University of

Institute of Computational Linguistics

Machine Translation

9 RNNs as Language Models
Tensorflow

Mathias Müller Samuel Läubli

Please download the slider from OLAT.

Last time

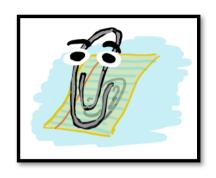
Unfolding / unrolling RN

"cauliflower" —> \begin{align*} -1.7 \\ 3.7 \\ \\ 8 \\ 4.7 \\ 0.01 \\ -1.32 \end{align*}

Elman ("Vanilla") RNN

$$N_{+} = RNN(x_{+}, h_{+-1})$$

RNNs are just very deep rs **share weights**


$$\begin{bmatrix} 8 \\ \end{bmatrix} \rightarrow \sigma_{h}(W_{\times_{1}} + Uh_{o}) \rightarrow \sigma_{h}(W_{\times_{2}} + Uh_{1}) \rightarrow \sigma_{h}(W_{\times_{3}} + Uh_{2})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Topics of today

Tensorflow

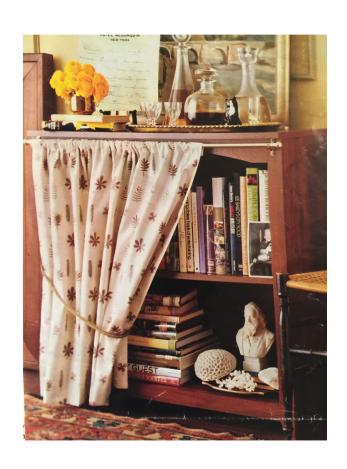
RNN Language Models

 Romanesco: our RNNLM built with Tensorflow

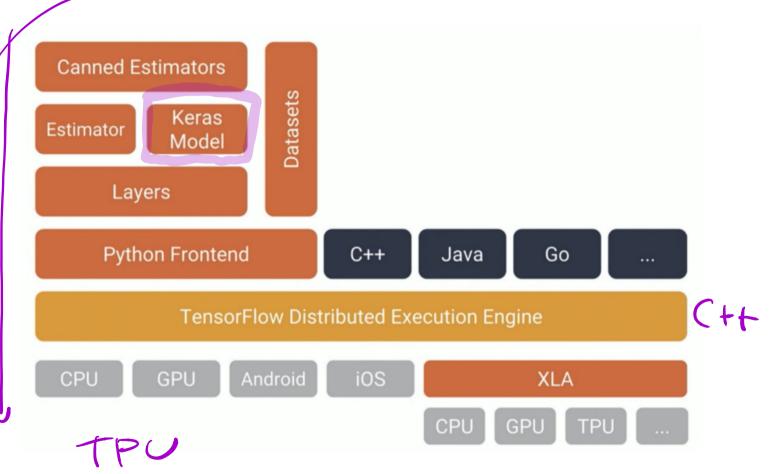
Institute of Computational Linguistics

Tensorflow

Tensorflow


An open-source Deep Learning library

Development directed by Google


Tensorflow ≈ Numpy ++ → +++

+ X platform + autor - differentiation

Why would we need a library like TF?

Tensorflow + "complexity"

Do you know Colab?

Go to

https://colab.research.google.com/drive/1 04SOHE0myVlxGqpHDPkaTG9TR4v-1apF

- Click "File", "Save a copy in Drive"
- Click "Connect" in the upper right corner

Summary Tensorflow Notebook

- TF has auto differentiation
- TF has symbolic graphs, with "variables" and "ops"
- Deferred execution vs. eager execution
- Custom coding possible on many levels
- Keras is available from within TF, high level of abstraction (this is where you should start)

Doing some research about Tensorflow

 How to use a fully-connected feed-forward layer?

 How to use cross-entropy as a loss function, a) in tf.keras, b) custom TF code?

Are RNNs implemented in TF?

Summary Tensorflow

 Popular DL library with auto-differentiation, distributed training, bindings for many languages etc. etc.

 Numpy++: many numpy operations have the same name and behaviour in TF

 Symbolic graphs: graphs are populated with abstract variables, only later actual values are filled in

Institute of Computational Linguistics

RNN Language Models

RNN Language Models

- Review: what language models do:
 - given some prefix text, predict the next word

given some text, compute its probability

How to use an RNN as a language model

Vocalo:	(D)	one-hot
"h"	1	
"e"	2	
" L"	3	
"O"	4	

C) Andrej Karpathy

How to use an RNN as a language model

output
$$\begin{bmatrix} 1.0 \\ 2.2 \\ -3.0 \\ 4.1 \end{bmatrix}$$
 $\begin{bmatrix} 0.5 \\ 0.3 \\ -1.0 \\ 1.2 \end{bmatrix}$ $\begin{bmatrix} 0.1 \\ 0.5 \\ -2.1 \\ -3.0 \\ -3.1 \end{bmatrix}$ $\begin{bmatrix} 0.2 \\ -3.5 \\ -2.2 \end{bmatrix}$ $\begin{bmatrix} 0.3 \\ -0.1 \\ -0.3 \end{bmatrix}$ $\begin{bmatrix} 0.3 \\ -0.1 \\ 0.3 \end{bmatrix}$ $\begin{bmatrix} 0.3 \\ -0.3 \\ -0.3 \end{bmatrix}$ $\begin{bmatrix} 0.3 \\ -0.3 \\ -0.3 \end{bmatrix}$ $\begin{bmatrix} 0.4 \\ -0.3 \\ -0.3 \end{bmatrix}$ $\begin{bmatrix} 0.8 \\ -0.3 \end{bmatrix}$ $\begin{bmatrix} 0.8 \\ -0.01 \\ 3 \end{bmatrix}$

Romanesco

 Simple (= educational!) RNNLM written in Tensorflow

Main author: Samuel Läubli

Serves as basis for Exercise 4

https://github.com/ZurichNLP/romanesco

Supported actions

Train a model

romanesco train data.txt

Score text

cat input.txt romanerco score

Generate text

romanesco sample 50

Vocabulary


```
>>> from romanesco.vocab import Vocabulary
>>> my_vocab = Vocabulary()
>>> my vocab.build('train.txt', max size=10000) # 10'000
>>> my_vocab.size
7982
>>> my_vocab.get_id('the')
>>> my_vocab.get_words([9, 832, 6, 1036, 7, 5607, 12])
['I', 'love', 'the', 'people', 'of', 'Iowa', '.']
```

Reading text: steps

shakerpeare. txt

- Replace '\n' with '<eos>'
 Split at whitespaces to make entire input a giant list of symbols
- List of symbols list of vocab IDs
 List of vocab IDs Batches

 - Each batch contains batch size sequences of length NUM_STEPS

Creating batches from list of vocab IDs

CF 10Wa

def iterate(raw_data, batch_size: int, num_steps: int):

[4,6,8]

data_len = len(raw_data)
num_batches = data_len // batch_size

data = raw_data[0 : batch_size * num_batches]
data = np.reshape(data, [batch_size, num_batches])

num batches in epoch = (num batches - 1) // num steps

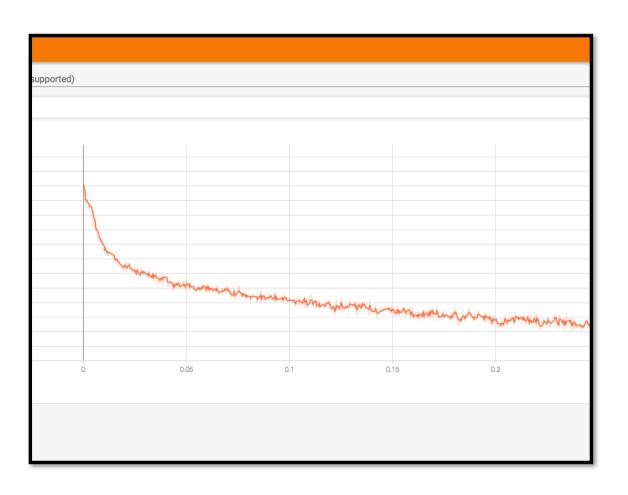
for i in range(num_batches_in_epoch):

s = i * num_steps # start

e = s + num_steps # end

yield data[:, s : e], data[:, s + 1 : e + 1]

Computation graph definition


https://github.com/ZurichNLP/romanesco/blob/master/romanesco/compgraph.py

Training

https://github.com/ZurichNLP/romanesco/blob/master/romanesco/train.py

Tensorboard in your local browser

next: lets try romanesco!

Summary

 Tensorflow: DL Library that greatly facilitates training and using NN models

 RNNLMs: Recurrent NNs can be used as language models

 Romanesco: educational example of an RNNLM written in Tensorflow

Further Reading / Links

 Colab, run Jupyter notebooks in the cloud with 1 free GPU and tensorflow pre-installed:

https://colab.research.google.com/

· Romanesco:

https://github.com/ZurichNLP/romanesco

- Good basic tf.keras tutorials: https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/index.md
- Out of hundreds, one useful TF tutorial / code collection: https://github.com/aymericdamien/TensorFlow-Examples
- Good tutorial with a likeable presenter, Josh Gordon: https://www.youtube.com/watch?v=tYYVSEHq-io

Next time

Termin	Thema	
19.02.	Einführung; regelbasierte vs. datengetriebene Modelle	
26.02.	Evaluation	
05.03.	Trainingsdaten, Vor- und Nachverarbeitung	
12.03.	N-Gramm-Sprachmodelle, statistische Maschinelle Übersetzung	
19.03.	Grundlagen Lineare Algebra und Analysis, Numpy	
26.03.	Lineare Modelle: lineare Regression, logistische Regression	
02.04.	Neuronale Netzwerke: MLPs, Backpropagation, Gradient Descent	
09.04.	Word Embeddings, Recurrent neural networks	
16.04.	Tensorflow und Google Cloud Platform	
30.04.	Encoder-Decoder-Modell	
07.05.	Decoding-Strategien	
14.05.	Attention-Mechanismus, bidirektionales Encoding, Byte Pair Encoding	
21.05.	Maschinelle Übersetzung in der Praxis (Anwendungen)	
28.05.	Zusammenfassung, Q&A Prüfung	
Eventuell: Gastvortra	g Prof. Artem Sokolov	
04.06., Raum TBA, 16	:15 bis 18:00 Uhr	
Prüfung (schriftlich)		
18.06., AND-2-48, 16.1	L5 bis 18:00 Uhr	

-EVALUATION TRAINING DATA SMT

NUT

This is kinda important