to the onset of

word fixations recorded by the eye-tracking apparatus. This allows to identify word

boundaries and extract word-level EEG signals accordingly. As with ZuCo, ZuCo 2

comprises of sentences from the English Wikipedia, sampled from a corpus provided

by Culotta et al. [2006]. The subjects are healthy English native speakers. The

authors note that there are more fixations for normal reading tasks, specifically for

the entire sentence, whilst for task-specific reading, fixations stop after arriving at

the salient words. For ZuCo 2, 50 sentences of normal reading and task-specific

reading are read in alternating blocks. Sentences are read during a single session

with a duration of between 100 and 180 minutes. As with ZuCo, only normal read-

ing sentences are considered. In the context of this evaluation and regarding the

considered experimental data, there are no central differences between the datasets

other than the reading material, structure of sessions and number of data points.

I note that due to time-constraints and given the significantly smaller size of the the

ZuCo 2 dataset compared with other eye-tracking sources, only the EEG portion is

considered in this thesis.

293 tokens including punctuation for Dundee and 69 tokens for GECO, and 65 tokens for ZuCo
respectively, excluding punctuation
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4.2.2 Natural Speech

(4.9) When the boy came back the old man was asleep in the chair and the sun

was down.

(4.10) The second was at seventy five and the third and fourth were down in the

blue water at one hundred and one hundred and twenty five fathoms.

Broderick et al. [2018] present a dataset consisting of subjects listening to narrative

speech played back from an audiobook. Each subject participated in 20 trials with

a length of approximately 180s, where they listened to what the authors describe

without further specification as a popular mid-20th century American work of fiction

with understated writing, which is read by a single male American speaker at an

average rate of 210 words per minute. Hollenstein et al. [2019] find the data of only

14 of a total of 19 subjects to be of sufficient quality, and this selection is retained

in the present evaluation.

4.2.3 Dataset specifics and preparation

Natural Speech ZuCo ZuCo 2

Tokens 11,416 14,108 6,889

Types 1,736 4,587 2,491

Sentences 695 700 344

Subjects 14 12 18

Medium speech text text

Isolated sents. no yes yes

Reading material novel Wikipedia, movie reviews Wikipedia

Table 2: Descriptive statistics of EEG datasets, excluding punctuation on the word
level. For both ZuCo datasets, only sentences from paradigms relevant to
the present evaluation are considered. Note that values reflect counts after
data preparation and may deviate from statistics reported by the respective
authors.

EEG signals of all fixations of a word are averaged. To obtain the sentence represen-

tation, the resulting word-level vectors are concatenated and zero-padded, as with

eye-tracking, which was found to outperform averaging of word vectors during ini-

tial evaluations. Given data sparsity and the high resulting dimensionality of 11050

(Natural Speech), 6825 (ZuCo) and 5565 (ZuCo 2) respectively, dimensionality re-

duction is necessary, and performed on the fly during evaluation. This is informed

by the notion that given the indirect approach of measurement and standardized
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geometry of EEG caps not optimized for studying language processing, signal redun-

dancy is to be expected in raw data. Furthermore, Hollenstein et al. [2020] note that

EEG data is noisy and can contain bad channels. As with eye-tracking, vectors are

averaged for all subjects for which EEG data was recorded for a particular sentence.

For both ZuCo datasets, raw EEG data has a dimensionality of 105, corresponding to

the number of electrodes in the headcap. Words with missing fixations are assigned

the zero vector. A total of 700 sentences are obtained from ZuCo, 400 from the

sentiment-focused and 300 from the relation-focused task. 345 sentences from the

normal reading task are obtained from ZuCo 2.0, with an overlap of 36 sentences

with ZuCo, which is retained. Analogous to the ZuCo eye-tracking data, sentence

strings are restored by simply concatenating tokens.

For Natural Speech, the number of electrodes and resulting dimensionality is 130.

The EEG signal is time-locked to the speech stimulus, and both onset and offset of

a spoken token are recorded. Thus, only one vector is available per token, contrary

to both ZuCo corpora, where multiple fixations of a word are possible due to the

natural reading setting. The corpus has been preprocessed by Hollenstein et al.

[2018] using the reported methods the authors applied to ZuCo and I reuse the pre-

processed variant here. As with both ZuCo datasets, the raw EEG representation

is used. Sentences are reconstructed from separately stored sentence-boundaries,

which are represented as offset times matching certain tokens. Tokens are not cased

and punctuation has been discarded. To obtain an approximation of the original

sentence string, the first token and any occurrence of the frequently occurring pro-

noun ”I” are capitalized and a period is appended. This is to ensure that parsers

and encoder-based embedding approaches such as BERT correctly recognize the se-

quence as a sentence. Named entities remain uncased. Two short sentences have

four occurrences each, the representations of which I average, ultimately obtaining

695 sentences.

4.3 Functional Magnetic Resonance Imaging (fMRI)

4.3.1 Pereira et al. [2018]

(4.11) It’s even worse when you are submerged in the frigid waters directly

beneath the huge animal. (experiment 2)

(4.12) The team of astronauts floated out together to the exterior of the space

shuttle. (experiment 2)
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(4.13) A mitten is a kind of glove where the four fingers are covered together.

(experiment 3)

(4.14) The small sharp points along the cutting side of the saw are called the

teeth. (experiment 3)

Pereira et al. [2018] offer a dataset comprising three experiments, with only the

datasets of the last two representing sentences as strings. The subjects are either

native speakers or in one case, bilingual with native-like fluency. Only eight of the

originally 16 participants participate in experiment 2 and only five in experiment

3, with the latter being a subset of the former. In both experiments, text consists

of passages with a length of three to four sentences, covering 48 broad topics such

as professions, clothing, birds, skiing, dreams and opera musical instruments. Each

topic is represented by three to four passages (such as clarinet, accordion, etc. for

instruments) and there is no overlap in topics between the two experiments. Both

experiments contain passages in the style of Wikipedia, offering a basic description

of the respective concept. A third of the passages in the smaller experiment are

represented by narratives (both first- and third-person).

For both experiments, sentences of passages are presented individually, and every

passage is viewed three times by each subject. Sentences are shown for 4 seconds,

followed with an equally long pause. This enabled the researchers to obtain sentence-

wise scans.

4.3.2 Wehbe / Harry Potter

(4.15) Harry took out his wand in case Malfoy leapt in and started at once.

(4.16) What do they think they’re doing, keeping a thing like that locked up in a

school? said Ron finally.

The dataset curated by Wehbe et al. [2014a] contains continuous fMRI scans of

native English speakers, who read chapter 9 of the novel Harry Potter and the Sor-

cerer’s Stone[Rowling, 1999]. Notably, all subjects were either familiar with the

book series or movie adaptations prior to participation. The authors emphasize the

non-artificial character of the text, noting that it exposes the subjects “to the rich

lexical and syntactic variety of an authentic text that evokes a natural distribution

of the many neural processes involved in diverse, real-world language processing”

[Wehbe et al., 2014a][3]. In particular, the authenticity of the material is consid-

ered by the authors to be more engaging for the subjects, helping to sustain their

attention throughout the experiment.
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The text was presented using Rapid Serial Visual Presentation (RSVP). With this

method, words are presented sequentially in isolation, with a fixed duration of 0.5s.

The entire chapter was presented in 45 minutes. Every two seconds, an fMRI image

is obtained. Wehbe et al. [2014b] note that changes in the obtained signal are

persistent over approximately eight seconds after the onset of neural activity.

4.3.3 Dataset specifics and preparation

Pereira (large) Pereira (small) Wehbe

Tokens 4,558 3,241 5,102

Types 1,623 1,411 1,348/1,349

Sentences 384 243 398

Subjects 8 5 8

Medium text text text (RSVP)

Isolated sents. no no no

Reading material Wiki. paragraphs Wiki. paragraphs novel chapter

Table 3: Descriptive statistics of fMRI datasets, excluding punctuation on the word
level. The two experiments from Pereira are treated as separate datasets.
For Wehbe, there are minimal differences between subjects. Note that
values reflect counts after data preparation and may deviate from statistics
reported by the respective authors.

For all datasets, pre-processing is performed using a modified version of the brain-

lang3 toolkit. The raw scans are used without any pre-processing, other than

sentence-level aggregation (see below). The output representation is a flat one-

dimensional array, as with eye-tracking and EEG. fMRI voxel data has very high

dimensionality, ranging from approximately 27,000 to 38,000 voxels for Wehbe and

145,000 to 201,000 for Pereira. Regardless of data sparsity, sampling or dimen-

sionality reduction is thus unavoidable. Hollenstein et al. [2019] randomly samples

voxels, with a better performance obtained at 1000 voxels than at smaller sample

sizes. Given the significantly reduced dataset size, I considered it necessary to min-

imize dimensionality whilst ensuring that dimensions of the final vector represent

the fMRI signal as efficiently as possible. The procedure is described in Chapter

6. Contrary to EEG and eye-tracking, raw fMRI data cannot be averaged among

subjects due to the differences in brain morphology.

For the Pereira dataset, only the second and third experiments contain sentence data

and are therefore considered in this study. The sub-datasets are treated separately,

3https://github.com/beinborn/brain-lang
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as the number of subjects differ and a concatenation of data between shared subjects

has not lead to an improvement in initial evaluations. A single scan is available

per sentence, thus only dimensionality reduction is necessary to obtain a usable

representation. brain-lang provides a reader for the first experiment, which I

modify (and simplify) to read and convert the relevant raw data. The sub-datasets

are referred to as Pereira (large) and Pereira (small) from now on.

The toolkit also provides a reader for the Wehbe dataset. Sentence boundaries are

not explicitely given and therefore detected with a simple heuristic the authors tuned

to the dataset. I note that there are minor differences in punctuation representation,

leading to a deviation in the number of sentences, but not tokens. In relation to

this dataset, [Beinborn et al., 2019] discuss the hemodynamic delay, which needs to

be compensated to align stimuli and scans. It is approximated with two timesteps,

with a timestep corresponding to the fMRI scan duration of 2 seconds in the study

carried out by Wehbe et al. [2014a]. During preliminary tests, I obtain slightly lower

errors when not applying a delay and thus omit it. Scans are aligned with ranges

of tokens read by the subject during the scan. To obtain a sentence representation,

I modified the pipeline to average all scans associated with a sentence ID, with

scans straddling sentence boundaries factoring into both the current and the next

sentence.

4.4 Discussion

The cognitive datasets discussed above not only differ in their modalities but also

in the type and variety of the presented material and the methods used for presen-

tation. Regarding content, ZuCo and Pereira mark a middle ground, with either

isolated sentences or short paragraphs being shown yet a large variety of concepts

being presented. In both instances, extent of sentence integration as discussed by

Cop et al. [2017] is either non-existent or likely to be very limited. Between these

sources, the movie review portion in ZuCo is arguably the most natural text genre,

while Wikipedia-based sentences from either sources typically conform to encyclope-

dic conventions and are more formulaic whilst comprising a broad range of concepts.

More naturalistic material is found in the Dundee corpus, where entire newspaper

articles are read, however coming from a single newspaper, variety is likely to be

more constrained by editorial conventions and focus. The most natural instances are

Natural Speech (listening to audiobook snippets), Wehbe (reading a book chapter)

and GECO (reading an entire book), with the caveat that all sentences are now

obtained from a single author document, further constraining discourse variety, but
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likely offering a broader range of lexical semantics and syntactic phenomena. Fur-

thermore, Wehbe et al. [2014b] note that the read chapter has frequent occurrences

of direct speech.

Curiously, presentation methods do not parallel this spectrum. ZuCo allows for self-

paced reading of sentences, while Pereira dictates the maximum duration a sentence

is viewed, constituting an interference with the natural reading process. Dundee

and GECO are also self-paced, whereas Natural Speech trivially fixes the listening

speed4. Finally, Wehbe relies on rapid serial visual presentation, which is the most

artificial method of text consumption found across all datasets considered in this

thesis. As previously mentioned, it is also arguably the most problematic in that

it is unlikely to capture all sentence-level reading processes, as e.g. regressions to

earlier words are not possible.

In summary, the discussed datasets present significant differences between modal-

ities, modes of data preparation, reading material and curation methods. This

is compounded by sparse dataset sizes, with the exception of eye-tracking sources

Dundee and GECO. In light of this heterogeny, assessing the performance of sen-

tence embeddings with respect to genre, specific syntactic or semantic occurrences

and other aspects is very difficult. Such an attempt would require controlling for all

potentially confounding variables, which is not possible in a high-level multi-modal

evaluation. Because of this, I do not primarily consider aspects of individual datasets

and instead follow the core principles proposed by [Mishra and Bhattacharyya, 2018]

by mainly considering correlation within and among modalities, i.e. patterns on the

macroscopic level. I note that ZuCo presents a special case, given that subjects and

text material are held constant across modalities.

4I expect however, that creators of professional audiobook recordings test and account for what
is considered a comfortable reading speed by the majority of consumers.
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5 Sentence embeddings

The present work constitutes a high-level evaluation of the general possibility of

predicting sentence-level cognitive signals with sentence embeddings. Given this

scope, the architecture and properties of individual word and sentence embeddings

can be covered only briefly and much of the theoretical foundation is therefore only

touched upon, or omitted. For details, I refer the reader to the cited literature.

I note that I subsequently omit several notable and more recent developments such as

ERNIE 2.0 [Sun et al., 2020]. As this work is, to my knowledge, the first multi-modal

cognitive sentence embedding evaluation, my goal is not primarily to benchmark

state-of-the-art approaches. Instead, the present evaluation has a more longitudi-

nal character, with selected approaches differing in how the sentence representation

is obtained, if contextual information is encoded and whether supervised data is

leveraged. In particular, I’m interested whether and how the (proven) differences

in downstream evaluations are reflected when predicting cognitive signals. In this

context, approaches are of particular interest which perform comparably in down-

stream applications, yet are conceptually different. Discrepancies in the performance

of predicting cognitive signals for such approaches are indicative of different types

of features predicting specific cognitive modalities.

5.1 Sentence embeddings

Sentence embeddings constitute an extension of distributional semantic representa-

tions such as GloVe and word2vec, which have been popularized some years ago and

significantly advanced the state of the art in natural language processing. These

approaches and various developments were confined to word-level semantics and are

context-independent in that only a single representation is obtained per word. Later

efforts such as ELMo allowed to encode sentence-level semantics into word represen-

tations, by assigning each token a representation which is a function of the full input

sentence [Peters et al., 2018]. Sentence-level representations are typically obtained

from word-level approaches by averaging word-level representations, obtaining a
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Bag-of-Words (BoW) representation, which does not retain sequence information.

In parallel and starting with Skip-Thought, sentence encoders were developed, which

directly learn a sentence representation without the need of aggregating word-level

representations, and explicitly consider the sequence of words. Pereira et al. [2018]

note that these representations also allow to predict human similarity judgements

of paraphrases on the phrase- and sentence-level.

Following, I discuss a selection of six approaches to obtaining sentence represen-

tations, representing a subset of methods evaluated by [Perone et al., 2018]. This

allows to relate the present results to the large-scale extrinsic and intrinsic results

presented by the authors. In addition, GloVe with a dimensionality of 50 serves to

establish a lower bound. I discuss simple and more sophisticated averaging baselines,

self- or unsupervised approaches, as well as supervised methods.

5.2 Motivation

5.3 Baselines

The simplest method to obtain a sentence representation is to perform a component-

wise arithmetic mean of word-level representations, which has been found to be a

strong baseline (see e.g. [Kenter et al., 2016]). In the case of approaches not encoding

information about the word context, typically only content words such as (proper)

nouns, adjectives, main verbs and sometimes adverbs are considered, as not to dilute

the representation with stopword vectors.

5.3.1 GloVe

GloVe (short for Global Vectors) embeddings [Pennington et al., 2014] are generated

by performing an aggregation of the global word-word co-occurrences in a corpus.

The model thus directly captures global statistics of the corpus, relying on counts

of word occurrences in the context of other words (represented by a word-word

co-occurrence matrix).

In the present evaluation, this approach only serves to establish a lower bound,

hence a low-dimensional variant is used. [Hollenstein et al., 2019] show that it is

matched or outperformed by fastText on the word level in most instances (for a

superset of the cognitive datasets presently evaluated). For this reason, I omit a
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detailed description of this approach.

5.3.2 fastText

fastText embeddings [Joulin et al., 2017] are generated using a shallow linear model,

contrasting with non-linear neural network approaches. Originally introduced as an

efficient means of text classification, the hidden layer representation is frequently

used as a word embedding. Training time is greatly improved using hierarchical

softmax [Goodman, 2001]. A bag of n-grams is used to partially capture the local

word order, which has found to be efficient and comparable in performance with

approaches considering the word order explicitely. Finally, the hashing trick [Wein-

berger et al., 2009] allows fast n-gram mapping with a low memory footprint [Joulin

et al., 2017].

fastText saw an extension to account for morphological variations and moving from

CBOW to skipgram as its basis. This is done by learning vectors for character

n-grams of words, or subwords. It derives from the skipgram model with negative

sampling as introduced by Mikolov et al. [2013b]. Context words are predicted

independently from each other using binary classification, with random sampling

from the dictionary being used to obtain negative examples. Subwords are obtained

by representing each word as a bag of character n-gram, with a range of n-gram sizes

being considered. An unseen word is thus represented as the sum of the subword

representations corresponding to its n-grams [Bojanowski et al., 2017].

5.3.3 Concatenated Power Mean Word Embeddings (Power-Mean)

Power-Mean constitutes a special case in that it is conceived as a baseline from

the outset, which seeks to be more competitive than previous averaging baselines.

Rücklé et al. [2018] motivate their approach by stating that existing averaging ap-

proaches to sentence embeddings are likely to benefit from an increase in dimen-

sionality. The authors propose to increase the information content by concatenating

word embedding types capturing differing linguistic aspects (syntactic, semantic,

sentiment-related, etc.) They also examine benefits of generalizing the averaging

operation to the power mean [Hardy et al., 1952], which encompasses many types of

mean, including common types such as the arithmetic mean (p = 1), the geometric

mean (p = 0), and the harmonic mean (p = −1):(
xp1 + . . .+ ypn

n

)1/p

; p ∈ R ∪ {±∞} (5.1)
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For (p = −∞) and (p = +∞), the power mean calculates the minimum and maxi-

mum of the input sequence, respectively. In the following equation, Hp(W ) repre-

sents the component-wise power means of the individual word embedding vectors of

a sentence s, for a particular value of p1. s(i) is then the concatenation of K different

power means of the sequence, i.e. for an array of different values of p.

s(i) = Hp1(W
(i))⊕ · · · ⊕ HpK (W(i)) (5.2)

This transformation is applied to different word embedding types and the resulting

power mean sentence representations s(i) are, again, concatenated to obtain the final

representation:

⊕
i

s(i) (5.3)

Rücklé et al. [2018] choose four embeddings as the basis for their approach, which

they believe to be potentially complementary: GloVe trained on Common Crawl

data; word2vec [Mikolov et al., 2013b] trained on GoogleNews data; Attract-Repel

[Mrkšić et al., 2017] and MorphSpecialized [Vulić et al., 2017]. Due to lack of space,

I omit a discussion of word2vec, referring to the cited literature. The remaining

embedding types can be briefly summarized as follows: Attract-Repel embeddings

rely on injected constraints which are extracted from lexical resources. This spe-

cializes word-level vectors with respect to their semantics, in that both mono- and

cross-lingual constraints regarding synonymy and antonymy are injected, leading

to unified cross-lingual vector spaces. The authors showed these embeddings to

perform well on SimLex-999 [Hill et al., 2015], a dataset of word pairs that have

been annotated in such a way that words which are related but not similar, re-

ceive a low score (e.g.book and read). MorphSpecialized embeddings build on the

Attract-Repel method, injecting morphological constraints into vector spaces. The

authors claim that inflectional and derivational rules implicitely encode semantic

information, which is thus leveraged. For attract constraints (making embeddings

more similar), inflectional morphology is used, which only concerns grammatical

agreement and does not influence the word meaning. Repel constraints (driving em-

beddings apart) are represented by derivational antonyms. Due to space constraints,

interested readers are referred to the respective literature for further details.

The best performing variant concatenates all four embedding types, with application

1Which, in the case of p = 1 for the arithmetic mean, is identical to the averaging I apply to the
previously discussed baselines.

32



Chapter 5. Sentence embeddings

of the z-norm [LeCun et al., 1998] to account for the fact that embeddings and power

means may differ in ranges. For each embedding, power means of [−∞, 1,∞] are

calculated2. The dimensionality of the vectors finally obtained is 3600.

Across nine classification tasks, Rücklé et al. [2018] find this variant to be compet-

itive with InferSent (Conneau et al. [2017], see below) while being less computa-

tionally expensive. The evaluation by Perone et al. [2018] largely reproduces these

results for the same corpora, adding two further datasets (and omitting others).

5.4 Self- or unsupervised approaches

5.4.1 ELMo

Contrary to previous approaches, ELMo word representations [Peters et al., 2018]

are computed under consideration of the entire input sequence. Formally, they are

the result of two-layer bidirectional language models with character convolutions, as

a linear function of hidden units of the network. In the forward direction, a language

model (LM) computes the sequence probability as the product of the probabilities

of every token tk given its previous tokens (t1, ..., tk−1):

p(t1, t2, ..., tN) =
∏
(

k = 1)Np(tk|t1, t2, ..., tk−1) (5.4)

The token representation is context-independent, in that the authors compute a

CNN over characters. This representation is passed through several forward LSTMs

(long short-term memory networks, Hochreiter and Schmidhuber [1997]) and at ev-

ery position k, a context-dependent representation is yielded. The output of the

top-most layer is fed into a softmax layer, predicting the next token. The backward

LM is formulated analogously, except it models the sequence in the reverse direc-

tion. The biLM combines the forward and backward LM with a residual connection

between LSTM layers, jointly maximizing the the log likelihood of both representa-

tions. For every token, 2L + 1 representations are computed, (L corresponding to

the number of LSTM layers), corresponding to a single token layer and two hidden

units for each biLSTM layer (one per direction). In downstream tasks, all layers

are collapsed into a flat vector. This can be achieved by either a weighted sum of

all biLM layers, with weights tuned in the context of a specific task, or by simply

2As such, three variants are the special cases minimum, arithmetic mean and maximum, i.e.
do not require formulating the power-mean. However, other values are used in the omitted
cross-lingual experiments.
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selecting the top-most layer. The pretrained embeddings used in this thesis rely on

two biLSTM layers, with every LSTM projected into 512 dimensions, leading to a

dimensionality of 1024. The context insensitive representation uses 2048 character

n-gram convolutional filters and two highway layers, projected to a dimensionality

of 512. As such, the latter can capture unseen words, like fastText. In their evalua-

tion, the authors observe that ELMo disambiguates word meanings (mainly the top

layer) in relation to their respective context and also captures basic syntax (mainly

the bottom layer).

Given the scope of the present evaluation, I seek to evaluate embeddings in their

generic form. Hence, in line with Perone et al. [2018], the three layers of the models

provided by the authors are concatenated on a per-token basis to form a 3072-

dimensional token representation, which is then averaged.

5.4.2 Skip-Thought

Skip-Thought [Kiros et al., 2015] is an early notable instance of a dedicated sentence

encoding approach. It offers a unsupervised alternative to previous approaches, not

relying on a specific task or expensive inference at test time. The model applies

the skip-gram approach of word2vec [Mikolov et al., 2013a], substituting words with

sentences, and thus predicting the sentences occurring in the context of a sentence.

It is an encoder-decoder model, i.e. words are mapped to a sentence vector by

an encoder, and the decoder generates the surrounding sentences. Both encoder

and decoder are recurrent neural networks (RNN), with the encoder using gated

recrurrent unit activations (GRU) [Chung et al., 2014], and the decoder relying on a

conditional GRU. When processing a sentence, the encoder produces a hidden state

at each time step, representing the sequence as far as the respective word in the

sentence. It follows that the final hidden state represents the full sentence. The

decoder is a neural language model, conditioned on the output of the encoder. It

performs a similar computation as the encoder, however the update gate, reset gate

and hidden state are biased by the sentence vector. Two decoders with separate

parameters are used, to predict the previous and subsequent sentences respectively

(which constitute the context of the encoded sentence). The vocabulary matrix is

shared, which is used to compute a distribution over words. Figure 1 illustrates

an example of a sentence triplet, i.e. an encoded sentence and surrounding context

to be predicted. The authors note the similarity with neural machine translation

approaches at the time. To improve generalizations to other corpora, they learn a

linear mapping from word2vec’s [Mikolov et al., 2013b] vector space to the vocab-

ulary space of the encoder, for all words shared by both vocabularies. Using this
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Figure 1: Given a contiguous sequence of sentences (si−1, si, si+1) the sentence si is
encoded, while the decoder attempts to reconstruct the previous and next
sentences si−1 and si+1 respectively. Here, the sentence sequence is: I got
back home. I could see the cat on the steps. This was strange. (encoded
sentence underlined). Source: Kiros et al. [2015]

learnt mapping, all word vectors in a word2vec model can be transformed into a

vector in Skip-Thought’s encoder embedding space, extending its vocabulary.

The authors evaluate both an uni-directional and a bi-directional variant, the latter

using two encoders, processing the sentences in the forward and reverse order respec-

tively. Both approaches share the same output dimensionality of 2400, with 1200

dimensions allocated per direction for the bi-directional variant. They find that con-

catenating the uni- and bi-directional output yields the best results, indicating that

the approaches are complementary. This representation results in a dimensionality

of 4800 and it is the approach considered in the present evaluation.

Rücklé et al. [2018] note the computational cost of Skip-Thought, which is one the

primary reasons for later developments that saw improved running time at train-

ing and/or testing time. Some of these approaches are described in the following

sections. I note that I evaluate the original Skip-Thought model, not the later Skip-

Thought-LN variant, which has been found to perform better in various (but not

all) tasks (see Conneau et al. [2017]).

5.4.3 BERT

BERT [Devlin et al., 2018] builds on the method of language model pre-training,

which the authors note to be effective in improving a large number of natural lan-

guage processing tasks. It is distinct from the previously discussed ELMo, which

relies on a feature-based approach and leverages task-specific architectures, in which

datasets are augmented with the pre-trained representations, representing additional

features. BERT instead relies on fine-tuning and allows for bidirectionality in lan-

guage model learning by employing a masked language model (MLM) pre-training

objective, modelled on the Cloze task [Taylor, 1953].

The presented framework is divided into two steps, unsupervised pre-training and

supervised fine-tuning, which are illstrated in Figure 2. Pre-training consists of two
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Figure 2: Pre-training and fine-tuning of the BERT architecture. During pre-
training, an unlabeled sentence pair is encoded and leveraged in the next
sentence prediction (NSP) and masked LM (MLM) tasks. During fine-
tuning, previously learnt parameters are adjusted with labeled data from
the downstream task. Source: Devlin et al. [2018]

unsupervised tasks, the masked language model (MLM) and next sentence prediction

(NSP). In the MLM task, some percentage of the tokens are randomly masked in

the input, with the objective of predicting the ID of the masked word given its

context. It is this masking that allows bidirectional conditioning, as it prevents the

word from observing itself in other predictions. This objective allows to capture

both the left and right context of a word. As in a standard language models, the

hidden states associated with the mask tokens serve as the input to a softmax layer

over the vocabulary. The authors note that many downstream tasks require that the

relationship between two sentences is modeled, which the language model does not

capture directly. Examples are Question Answering (QA) and Natural Language

Inference (NLI). NSP accounts for this requirement, which can be learned from an

arbitrary monolingual corpus. During training, the second sentence is the true next

sentence in half of the cases, and randomly chosen otherwise.

During fine-tuning, the model is initialized with the parameters previously learnt,

which are then tuned, leveraging labeled data from downstream tasks. The authors

find the difference between the pre-trained and tuned architecture to be minimal,

irrespective of the task type. As with ELMo, this work relies on generic pre-trained

BERT embeddings. As such, I do not consider the fine-tuning aspect in further

detail.

Devlin et al. [2018] use a multi-layer bidirectional transformer encoder with multi-

head (self-)attention, which is almost identical to the approached introduced by

Vaswani et al. [2017]. This encoder-decoder (transduction) model relies solely on the
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attention mechanism [Bahdanau et al., 2014] to learn global dependencies between

input and output. As such, it can be better parallelized and obtain competitive

results with faster training times than approaches relying on recurrent or convolu-

tional layers. The attention mechanism allows modeling of dependencies regardless

of their distance in input or output sequences. Contrary to previous attention-based

transformer uses a constant number of operations to relate signals from pairs of arbi-

trary input and output positions. Simultaneously, it relies on multi-head attention,

allowing it to efficiently learn dependencies between distant positions. I omit a

further discussion of the transformer architecture and the attention mechanism for

reasons of space and instead refer the reader to the cited literature.

[Devlin et al., 2018] train two model sizes, Base and Large, where the number of

hidden layers are 12 and 24, the number of self-attention heads are 12 and 16 and

the hidden-layer sizes are 768 and 1024, respectively. The input is represented by

WordPiece tokens [Wu et al., 2016], which attempt to find a balance between vocab-

ulary size and out-of-vocabulary words using a data-driven approach. The authors

conclude that pre-trained representations can in many cases supersede task-specific

architectures that require extensive engineering. They find that such architectures

are often outperformed on both token- and sentence-level tasks.

To obtain a sentence representation from BERT without fine-tuning, it is necessary

to pool across tokens and it is recommended to leverage the second-to-last hidden

layer3, which I presently follow, averaging this token-level representation.

5.5 Supervised approaches

5.5.1 InferSent

InferSent [Conneau et al., 2017] is an approach standing out for being trained on

two corpora of high quality annotated data. The Stanford Natural Inference corpus

(SNLI) dataset [Bowman et al., 2015] comprises 570,000 English sentence pairs.

annotated with one of three possible labels: entailment, contradiction and neutral.

The authors note that it is one of the largest high-quality annotated resources,

which has been curated explicitely with the understanding of sentence semantics in

mind. The MultiNLI corpus [Williams et al., 2018] is a multi-genre version of SNLI

with 433,000 sentence pairs, spanning ten genres of written and spoken English.

3As per a comment by the principal author: https://github.com/google-research/bert/

issues/71#issuecomment-436507081
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(a) (b)

Figure 3: InferSent (a) NLI training scheme (b) Bi-LSTM max-pooling sentence en-
coder. Source: [Conneau et al., 2017]

The authors contend that as such, it provides coverage for most of the language’s

complexity.

Figure 3 illustrates the training regime and sentence encoder. For each sentence pair,

premise and hypothesis are separately encoded. Relations are represented as a vector

which contains the concatenation, element-wise product and absolute element-wise

difference of the two vectors. The resulting vector represents information from both

sentences. It is the input to a three-class classifier, which consists of several fully-

connected hidden layers and a softmax layer. Conneau et al. [2017] evaluate sentence

encoder architectures of various complexity, the best performing being a (relatively

simple) BiLSTM, which is the concatenation of the outputs of two LSTMs reading

the sentences in the forward and backward directions respectively. The number of

hidden units depends on the input sequence length, given the recurrent nature of an

LSTM. To obtain a vector with fixed size, the authors apply max-pooling over the

dimensions of the hidden units.

In their evaluation, the authors note that at the time of writing, the SkipThought-

LN model, trained on large corpora of ordered sentences, is the best-performing

sentence encoding method. Their approach succeeds in outperforming it in all in-

stances, whith significantly less data (570,000 compared to 64 million sentence).

They attribute this to the high-quality supervision found in the SNLI dataset. They

conclude that natural language inference data allows sentence encoders to learn uni-
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versally useful representations.

5.5.2 Universal sentence encoder

The universal sentence encoder (USE) presented by Cer et al. [2018] has been devel-

oped with the goal of obtaining representations that are specifically useful for trans-

fer learning to other NLP tasks. This is motivated by the fact that deep-learning

approaches generally require large data sets and annotating supervised training data

is highly costly and thus impossible to curate in the context of most NLP tasks, both

in research or industry. The authors draw on findings by [Conneau et al., 2017] (In-

ferSent), showing robust performance in transfer tasks when relying on pre-trained

sentence embeddings.

Cer et al. [2018] note that transfer learning relying on sentence embeddings gener-

ally outperforms word-level transfer. Two different encoders are described, a more

powerful transformer-based variant (see Vaswani et al. [2017] for details) and a

computationally less expensive variant based on a deep averaging network (DAN)

[Iyyer et al., 2015]. The authors note that the former scales quadratically (and thus

dramatically) in both model time and space complexity with increasing sentence

length, but generally performs better in downstream tasks. The transformer-based

model builds sentence embeddings through the encoding sub-graph that is part of

the transformer architecture [Vaswani et al., 2017]. This sub-graph relies on atten-

tion to obtain word representations that are context aware and consider order and

identity of the remaining words.

The DAN is a minimal variation on a feedforward network. Input embeddings for

words and bigrams are averaged together prior to passing through several nonlinear

layers and a softmax layer, yielding a sentence embedding [Iyyer et al., 2015]. As

such, it does not capture context as the transformer variant and is a BoW method.

The authors note that the computational complexity of the DAN encoder is linear

with respect to the input sequence length, whilst presenting a strong baseline in

text classification tasks, sometimes matching or outperforming the more complex

transformer version.

The authors emphasize that the encoding model is kept general in that a single

encoding model feeds several downstream tasks, in a multi-task learning setting.

The tasks are unsupervised learning from running texts in the vein of Skip-Thought

[Kiros et al., 2015], an input-response task which models conversation to include

parsed conversational data [Henderson et al., 2017], and several classification tasks

trained to introduce supervised data. The input to either encoder is lowercased and
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tokenized using the Penn Treebank Tokenizer [Manning et al., 2014]. A fixed length

512-dimensional sentence representation is obtained by summing the representations

element-wise at each word position and dividing by the square root of the sentence

length to account for sentence length effects. Unsupervised training data is obtained

from sources such as Wikipedia, web news, question-answer websites and discussion

forums. Finally, as with InferSent, the SNLI corpus is used to augment the encoder

with supervised data. Contrary to the former approach, the authors do not mention

whether inference labels are used. Given the architecture described above, it appears

that only the sentence pairs themselves are leveraged.

Cer et al. [2018] evaluate the models on a variety of transfer tasks, such as question

classification and sentiment analysis of movie reviews and customer reviews. To

this end, the output of the sentence encoder serves as the input to a task-specific

DNN. The authors conclude that transfer learning helps improve the performance

of many tasks. This is of particular importance when training data is limited. They

concede that models not relying on transfer learning approach ones that do, when

the training set size is increased.

As with ELMo and BERT, I am only concerned with the generic representation.

5.6 Summary

Approach Training Dimensionality

GloVe 50 un-/self-supervised 50

fastText un-/self-supervised 300

Power-Mean - 3600

ELMo (all layers) un-/self-supervised 3072

BERT (2nd-last layer) un-/self-supervised 1024

Skip-Thought un-/self-supervised 4800

InferSent supervised 4096

USE (DAN) supervised 512

USE (Transformer) supervised 512

Table 4: Overview of embedding approaches and corresponding training methods
and dimensionalities. Adapted from [Perone et al., 2018]

Table 4 briefly summarizes training methods and dimensionality of evaluated em-

beddings.

The approaches chosen in the context of this evaluation differ considerably in their

40



Chapter 5. Sentence embeddings

architectural complexity, used training data and dimensionality. In several instances,

sophisticated and computationally expensive approaches are either matched or out-

performed by (sometimes much) simpler methods, methods relying on less training

data or representations with lower dimensionality. In [Perone et al., 2018], fastText

outperforms prior word-level approaches such as GloVe, particularly when leveraging

subwords, while allowing rapid training. Power-Mean shows the effect of combining

embeddings with complementary linguistic features. At the same time, InferSent

illustrates the effect of high quality data, performing well with several orders of

magnitude less training data than found for previous successful approaches, both

on the word- and sentence level. Finally, the performance of the transformer-based

variant of USE is competitive with InferSent in the evaluation carried out by Perone

et al. [2018], despite having a dimensionality of just 512 (compared with InferSent

at 4096, only exceeded by the combined Skip-Thought model). This shows that very

useful information can be represented in what is a relatively low-dimensional vector

for sentence embeddings standards. Finally, BERT constitutes the most recent and

complex approach presently discussed, obtaining state-of-the-art performance on a

wide range of tasks upon publishing [Devlin et al., 2018]. As such, it is of particular

interest whether this is reflected in the subsequent evaluation.
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The evaluation was performed using the command-line tool described in Appendix

A. An illustrated summary of the process is shown in Figure ??. Following, I first de-

scribe the selected pre-trained embedding models, regression model, pre-processing

and evaluation setup. I then summarize high-level results and consider performance

with respect to specific linguistic features, as well as features and subject for eye-

tracking and fMRI, respectively. Finally, I consider correlations between datasets

and modalities, as well as between modalities and extrinsic results.

6.1 Pre-trained embedding models

For practical reasons, not all available model variations are optimized exhaustively

with respect to batch and layer size (see below). Instead, better performing varia-

tions are substituted upon obtaining the finally obtained parameters, if this improves

upon the initially chosen model1.

I use GloVe embeddings with the lowest available pre-trained dimensionality of 50

in this work, which are subsequently called GloVe 50. The embeddings were pre-

trained on the Wikipedia 2014 and Gigaword 5 [Parker et al., 2011] datasets (six

billion tokens) and are uncased2. Contrary to other word embeddings, the intention

is not to compare the performance of GloVe, but to establish a lower bound. A

corollary of this choice is that the GloVe 50 embeddings are the least likely to suffer

from dimensionality problems incurred by the dataset sizes, which are significantly

reduced going from the word to the sentence aggregation level. Indeed, GloVe 50

is the only evaluated embedding type for which the ratio between the number of

sentences and the dimensionality is always greater than one across all modalities.

1While this is a shortcut, I note that [Perone et al., 2018] observe meaningfully differences using
a single fixed layer and batch parametrization, which is shared by all approaches tested in
both downstream and linguistic probing tasks. It is reasonable to assume that different models
obtained using the same general approach do not materially differ in optimal batch and layer
sizes. As such, the present approach constitutes a compromise between a fixed parametrization
and an exhaustive parameter search.

2https://nlp.stanford.edu/projects/glove/
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For fastText, parameters were optimized using fastText without subwords trained

on Wikipedia 2017, the UMBC webbase corpus and the statmt.org news dataset

(suffixed with Wiki as follows, 16 billion tokens total). For the final parametrization,

fastText Wiki without subwords, as well as a model based on the Common-Crawl

corpus (suffixed with CC as follows, 600 billion tokens, both with and without

subwords) were considered, as well as more recently published models trained on

both, including subwords. Due to technical constraints, subwords could not be

leveraged for the separately trained models 3. Only for the most recent and largest

model trained on both corpora, subwords are considered (suffixed with combined

as follows). For EEG, fastText Wiki with subwords was found to perform best,

despite subwords not being used. For eye-tracking fastText Wiki with subwords

is used for Dundee, fastText CC without subwords for GECO and fastText CC

with subwords for ZuCo. For fMRI, fastText CC without subwords was selected

for the smaller Pereira dataset and fastText Wiki with subwords for the remaining

two. Unexpectedly, fastText combined, the only model actually leveraging subwords

during embedding lookup, was not selected for any dataset. This suggests that

in predicting cognitive signals, the significantly greater amount of training data

available for the models trained on Common Crawl data is not universally beneficial

and subwords do not have a significant impact for the chosen corpora.

For Power-Mean, I use monolingual TensorHub model provided by the authors4.

For ELMo, parameters are optimized for the default model trained on the 1 Billion

Word Benchmark 5. For the final parametrization, the larger pre-trained model

trained on 5.5 billion tokens6 performs better for most datasets (in line with results

observed by Perone et al. [2018]) and is substituted accordingly7. An exception is

the GECO dataset, where a slightly better average error is obtained for the default

model.

For BERT, the pre-trained models used in this evaluation rely on the BooksCor-

pus [Zhu et al., 2015] (see above for statistics) and an English Wikipedia corpus

(2,500M words)8. Only the most recent variant of the large model with improved

(whole) word masking is evaluated, given that it outperforms the previous model9.

A sentence representation is obtained by mean-pooling the representations of the

3https://fasttext.cc/docs/en/english-vectors.html
4https://github.com/UKPLab/arxiv2018-xling-sentence-embeddings
5https://opensource.google/projects/lm-benchmark
6Wikipedia (1.9B tokens) and monolingual news crawl data of WMT 2008-2012 (3.6B tokens)
7https://allennlp.org/elmo
8https://github.com/google-research/bert
9https://github.com/google-research/bert
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second to last layer for a maximum sequence length of 100. For eye-tracking, the

uncased model is selected and for EEG the cased model. For fMRI, Pereira (small)

and Wehbe, I select the uncased model and the cased model for Pereira (large).

For Skip-Thought, I do not rely on the original Skip-Thought implementation for

technical reasons, but draw on an inofficial re-implementation in TensorFlow10 in-

stead. I use a pre-trained model based on the same data used by the original authors

(BookCorpus with approximately 985 million tokens and 74 million sentences, from

11,038 books [Zhu et al., 2015]).

For InferSent, two pre-trained variants are available, trained with GloVe and fas-

Text vectors respectively11. The fastText-based model outperforms the GloVe-based

model in most SentEval tasks and is chosen accordingly for the present evaluation.

I note that the authors chose fastText CC without subwords as their basis for this

model.

For USE, parameters are optimized using the DAN variant12. With the final

parmetrization, it performs identically or better than the Transformer-variant13 for

most datasets, except for Pereira (large) and Wehbe, where the latter performs

minimally better and I choose it accordingly. This contrasts with previously dis-

cussed extrinsic results, which clearly favor the Transformer-based approach in most

instances.

6.2 Regression model

A simple feedforward network (multi-layer perceptron, or MLP, Rosenblatt [1962]) is

used as basis for the model architecture. The model specification consists of an input

layer matching the dimensionality of the respective embeddings, two identically

sized hidden layers in all experiments and an output layer where the dimensionality

corresponds to the respective cognitive dataset. As a regressor, it predict continuous

values, contrasting with discrete labels predicted by a classifier. I use a fixed dropout

of 0.5 after each hidden layer (which has been found to maximize regularization by

Baldi and Sadowski [2013]) and batch normalization after the last. All layers use

the relu activation function, except for the output layer, which is linear. The model

10Community implementation of Skip-Thought vectors in tensorflow by Chris Shallue: https:

//github.com/tensorflow/models/tree/master/research/skip_thoughts
11https://github.com/facebookresearch/InferSent
12https://tfhub.dev/google/universal-sentence-encoder/2 (Tensorflow 1.x model)
13https://tfhub.dev/google/universal-sentence-encoder-large/3 (Tensorflow 1.x model)
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is implemented in Keras API14 as a regressor. As loss function I use the mean

squared error (MSE) and train the model using the Adam optimizer [Kingma and

Ba, 2014], which has been shown to perform robustly across many tasks. Keras

default parameters are used for Adam (learning rate 0.001, β1 = 0.9, β2 = 0.999,

ε = 10−7).

6.3 Pre-processing

6.3.1 Sentence pre-processing

For GloVe 50 and fastText, I consider (proper) nouns, adjectives that are not (sep-

arate) affixes, verbs that are not modal and adverbs that are not particles or “wh”-

adverbs (when, why, etc.). The cased form of a word is preferred if present, otherwise

a fallback to the lowercased occurs. If neither can be found, the word is assigned

the zero vector. For ELMo, the entire sequence is considered during averaging in

order to retain the context information. For Power-Mean, the used model takes a

whitespace-tokenized sentence as input, therefore I do not filter tokens here. The

authors note that input has to be lowercased when relying on this model. However,

I obtain lower average errors for all datasets but Pereira (small) when retaining

casing and thus only lowercase for the latter dataset. For averaging baselines and

Power-Mean, tokenization and POS tagging (where applicable) is performed using

spaCy15, relying on the largest English model16. All other approaches rely on built-in

tokenization, and casing is retained.

6.3.2 Feature selection and transformation

When performing scaling operations on an entire dataset, data leakage may occur,

leading to unwanted inference of unseen data by the model. To avoid this issue with

respect to the dependent or target variable, any pre-processing step influencing the

scaling of cognitive vectors is performed within the inner and outer cross-validation

loop. In the given setting, this is mainly to prevent inferred information from over-

powering the predictive power of individual embeddings, artificially lowering errors

and hindering comparison between tested hypotheses.

14https://keras.io/
15https://spacy.io/
16https://spacy.io/models/en#en_core_web_lg
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An exception to this on-the-fly transformation is made for the pre-selection of voxels

for the fMRI modality. This selection has been found to be a technical requirement

for performing Kernel PCA on standard-scaled fMRI data (but is performed for

all fMRI datsets, for simplicity). The reason is that neighbouring fMRI voxels are

highly correlated with one another, which can cause the Kernel PCA to fail due to

eigenvalues of the input matrix being negative. To avoid this issue, a fixed number

of 15,000 voxels is first randomly sampled to reduce space and time complexity of

correlation analysis (using the random seed specified in the configuration for repro-

ducibility). Following, for pairs of voxels with a Pearson’s correlation of more than

0.95, one of the voxels is discarded, removing several thousand features depending

on the individual dataset. I perform the selection on the entire dataset, with the

rationale that learned models are not required to generalize to additional data in

the given setting 17. Furthermore, the selection does not introduce data leakage,

as it leaves values and ranges of remaining features unchanged.Finally, it leads to a

greater improvement in quality, which is in line with the purpose of the datasets as

quality gauges.

For fMRI and EEG data, dimensionality reduction is necessary as for both datasets,

the number of input dimensions greatly exceeds the size of datasets. As it has

been found to improve scores, features are standardized first, with the exception

of the Wehbe dataset, where doing so leads to errors 18. For fMRI, Gauthier and

Levy [2019] have shown that PCA can capture most of the variance in as little as

256 dimensions, which I adopt here. PCA performs singular value decomposition

to project data to a lower dimensional space [Wold et al., 1987]. I apply Kernel

principal component analysis (Kernel PCA), which is a extension of linear PCA

[Schölkopf et al., 1997]. The usage of a kernel function allows projecting data into

a higher dimensional space, where non-linearities become linearly separable (kernel

trick). Kernel PCA performs better than linear PCA for both modalities, indicating

that non-linear features are present. The final parametrization specifies for both

modalities at most 256 dimensions19, a polynomial kernel, a gamma value of 0.01

and a degree of 3 (independently determined for either modality). I note that for

practical reasons, no extensive hyperparameter search was carried out to optimize

the representation of the cognitive data.

17Which in the case of fMRI is not possible when relying on subject-level datasets, which constitute
separate hypotheses due to differences in brain morphology.

18I note that this indicates underlying issues with this dataset, potentially stemming from the
averaging procedure performed to obtain sentence representations

19The dimensionality is dynamically clipped to the highest possible value depending on the training
fold size of the corresponding CV loop, as it needs to be strictly less than the number of data
points. All fMRI datasets as well as the ZuCo 2 EEG dataset require clipping of the PCA
dimensionality due to their size, in either the inner or both CV loops.
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Finally, the resulting matrix is Min-Max-scaled between 0 and 1 on a per-feature

basis, to allow interpretation of MSE scores without specific knowledge of feature

ranges. For eye-tracking, only Min-Max-saling is performed, as the dimensionality

is sufficiently low in all instances (see Section 4.1). As the scaler is fitted only on the

training portion of the targets, values falling outside its range may occur in the test

set, leading to negative values or values greater than 1. These values are clipped

at 0 and 1 respectively, to ensure that the obtained MSE remains scaled between 0

and 1. This leads to an information loss, however I argue that it is compensated by

the cross-validation procedure20.

6.4 Experimental setup

Only the number of hidden layers, layer sizes as well as batch size were optimized.

Activation (relu), number of folds for the inner and outer cross-validation (CV)

loop (3 and 5, respectively) and number of epochs (50) was fixed in all cases. Two

hidden layers were found to outperform a single hidden layer in initial tests. When

optimizing hidden layer sizes, I started with a parameter selection spanning 25%

to 75% of the input embedding dimensionality and subsequently expanded it in

instances where a boundary value was selected. ,

A nested cross-validation (CV) setup is used, with the hyper-parameter search taking

place in the inner three-fold loop and the actual prediction occurring in the outer five-

fold loop in order to obtain a robust estimation of model fit. The model evaluated

in the outer loop is trained by refitting the model on the entire dataset used for the

inner loop, using the best parameters obtained in it. No separate hold-out (test) set

is reserved, as the small dataset sizes already lead to very sparse training fold sizes

(particularly in the inner CV loop) and the model is not expected to generalize to

additional data given the artificial nature of the task.

For the final parametrization, the layer size selection most frequently picked through-

out the outer CV is selected, as soon as the parameter converges. I assume con-

vergence as soon as a non-boundary value is chosen of the respective grid or an

extremum is picked, i.e. either single-digit layer sizes (observed for fMRI) or a layer

size corresponding to 90% of the input dimensionality. Batch sizes were evaluated

less exhaustively (and prior to layer optimization), with values being multiples of

8 and the best value chosen after approximately two to four searches. For fMRI, I

use the same parametrization for all subjects. Search is confined to the first three

20Throughout folds, different subranges of the range of a feature are clipped, the union of which
necessarily corresponds to the full range of the feature.
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subjects per dataset, to reduce computational cost, yet still obtain a “majority vote”

in most instances. If results differ on all three subject, the middle value is selected.

Train-validation loss plots are examined to assess training history. In all cases, both

losses converge with a significant margin before the final epoch and no overfitting is

observed. The validation set was eliminated from final run to increase the training

data available in the inner CV.

For eye-tracking and fMRI, results are averaged among hypotheses, i.e. features

(eye-tracking) and subjects (fMRI), respectively. Results are further averaged to

obtain averaged performances as well as significance ratios per modality. To allow

significance testing, a set of ten random baselines (randomly generated vectors),

is generated per embedding type, using different random seeds and matching the

dimensionality of the embeddings. To obtain a robust estimate of random baseline

performance, the average of the errors of the individual baselines is computed, as

obtained when predicting a cognitive dataset with the same hyperparameters as the

embeddings.

All computations were performed on CPU, which was possible given that individual

experiments ran in a relatively short time even when using only one core. Given

that each worker can take up multiple GBs of RAM, this also allowed running ten

or more workers in parallel.

6.5 Results

Given that all reported metrics are measures of error, lower values are better in all

instances. Table 5 shows aggregated mean squared error values (MSE) per modality

showing that absolute differences are minimal except for eye-tracking. However, a

clear ranking is apparent, which I discuss as follows. The MSE is a standard metric

of estimator quality for continuous variables, averaging the square of the differences

between predicted and reference values. In the following subsections, I discuss the

results on the level of modality and dataset. Tables 10 to 12 in Appendix C show

averaged MSE per dataset.

Final hyperparameters are shown in Tables 29 through 33 in Appendix C. Limited

by the scale of the evaluation, the parameter search can by no means be considered

exhaustive, however I argue that the magnitude of error values and potential cor-

relation between datasets and modalities are good indicators of the validity of the

results.

For EEG, selected hidden layer sizes range between 2.5% and 50% of the input size.
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Eye-Tracking (13) EEG (3) fMRI (21)

Baseline Embed. Baseline Embed. Baseline Embed.

GloVe (50) 0.0181 0.0171 0.000405 0.000103 0.00426 0.00430

fastText 0.0172 0.0165 0.000812 0.000097 0.00439 0.00412

Power-Mean 0.0200 0.0143 0.000259 0.000102 0.00429 0.00416

ELMo 0.0203 0.0130 0.000164 0.000105 0.00438 0.00423

BERT 0.0204 0.0123 0.000133 0.000110 0.00437 0.00448

Skip-Thought 0.0202 0.0123 0.000405 0.000096 0.00462 0.00412

InferSent 0.0202 0.0123 0.000554 0.000094 0.00464 0.00412

USE 0.0195 0.0147 0.000233 0.000093 0.00483 0.00412

Table 5: Aggregated average MSE on the modality level for embeddings and corre-
sponding random baselines. Results are averaged across the five CV folds
of a hypothesis, as well as across hypotheses (features and subjects for eye-
tracking and fMRI, respectively). Lowest (best) errors are highlighted per
column. The value in parentheses specifies the number of hypotheses per
modality.

Counterintuitively, the best-performing hidden dimensionality is significantly lower

for fMRI, with many complex approaches having a final layer size ranging between

five to seven (no lower values were evaluated). This indicates that at least at the

given dataset size, relatively fine-grained features can be obtained from the indirect

EEG signals, while for the originally very complex and high-dimensional fMRI data,

only coarse high-level features are extracted.

To get an understanding how error values are distributed, results are subsequently

also presented as box plots. The plots show the median, the inter-quartile range

(IQR, represented by the box), corresponding to the distribution of the middle half

of observed errors, or the difference between the 75th and 25th percentile, as well as

minimum and maximum (excluding individual outliers). The fact that MSE heavily

weighs outliers (due to the squaring) make interpretation somewhat more difficult.

For this reason, the plots show the distribution of the absolute error averaged

across dimensions over sentences for each dataset (which I informally refer to as

AED). This is a non-standard metric accounting for the high dimensionality of the

target variable. I note that neither MSE nor AED account for sentence length. As

such, very short sentences may only contain only one or even no distinct semantic

propositions, yet contribute to the metric to the same extent as a sentence with

richer semantics.
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(a)

Figure 4: Distribution of sentence-level AED for Dundee.

(a) (b)

Figure 5: Distribution of sentence-level AEDs for GECO (a) and ZuCo (eye-
tracking (b).
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6.5.1 Eye-tracking

Figures 4 and 5 show AED box plots for individual datasets and Table 10 in Ap-

pendix C gives an overview of average MSE values of random baselines and embed-

dings per dataset.

Across datasets, the best-performing random baseline (300 dimension) obtains an

average MSE of 0.0172, while the best-perfoming embeddings yield 0.0123, compared

with 0.0202 - 0.0204 for the random baselines of the same dimensionality.

As noted in Chapter 2, eye-tracking is the most indirect method of measuring cogni-

tive processes and offers the least rich representation, with a single scalar obtained

per word and feature. As such, the clear differences in ranking on the dataset level

and partially on the modality level, are somewhat unexpected. The most plausible

reasons for this are, on one hand, the size of datasets, which in the case of ZuCo are

at least identical to the EEG datasets, and significantly exceed all other datasets in

the case of Dundee and GECO. On the other hand, the data has a significantly lower

dimensionality which is bounded by the maximum sentence length and makes lossy

dimensionality reduction unnecessary. This also means that eye-tracking is the only

modality for which sequence information is explicitely retained, whilst this is un-

clear for EEG given the application of Kernel PCA to the concatenated word-level

vectors and definitely not the case for fMRI, where I use averaged sentence-level

representations.

Aggregated across all three datasets, GloVe 50 shows the highest mean error, which

is expected. BERT, InferSent and Skip-Thought are tied for the lowest error, with

ELMo falling minimally behind. I also note the small error range, making interpre-

tation difficult. With the exception of GloVe, approaches are clearly offset from their

corresponding random baselines. When considering AED scores, Skip-Thought and

InferSent are more or less tied for the lead for all three datasets, showing a slightly

lower median error than BERT. ELMo and USE fall behind to varied degree, ap-

proaching random baselines.

While the differences in errors are generally small, this indicates that approaches

relying on recurrent sentence encoders yield representations which are more predic-

tive of cognitive signals, outperforming context-sensitive averaging baselines such as

ELMo, as well as USE, which performs competitively in various downstream tasks.

Unexpectedly, the most recent and competitive approach BERT does not lead the

ranking.
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(a)

Figure 6: (Distribution of sentence-level AED for Natural Speech.

6.5.2 EEG

Figures 6 and 7 show AED box plots for individual datasets and Table 11 in Ap-

pendix C gives an overview of average MSE values of random baselines and em-

beddings per dataset. Across datasets, the best-performing random baseline (1024

dimension) obtains an MSE of 0.000133, while the best-perfoming embedding, USE,

yield 0.000093, compared with 0.000233 for the random baseline of the same dimen-

sionality (512).

The very low average MSE values indicate that despite the small size of datasets and

higher dimensionality of the target data, the regression model succeeds in learning

the problem with small error regardless of the input embedding. All approaches

outperform random baselines, however absolute differences between embeddings are

very small.

Notably, the worst performing random baseline still achieves an average MSE of

0.000812, aggregated across all three datasets and is lower than the baseline errors

observed by Hollenstein et al. [2019] on the word-level. This shows that scales

cannot be compared between datasets. Ont the dataset level, random baseline error

ranges vary similarly to the embeddings (although with greater magnitude), with

ZuCo showing the lowest errors, followed by Natural Speech and ZuCo 2, for which

the difference between random baselines and embeddings is most pronounced (see

Appendix C).

Inspecting the spread of the mean absolute error (AED) yields clear differences

between approaches and obtains results that differ markedly from eye-tracking. For
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(a) (b)

Figure 7: Distribution of sentence-level AEDs for ZuCo (EEG) (a) and ZuCo 2
(EEG) (b).

all datasets, ELMo falls clearly behind the worst-case baseline GloVe 50 with respect

to the median error, as does Power-Mean for the ZuCo corpora. USE, on the other

hand, obtains the lowest errors on all three datasets, tied with InferSent on Natural

Speech and ZuCo 2.

Notably, the three baseline embeddings are only minimally falling behind dedicated

sentence encoders and in some cases match them. Conversely, the contextualized

embeddings ELMo and BERT fall behind clearly, only outperforming a baseline

approach in one instance and thus presenting a strong anomaly. Skip-Thought,

which outperformed USE on eye-tracking and generally matched InferSent, now

falls moderately behind on two datasets. Finally, fastText ranks unexpectedly well,

clearly outperforming GloVe 50 for both ZuCo datasets, minimally outperforming

Skip-Thought for Natural Speech and ZuCo, and matching InferSent and USE for

ZuCo 2.

The differences in ranking clearly indicate that eye-tracking and EEG leverage dif-

ferent features of input embeddings. The presence of an intervening variable such

as the mode of recording or the text material, is made unlikely by three aspects: All

three EEG datasets exhibit a roughly similar ranking pattern (although skewed in

different ways), despite the fact that Natural Speech relies on narrative text and the

ZuCo corpora contain isolated sentences. Furthermore, for Natural Speech, brain

activity was recorded while listening to spoken language, whereas for the ZuCo

corpora, the text was read in a self-paced manner. Finally and most notably, the

textual part of the ZuCo dataset is shared between eye-tracking and EEG, yet a
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(a)

Figure 8: Distribution of sentence-level AED for Pereira (small)).

very different ranking is obtained for either modality. Furthermore, the clear differ-

ence between embeddings and random baselines strongly suggests that the observed

pattern is not arbitrary.

It is possible that a different approach to obtaining a sentence representation from

ELMo and BERT may result in a lower prediction error. However, given the middle

ranking of those approaches for eye-tracking, it is unlikely that the placement for

EEG can solely be attributed to issues relating to the representation.

I concede that gauging differences between evaluated hypotheses is particularly chal-

lenging for EEG, given the small scale of errors. Compared with eye-tracking, the

small dataset sizes lead to more pronounced range clipping when performing target

transformation, which can only be mitigated by curating EEG datasets of similar

size.

6.5.3 fMRI

Figures 8 and 9 show AED box plots for individual datasets and Table 12 in Ap-

pendix C gives an overview of average MSE values of random baselines and em-

beddings per dataset. Across datasets, the best-performing random baseline (50

dimensions) obtains an average MSE of 0.00426, while the best-perfoming embed-

dings, Skip-Thought (tied with InferSent), yield 0.00412 compared with 0.00462 -

0.00483 for the random baselines of the same dimensionality.

As previously noted, fMRI is the most direct access to brain activity and offers the

highest spatial resolution. On the other hand, the dataset sizes of this modality
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(a) (b)

Figure 9: (a) Distribution of sentence-level AEDs for Pereira (large) and (b) We-
hbe

are by far the smallest, which is likely an important factor for the results observed

here. Averaged across all three datasets, differences in averaged MSE are minimal

between datasets and whilst random baseline medians are outperformed, the margin

is generally very small. For Pereira (small), Power-Mean and ELMo show the highest

error, whilst Skip-Thought, InferSent and USE are nearly exactly tied for the lowest

error value. GloVe 50 and fastText place slightly behind, with similar median errors,

agreeing with results observed for eye-tracking.

For Pereira (large), even fewer differences are apparent, with ELMo again placing

last, followed by GloVe 50 and near identical erors for all remaining approaches.

Finally, no usable signal is obtained from the Wehbe dataset. Given that only the

smallest dataset shows a clear ranking, the evidence for this modality is not conclu-

sive. However, the ranking for Pereira (small) is plausible, with more sophisticated

approaches outperforming averaging baselines such as GloVe 50 and fastText, sug-

gesting, that the results are generally valid.

More generally, results suggest the presence of a lower bound for the error, which

is likely related to the small dataset sizes. As previously noted, final layer sizes

selected for fMRI during hyper-parameter search are unexpectedly small, indicating

that only a few coarse, high-level features can be learned. Counterintuitively, I ob-

serve lower errors and a more defined ranking for Pereira (small). This is despite

nearly identical pre-processing, with only the PCA dimensionality differing due to

the difference in dataset size. When matching the PCA dimensionality of Pereira

(small) (193), scores deteriorate further. It is possible that this is related to the
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narrative portion of the passages, given that the remaining text material is similar

to Pereia (large) and subjects overlap between the two experiments. This may also

contribute to the difference in Power-Mean performance. On the other hand, nar-

rative passages only constitutes a third of a total of 243 sentences. As such, it is

also possible that Pereira (large) has a more dominant noise component that the

present evaluation setting cannot compensate. For Wehbe, Hollenstein et al. [2019]

observed small but relatively clear differences on the word level. It therefore appears

that simple sentence-level averaging of scans deteriorates signal quality beyond use-

fulness. I do not exclude the possibility to obtain a useful respresentation using

more sophisticated means of aggregating sentence-level information.

An important aspect of raw fMRI data is its very high dimensionality. However,

for Pereira (small), even after randomly sampling 15,000 voxels (roughly a tenth

of observed voxel counts), approximately 10% voxels on average a show correlation

of more than 95% (and are discarded), which is to be expected given that fMRI

has a much more fine-grained spatial resolution than EEG and neighboring voxels

necessarily have a similar level of activation. This indicates very high information

redundancy, as supported by Hollenstein et al. [2019]’s findings that as little as 1000

randomly sampled voxels suffice to differentiate embeddings on the word level. At

the same time, the very high explained variance I observed when initially evaluating

linear PCA on the entire datasets with a fixed dimensionality of 256 (at least 94%),

as well the additional improvements observed when shifting to a kernelized approach

do suggest that the obtained vectors are a rich representation of the input data.

6.5.4 Overall embedding performance

The results described above yield a very heterogenous image on the embedding level.

As expected GloVe 50 and fastText perform at the bottom end for eye-tracking.

However, fastText only gains minimally over GloVe 50, which is surprising given

that GloVe 50 is artificially penalized due to its much lower dimensionality and I

selected the best-performing fastText model among five. Contrasting with this, fast-

Text outperforms GloVe 50 on all EEG datasets, also yielding a smaller error spread

for two datasets. For this modality, fastText is also highly competitive with sentence

encoders, slightly outperforming Skip-Thought for all datasets. For fMRI, fastText

outperforms GloVe 50 only on Pereira (large). This indicates that additional infor-

mation encoded by fastText vectors only affords a marked improvement when pre-

dicting EEG data. Power-Mean performs similarly to fastText for two eye-tracking

datasets, whilst clearly outperforming it for GECO, which may be related to the fact
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that this is a single-document dataset (novel). For EEG, Power-Mean clearly falls

behind fastText for two datasets, and even behind GloVe 50 for ZuCo2. For fMRI,

it clearly obtains the largest error on Pereira (small) and minimally underperforms

fastText on Pereira (large). This is again quite surprising, given that Power-Mean is

quite competitive with InferSent in extrinsic evaluation. The contextualized ELMo

and BERT embeddings differ particularly strongly between modalities, whilst often

obtaining rankings similar to each other. For eye-tracking, they generally assume a

middle rank, outperforming the previously discussed baselines (except for GECO),

but unexpectedly falling behind older sentence encoders. The benefit of BERT over

ELMo is in line with extrinsic findings such as presented in [Devlin et al., 2018].

Surprisingly, the approaches assume low ranks for EEG. For fMRI, only ELMo

falls behind, with BERT matching other approaches. The eye-tracking performance

indicates that the contextual information encoded by the approaches affords a mod-

est advantage when predicting this modality. The recurrent Skip-Thought and

InferSent sentence encoders achieve the lowest errors across modalities, with the

former lagging slightly behind and only falling back for the Natural speech dataset.

This underlines the usefulness of sequence-aware sentence encoding using recurrent

neural networks and indicates that these approaches yield richer representations

that are predictive of more cognitive features than any other tested approach. Fi-

nally, USE (DAN) performs inconspicously for eye-tracking, slightly underperform-

ing ELMo. For EEG however, the approach is very competitive with the recurrent

encoders, outperforming Skip-Thought and either matching or exceeding InferSent

in all instances. This continues through fMRI with a near identical median for both

Pereira datasets. Given that USE DAN is a BoW approach, its eye-tracking perfor-

mance strongly indicates that this modality benefits from the sequence information

encoded by Skip-Thought and InferSent. Conversely, USE dispels the notion that

high-dimensional representations are necessary in all instances, matching or outper-

forming the recurrent encoders for the other two modalities, despite having only a

dimensionality of 512. The similar performances of InferSent and USE (DAN) for

EEG also indicates that the usage of high quality inference data benefits disparate

approaches, especially as the otherwise competitive Skip-Thought falls behind on

two of three EEG datasets.

In summary, the findings strongly suggest that that modalities measure different

properties of embeddings, although for fMRI, the picture is presently incomplete.

Recurrent approaches to sentence encoding appear to capture a wide range of mea-

sured properties, while some BoW approaches yield comparable errors for EEG

data, but fall behind clearly with respect to eye-tracking. Notably, the role of

Power-Mean and the contextualized approaches remains unclear, as the observed
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performance partially contradicts extrinsic results, particularly for EEG and par-

tially for Pereira (small). Finally, the results observed for eye-tracking suggests that

sequential features can be learned from the input representations, which is itself an

intact sequence as it is not subject to dimensionality reduction as the other modal-

ities. However, given that the regressor is not a sequence-to-sequence model (see

[Sutskever et al., 2014]), such information can only be inferred from combinations

of individual features.

6.5.5 Fine-grained analyses

6.5.5.1 Linguistic features

Following, I consider the relationship between performance and specific linguistic

features. This is done by selecting sentences according to the the occurrence of

various grammatical dependencies, named entities, combined appearance of specific

POS tags, as well as separating sentences into three sentiment classes20. As none of

these subsets yielded clear differences with respect to the best-performing approach

of any dataset, I omit results at this point. For mean AED values and frequencies

of occurrences per selected feature, see Appendix C, Tables 14 to 22 .

The absence of differences indicates that observed errors cannot be clearly attributed

to the occurrence of specific linguistic features or the polarity of sentences. As such,

I contend that observed differences in ranking are attributable to general improve-

ments afforded by the better-performing embeddings, which can not easily be divided

into individual factors. This is intuitive, given that a feature’s contribution to the

error is confounded by the presence of all other features in a sentence. I thus omit

a detailed discussion of these findings.

6.5.5.2 Feature- and subject-level analysis

For multi-hypothesis datasets, the above graphs show the aggregate AED averaged

across features and subjects respectively. To ensure that this does not obfuscate

differences between individual hypotheses, I also consider individual hypotheses. As

again, no clear discrepancies are apparent, I show results in in Appendix C, Tables

23 through 25 for eye-tracking and Tables 26 to 28 for fMRI.

20For this purpose, the TextBlob package (https://textblob.readthedocs.io/) was used,
which yields a polarity value between -1 and 1 for a sentence. As a simple heuristic, po-
larity values between -0.25 to 0.25 were mapped to neutral (to allow for some tolerance), whilst
values below and above were mapped to negative and positive, respectively.
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For Pereira (small), subjects obtain very similar error values for the best-performing

approaches. Most subject show little variation with the exception of GloVe 50. A

single yields error values with an overall lower scale. For Pereira (small), variations

are more pronounced, however in many cases, clear preference is given to the ap-

proaches obtaining the lowest error on the averaged level. For Wehbe, the AED is

very similar across embeddings for all subjects. Between eye-tracking features, clear

differences in scale are apparent, however not between embeddings tested against

any specific feature.

In summary, an analysis of individual eye-tracking features and fMRI subjects indi-

cates that some variation is present and differences in scaling are observable between

features. This is in line with findings by Hollenstein et al. [2019], who note that more

general eye-tracking features such as total reading time and the number of fixations

encompassing the entire reading process appear to be easier to predict. However,

the averaged results neither obfuscate meaningful subject-level differences, nor dif-

ferences in how well individual approaches predict specific eye-tracking features.

6.5.5.3 Spread of MSE for different models of an approach

As a byproduct of selecting the best-performing fastText model among five, it is

possible to assess the range of MSE values between models. Figure 10 shows that for

this approach, differences in the mode of training (with or without subwords) and/or

the underlying training data lead to a greater spread of propotionally scaled error

for EEG than the other modalities. This is further evidence that EEG leverages

different features from embeddings and is more sensitive to the mode of training

and/or training data than other modalities. However at this point, it is not possible

to examine this in further detail.

6.6 Statistical significance testing

In order to determine whether the performance of embeddings is significantly dif-

ferent from that of baselines, statistical hypothesis testing is necessary.Hollenstein

et al. [2019] account for two aspects, which also apply to the present evaluation. The

first is that the likelihood of obtaining spurious results increases with the number of

inferences considered simultaneously (multiple comparison problem). The second is

that the distribution of the test data is unknown.

To account for the first issue, the authors consider the global null hypothesis, which
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Figure 10: Distribution of max-scaled MSE scores obtained using the final
parametrization of fastText for the model variants Wiki (with /without
subwords), CC (with/without subwords) and Combined (with subwords).
Boxplots are added as visual aids, actual data points in blue.

when rejected, shows that at least one alternative hypothesis is true [Dror et al.,

2017]. Following [Hollenstein et al., 2019], I apply the conservative Bonferroni cor-

rection, which corrects α (the significance level) such that this null hypothesis is

rejected if p < α
N

, with N being the number of hypotheses[Dror et al., 2017]. In the

present evaluation setting, α = 0.01 and N = 3 for EEG, corresponding to the three

datasets, N = 21 for fMRI as the total number of subjects across all fMRI datasets
21, and N = 13 for eye-tracking, for the total number of chosen features across all

eye-tracking datasets.

To account for the second issue, [Hollenstein et al., 2019] perform a two-sided

Wilcoxon signed-rank test. The test compares two matched samples (embeddings

and baselines in this case) and as its null hypothesis, differences are assumed to fol-

low an asymmetric distribution around zero. The test ranks absolute values of the

differences and propagates the sign of each difference to its rank. The test statistic is

then the sum of the signed ranks [Dror et al., 2018]. The Wilcoxon signed-rank test

only considers the rank of values and is, more generally, a sampling-free test, which

scales well on larger datasets. [Dror et al., 2018] note that the statistical power of

sampling-based tests is higher, as evaluation measures are directly considered. Such

tests compensate for the lack of distributional assumptions with re-sampling, which

is more computationally expensive but feasible for small datasets as in the present

21I reiterate that the subjects of Pereira (small) are a subset of Pereira (large). However, as the
two datasets constitute separate experimental runs, I consider the participation of a single
real-world subject in two distinct experiments to yield two hypotheses, to obtain the most
conservative estimate.
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evaluation.

Nearly all hypotheses test significant under Wilcoxon, therefore I also perform a one-

sided paired permutation test22. It estimates the distribution of an arbitrary test

statistic (here the mean) by computing ideally all possible ways of swapping pairs

between the matched samples. In practice, the number of permutations is fixed,

approximating the real distribution. For a one-sided test where the test statistic of

the first sample is expected to be higher, the difference of the test statistic between

the first and second sample is computed first. Applied to the present case, this is

the difference between the mean of the inverted error of embeddings and baselines,

as the former is expected to be higher (better) than the latter. The p-value is the

proportion of permutations where this difference is more extreme than the initially

obtained value.

Eye-Tracking EEG fMRI

GloVe 50 7/13 3/3 20/21

fastText 12/13 3/3 21/21

Power-Mean 13/13 3/3 20/21

BERT 13/13 3/3 20/21

ELMo 13/13 3/3 21/21

Skip-Thought 13/13 3/3 21/21

InferSent 13/13 3/3 21/21

USE 12/13 3/3 21/21

Table 6: Significance ratios of hypotheses per modality, as obtained through the
one-sided paired permutation test. α = 0.01 with Bonferroni correction
per modality. Best ratios are bold, second-best underlined.

The ratios of significant hypotheses per hypothesis is shown in Tables 6 (permuta-

tion), as well as 13 (Wilcoxon) in Appendix C. The results of the permutation test

corroborate the significance of hypotheses, as with the exception of GloVe 50, only

single hypotheses testing insignificant, regardless of modality.

22An intuitive animated explanation of a non-paired test can be found here: https://www.

jwilber.me/permutationtest/. The difference for the paired test is that each data point
in one sample is paired with another data point in the other
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6.7 Informal correlation analyses

6.7.1 Between datasets and modalities

To get a better understanding how rankings differ between datasets, I informally

assess Pearson’s r for every possible pair (without claim to statistical significance),

measuring linear correlation. Figure 11 shows a heatmap of correlation coefficients,

with redder values indicating higher correlation. Correlation values between 0.4 and

0.6 are considered fair to strong, with higher values being moderate to very strong,

depending on the scale (see [Akoglu, 2018]).

As expected from the box plots shown above, strong to very strong correlation is

present among eye-tracking and EEG datasets, suggesting robustness on the modal-

ity level. Correlation between EEG and fMRI is non-existent, which is expected

given the the issues described above. There is also no correlation between EEG and

eye-tracking datasets, which is in line with the clear differences in ranking observed

above and reinforces the intuition that the modalities measure different aspects.

However I note that some correlation is observed between eye-tracking and fMRI

as well asl EEG when BERT is excluded (not shown). Between EEG and fMRI,

Pereira (small) also correlates noticeably with ZuCo datasets. I omit a discussion

of fMRI correlation because of the issues decribed above.

6.7.2 Between regressions MSEs and extrinsic results

Following, I relate results aggregated on the modality level with Perone et al. [2018]’s

findings regarding downstream classification tasks, semantic relatedness and

textual similarity tasks and linguistic probing tasks. Image and caption re-

trieval tasks are excluded. Given the number of tasks, it is not possible to summarize

them at this point and I refer to Appendix B for a brief overview for each tasks,

adopted unchanged from the authors.

When treating USE variants separately, only seven embeddings match the author’s

evaluation. This is because the evaluation predates the publication of BERT and

GloVe 50 cannot be fairly compared to the 300-dimensional GloVe embeddings tested

by the authors. Due to this small overlap, an observed correlation on the task-level

may be coincidental (see e.g Aggarwal and Ranganathan [2016]). Furthermore,

InferSent and fastText cannot be exactly matched. For InferSent, the authors use the

GloVe-based variant23, whereas the fastText-based model is used here (see above).

23Correspondence with authors
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Figure 11: Heatmap of Pearsons’s r between datasets across all modalities. Corre-
lation values range from -1 to 1 (fully inverted to perfect correlation),
but the heatmap color gradient is limited to 0 to 1, to highlight positive
correlation

For fastText, the authors rely on the CC variant (subwords are implied), while the

best-performing model out of five was chosen per dataset in the present evaluation,

and marked differences were observed for EEG datasets. For ELMo, the 5.5B model

was selected in almost all instances in the present evaluation, except for one eye-

tracking source24, which allows a nearly perfect match match. I emphasize that I

make an exception for USE Transformer, which differs not only in training data

or mode, but relies on a different architecture than USE DAN and as such, is a

separate approach. Furthermore, it yields higher errors than USE DAN except for

two fMRI datasets, yet performs better than USE DAN in many and much better

in some downstream tasks across all three categories.

Due to these caveats, the relationship between the two sets of results cannot be

formally established and tested for significance. However, under the (unproven) as-

sumption that differences between approaches generally trump differences between

variations of a particular approach, I argue that a rough estimate of rank correlation

on the task level may at least serve as a starting point for subsequent evaluations,

again without claim to statistical significance. As such, I calculate Spearman’s ρ

between the inverse of the MSE aggregated on the modality level and the corre-

24I note that the 5.5B model only improves one of four features, which however dominates the
other features in scale and thus reduces the overall error.
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sponding task measure.

Figure 12 shows per-modality heatmaps for each of the three task categories, with

Pereira (small) shown separately, given the previously described issues with the other

datasets. Eye-tracking results shows overall weak to moderate correlation with many

downstream classification results and moderate to strong correlation with linguis-

tic probing tasks. As both task categories are classification tasks, this suggests

that some information leveraged from the embeddings is also used when learning

to predict sequences of eye-tracking features. On the other hand, EEG correlates

moderately to strongly with many semantic relatedness, which indicates that in pre-

dicting dimensionality-reduced concatenations of word-level EEG signals, a similar

task is learnt. Given that the rankings between the modalities appear semi-reversed

for both the classification and semantic relatedness task, this offers at least the

prospect that eye-tracking and EEG datasets provide complementary information.

If that is the case, the modalities may inform model selection and benefit cognitively

informed NLP approaches when used in tandem. Finally, no (positive) correlation

is observed for the fMRI modality, which is to be expected given that two of three

datasets provide little to no discriminating information. However, even when only

considering Pereira (small), for which the largest proportional differences between

ranks were observed, no clear tendency arises. Hence, in the present evaluation

setting, fMRI data is not predictive of extrinsic evaluation results.
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(a)

(b)

(c)

Figure 12: Heatmap of inverse MSEs of embeddings per modality, correlated with
results of downstream classification tasks (a), semantic related-
ness and textual similarity tasks (b), as well as linguistic probing
tasks (c). Correlation values range from -1 to 1 (fully inverted to per-
fect correlation), but the heatmap color gradient is limited to 0 to 1, to
highlight positive correlation.
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The observed performance of embeddings is necessarily influenced to some extent

by differences in the size and content of corpora that are the basis of the pre-trained

models, the pre-processing applied to those corpora, as well as tokenization dur-

ing test time, with some approaches requiring external tokenization (Power-Mean,

ELMo and averaging sentence baselines) while others use built-in tokenization meth-

ods of varying complexity. Furthermore, I agree with [Rücklé et al., 2018] that the

difference in dimensionality is a confounding factor when evaluating more complex

approaches against baselines. However, several observations relativize these con-

siderations. In the case of fastText, I find that models trained on substantially

more data or including subwords only show marked difference in EEG experiments.

ELMo, a more sophisticated approach which [Perone et al., 2018] find to perform

very competitively across many tasks, uses less training data for either pre-trained

model than the smallest corpus of any pre-trained fastText model. More so, In-

ferSent’s overall peak performance (both presently and in extrinsic results) is con-

trasted by the comparably small sizes of NLI corpora, whilst building on fastText

embeddings not leveraging subwords (here, in line with the author’s recommenda-

tion) or GloVe embeddings (Perone et al.)

Dimensionality is of two-fold importance in the present evaluation. On one hand,

vectors can encode more information with increasing dimensions. On the other,

when dimensionality exceeds the number of data points reserved for training, it is

likely not all salient information can be leveraged. Both effects can lead to predic-

tions that do not adequately reflect the potential of the tested approach. However,

in the present evaluation, the difference in dimensionality between the three aver-

aging baselines GloVe 50, fastText and Power-Mean (50, 300 and 3600), are not

reflected proportionally in the results. This is despite the fact that GloVe 50 is only

used to establish a lower bound and does not adequately represent the approach.

In addition, the 512-dimensional USE encoder matches or outperforms any of the

three methods across all datasets. These observations relativize the importance of

dimensionality in the present evaluation.

In contrast, a low ratio between data points and features is likely to significantly
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contribute to the error boundary observed for the fMRI datasets (although the

lower spread observed for the larger Pereira and Wehbe dataset also indicates noise

issue). However, for the remaining datasets, there is no indication that approaches

are gravely misrepresented due to data sparsity, given the low errors obtained by

InferSent and Skip-Thought, which also generate the highest-dimensional vectors in

the present evaluation (4096 and 4800 dimension, respectively).

Given these observations, a systematic bias confounding the present findings appears

unlikely. However, at least in the case of Power-Mean, ELMo and BERT, some spe-

cific issues may be present (the first of which is not evaluated [Perone et al., 2018]).

ELMo and BERT constitute anomalies, performing (very) competitively in extrinsic

evaluations, yet obtaining only a fair ranking for eye-tracking and falling behind in

various ways for EEG, as well as fMRI (ELMo only). This contrasts with findings by

Hollenstein et al. [2019], where the representation yielded by the context-insensitive

layer of ELMo obtains (relatively) low MSE values for several datasets across modal-

ities. For BERT, it is possible that a fine-tuned variant would fare better. However,

this would contradict the task-indepent approach proposed by [Søgaard, 2016]. On

the other hand, the sentence representations I evaluated for these approaches all rely

on some form of averaging, and ELMo and Power-Mean vectors also rely on con-

catenation, the latter inherently. This could indicate an issue with representations

that are composites of separately encoded vectors. Furthermore, it is also possi-

ble that the presently used MLP regressor with two hidden layers has insufficient

representational power to learn complex features of these approaches, such as the

contextual features of ELMo. Given that Skip-Thought and InferSent also encode

context, this would indicate that directly encoded, flat sentence representations are

more easily learnt. I note that in the evaluation performed by [Perone et al., 2018],

classification and linguistic probing tasks also relied on an MLP model with only a

single hidden layer, a fixed dimensionality of 50 and no dropout, yet produced com-

petitive results for ELMo. However, in the present evalation, the model predicts

continuous and relatively high dimensional representations, compared with a finite

number of discrete labels learnt for classification tasks. Lastly, it is also possible

that data sparsity affects approaches to varying degrees and a change in ranking

would be observed when training on larger datasets.
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8 Conclusion

To conclude, I answer the research questions stated at the beginning of this thesis:

1. Sentence-level cognitive signals can be predicted by sentence embedding, ob-

taining low regression MSE and AED scores. For the tested eye-tracking and

EEG datasets, AED scores of baselines do not differ in magnitude from em-

beddings, and for EEG and fMRI, proportional differences in MSE between

embeddings tend to be small. However, in nearly all instances, results are

significantly better than randomly generated baselines, as determined using a

one-sided paired permutation test.

2. & 3. The relationship between the MSE and other evaluation results is not con-

clusively established. In an informal assessment of correlation, eye-tracking

results show overall large correlation with linguistic probing tasks (another

type of intrinsic evaluation), while correlation with downstream classification

tasks are at best medium. The strongest correlations are observed between

EEG and tasks covering semantic relatedness and textual similarity. For fMRI,

no clear indication of correlation is present for any of the task categories, both

on the aggregated level, as well as for the single dataset for which ranks are

most dispersed.

4. [Perone et al., 2018] note that no single approach outperforms all others across

all four evaluated task categories. Generally, InferSent, USE and ELMo show

competitive overall performance. For InferSent, this is well reflected when pre-

dicting cognitive signals. Likewise, USE ranks highly for two of three modal-

ities. However, it is represented by the DAN variant, which obtains similar

errors to the transformer variant, while being substantially outperformed by

the latter in many of the authors tasks across categories. This indicates that

additional information encoded by the transformer variant is not leveraged in

the present evaluation. Nonetheless, the performance of InferSent and USE

substantiate the usefulness of comparably small but high-quality annotated

datasets. Finally, ELMo and BERT present anomalies, performing overall un-

favorably as well as inconsistently between datasets and modalities, despite
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strong extrinsic performance observed particularly for BERT. This indicates

limitations of the present evaluation, which could be adressed in various ways,

such as different modes of pre-processing, alternative regression models or

larger datasets.

The presented results substantiate previous findings that embeddings are predictive

of cognitive signals and that differences between approaches meaningfully relate to

the results obtained by other methods of assessing quality. As an initial cognitive

assessment of sentence embeddings, I hope to provide a reference for subsequent

evaluation of other recent and notable approaches which were presently omitted. As

more cognitive datasets become available, future research may explore more fine-

grained aspects such as the influence of text genre and the mode of consumption

(reading or listening). Furthermore, evaluations of languages other than English are

made possible by datasets such as the Russian Sentence Coprus [Laurinavichyute

et al., 2019] and the Dutch Narrative Brain Dataset [Lopopolo et al., 2018]. This can

also serve to evaluate multi-lingual approaches (e.g. Artetxe and Schwenk [2019]).

In particular, combined datasets such as the ZuCo corpora allow to eliminate im-

portant confounding variables such as differences in text, subjects and experimental

settings, further increasing the robustness of observed results. If larger datasets

for EEG and fMRI are curated, it is likely that more information can be leveraged

from high-dimensional embeddings, as this would alleviate the currently problem-

atic ratio between the number of features and data points available for training.

Finally, examining the influence of training data, model parameters, as well as the

predictiveness of specific output layers (where applicable) may help to gain a more

fine-grained understanding of individual approaches, benefitting research and prac-

tical applications alike.
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multi-layer perceptron Feedforward neural network with at least one densely con-

nected hidden layer using a nonlinear activation function.

neural regression Non-linear regression relying on a neutral network to predict

continuous scalars or vectors (as opposed to discrete values, as in classifica-

tion).
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B. Miklos, and R. Kurzweil. Efficient natural language response suggestion for

smart reply. arXiv preprint arXiv:1705.00652, 2017.

F. Hill, R. Reichart, and A. Korhonen. Simlex-999: Evaluating semantic models

with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695,

2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

74



Glossary

N. Hollenstein, J. Rotsztejn, M. Troendle, A. Pedroni, C. Zhang, and N. Langer.

Zuco, a simultaneous eeg and eye-tracking resource for natural sentence reading.

Scientific data, 5(1):1–13, 2018.

N. Hollenstein, A. de la Torre, N. Langer, and C. Zhang. Cognival: A framework

for cognitive word embedding evaluation. In Proceedings of the 23rd Conference

on Computational Natural Language Learning (CoNLL), pages 538–549, 2019.

N. Hollenstein, M. Troendle, C. Zhang, and N. Langer. Zuco 2.0: A dataset of

physiological recordings during natural reading and annotation. In Proceedings of

The 12th Language Resources and Evaluation Conference, pages 138–146, 2020.

M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 168–177, 2004.

E. B. Huey. The psychology and pedagogy of reading. The Macmillan Company,

1908.

A. G. Huth, W. A. De Heer, T. L. Griffiths, F. E. Theunissen, and J. L. Gallant.

Natural speech reveals the semantic maps that tile human cerebral cortex.

Nature, 532(7600):453–458, 2016.

M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep unordered
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Morph-fitting: Fine-tuning word vector spaces with simple language-specific

rules. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 56–68, Vancouver,

Canada, July 2017.

S. I. Wang and C. D. Manning. Baselines and bigrams: Simple, good sentiment and

topic classification. In Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 90–94, 2012.

L. Wehbe, B. Murphy, P. Talukdar, A. Fyshe, A. Ramdas, and T. Mitchell.

Simultaneously uncovering the patterns of brain regions involved in different

story reading subprocesses. PloS one, 9(11), 2014a.

79



Glossary

L. Wehbe, A. Vaswani, K. Knight, and T. Mitchell. Aligning context-based

statistical models of language with brain activity during reading. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 233–243, 2014b.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature

hashing for large scale multitask learning. In Proceedings of the 26th annual

international conference on machine learning, pages 1113–1120, 2009.

J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and

emotions in language. Language resources and evaluation, 39(2-3):165–210, 2005.

Wikipedia. Electroencephalography — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/w/index.php?title=Electroencephalography&

oldid=959739114, 2020. [Online; accessed 01-June-2020].

A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for

sentence understanding through inference. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 1112–1122, 2018.

S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144, 2016.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and

S. Fidler. Aligning books and movies: Towards story-like visual explanations by

watching movies and reading books. In Proceedings of the 2015 IEEE

international conference on computer vision, pages 19–27, 2015.

80

http://en.wikipedia.org/w/index.php?title=Electroencephalography&oldid=959739114
http://en.wikipedia.org/w/index.php?title=Electroencephalography&oldid=959739114


81



A A command-line tool for

large-scale neural evaluation of

word and sentence embeddings

and cognitive sources

The command-line tool1 developed in the context of this thesis offers functions to

download a variety of word and sentence embeddings, as well as generate baseline

sentence embeddings from word embeddings. For complex embeddings, word and

sentence representations are dynamically generated from the vocabulary and sen-

tence listings obtained from cognitive sources (datasets), and can be updated to

reflect newly added sources. Users may also import externally generated sentence

and word-level vectors. For every embedding, a set of random baselines is generated

with fixed non-linearly increasing seeds, for the purpose of significance testing. By

default, ten such baselines are generated. All word- and sentence-level cognitive

sources evaluated in this work and Hollenstein et al. [2019] can be downloaded and

imported with a single command. Word-level sources are available with fixed scaling

and pre-sampled (fMRI only), whereas sentence-level sources are provided unscaled

and unsampled and are transformed on-the-fly within the cross-validation loops.

Experiments are defined as pairs of cognitive sources and embeddings (as well as

random baselines, if associated), where the cognitive source constitutes the parent

entity, with embeddings assigned to it. The tool offers fine-grained control over

modifying grid search parameters across multiple embeddings, as well as cognitive

data sources or entire modalities. Each modification triggers the creation of a con-

figuration backup, allowing for convenient tracing of changes and restoring previous

parametrizations. A variety of convenience commands exist for managing and view-

ing properties of configurations, embeddings and cognitive source.

Experimental runs are carried out in parallel, with results being continuously read

1https://github.com/DS3Lab/cognival-cli
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and post-processed for subsequent significance testing, aggregation and reporting.

For embeddings with identical parametrization (dimensionality and hyper-parameter

grid), random embedding results can be reused to reduce overall runtime.

Significance testing relies on the Wilcoxon signed-rank test implementation provided

by the scipy2 library and (one-sided) paired permutation test implementation pro-

vided by the permute3 package. Significance test results, as well as aggregated

MSE and significance ratios can be directly viewed in the shell. Alternatively, a

comprehensive, interactive HTML report can be generated4

The HTML report contains sortable tables of aggregated results of embeddings per

modality (MSEs and significance ratios), as well as detailed results for individual

cognitive sources with respect to embeddings and random baselines, with the option

to aggregate subjects or features if present. Optionally, searchable, dynamic tables

may be added, showing the unit-level error per word for each sentence or word

evaluated for a cognitive source (and depending on the modality, feature or subject).

When including random baselines and performing multiple runs, history plots give

a convenient overview of the change of aggregated statistics such as average MSE

and significance ratio. Finally, training history plots may be added for a quick and

immediate overview over convergence times and potential overfitting issues.

2https://docs.scipy.org/doc/scipy/reference/
3https://github.com/statlab/permute
4While primarily intended for viewing in a GUI browser, the representation is compatible with

text-mode browser such as links and lynx. When a command-line browser is installed and
registered as the default browser, specifying to open the HTML will directly view the report
in the terminal after generating. This allows for immediate viewing of results on a remote
compute server accessed via SSH.
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B Overview of evaluation tasks by

Perone et al. [2018]

For convenience, the following tables briefly summarize the tasks of three of four

categories evaluated by Perone et al. [2018], as considered for correlation analy-

sis in Section 6.7.2: Downstream classification, semantic relatedness and linguistic

probing. Tables are taken directly from [Perone et al., 2018], with some formatting

adjustments. Please refer to the original article for citations to each dataset.

Dataset Task Example Output

CR Customer Reviews
[Hu and Liu, 2004]

Sentiment analysis of cus-
tomer

We tried it out Christmas
night and it worked great .

Positive

MPQA Multi-Perspective
Question and An-
swering [Wiebe
et al., 2005]

Evaluation of opinion polar-
ity

Don’t want Negative

MR Movie Reviews
[Pang and Lee,
2005]

Sentiment analysis of
movie reviews

Too slow for a younger
crowd, too shallow for an
older one .

Negative

SST-2 Stanford Sentiment
Analysis 2 [Socher
et al., 2013]

Sentiment analysis with
two classes: Negative and
Positive

Audrey Tautou has a knack
for picking roles that mag-
nify her [..]

Positive

SST-5 Stanford Sentiment
Analysis 5 [Socher
et al., 2013]

Sentiment analysis with 5
classes that range from 0
(most negative) to 5 (most
positive)

Nothing about this movie
works

0

SUBJ Subjectivity / Objec-
tivity [Pang and Lee,
2004]

Classify the sentence as
Subjective or Objective

A movie that doesn’t aim
too high , but doesn’t need
to .

Subjective

TREC Text REtrieval Con-
ference [Voorhees
and Tice, 2000]

Question and answering What are the twin cities ? LOC:city

Table 7: Downstream classification tasks description and samples.
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Dataset Task Example Output

COCO Common Objects in
Context [Lin et al.,
2014]

Image-caption retrieval
(ICR)

- A group of peo-
ple on some horses
riding through the
beach

MRPC Microsoft Research
Paraphrase Corpus
[Dolan et al., 2004]

Classify whether a pair
of sentences capture a
paraphrase relationship

The procedure is
generally performed
in the scond or third
trimester

The technique is
used during the
scond and, oc-
casionally, third
trimester of preg-
nancy

STS Semantic Text Sim-
ilarity [Cer et al.,
2017]

To measure the seman-
tic similarity between
two sentences from 0
(not similar) to 5 (very
similar)

Liquid ammonia
leak kills 15 in
Shanghai

Liquid ammonia
leak kills at least 15
in Shanghai

SICK-E Sentences Involv-
ing Compositional
Knowledge - Entail-
ment [Marelli et al.,
2014]

To measure semantics
in terms of Entailment,
Contradiction, or Neu-
tral

A man is sitting on
a chair and rubbing
his heyes

There is no man sit-
ting on a chair and
rubbing his eyes

SICK-R Sentences Involv-
ing Compositional
Knowledge - Re-
latedness [Marelli
et al., 2014]

To measure the de-
gree of semantic relat-
edness between sen-
tences from 0 (not re-
lated) to 5 (related)

A man is singing
a song and playing
the guitar

A man is opening
a package that con-
tains headphones

SNLI Stanford Natural
Language Inference
[Bowman et al.,
2015]

To measure semantics
in terms of Entailment,
Contradiction, or Neu-
tral

A small girl wearing
a pink jacked is rid-
ing on a carousel

The carousel is
moving

Table 8: Downstream semantic relatedness and textual similarity tasks descriptions
and samples.
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Task Task Example Output

BShift Bigram Shift Whether two words (to-
kens) in a sentence
have been inverted

This is my Eve
Christmas .

Inverted

CoordInv Coordination Inver-
sion

Sentences comprised
of two coordinate
clauses. Detect
whether clauses are
inverted

I returned to my
work, and Lisa
headed for her
office .

Inverted

ObjNum Object Number Number of the direct
object in the main
clause (singular and
plural)

He received the 200
points .

NNS (Plural)

SentLen Sentence Length Predict the sen-
tence length among
6 classes, which are
length intervals

I can’t wait to show
you and Mr. Taylor .

9 - 12 words

SOMO Semantic Odd Man
Out

Random noun or verb
replaced in the sen-
tence by another noun
or verb. Detect whether
the sentence has been
modified

Tomas surmised as
well .

Changed

SubjNum Subject Number Number of the subject
in the main clause (sin-
gular and plural)

If there was ever a
time to let loose ,
this vacation would
have to be it .

Singular

Tense Past Present Whether the main verb
in the sentence is in the
past or present tense

She smiled at him ,
her eye alight with
love .

Present

TopConst Top-Constituent Classification task,
where the classes
are given by the 19
most common top-
constituent sequences
in the corpus

Did he buy anything
from Troy ?

VBD NP VP

TreeDepth Depth of Syntactic
Tree

Predict the maximum
depth of the syntactic
tree of the sentence

The leaves were in
various of stages of
life .

10

WC Word Content Predict which of the
target words (among
1000) appear in the
sentence

She eyed him skep-
tically .

eyed

Table 9: Linguistic probing tasks description and samples [Conneau et al., 2018]
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C Tables

For all tables showing error values, lowest (best) values are formatted bold. For

tables 10 to 12, this corresponds to the column minimum and to the row minimum

for all other tables.

Tables 10 to 12 show the average MSE values per dataset and approach/corresponding

baseline. For fMRI, MSE values are averaged among subjects and for eye-tracking,

averaging was performed across features. The tables complement the box plots in

chapter 6, which visualize median, spread and extrema of error values. Note that

the usefulness of the averaged MSE value is limited for embeddings and datasets

with large inter-quantile ranges (IQRs).

Note: Tables 29 onward are sorted alphabetically along both axis.

Dundee GECO ZuCo

Baseline Embed. Baseline Embed. Baseline Embed.

GloVe (50) 0.023828 0.022485 0.009411 0.007934 0.019646 0.019532

fastText 0.024958 0.021470 0.009602 0.008360 0.020103 0.018732

Power-Mean 0.026367 0.019169 0.010528 0.006399 0.021397 0.015941

ELMo 0.026335 0.016187 0.011704 0.005789 0.021421 0.016088

BERT 0.026819 0.015772 0.010747 0.005652 0.021850 0.014821

Skip-Thought 0.026618 0.015820 0.010694 0.005418 0.021515 0.014920

InferSent 0.026580 0.015807 0.011042 0.005706 0.021306 0.014484

USE 0.026081 0.018470 0.009938 0.009938 0.020679 0.017636

Table 10: Average regression MSE for eye-tracking experiments, averaged across five
folds and five (Dundee) and four (GECO, ZuCo) eye-tracking features
respectively.

Tables 14 to 22 show the MAE for the (non-exclusive) proportions of sentences con-

taining at least one occurrence of a specific linguistic feature. All features have been

obtained through the largest currently available spaCy model for English1. Features

and corresponding labels are: 1) grammatical dependencies adjectival clause (acl),

1https://spacy.io/models/en#en_core_web_lg
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Natural Speech ZuCo ZuCo 2

Baseline Embed. Baseline Embed. Baseline Embed.

GloVe (50) 0.000458 0.000163 0.000300 0.000036 0.000458 0.000110

fastText 0.000183 0.000169 0.000100 0.000028 0.002153 0.000094

Power-Mean 0.000258 0.000164 0.000136 0.000031 0.000383 0.000112

ELMo 0.000198 0.000173 0.000071 0.000031 0.000226 0.000114

BERT 0.000193 0.000181 0.000055 0.000044 0.000151 0.000106

Skip-Thought 0.000305 0.000166 0.000167 0.000027 0.000743 0.000095

InferSent 0.000492 0.000160 0.000064 0.000026 0.001105 0.000094

USE 0.000186 0.000161 0.000047 0.000024 0.000465 0.000094

Table 11: Average regression MSE for EEG experiments, averaged across five folds

Pereira (243) Pereira (384) Wehbe

Baseline Embed. Baseline Embed. Baseline Embed.

GloVe (50) 0.000579 0.001018 0.000830 0.000769 0.010000 0.009877

fastText 0.000415 0.000384 0.001010 0.000747 0.010263 0.009838

Power-Mean 0.000942 0.000513 0.000798 0.000750 0.009867 0.009841

BERT 0.000571 0.001825 0.001026 0.000769 0.010079 0.009839

ELMo 0.000597 0.000438 0.000880 0.000825 0.010255 0.010002

Skip-Thought 0.000504 0.000371 0.000925 0.000747 0.010891 0.009833

InferSent 0.000517 0.000371 0.000905 0.000747 0.010965 0.009834

USE 0.001117 0.000375 0.001018 0.000749 0.010957 0.009837

Table 12: Average regression MSE for fMRI experiments, averaged across five folds
and five (Pereira small) and eight (Pereira large, Wehbe) subjects respec-
tively.

compound, clausal subject (csubj), negation (neg), preprositional modifier (prepr)

and relative clause (relcl); 2) named entity types geopolitical entity (GPE), location

(LOC), nationalities and religious/political group (NORP), organisation (ORG) and

person (PER), occurrence of three or more (proper) nouns (POS 3+ NN), combined

occurrence of a (proper) noun, adjective and main verb (POS NN & J & V), as well

as three-way sentiment. Features occurring in less than ten sentences are omitted.

Power-Mean and Skip-Thought are abbreviated as PM and ST, respectively.

Tables 29 to 33 show the final parameter grid relating to batch size (B) and layer size

(L) (other parameters remain fixed, with the exception of number of epochs, which

was reduced from 100 to 50, with the latter being sufficient to obtain convergence.

See section TODO). Layer sizes correspond to both hidden layers used in the model

specification. Eye-tracking features are abbreviated as follows.
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Eye-Tracking EEG fMRI

GloVe 10/13 3/3 21/21

fastText 12/13 3/3 21/21

ELMo 13/13 3/3 21/21

BERT 13/13 3/3 21/21

Skip-Thought 13/13 3/3 21/21

InferSent 13/13 3/3 21/21

Power-Mean 13/13 3/3 21/21

USE 13/13 3/3 21/21

Table 13: Significance ratios of hypotheses per modality, as obtained through the
two-tailed Wilcoxon signed-rank test. α = 0.01 with Bonferroni correction
per modality.

FFD: first fixation duration, GD: gaze duration, FP: fixation probability, MFD:

mean fixation duration, TFD: total fixation duration, TRT: total reading time and

nFix: number of fixations.
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count BERT ELMo fastText GloVe Infersent PM ST USE

Dep. acl 372 0.081 0.083 0.092 0.093 0.08 0.088 0.078 0.084

Dep. compound 1286 0.074 0.077 0.087 0.088 0.073 0.082 0.071 0.078

Dep. csubj 43 0.073 0.075 0.082 0.083 0.073 0.08 0.073 0.076

Dep. neg 388 0.069 0.071 0.081 0.083 0.067 0.078 0.066 0.073

Dep. prep 2017 0.069 0.072 0.081 0.083 0.067 0.077 0.066 0.073

Dep. relcl 610 0.082 0.084 0.093 0.093 0.081 0.089 0.079 0.085

NE GPE 295 0.079 0.081 0.091 0.091 0.077 0.086 0.076 0.082

NE LOC 65 0.087 0.088 0.099 0.1 0.086 0.094 0.084 0.09

NE NORP 247 0.083 0.085 0.095 0.095 0.082 0.09 0.08 0.087

NE ORG 419 0.079 0.082 0.092 0.092 0.077 0.086 0.075 0.082

NE PERSON 555 0.076 0.079 0.088 0.089 0.075 0.084 0.074 0.081

POS 3+ NN 811 0.082 0.084 0.093 0.093 0.081 0.088 0.079 0.085

POS NN & J & V 1864 0.07 0.073 0.083 0.084 0.068 0.078 0.067 0.074

Sentiment (neg.) 124 0.061 0.064 0.075 0.077 0.058 0.071 0.058 0.066

Sentiment (neut.) 1838 0.066 0.069 0.079 0.082 0.064 0.076 0.063 0.07

Sentiment (pos.) 404 0.066 0.068 0.077 0.079 0.063 0.074 0.062 0.069

Table 14: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the eye-tracking dataset Dundee

count BERT ELMo fastText GloVe Infersent PM ST USE

Dep. acl 198 0.058 0.058 0.066 0.065 0.061 0.061 0.054 0.061

Dep. compound 1117 0.045 0.046 0.054 0.052 0.046 0.048 0.042 0.049

Dep. csubj 22 0.064 0.062 0.072 0.068 0.065 0.064 0.058 0.066

Dep. neg 782 0.037 0.038 0.045 0.043 0.037 0.038 0.034 0.041

Dep. prep 2700 0.041 0.042 0.048 0.047 0.042 0.043 0.038 0.044

Dep. relcl 453 0.056 0.057 0.065 0.063 0.058 0.059 0.052 0.06

NE GPE 44 0.049 0.05 0.058 0.056 0.05 0.051 0.046 0.052

NE LOC 10 0.044 0.046 0.054 0.05 0.049 0.046 0.043 0.048

NE NORP 28 0.048 0.048 0.056 0.055 0.05 0.048 0.044 0.051

NE ORG 158 0.045 0.045 0.053 0.053 0.046 0.047 0.042 0.049

NE PERSON 1527 0.04 0.041 0.048 0.046 0.04 0.041 0.037 0.044

POS 3+ NN 321 0.061 0.062 0.071 0.069 0.064 0.066 0.058 0.066

POS NN & J & V 1891 0.044 0.045 0.052 0.051 0.045 0.046 0.041 0.047

Sentiment (neg.) 351 0.032 0.034 0.04 0.039 0.032 0.034 0.03 0.036

Sentiment (neut.) 4048 0.032 0.033 0.04 0.038 0.031 0.032 0.029 0.036

Sentiment (pos.) 674 0.035 0.037 0.043 0.041 0.035 0.036 0.032 0.039

Table 15: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the eye-tracking dataset GECO
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count BERT ELMo fastText GloVe Infersent PM ST USE

Dep. acl 93 0.083 0.085 0.092 0.094 0.08 0.092 0.08 0.087

Dep. compound 448 0.072 0.076 0.081 0.083 0.068 0.078 0.07 0.077

Dep. neg 58 0.065 0.067 0.074 0.076 0.062 0.07 0.063 0.071

Dep. prep 599 0.068 0.071 0.077 0.079 0.064 0.074 0.066 0.073

Dep. relcl 160 0.081 0.084 0.089 0.091 0.079 0.088 0.08 0.086

NE GPE 153 0.075 0.081 0.085 0.087 0.071 0.082 0.074 0.081

NE LOC 12 0.097 0.104 0.114 0.115 0.097 0.107 0.099 0.111

NE NORP 69 0.077 0.08 0.088 0.09 0.073 0.085 0.077 0.085

NE ORG 182 0.076 0.081 0.085 0.088 0.072 0.081 0.074 0.082

NE PERSON 314 0.074 0.079 0.084 0.085 0.071 0.081 0.073 0.08

POS 3+ NN 227 0.081 0.084 0.089 0.09 0.077 0.087 0.079 0.085

POS NN & J & V 485 0.069 0.071 0.077 0.079 0.065 0.075 0.067 0.074

Sentiment (neg.) 44 0.056 0.056 0.065 0.07 0.052 0.06 0.053 0.061

Sentiment (neut.) 522 0.067 0.07 0.077 0.079 0.063 0.073 0.065 0.072

Sentiment (pos.) 134 0.065 0.067 0.074 0.078 0.06 0.072 0.062 0.07

Table 16: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the eye-tracking dataset ZuCo

count BERT ELMo fastText GloVe Infersent PM ST USE

Dep. acl 25 0.0059 0.0055 0.0043 0.0043 0.0041 0.0044 0.0046 0.0041

Dep. compound 113 0.0073 0.0069 0.006 0.0058 0.0056 0.0059 0.0061 0.0057

Dep. neg 84 0.0057 0.0052 0.0044 0.0045 0.0041 0.0044 0.0046 0.0041

Dep. prep 391 0.0062 0.0057 0.0048 0.0047 0.0045 0.0048 0.005 0.0045

Dep. relcl 118 0.0073 0.0069 0.0059 0.0059 0.0057 0.006 0.0062 0.0057

NE GPE 12 0.0046 0.0042 0.0032 0.0031 0.0029 0.0032 0.0035 0.003

NE LOC 10 0.0054 0.0052 0.0041 0.0042 0.0039 0.0042 0.0043 0.0039

NE PERSON 11 0.0048 0.0043 0.0034 0.0034 0.0031 0.0035 0.0037 0.0043

POS 3+ NN 21 0.0056 0.0053 0.0042 0.0041 0.004 0.0043 0.0045 0.004

POS NN & J & V 368 0.0061 0.0056 0.0047 0.0046 0.0044 0.0047 0.0049 0.0044

Sentiment (neg.) 27 0.0053 0.0048 0.0038 0.0039 0.0036 0.0039 0.0041 0.0036

Sentiment (neut.) 551 0.0056 0.005 0.0042 0.0041 0.0038 0.0042 0.0044 0.0038

Sentiment (pos.) 117 0.0052 0.0046 0.0039 0.0037 0.0035 0.0038 0.004 0.0036

Table 17: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the EEG dataset Natural Speech
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count BERT ELMo fastText GloVe Infersent PM ST USE

Dep. acl 84 0.005 0.004 0.0034 0.0043 0.0033 0.0039 0.0035 0.0032

Dep. compound 448 0.0047 0.0035 0.0031 0.0036 0.0029 0.0035 0.003 0.0028

Dep. neg 58 0.005 0.004 0.0033 0.004 0.0032 0.0039 0.0033 0.0032

Dep. prep 594 0.0046 0.0035 0.003 0.0036 0.0028 0.0035 0.0029 0.0027

Dep. relcl 159 0.0049 0.0038 0.0033 0.004 0.0031 0.0037 0.0033 0.0031

NE GPE 153 0.0047 0.0034 0.003 0.0036 0.0029 0.0035 0.003 0.0028

NE LOC 13 0.0049 0.0037 0.0033 0.0037 0.0032 0.0039 0.0032 0.0031

NE NORP 69 0.0048 0.0035 0.0031 0.0037 0.0029 0.0035 0.0031 0.0028

NE ORG 176 0.0048 0.0036 0.0031 0.0038 0.0029 0.0036 0.003 0.0028

NE PERSON 314 0.0047 0.0035 0.0032 0.0037 0.0029 0.0036 0.003 0.0028

POS 3+ NN 226 0.0048 0.0037 0.0031 0.0038 0.003 0.0036 0.0031 0.0029

POS NN & J & V 484 0.0046 0.0035 0.0029 0.0036 0.0028 0.0034 0.0029 0.0027

Sentiment (neg.) 44 0.0044 0.0034 0.0027 0.0033 0.0026 0.0033 0.0027 0.0025

Sentiment (neut.) 522 0.0046 0.0034 0.003 0.0035 0.0028 0.0035 0.0029 0.0027

Sentiment (pos.) 134 0.0046 0.0035 0.0029 0.0036 0.0028 0.0035 0.0028 0.0027

Table 18: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the EEG dataset ZuCo

label count BERT ELMo fastText GloVe Infersent PM ST USE

Dep. acl 34 0.0067 0.0071 0.006 0.0066 0.006 0.0071 0.0061 0.006

Dep. compound 263 0.0067 0.007 0.0059 0.0067 0.0059 0.0071 0.006 0.0059

Dep. neg 17 0.0068 0.0073 0.0061 0.0071 0.0061 0.0075 0.0062 0.0061

Dep. prep 307 0.0067 0.007 0.0059 0.0067 0.0059 0.0071 0.006 0.0059

Dep. relcl 56 0.0069 0.0072 0.0061 0.0065 0.0061 0.0071 0.0062 0.0061

NE GPE 94 0.0066 0.0069 0.0058 0.0068 0.0058 0.007 0.0059 0.0058

NE LOC 11 0.0069 0.0072 0.0061 0.0067 0.0062 0.007 0.0063 0.0062

NE NORP 52 0.0069 0.0072 0.0061 0.007 0.0062 0.0074 0.0062 0.0062

NE ORG 103 0.0067 0.0071 0.0059 0.0067 0.0059 0.0071 0.006 0.0059

NE PERSON 228 0.0068 0.0071 0.006 0.0068 0.006 0.0071 0.0061 0.006

POS 3+ NN 133 0.0068 0.0071 0.006 0.0067 0.006 0.0071 0.0061 0.006

POS NN & J & V 222 0.0068 0.0071 0.006 0.0068 0.006 0.0072 0.0061 0.006

Sentiment (neut.) 301 0.0067 0.007 0.0059 0.0067 0.0059 0.007 0.006 0.0059

Sentiment (pos.) 36 0.0064 0.0069 0.0058 0.0066 0.0058 0.0071 0.0059 0.0058

Table 19: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the EEG dataset ZuCo 2
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count BERT ELMo fastText GloVe InferSent PM ST USE

Dep. acl 12 0.0092 0.012 0.0099 0.0102 0.0092 0.0142 0.0092 0.0092

Dep. compound 92 0.0098 0.0123 0.0101 0.0112 0.0094 0.0144 0.0094 0.0095

Dep. neg 17 0.0081 0.0111 0.0088 0.0087 0.0081 0.0132 0.0081 0.0081

Dep. prep 192 0.0111 0.0124 0.0102 0.0116 0.0095 0.0145 0.0095 0.0096

Dep. relcl 27 0.0107 0.0124 0.0101 0.01 0.0094 0.0145 0.0094 0.0094

POS NN & J & V 180 0.0106 0.0122 0.01 0.0108 0.0093 0.0143 0.0093 0.0094

Sentiment (neg.) 16 0.0094 0.0122 0.0101 0.0131 0.0094 0.0144 0.0094 0.0095

Sentiment (neut.) 184 0.0099 0.0123 0.0101 0.0113 0.0094 0.0144 0.0094 0.0095

Sentiment (pos.) 43 0.0138 0.0116 0.0092 0.0095 0.0086 0.0137 0.0086 0.0088

Table 20: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the fMRI dataset Pereira (small)

count BERT ELMo fastText GloVe InferSent PM ST USE

Dep. acl 45 0.0118 0.0147 0.0117 0.0125 0.0117 0.0119 0.0117 0.0118

Dep. compound 82 0.0131 0.016 0.013 0.0138 0.013 0.0132 0.013 0.013

Dep. prep 299 0.0115 0.0144 0.0113 0.0122 0.0113 0.0114 0.0113 0.0113

Dep. relcl 58 0.0107 0.0137 0.0106 0.0114 0.0106 0.0108 0.0106 0.0106

NE ORG 22 0.0105 0.0136 0.0104 0.0113 0.0104 0.0106 0.0104 0.0104

POS NN & J & V 228 0.0112 0.0141 0.011 0.0119 0.011 0.0112 0.011 0.011

Sentiment (neg.) 24 0.0115 0.0145 0.0115 0.0123 0.0114 0.0116 0.0114 0.0115

Sentiment (neut.) 310 0.0115 0.0144 0.0114 0.0122 0.0113 0.0115 0.0113 0.0114

Sentiment (pos.) 45 0.0103 0.0134 0.0103 0.0111 0.0102 0.0104 0.0102 0.0103

Table 21: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the fMRI dataset Pereira (large)

count BERT ELMo fastText GloVe InferSent PM ST USE

Dep. acl 14 0.0589 0.06 0.0588 0.0589 0.0588 0.0589 0.0588 0.0588

Dep. compound 84 0.0648 0.0658 0.0648 0.065 0.0648 0.0648 0.0648 0.0648

Dep. neg 64 0.0667 0.0675 0.0667 0.0668 0.0666 0.0667 0.0666 0.0667

Dep. prep 219 0.0643 0.0652 0.0642 0.0644 0.0642 0.0642 0.0642 0.0642

Dep. relcl 44 0.0582 0.0594 0.0582 0.0583 0.0582 0.0583 0.0582 0.0582

NE ORG 30 0.0675 0.0684 0.0675 0.0676 0.0674 0.0675 0.0674 0.0674

NE PERSON 197 0.0679 0.0688 0.0679 0.068 0.0679 0.0679 0.0679 0.0679

POS 3+ NN 40 0.0571 0.0582 0.057 0.0571 0.057 0.0571 0.057 0.057

POS NN & J & V 139 0.0634 0.0644 0.0634 0.0635 0.0634 0.0634 0.0634 0.0634

Sentiment (neg.) 24 0.0663 0.0672 0.0663 0.0665 0.0663 0.0663 0.0663 0.0663

Sentiment (neut.) 317 0.0727 0.0735 0.0727 0.0728 0.0726 0.0727 0.0726 0.0726

Sentiment (pos.) 35 0.068 0.0689 0.068 0.0682 0.068 0.068 0.068 0.068

Table 22: Mean of the absolute error averaged across dimensions (MAED), per ling.
feature, for the fMRI dataset Wehbe
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BERT ELMo fastText GloVe 50 InferSent PM ST USE

FFD 0.0697 0.0752 0.0857 0.0881 0.0685 0.084 0.0681 0.0726

FP 0.0949 0.1028 0.123 0.1253 0.0901 0.112 0.0929 0.1018

MFD 0.0713 0.0771 0.0858 0.0883 0.0699 0.0805 0.068 0.0741

nFix 0.0493 0.0506 0.0537 0.0559 0.0453 0.0529 0.044 0.0551

TFD/TRT 0.0437 0.0426 0.0467 0.0481 0.0422 0.0457 0.0397 0.045

Table 23: Mean AED per feature for Eye-Tracking/Dundee

BERT ELMo fastText GloVe 50 InferSent PM ST USE

FFD 0.0424 0.0437 0.057 0.0531 0.0425 0.0448 0.039 0.0442

GD 0.0285 0.0302 0.0373 0.034 0.0291 0.0306 0.0279 0.0406

nFix 0.0305 0.0311 0.0406 0.0362 0.0273 0.0286 0.0259 0.0309

TRT 0.0275 0.0288 0.0344 0.0314 0.0265 0.0274 0.0241 0.0295

Table 24: Mean AED per feature for Eye-Tracking/GECO

BERT ELMo fastText GloVe 50 InferSent PM ST USE

FFD 0.0838 0.0912 0.1031 0.107 0.0782 0.0967 0.0805 0.0898

GD 0.0622 0.0653 0.071 0.072 0.0582 0.0677 0.0581 0.0678

nFix 0.06 0.0607 0.0665 0.0693 0.0558 0.0646 0.0607 0.0659

TRT 0.0573 0.061 0.0634 0.0648 0.0541 0.0602 0.0544 0.0618

Table 25: Mean AED per feature for Eye-Tracking/ZuCo

BERT ELMo fastText GloVe InferSent PM ST USE

M02 0.0093 0.0119 0.0099 0.0095 0.0093 0.0141 0.0093 0.0094

M04 0.0106 0.0135 0.0112 0.0173 0.0106 0.0153 0.0106 0.0108

M07 0.0154 0.0135 0.0114 0.0123 0.0107 0.0157 0.0107 0.0108

M15 0.0095 0.0123 0.0101 0.0098 0.0095 0.0144 0.0095 0.0094

P01 0.0079 0.0095 0.0071 0.0064 0.0063 0.012 0.0063 0.0063

Table 26: Mean AED per subject for fMRI/Pereira (small) (original subject IDs)
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BERT ELMo fastText GloVe InferSent PM ST USE

M02 0.0079 0.0111 0.0078 0.0088 0.0077 0.0079 0.0077 0.0077

M04 0.0091 0.0122 0.0091 0.0099 0.0091 0.0093 0.0091 0.0092

M07 0.0108 0.0134 0.0104 0.0111 0.0103 0.0105 0.0103 0.0103

M08 0.0149 0.0177 0.0149 0.0159 0.0149 0.015 0.0149 0.0149

M09 0.0123 0.0151 0.0122 0.013 0.0121 0.0123 0.0121 0.0122

M14 0.0188 0.0212 0.0188 0.0194 0.0187 0.0188 0.0187 0.0188

M15 0.0103 0.0134 0.0102 0.0109 0.0102 0.0103 0.0102 0.0102

P01 0.0068 0.0102 0.0067 0.008 0.0067 0.0069 0.0067 0.0068

Table 27: Mean AED per subject for fMRI/Pereira (large) (original subject IDs)

BERT ELMo fastText GloVe InferSent PM ST USE

1 0.0761 0.077 0.0761 0.0764 0.0761 0.0761 0.0761 0.0761

2 0.075 0.0758 0.075 0.0752 0.075 0.075 0.075 0.075

3 0.0703 0.0711 0.0702 0.0704 0.0702 0.0702 0.0702 0.0702

4 0.0715 0.0723 0.0714 0.0716 0.0714 0.0714 0.0714 0.0714

5 0.071 0.0717 0.0709 0.0711 0.0709 0.071 0.0709 0.0709

6 0.0667 0.0675 0.0667 0.0668 0.0667 0.0667 0.0667 0.0667

7 0.0758 0.0766 0.0758 0.076 0.0758 0.0758 0.0758 0.0758

8 0.0679 0.0686 0.0679 0.068 0.0678 0.0679 0.0678 0.0678

Table 28: Mean AED per subject for fMRI/Wehbe)

FFD FP MFD TFD nFix

B L B L B L B L B L

BERT 32 912 32 912 32 912 32 912 32 768

ELMo 32 768 32 1536 32 768 16 512 16 2764

fastText (Wiki Sub.) 64 270 32 270 64 270 64 270 32 270

GloVe 50 16 45 16 45 16 45 16 25 16 45

InferSent 32 2048 64 3072 32 3072 32 3072 32 2048

Power-Mean 32 1800 32 1800 32 1800 16 900 32 1800

Skip-Thoughts 32 3600 32 2400 32 2400 32 2400 64 3600

USE (DAN) 16 461 32 461 32 461 16 461 128 7

Table 29: Final parametrization of batch and layer sizes of individual feature exper-
iments of the Dundee eye-tracking dataset
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FFD GD TRT nFix

B L B L B L B L

BERT 16 768 16 912 16 912 16 912

ELMo 16 768 32 768 32 768 16 768

fastText (CC Sub.) 16 270 32 270 32 270 32 270

GloVe 50 32 38 32 38 32 38 32 38

InferSent 32 2048 32 2048 32 2048 32 2048

Power-Mean 32 2700 32 2700 32 2700 32 2700

Skip-Thoughts 32 3600 32 3600 32 3600 16 3600

USE (DAN) 16 461 32 461 32 461 32 461

Table 30: Final parametrization of batch and layer sizes of individual feature exper-
iments of the ZuCo eye-tracking dataset

FFD GD TRT nFix

B L B L B L B L

BERT 32 912 32 768 32 912 32 912

ELMo 16 2304 16 2304 16 2765 16 2765

fastText (CC) 128 270 32 270 64 225 64 270

GloVe 50 16 45 16 45 16 45 16 45

InferSent 32 3072 32 3072 32 3072 32 3072

Power-Mean 16 900 16 900 16 450 16 450

Skip-Thoughts 128 2400 64 2400 128 2400 128 2400

USE (DAN) 16 461 128 7 64 461 64 461

Table 31: Final parametrization of batch and layer sizes of individual feature exper-
iments of the GECO eye-tracking dataset

Natural speech ZuCo ZuCo2

B L B L B L

BERT 16 256 32 256 32 256

ELMo 32 384 32 204/307 16 204

fastText (Wiki Sub.) 32 150 32 75 32 30

GloVe 50 32 13 32 13 16 13

InferSent 32 103 32 410 32 103

Power-Mean 32 180 32 180 16 135

Skip-Thoughts 32 180 32 180 32 240

USE (DAN) 32 256 32 256 32 256

Table 32: Final parametrization of batch and layer sizes of EEG experiments
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Pereira (small) Pereira (large) Wehbe

Batch Layer Batch Layer Batch Layer

BERT 8 7 16 14 16 14

ELMo 8 768 8 307 8 192

fastText 8 225 (CC) 16 15 (Wiki sub.) 32 225 (CC)

GloVe 50 8 7 8 13 16 38

InferSent 8 7 16 7 32 13

Power-Mean 8 1800 8 6 8 6

Skip-Thoughts 8 7 16 7 32 15

USE (DAN) 16 7 (16) (14) (32) (13)

USE (Transformer) (16) (13) 16 13 32 26

Table 33: Final parametrization of batch and layer sizes of fMRI experiments. The
best-performing USE model per dataset is chosen (values without paren-
theses)
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