
Master’s Thesis

for obtaining the academic degree

Master of Arts

in Faculty of Arts and Social Sciences

Machine Translation of Complex
Sentences from Latin to German

Author: Sabrina Brändle

Student ID number: 14-705-164

Advisor: M. Sc. Lukas Fischer

Supervisor: Prof. Dr. Martin Volk

Department of Computational Linguistics

Submission date: 01.12.2022

Abstract

Neural Machine Translation (NMT) yields remarkable results for high-resource lan-
guages trained on large amounts of data. When there is a lack of linguistic data,
the translation quality decreases [Hedderich et al., 2020]. In such data-sparse low-
resource scenarios, the translation quality of long sentences is particularly affected
[Kondo et al., 2021; Fischer et al., 2022]. In NMT, the translation from Latin to
German combines both of these problems since Latin-German is a low-resource lan-
guage pair and Latin is a low-resource language in the context of NMT which often
features long sentences [Garcia and Tejedor, 2020]. Many existing Latin texts are
not closely translated or digitally available. However, the Bullinger Digital Project1

aims to make the Latin texts from Heinrich Bullinger’s correspondence and their
translations into German digitally available in a database [Fischer et al., 2022].

With Data Augmentation, the amount of training data can be increased for NMT
systems that are applied on low-resource language pairs. I propose a Data Aug-
mentation method which consists of splitting long sentences into shorter sequences
and translating them into German separately. I compare the translation quality of
original long sentences to the quality of the translations of shorter sequences. Rea-
sons for the performance drop in long sentence translations differ depending on the
respective NMT architecture [Neishi and Yoshinaga, 2019; Tien and Minh, 2019].
However, literature shows that augmenting data is generally helpful for NMT sys-
tems. The method I propose has already been applied similarly to other language
pairs in NMT. The results show that this approach, combined with a postprocess-
ing step, increases the translation quality from 21.16 to 21.96 BLEU. In further
research, this segmentation method can help achieve and improve state-of-the-art
NMT performance in Latin NMT and in low-resource scenarios in general, offer-
ing various benefits such as making linguistic knowledge accessible to speakers of
different languages [Magueresse et al., 2020].

1https://www.bullinger-digital.ch/about

Zusammenfassung

Die neuronale maschinelle Übersetzung (NMT) liefert bemerkenswerte Ergebnisse
für Sprachen mit vielen Ressourcen, die auf grossen Datenmengen trainiert wurden.
Wenn es an linguistischen Daten mangelt, sinkt die Übersetzungsqualität [Hedderich
et al., 2020]. In solchen datenarmen Low-Resource-Szenarien ist die Übersetzungs-
qualität von langen Sätzen besonders betroffen [Kondo et al., 2021; Fischer et al.,
2022]. In der NMT vereint die Übersetzung vom Lateinischen ins Deutsche diese
beiden Herausforderungen, da Latein-Deutsch ein ressourcenarmes Sprachpaar dar-
stellt und Latein im NMT-Kontext eine ressourcenarme Sprache ist, die oft lange
Sätze enthält [Garcia and Tejedor, 2020]. Viele vorhandene lateinische Texte sind
nicht nahe am Text übersetzt oder digital verfügbar. Das Bullinger Digital Projekt2

zielt darauf ab, die lateinischen Texte der Korrespondenz Heinrich Bullingers und
ihre Übersetzungen ins Deutsche in einer Datenbank [Fischer et al., 2022] digital
verfügbar zu machen.

Mit Data Augmentation kann die Menge der Trainingsdaten für NMT-Systeme, die
auf ressourcenarme Sprachpaare angewendet werden, erhöht werden. Ich schlage ei-
ne Methode zur Datenerweiterung vor, die darin besteht, lange Sätze in kürzere
Sequenzen aufzuteilen und diese separat ins Deutsche zu übersetzen. Ich vergleiche
die Übersetzungsqualität der langen Originalsätze mit der Übersetzungsqualität der
kürzeren Sequenzen. Die Ursache für den Leistungsabfall bei der Übersetzung lan-
ger Sätze unterscheidet sich je nach der jeweiligen NMT-Architektur [Neishi and
Yoshinaga, 2019; Tien and Minh, 2019]. Die Literatur zeigt jedoch, dass eine Anrei-
cherung der Daten für NMT-Systeme generell hilfreich ist. Die von mir vorgeschla-
gene Methode wurde bereits in ähnlicher Weise auf andere Sprachpaare in der NMT
angewendet. Die Ergebnisse zeigen, dass dieser Ansatz, kombiniert mit einem Nach-
bearbeitungsschritt, die Übersetzungsqualität von 21,16 auf 21,96 BLEU erhöht.
Mit weiteren Forschungsarbeiten kann die Segmentierungsmethode dazu beitragen,
NMT-Leistung des heutigen Standes in der NMT mit Latein und in ressourcenarmen
Szenarien im Allgemeinen zu erreichen und zu verbessern, was verschiedene Vorteile
bietet, wie beispielsweise linguistisches Wissen für Sprecher verschiedener Sprachen
zugänglich zu machen.

2https://www.bullinger-digital.ch/about

ii

Acknowledgement

I would like to take this opportunity to thank everyone who supported me in any
way with my master’s thesis:

My special thanks go to Prof. Dr. Martin Volk, who has motivated and supported
me during this work, and who has taught and inspired me throughout my studies
in Digital Linguistics.

For his frequent and dedicated support on a technical and organizational level, I
would like to sincerely thank Lukas Fischer, with whom I very much appreciated
discussing and finding solutions for the challenges at hand.

I also want to thank Raphael Schwitter for his competent support in linguistic
questions and his helpful contribution to the gold standard of the POS-tagged data.

Furthermore, I thank my family and friends for their moral support and for proof-
reading my master’s thesis.

iii

Contents

Abstract i

Acknowledgement iii

Contents iv

List of Figures vii

List of Tables viii

List of Acronyms ix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Thesis Structure . 4

2 Linguistic Background 6
2.1 Characteristics of the Latin Language and the Bullinger Letters . . . 6

2.1.1 The Complexity of Defining "Latin" 6
2.1.2 Characteristics of the Latin Syntax 8

2.2 The Challenge of Processing Low-Resource Languages in NLP 10

3 Technical Background 13
3.1 Neural Machine Translation . 13

3.1.1 Encoder-Decoder Models . 15
3.1.1.1 Recurrent Neural Machine Translation 16
3.1.1.2 Convolutional Neural Machine Translation 16
3.1.1.3 Self-Attentional Neural Machine Translation 17

3.1.2 Neural Machine Translation Decoding 18
3.2 Low-resource Scenarios in Neural Machine Translation 18

3.2.1 Transfer Learning . 18
3.2.2 Data Augmentation . 19

3.3 Neural Machine Translation of the Latin in the Bullinger Letters . . . 21

iv

Contents

4 Related Work on NLP for Latin 23
4.1 Work on Natural Language Processing of the Latin Language 23
4.2 Work on Related Data Augmentation Techniques 26

5 Corpus and Training Data 30
5.1 The Corpus . 30
5.2 The XML Structure . 34

6 Tools and Resources 35
6.1 The Python Programming Language 35
6.2 POS-Tagging Models . 36

6.2.1 CLTK . 37
6.2.2 UDPipe . 37

6.3 Neural Machine Translation Framework 38

7 Methods 40
7.1 The Corpus Structure . 40
7.2 Sentence Extraction . 42

7.2.1 Length Categories . 42
7.2.2 Extraction Challenges . 43

7.3 POS-Tagging . 44
7.3.1 Sentence Formats for the POS-Tagging Models 44
7.3.2 POS-Tagging Models . 44

7.3.2.1 CLTK . 45
7.3.2.2 UDPIPE . 45

7.3.3 The Tagsets . 47
7.3.4 Tagging Decisions . 48

7.4 Sentence Splitting . 48
7.4.1 Splitting Rules . 48

7.4.1.1 Splitting at Punctuation Markers 49
7.4.1.2 Splitting at Conjunctions 50

7.5 Neural Machine Translation of the Splits 52
7.5.1 Recomposing translated Clauses into Sentences 52
7.5.2 Adding Clause Translations by GoogleTranslate to the Training

Data . 52

8 Results 54
8.1 POS-Tagging . 54

8.1.1 Evaluation of the POS-Tagging Results 54
8.1.2 Error Analysis . 58

v

Contents

8.1.3 Weaknesses of the Models . 65
8.1.3.1 CLTK . 65
8.1.3.2 UDPIPE . 65

8.1.4 Discussion of the POS-Tagging Process 66
8.2 Sentence Splitting . 67

8.2.1 Evaluation of the Splitting Rules 67
8.2.1.1 Splitting at Punctuation Markers 67
8.2.1.2 Splitting at Conjunctions 70

8.2.2 Error Analysis of Bullinger NMT Sentence Translations 71
8.2.3 Error Analysis of GoogleTranslate Clause Translations 73
8.2.4 Discussion of the Splitting Process 76

9 Conclusion 78
9.1 Summary and Main Splitting Results 78
9.2 Outlook . 79

Glossary 81

References 83

Lebenslauf 92

vi

List of Figures

0 XML Letter Structure in the Bullinger Corpus 41
1 Sentence Length Distribution . 43
2 Total POS Accuracies . 55
3 POS Accuracies Length 15-19 . 56
4 POS Accuracies Length 20-24 . 56
5 POS Accuracies Length 25+ . 57
6 PROPN POS-tag Accuracy across all Models 57
7 ADJ POS-tag Accuracy across all Models 58
8 CCONJ POS-tag Accuracy across all Models 59
9 SCONJ POS-tag Accuracy across all Models 59
10 PROPN Annotation Errors . 60
11 NOUN Annotation Errors . 61
12 ADJ Annotation Errors . 62
13 PRON Annotation Errors . 63
14 CCONJ Annotation Errors . 64
15 SCONJ Annotation Errors . 64
16 Evaluation of Bullinger NMT with different Splitting Rules 68

vii

List of Tables

1 UDPipe Models . 46
2 UPOS Tagset . 47
3 BLEU GoogleTranslate Experiment 73

viii

List of Acronyms

CLTK Classical Language Toolkit
CNN Convolutional Neural Network
DE German
LA Latin
LRL Low-resource Language
MT Machine Translation
NER Named Entity Recognition
NLP Natural Language Processing
NMT Neural Machine Translation
OCR Optical Character Recognition
POS Part-Of-Speech
RNN Recurrent Neural Network
SMT Statistical Machine Translation
TEI Text Encoding Initiative
UD Universal Dependencies
UTF-8 Unicode Transformation Format (8-bit)
XML eXtensible Markup Language

ix

1 Introduction

1.1 Motivation

While Neural Machine Translation (NMT) yields remarkable results for high-resource
languages trained on large amounts of data, NMT systems for low-resource languages
do still not achieve comparable quality. This widespread attention NMT has gained
recently is mainly due to the availability of large training corpora [Kondo et al.,
2021]. For many low-resource languages, however, Natural Language Processing
(NLP) tools are not available or developed because these languages mostly lack la-
belled and unlabelled data, which in the context of MT refers to translated and raw
text, and often also language experts [Hedderich et al., 2020].

Latin, as a low-resource language, is affected by this tendency as well. As the
language of science and church, Latin was of great importance for communication for
many centuries [Garcia and Tejedor, 2020]. Nevertheless, since Latin is considered
an extinct language, many Latin documents and texts are not digitally available or
contain a close translation. However, the Bullinger Digital Project1 aims to make
Latin texts and their translations into German digitally available in a database
[Fischer et al., 2022]. The text covers the correspondence of Heinrich Bullinger, a
Swiss reformer, containing 16th century epistolary Latin. 15% of the letters contained
in his correspondence are written by himself, the majority are letters he received from
several other writers. In order to contribute to the improvement of NMT for Latin as
a language with fewer resources, I am motivated to investigate a Data Augmentation
approach for translation from Latin into German. In NMT, Latin–German is a low-
resource language pair. While the NMT system developed by Fischer et al. [2022]
performs well on short and medium Latin sentences, long sequences still pose serious
challenges to the NMT model, as can be seen in the following examples from the
Bullinger corpus [Volk et al., 2022b].

The first part of the example is the source sentence, accompanied by the English
literal word-by-word translations and the corresponding morphological information.

1https://www.bullinger-digital.ch/about

1

Chapter 1. Introduction

The second part shows the translation of the Bullinger NMT system into German
(MT-de.), a corrected German translation (de.), as well as a corrected English trans-
lation (en.).

(1.1) Novarum
New.Gen.Pl

rerum
things.Gen.Pl

nihil
nothing

nunc
now

est,
be.3.Sg.Prs.Act.Ind

quod
that

scribam.
write.1.Sg.Fut.Act.Ind

MT-de. ’Ich habe jetzt nichts Neues zu schreiben.’
de. ’Es gibt jetzt nichts Neues, das ich schreiben werde.’
en. ’There is nothing new now that I will write.’
[accessed 10th October 2022]

(1.2) Doctissime
Educated.Sg.Sup

et
and

in
in

domino
Lord.Dat.Sg

charissime
dear.Sg.Sup

frater,
brother.Voc.Sg,

scias
know.2.Sg.Prs.Act.Sbjv

velim
want.1.Sg.Prs.Act.Sbjv

impossibile
impossible

prorsus
complete

vel
or

per
for

horas
hours.Acc.Pl

multas
many.Acc.Pl

rerum
things.Gen.Pl

hactenus
until.now

Berne
in.Bern.Dat.Sg

gestarum
achievements.Gen.Pl

plenam
complete.Acc.Sg

tibi
you.Dat.Sg

seriem
series.Acc.Sg

significare.
convey.Inf.

MT-de. ’Mein gelehrter und liebster Bruder im Herrn, ich wünschte, dass
du weisst, dass du dir ganz unmöglich oder seit vielen Stunden die volle
Reihe von Ereignissen in Bern gezeigt hast.’

de. ’Gelehrtester und dem Herrn liebster Bruder, ich möchte, das du weisst,
dass ich dir unmöglich gänzlich oder über viele Stunden die volle Reihe von
Ereignissen, die bis jetzt in Bern geschehen sind, aufzeigen kann.’

en. ’Most learned and dearest brother to the Lord, I would like you to know
that it is impossible for me to convey to you completely or over many hours
the complete series of events that have happened in Bern so far.’
[accessed 10th October 2022]

While the short sentence in example (1.1) is translated well and the meaning is
correctly conveyed, the longer sentence in example (1.2) shows a few problematic
translation parts. Most importantly, the subject is not recognized correctly, as is
visible in the second part of the translation in ref. gezeigt hast (en. you have shown).
The subject is interpreted as the second person singular, while it is in fact the first
person singular visible in la. velim [Fischer et al., 2022].

In Neural Machine Translations, long sentences are translated in good quality in
high-resource language pairs, models show poor performance in their translation in

2

Chapter 1. Introduction

low-resource languages such as Latin. This makes the translation of long sentences
a major issue in low-resource scenarios [Kondo et al., 2021]. On the one hand, this
is due to lack of training data available in low-resource scenarios [Kondo et al.,
2021]. While NMT systems for high-resource languages have further improved due
to more frequent use of deep neural networks and large language models, building
systems for low-resource languages is more challenging, as neural networks require
large amounts of data. [Hedderich et al., 2020]. Low-resource languages like Latin
typically lack unlabelled and labelled textual data, as well as language experts and
native speakers [Magueresse et al., 2020]. On the other hand, the quality of long
sentence translations also depends on the NMT architecture [Neishi and Yoshinaga,
2019; Tien and Minh, 2019], as different neural models handle long sequences dif-
ferently, which will be described in detail in Section 3.1.

But why is it an important task? Latin, even though it was primarily spoken in one
city, has universal heritage that has extended its regional and temporal distribu-
tion widely. Latin finds its continuations in the Romance languages. Furthermore,
it shows a large amount of loan word vocabulary in non-Romance languages, es-
pecially in the technical domain. For centuries, Latin was an important language
for international communication, particularly in the field of science [McGillivray,
2013]. Considering the impact Latin has had on many other languages, preserving
linguistic data in Latin digitally and making translations of Latin accessible provides
important language knowledge to more speakers of different languages [Magueresse
et al., 2020]. With Data Augmentation, namely the specific approach of splitting
long sentences into smaller units, I intend to test a technique to improve the quality
of such long sentence translations.

1.2 Research Questions

The research questions to be answered in this thesis are the following:

1. Can the quality of Neural Machine Translation of the 16th century epistolary
Latin into German be improved by splitting long sequences into smaller units?

2. Can this be done by automatically splitting the sentences and putting the
translated partial sequences back together after the separate translation into
German?

3. Can quality be improved by adding the split sequences separately to the train-
ing material?

3

Chapter 1. Introduction

4. When splitting, what are sensible sentence positions to perform the splits?

The work process in this thesis is to extract a sample of long Latin sentences from
the corpus, to apply and evaluate several POS-taggers, and to split the POS-tagged
sentences in order to tackle the long sentence problem. I start by first extracting a
random sample of long Latin sentences of different length categories, and then apply
different POS-taggers to the sentences and evaluate them to figure out which tagger
yields the best quality. With a POS-tagging gold standard for these sentence tokens,
I explore which possible splits of sentences yield better results than translating the
complete longer sentence.

The aim of this thesis is to investigate whether the quality of NMT can be improved
by applying an NLP Data Augmentation approach. I evaluate and compare the
translation results, and finally define whether this Data Augmentation technique is
promising for further research and exploration and whether it can be extended to
more low-resource languages and scenarios in the future.

1.3 Thesis Structure

In this first chapter 1, I introduce the research questions of this thesis and explain
why it is an important and worthwhile endeavour to improve NLP tools for low-
resource languages. Chapter 2 introduces the related linguistic background of Latin,
the low-resource language at hand, as most Latin sentences have a more complex
syntactical structure than English, for example. Chapter 3 covers the respective
technical background. I introduce the functionality of the state-of-the-art NMT
systems and discuss related technical challenges when these systems are applied to
low-resource languages such as Latin.

Having covered the base knowledge of the language and technology in the previous
chapters, I continue with chapter 4, which presents related work on NLP with Latin
and Data Augmentation approaches. Chapter 5 introduces the data used in the
project the thesis is part of. I describe the corpus and the accessibility of the used
data. The 6th chapter describes different tools and resources that I used for the
subtasks of the thesis such as the programming language, the POS-taggers, and the
Machine Translation (MT) system.

Based on this state of knowledge, I elaborate on the resulting methods for all the
steps of the splitting task in chapter 7. Chapter 8 deals with the related results of
the POS-tagging and the splitting step, as well as with an error analysis for each
and an evaluation of the thesis’ methods. A conclusion follows in chapter 9, where I

4

Chapter 1. Introduction

point out the findings of this thesis and future challenges and possibilities to further
improve NMT for Latin and low-resource languages in general.

5

2 Linguistic Background

2.1 Characteristics of the Latin Language and the

Bullinger Letters

Latin has served as the main language in science and as the language of the catholic
church for many centuries. Nevertheless, there are only a few texts which are dig-
itally available, and, consequently, there are even fewer Latin texts with a close
translation. This makes Latin a low-resource language. In the context of Neural
Machine Translation (NMT), this becomes important as for most neural models, a
large amount of data is needed [Fischer et al., 2022].

As will be discussed in more detail in Section 5, the Latin training data for the
Latin–German NMT system is collected from several sources. The respective lan-
guage of these sources ranges from Classical Latin texts to modern day publications
of the Vatican [Volk et al., 2022a]. Since one goal of the Bullinger project is to
translate the Bullinger letters into German, it is crucial to state that the Bullinger
letters are written in 16th century epistolary Latin [Fischer et al., 2022]. For NLP,
however, 16th century Latin texts have the advantage that the writing usually follows
the standard of Classical Latin [Volk et al., 2022a].

2.1.1 The Complexity of Defining "Latin"

Among the linguistic aspects that complicate the processing of Latin is the fact that,
in the context of NMT, Latin has few resources, that it appears in many diachronic
dimensions, and that it is a historical language, which means that there are no native
speakers [McGillivray, 2013]. As it tends to be the case for many historical corpora,
the training data of the Bullinger corpus is assembled by combining works written
over different time periods by different authors [Fischer et al., 2022]. The reason for
this frequent case can either be the goal of finding patterns of language change, or
the simple fact that available texts are sparse [McGillivray, 2013].

6

Chapter 2. Linguistic Background

The lack of native speakers for historical languages can pose a problem because
manual creation of gold standard resources is more time-consuming and prone to er-
rors than for modern languages. However, since Latin is a well-studied low-resource
language because of its widespread use over time, language experts are available
[McGillivray, 2013]. Gold standards are used for testing and evaluating automatic
models. For the training of these models, a gold standard with task-specific labels
for the data is created. In the case of this work, we first annotate a certain number of
sentences of the Bullinger corpus with POS-tags in order to evaluate already existing
POS-taggers for Latin, as is described in more detail in Section 7.3 [McGillivray,
2013].

But, because Latin is a historical language, the availability of large, high-quality gold
standards is particularly expensive and slow. Therefore, creating and annotating
large corpora and language resources for historical languages with little data even
more important, as will be discussed in a chapter about the Bullinger corpus in 5.1.

The difficulty of defining the Latin language has frequently been discussed in re-
search. In particular, it highlights the importance of the fact that any account of a
language stage of Latin must deal with its diverse nature and a series of dichotomies.
These dichotomies include differences such as local versus universal language, dead
versus extant forms of Latin, and vulgar Latin as opposed to literary Latin [Poc-
cetti et al., 1999]. Therefore, it is important to keep in mind that the Bullinger
NMT system tuned to translate 16th century epistolary Latin might not show the
same performance for another stage of the Latin language, as hyperparameters are
normally optimized for the data in question [Fischer et al., 2022].

While Latin was primarily spoken locally in one city, its regional and temporal
distribution has gradually been extended. Therefore, the time span of its usage
expanded to long after the end of the Roman empire. Thus, it is not easy to pinpoint
the exact time from which on Latin can be considered a dead language. This view
led to a focus on Latin grammar during the limited span of the classical era and its
literary sources, which was long considered the qualitative peak that defined Latin
identity [Giacomelli, 1996].

Besides the fact that Latin has its continuations in some extant languages such as the
Romance languages as well as in the technical domain of a few languages not directly
derived from Latin, such as English, Latin played an important role as a language
of international communication, especially in the field of science. Even today Latin
texts are being produced in the contexts of news published by the Vatican as well
as the Latin version of the online encyclopedia Wikipedia [McGillivray, 2013].

7

Chapter 2. Linguistic Background

Even though Latin has many available texts and sources compared to other extinct
languages [Mayrhofer, 1980], these texts are very heterogeneous [McGillivray, 2013].
This results in an uneven distribution along various dimensions mentioned above
[Poccetti et al., 1999]. However, this heterogeneity does not necessarily reduce the
performance of the NMT model for the Bullinger texts, where, as mentioned above,
the training data is also collected from different sources ranging from Classical Latin
texts to modern day publications [Volk et al., 2022a]. This is because variation in
the training data can also make a model more robust, as was shown in Alam and
Anastasopoulos [2020], who confirmed the utility of training models with source-side
noise leads to more robustness to non-native language inputs.

2.1.2 Characteristics of the Latin Syntax

The difficulty of translating long sentences in NMT is partly related to the syntac-
tical structures of Latin. Today, due to the lack of native speakers, the grammati-
cality of syntactic structures in Latin can only be established by reference to data
preserved in a textual corpus. Latin remained in use until beyond the Middle Ages,
which means it continued to evolve long after it ceased to have native speakers.
Thus, the well-formedness of Latin sentences is reflected by the grammatical prop-
erties of source data previously considered well-formed by native speakers [Horrocks,
2011].

Certain Indo-European languages, including Latin, are "nominative-accusative lan-
guages", since subjects and objects can formally be identified through the assignment
of different grammatical cases. It is worth noting that the notion of a subject is sim-
ply grammatical and not directly linked to a semantic role, as can be seen in the
following examples from Horrocks [2011]. Thus, the subject of a sentence can have
the semantic role of an agent as in example (2.1), a patient as in example (2.2), a
recipient as in example (2.3) or an experiencer as in example (2.4) [Horrocks, 2011].

(2.1) Caesar
Caesar

inimicos
enemies

interfecit
killed

en. ’Caesar killed his enemies’

(2.2) Caesar
Caesar

mortuus
dead

est
is

en. ’Caesar died’

(2.3) Caesar
Caesar

donum
gift

accepit
received

en. ’Caesar received a gift’

8

Chapter 2. Linguistic Background

(2.4) Caesar
Caesar

dolorem
anguish

passus
suffered

est
is

en. ’Caesar suffered anguish’

Analyzing these examples, it becomes clear that a typical feature of Latin syntax is
the absence of direct syntactic-semantic correlation. Thus, there are no structural
elements in Latin that function systematically in the style of subjects and objects.
For the application of NMT, this results in the fact that tokens in the function of
subjects, objects and predicates do not have any fixed positions. Besides, they also
have variable length and no consistent superficial properties. A characteristic of
Latin is that these items can be represented as sets of words that do not necessarily
have to be contiguous [Horrocks, 2011].

In English, as a contrasting example, fewer discontinuities are allowed, and the order
of constituents is fixed. Here, the rich spectrum of morphological marking available
to Latin has been largely lost. Therefore, the identification of the constituents of a
sentence highly depends on retaining the structural coherence of them. Similarly, the
correct interpretation of grammatical functions requires a fixed syntactical ordering
of the constituents. In declarative sentences, for example, transitive verbs precede
their objects, and subject noun phrases precede verb phrases [Horrocks, 2011].

In Latin, on the contrary, syntactic relationships are manifested through specific
requirements on morphological form that bind elements together into constituents.
Therefore, an attributive adjective, which is part of a noun phrase, may be positioned
separately from the noun it modifies. This happens for pragmatic or stylistic reasons,
while the overt morphological agreement reveals an underlying relationship, as shown
in example (2.5) from Horrocks [2011].

(2.5) et
and

liquidum
brightSg.Neut.Acc

spisso
denseSg.Masc.Abl

secreuit
he-separated

ab
from

aere
atmosphereSg.Masc.Abl

caelum
heavenSg.Neut.Acc

en. ’and (god) separated the bright heavens from the dense atmosphere’

In this realization, liquidum caelum "the bright heavens" and a(b) spisso aere "from
the dense atmosphere" are constituents, but are not represented contiguously. How-
ever, the reordering of constituents for stylistic reasons is more common in poetry.
In the domain of prose, on the other hand, although sentential constituents allow ex-
tensive freedom in the internal ordering of their components, they mostly maintain
their overall structural coherence [Horrocks, 2011].

Another typical discontinuity that can be expected in the Bullinger corpus is shown
in example (2.6) from Horrocks [2011]:

9

Chapter 2. Linguistic Background

(2.6) Quae
which-things

precatus
having-prayed

a
from

dis
gods

immortalibus
immortal

sum,
I-am,

[...]
[...]

eadem
same-things

precor
I-pray

ab
from

isdem
same

dis
gods

immortalibus
immortal

en. ’What [...] I requested of the gods, [...] those same things I request of
those same gods’

Here, while the direct object relative pronoun quae "which-things" is positioned
clause-initially as it is usually the case, the periphrastic verb form precatus sum "I
asked for", is divided by the constituent a dis immortalibus "by the-immortal gods".
This means, sum stays in its default verb position, which is the final position in its
immediate clause in Classical Latin. The prepositioning of precatus "having-asked-
for" is therefore most likely because of the contrast with the following (eadem) precor
"(the-same-things) I-ask-for" to contrast the time reference (i.e. "what I asked for
then, I also ask for now"). Most discontinuities in Classical Latin prose appear in this
kind of structure with grammatically driven or pragmatically motivated preposings
[Horrocks, 2011].

As the Bullinger letters mainly follow the syntactic pattern of Classical Latin syntax
[Volk et al., 2022a], it is important to note that every grammatically correctly formed
sentence of Latin consists of one or more clauses. Each of these clauses denote a
complete semantic predication. When a sentence consists of multiple clauses, the
overall sentential meaning is formed by the meanings of the combined component
clauses. The composition of the relevant elements is indicated syntactically through
coordination and/or subordination. Whereas main clauses are independent and can
stand alone, they can be combined in one sentence through coordination with a
conjunction. Each main clause contains a noun phrase subject and a verb phrase
predicate, containing the finite verb form related to the subject. In turn, each main
clause can contain at least one subordinating clause, consisting of complements or
adjuncts [Horrocks, 2011]. When splitting long sentences with presumably higher
numbers of syntactical discontinuities, such clauses are the most interesting entities
to split, since they contain a complete semantic unit, as will be discussed in chapter
7.

2.2 The Challenge of Processing Low-Resource

Languages in NLP

A low-resource language is considered a language which has few or no labelled or
unlabelled data. As "low-resource" is an umbrella term, the boundaries concerning

10

Chapter 2. Linguistic Background

the amount or kind of resources are not clearly defined [Hedderich et al., 2020]. As
a consequence, these are mostly languages that are either endangered, less comput-
erized or digitized, or less studied and, consequently, less commonly taught. Hence,
low-resource languages are often those which have a low density or low prestige.
These qualities often interact or are mutually dependent [Magueresse et al., 2020].

Most often, low-resource scenarios occur when a language lacks task-specific labels
in the target language, especially in the context of supervised learning. However, it
is not defined at which level of resource-scarcity a language is still considered to be a
low-resource language, as the availability of labelled, unlabelled, and auxiliary data
is a gradual matter [Magueresse et al., 2020]. The lack of these task-specific labels
can be remedied by creating them through manual annotation. But, as low-resource
scenarios often co-occur with further scarcity in resources such as financial ones
(which can again be related to other factors like prestige or number of speakers),
this is not always feasible and can be time- and cost-intensive [Hedderich et al.,
2020].

A solution may be to simply use raw text and make use of input embeddings which
are trained on unlabelled texts. However, sometimes languages are missing unla-
belled texts and even auxiliary data. Auxiliary data typically denotes data with
task-specific labels in a different high-resource language, which can be used for ex-
ample for Transfer Learning, or it can consist of external information sources in
form of knowledge bases or gazetteers used for distant supervision. In case of MT,
auxiliary data mostly includes other NLP tools for the target language itself, which
contribute to the generation of training data [Hedderich et al., 2020].

Consequently, NMT frequently depends on resources such as language-specific data
and tools in order to be conducted. Generally, the most problematic case is when
not enough unlabelled data exists, which also limits the generation of labelled and
auxiliary data needed for the automatic creation of unlabelled data [Hedderich et al.,
2020].

In the past few decades, NLP research has led to greatly evolved technologies. Simi-
larly, a lot of research on the creation of tools and techniques to deal with shortages
in data and resources has been carried out. Most NLP tasks, including MT, have
transitioned from rule-based to statistical techniques, whereas today most techniques
make use of neural techniques [Magueresse et al., 2020] due to the evolution of deep
neural architectures and optimized hardware. For high-resource languages, the de-
velopment was optimal because of the availability of large corpora [Chernyavskiy
et al., 2021].

11

Chapter 2. Linguistic Background

As a consequence of these high-quality outcomes for neural techniques with high-
resource languages, there has been more research on neural applications for low-
resource scenarios [Hedderich et al., 2020]. The techniques on how to deal with a
low-resource language such as Latin in NMT will be investigated in the following
sections on NMT with low resources in Section 3.2, and on Latin in NMT in Section
3.3, and on related work on NLP with Latin in general in Section 4.1.

12

3 Technical Background

In the case of the Bullinger corpus, several different optimized NMT models are
trained b< Fischer et al. [2022] for the translation from Latin to German, as the
they gradually add more training data to the corpus. GoogleTranslate1 is chosen
as a baseline for the comparison of the NMT systems. To measure the performance
of the different models, the Fischer et al. [2022] choose the BLEU metric [Papineni
et al., 2002]. During the development of the models in the Bullinger Digital Project,
GoogleTranslate switched from Statistical Machine Translation (SMT) to Neural
Machine Translation (NMT). In early 2021, GoogleTranslate exclusively used SMT
for language pairs including Latin. In the meantime, however, GoogleTranslate has
created an NMT model for language pairs with Latin as a source language to all
available target languages. While the initial BLEU score of the online system with
the SMT model scored 7.36, it reaches 17.07 for translations from Latin to German
for GoogleTranslate’s NMT model [Fischer et al., 2022].

After discussing NMT Models in Section 3.1.1 and various typical approaches that
deal with low-resource languages in NMT in Section 3.2, I will outline several exper-
iments Fischer et al. [2022] run during the building process of the Bullinger corpus
in 3.3.

3.1 Neural Machine Translation

Machine Translation (MT) denotes the process of automatic translation of text from
one natural language into another. In recent years, the paradigm has shifted from
Statistical MT to Neural MT. Statistical MT mainly relies on different count-based
models and dominated MT research for two decades. NMT solves the transla-
tion task with a single neural network and has largely superseded Statistical MT
[Stahlberg, 2020].

The principle behind SMT is a combination of two separate processes, namely train-

1https://translate.google.com

13

Chapter 3. Technical Background

ing and decoding. The training process involves a statistical translation model which
is trained on a parallel corpus, as well as a statistical language model trained on
the target language from a monolingual corpus. The translation model deals with
the adequacy of the translation from source to target sentence, while the language
model deals with the fluency of the output sentence in the target language. During
decoding, i.e. the process which actually yields a translation, these two models are
then applied, treating the translation as a search problem. It searches through all
possible translations and reorderings permitted by the translation model in order to
find the one with the highest probability according to the translation and language
model [Way and Hearne, 2011].

NMT, on the other hand, uses a single large sequence model, a neural network, which
transforms the source sentence into the target sentence. The prediction output
is conditioned on the entire source input sequence and the previously produced
target sequence. This strategy overcomes the separation of the log-linear model
combination from SMT. The integration of neural networks into MT systems after
their rediscovery was rather shallow at first. While the neural techniques boosted
other fields of NLP, the integration process in MT was much slower. Early attempts
used traditional SMT systems, only applying neural networks as components within
them, while more recent approaches typically transform the source sentence into the
target sentence directly [Stahlberg, 2020].

Embeddings are a key to NMT: They are representations of words or phrases as
continuous vectors. This vector encodes the meaning of a word or phrase in such a
way that similar meanings are close to each other in the vector space. This represen-
tation has the potential to capture morphological, syntactic, and semantic similarity
across words or phrases. Embedding matrices are often trained jointly with the rest
of the network in NMT. It is also possible to reuse pretrained embeddings trained
on unlabelled text beforehand [Stahlberg, 2020]. In the Bullinger Digital Project,
Fischer et al. [2022] use sentence embeddings as they are a representations of longer
pieces of text than word embeddings and capture similarity between sentences.

NMT models that process sequences are also called sequence-to-sequence models
or Encoder-Decoder models. In Encoder-Decoder models, the output sequence is a
complex function of the entire input sequence. A sequence of input words or tokens
has to be mapped to a sequence of tags that are not directly mapped to individual
words [Stahlberg, 2020]. I illustrate the functionality of Encoder-Decoder models in
Section 3.1.1 below.

14

Chapter 3. Technical Background

3.1.1 Encoder-Decoder Models

Fischer et al. [2022] use the Transformer architecture in all experiments. More
precisely, they implement its base configuration by Vaswani et al. [2017] and the
SOCKEYE framework by Hieber et al. [2017]. Their goal is to augment train-
ing data and continually optimize hyperparameters, since this greatly improves the
translation quality for low-resource NMT. Hyperparameters depend on the size of
the training data, which is why the different models are gradually optimized and
change with increasing training data size [Fischer et al., 2022].

The Transformer architecture is based on the concept of an Encoder-Decoder model.
Such architectures are available via Transformers2, which is an open-source library
consisting of several engineered state-of-the-art Transformer architectures with the
goal of opening up the technology to a wider community [Wolf et al., 2020]. With
an Encoder-Decoder model, it is possible to encode a input token sequence with
variable length into a sequence of vector representations. As the name suggests,
this is the encoding step of the translation process. These representations can then
be decoded into a sequence of output tokens during the decoding step. Thus, the
model does not only capture meanings and interactions at word level, but takes
longer sequences into account. The decoding is conditioned on information from
both the encodings of the input vector as well as its continually updated internal
state [Hieber et al., 2017].

More recently, the concept of attention was introduced [Bahdanau et al., 2014]. With
attentional Encoder-Decoder models, fixed-length source sentence representations
can be avoided, and the model does not rely on a constant context vector encoding of
the complete source sentence anymore. The context vector represents the weighted
sums of source sentence annotations. Limited capacity of a fixed context vector
is especially problematic with longer input sequences. Instead, during attentional
decoding, attention is placed on parts of the source sentence which are useful for
the generation of the next token. Instead of one context vector, there are several
context vectors, each representing one time step [Stahlberg, 2020].

A generalization of attention is multi-head attention [Vaswani et al., 2017], which
consists of several performed attention operations instead of a single one. The num-
ber of attention heads is typically 8. The outputs of the independent attention heads
are then concatenated. With multiple attention heads, the parts of the sequence can
be attended to differently [Stahlberg, 2020].

2https://huggingface.co/docs/transformers/index

15

Chapter 3. Technical Background

Besides self-attentional Transformers, there are two other Encoder-Decoder archi-
tectures: Attentional recurrent neural networks, and fully convolutional networks.
These three architectures have been among the most prominent ones, representing
the state-of-the-art in NMT [Hieber et al., 2017].

3.1.1.1 Recurrent Neural Machine Translation

Recurrent Neural Networks (RNNs) were the first to be introduced. The encoder
consists of a bidirectional Recurrent Neural Network to encode a source sentence.
To predict the output words in the target language, a decoder consisting of a second
RNN is used. To avoid difficulties in encoding long sequences into a context vector,
attention mechanisms can be applied in RNNs [Stahlberg, 2020].

A peculiarity of RNNs is their recurrent dependency on the previous time step. As
a consequence, the computation of RNN hidden states during encoding cannot be
parallelized over time. During decoding, the serialization of the computation is even
bigger as the first time step has to be completed before the second time step can be
started [Hieber et al., 2017].

For attentional RNN architectures, long sentences pose a challenge because the
values of hidden states in attention models are too dispersed. As a result, the
context vector does not provide useful predictive support to the network during the
decision for the next target word [Tien and Minh, 2019].

3.1.1.2 Convolutional Neural Machine Translation

Convolutional Neural Networks (CNNs) are more useful for long continuous se-
quences, as they do not rely on a serial sequence assumption [Stahlberg, 2020].
CNNs have a faster and simpler architecture based on a succession of convolutional
layers. Convolutional layers are capable of extracting different features from the
input by convolving the input and passing its result to the next layer. Compared
to RNNs, the architecture does not include temporal dependencies, which allows to
encode the source sentence simultaneously [Gehring et al., 2016].

An advantage of the CNN architecture is an easier parallelization on GPU hardware
which reduces sequential computation. Also, their hierarchical structure connects
distant words through a shorter path than sequential architectures. By stacking
multiple convolutional layers, the context size can be increased, which is useful for
the translation of long sentences. Such deeper models are, however, more difficult
to train. During decoding, future information of the next time steps needs to be

16

Chapter 3. Technical Background

masked, and the decoder is connected to the encoder by attention [Stahlberg, 2020].

3.1.1.3 Self-Attentional Neural Machine Translation

For several language pairs, self-attention-based models such as the Transformer
[Vaswani et al., 2017] remain the dominant architecture. The layers of a self-
attentional Transformer model learn dependencies between words within a sequence
itself. Besides NMT, self-attention is often applied to NLP tasks such as senti-
ment analysis, text summarization, or sentence embedding. An advantage of self-
attentional models is, similar to CNNs, short paths between distant words and
reduction of sequential computation [Stahlberg, 2020].

The Transformer, the first example of this NMT model class, uses self-attention
in the encoder in order to enable context-sensitive word representations depending
on the whole source sentence, and within the decoder, in order to account for the
current translation history. More specifically, the architecture uses multi-head at-
tention. Furthermore, cross-attention is used between the encoder and the decoder
[Stahlberg, 2020].

For the Transformer architecture, long sentences are more challenging to translate,
too. While using attention mechanisms has partially remedied the problem, litera-
ture suggests further possible reasons for a performance drop [Neishi and Yoshinaga,
2019]. One potential cause is assumed to be how position information is handled by
the model. This position information can either be handled in relative or in abso-
lute form. The model attends to relative positions from the periodicity of positional
encodings generated using sinusoids of varying frequencies. Position embeddings,
on the other hand, are learned position vectors, which represent absolute positions.
Neishi and Yoshinaga [2019] suggest that the type of relative position is better for
the model performance than the type of absolute position.

Furthermore, the standard Transformer architecture uses a maximum length, trun-
cation, and padding in order to deal with different sequence lengths [Dai et al.,
2019]. This leads to a barrier for extended dependency learning, since the atten-
tion mechanism is not able to grasp connections beyond this maximum length limit.
This lack of contextual information leads to inefficient prediction and thus to a
compromised performance [Singh and Mahmood, 2021]. It is also assumed that the
performance decrease is partially caused by an insufficient number of long sentences
in the training data. Low-resource languages are therefore even more affected by
this issue [Kondo et al., 2021].

17

Chapter 3. Technical Background

3.1.2 Neural Machine Translation Decoding

Decoding, or inference, is the task of finding the most likely translation for a given
source sentence. With an increasing sequence length, the search space increases
exponentially. Popular decoding algorithms to solve this problem are greedy search
and beam search. Greedy search works in a time-synchronous manner and, at each
time step, selects the single best expansion. A disadvantage of greedy search is
the fact that, when only choosing one best expansion, the overall score of a path
may end up being comparably low. Beam search, on the contrary, passes a fixed
number of possible translation prefixes to the next time step. At each time step,
the accumulated scores for all possible continuations of the surviving hypotheses are
compared. The selection of fixed number of hypotheses to continue is based on this
comparison [Stahlberg, 2020].

3.2 Low-resource Scenarios in Neural Machine

Translation

While NMT has achieved qualitatively high performance in high-resource settings,
the performance drops in low-resource data conditions. The systems occasionally
even underperform phrase-based SMT. However, in literature, it is argued that the
performance drop is rather due to a lack of system adaptation to these different
conditions of low-resource settings [Sennrich and Zhang, 2019].

Besides an optimized system adaptation, recent research has focused on specific
techniques to train translation systems in low-resource scenarios. NMT models
generally work best when large amounts of data are available. This data can be
manually annotated or generated via direct manual translations which can be used
as training data as done in the Bullinger Digital Project. Nevertheless, additional
techniques may be required [Hedderich et al., 2020]. Some common techniques are
explained in the following chapters.

3.2.1 Transfer Learning

One common technique to deal with low-resource scenarios is called "Transfer Learn-
ing". This approach tries to achieve better language representations directly by
transferring learned representations and models without the need for labelled target
data [Hedderich et al., 2020]. In an MT context, it uses a two-model architecture

18

Chapter 3. Technical Background

with the first model trained on two high-resource languages and the second model
covering the source and target language of the translation task. Here, the em-
beddings of the second model are initialized with the training embeddings with a
standard corpus of the first model. Consequently, the second model can be trained
more efficiently even with a small amount of data [Magueresse et al., 2020].

This approach of Transfer Learning works best when the involved languages share
some linguistic similarities. The technique can be further optimized by using a
reordering model which reorders sequences or complete sentences of the source lan-
guage to make them syntactically more similar to the target language. This way,
the transfer of embeddings leads to a better accuracy of the model due to the fact
that corresponding words have more similar positions [Murthy et al., 2018].

Transfer Learning can also be applied by introducing a previous model during train-
ing. An encoding model can be trained with multiple languages, which results in
the model being able to use previously learned language pairs to translate between
unseen language pairs. This even works if the target pair has not been trained in
a source-target language combination [Magueresse et al., 2020]. Similarly, in the
Bullinger Project, Fischer et al. [2022] added a pretraining step to the pipeline. The
model has become more robust as it learned to produce the target language, Ger-
man, more fluently, since a larger training corpus was used. The source language
chosen was Italian, as it should be closely related to the source language of the NMT
system [Zoph et al., 2016].

The term "Multilingual Learning" refers to another effective form of Transfer Learn-
ing applied in MT. In this approach, a shared lexicon and a shared sentence-level
embedding are used to train a neural MT model. Thus, the model can be trained on
several languages, sometimes with the use of a universal lexical word representation
for the design of common embeddings [Magueresse et al., 2020].

3.2.2 Data Augmentation

The traditional approach for low-resource NLP mentioned in the literature is Data
Augmentation. More data can be generated or collected in order to obtain better
results in low-resource scenarios. Even though this approach can be costly, it is
widely used in research [Hedderich et al., 2020].

Data Augmentation refers to generating more labelled data and is usually based
on the availability of some labelled data and linguistic knowledge. This leads to
a conversion of the low-resource scenario into a high-resource scenario. Literature

19

Chapter 3. Technical Background

reports good results for this method [Hedderich et al., 2020]. However, the downside
is that it requires extensive and expensive preparatory work, which can be even more
problematic if the target language does not have a significant internet presence, as
is the case for Latin [Hedderich et al., 2020].

In Data Augmentation, there are currently three main implementation methods.
Firstly, raw text can be annotated by linguistic experts in order to create new or
bigger data sets. Common sources for creating raw texts for new data sets are
typically mobile applications or social media, as well as governmental documents
[Magueresse et al., 2020]. In the Bullinger Project, sources such as social media
cannot be used as Latin is considered an extinct language. Nevertheless, there are
modern day publications by the Vatican in Latin which are included in the training
data. Therefore, sources in the projects’ training data cover the language span from
modern Latin texts to Classical Latin texts [Volk et al., 2022a].

The second method for the implementation of Data Augmentation is automatic
alignment. In this case, raw text is gathered and aligned with text in a higher-
resource language. Even though this has been the research focus of many recent
studies, it requires linguistic knowledge and is extremely time-consuming. However,
it is a useful method as most low-resource scenarios are based on aligned corpora
[Magueresse et al., 2020].

While this has also been done on the word-level, sentence-level alignment is more
popular and particularly useful for MT. Typically, the alignment is implemented via
a similarity score between two sentences. A challenge for low-resource languages is
the fact that word-to-word translations preferably require a larger amount of data,
which means that these systems require a higher quality translation [Magueresse
et al., 2020]. For the collection of the training data of the Bullinger NMT system,
Fischer et al. [2022] used automatic tools such as the LASER library [Schwenk et al.,
2017] with the Bitext Miner Algorithm [Schwenk et al., 2021] and the Vecalign
Algorithm [Thompson and Koehn, 2019] to perform the sentence alignment.

The third trend consists of the modification of specific features to obtain more text
instances and sequences. Modifications should be done in a way that does not
change the labels. In Data Augmentation approaches such as this one, language
models taking context into account can be used as support [Hedderich et al., 2020].
A similar way to perform these modifications is to back-translate the target sentence
into the source sentence to obtain paraphrases with the same content [Hoang et al.,
2018].

In conclusion, even though Data Augmentation can be time- and cost-intensive,

20

Chapter 3. Technical Background

it offers benefits similar to pretraining in transformer models. Therefore, it is a
useful approach that can be combined with further task-specific language technology
techniques when unlabelled data is limited [Hedderich et al., 2020].

3.3 Neural Machine Translation of the Latin in the

Bullinger Letters

As mentioned in Section 3.1.1, Fischer et al. [2022] use GoogleTranslate as baseline to
compare customized NMT systems. The size and domain of the training data plays
a great role in the performance of different tested models. In the first experiment,
they use training data of 150,000 sentence pairs at that time. This model reaches a
BLEU score of 11.14. It already outperforms the SMT baseline by a great margin,
but the GoogleTranslate NMT baseline still works better with additional 6 BLEU
points on the Bullinger test set [Fischer et al., 2022].

By adding additional corpora to the training data, the BLEU score can be raised
to 12.15 BLEU points in a first step with an increase of 21,000 segments, and later
to 13.72 with an increase of another 24,000 segments. This shows that the size
of the training data has an impact on the performance of the NMT model. Even
though increasing the training data size optimizes the NMT output, all NMT models
struggle with longer sentences and tend to show lower performance quality in easy
tasks such as translating dates [Fischer et al., 2022].

In order to make the model more robust in terms of e.g. preserving numbers better,
Fischer et al. [2022] add a pretraining step to the pipeline. Since, according to
Zoph et al. [2016], the source language of a pretraining model should be closely
related to the source language of the NMT system, Italian is used. From this larger
training corpus, the model learns to output target language, in our case German,
more fluently. The experiment with the pretraining step involves training an Italian
to German NMT system on the Italian-German data, then replacing the training
data with the Latin–German corpora, and finally continuing the training on this
data. The result achieves an increase in 1.2 BLEU points [Fischer et al., 2022].

Adding another 16,000 segments to the Latin training data and maintaining the
pretraining step increases the result by another 1.5 BLEU points. Exchanging the
pretraining dataset by another one, which increases the data size from 1,2 million to
6 million segments, results in an improvement of the score of the LA–DE model by
another 0.6 BLEU points. With this score, the Bullinger NMT model has reached
the performance of GoogleTranslate’s NMT baseline [Fischer et al., 2022].

21

Chapter 3. Technical Background

With a normalization step during the preprocessing in the pipeline of the Latin seg-
ments of the training data, special characters such as ligatures like æ are simplified
and automatically split into their base characters, here ae. Namely, the Classical
Language Toolkit normalizer (Johnson et al., 2021) is used to preprocess the Latin
segments. The normalization step raises the BLEU score to 19.5, which shows that
it greatly improves the translation quality. While the NMT system still struggles
with producing accurate translations for longer and more complicated sentences, this
setup outperforms the GoogleTranslate baseline by 2 BLEU points [Fischer et al.,
2022].

22

4 Related Work on NLP for Latin

In this chapter, I discuss relevant background literature and describe how differ-
ent approaches from the literature are related to this thesis. Section 4.1 discusses
methods for Natural Language Processing with Latin, whereas Section 4.2 presents
similar techniques of Data Augmentation.

4.1 Work on Natural Language Processing of the Latin

Language

This thesis investigates an approach to optimize Neural Machine Translation (NMT)
for long sentences in Latin. Even though Latin is not the most researched language
in NLP, there are several methods from the literature that to process Latin. This re-
search includes papers dealing with OCR corrections, lemmatization, POS-tagging,
corpus or lexicon creation, as well as code-switching and Machine Translation.
Mokhtar et al. [2018], for example, propose a new approach to OCR error correction.
As OCR systems tend to worsen on historical documents with old manuscripts, the
authors propose NMT-based approaches and include a Latin dataset to test their
methods [Mokhtar et al., 2018].

One method to carry out POS-tagging for Latin texts is proposed by Guarasci [2017],
who uses Wikipedia to develop an annotator. Texts from Wikipedia are also used
for the creation in the Bullinger training corpus, as will be described in Section
5.1. In this case, however, Wikipedia is used as a resource for the development of
a POS-tagger as well as a Wikipedia-based semantic annotator [Guarasci, 2017].
Another paper offering insights about linguistic annotation is provided by Gries and
Berez [2017]. The authors summarize different annotation formats, stating that
XML annotation has become a widespread form of annotation [Gries and Berez,
2017]. POS-tagging for Latin is also explored by Stoeckel et al. [2020] as part of the
EvaLatin1 Shared Task for Lemmatization and POS-tagging. The authors develop

1https://circse.github.io/LT4HALA/2022/EvaLatin.html

23

Chapter 4. Related Work on NLP for Latin

an ensemble classifier called LSTMVoter, which is based on several trained state-of-
the-art taggers [Stoeckel et al., 2020]. The difference with POS-tagging in this thesis
is that instead of an ensemble classifier, the model with the best accuracy is chosen
for further work. One step further than the POS-tagging method by Stoeckel et al.
[2020], Erdmann et al. [2016] investigate Named Entity Recognition for Latin, using
a conventional POS-tagger as an intermediate step.

Similar to the code-switching investigation on the Bullinger corpus by Volk et al.
[2022a], various papers deal with code-switching between Latin and other languages,
among them Garrette et al. [2015], who also work with 16th century texts. In their
paper, the authors investigate historical OCR as well as word-level code-switching
between multiple languages, including Spanish, Nahuatl, and Latin. Another pa-
per by Schulz and Keller [2016] inspects code-switching with the use of language
identification models and POS-tagging.

Further work on Latin NLP is dedicated to building corpora, lexicons, as well as lin-
guistic resources and tools for Latin NLP. Among them Litta et al. [2016], who build
a word formation lexicon and also provide an online graphical query system to ac-
cess the lexicon. Papers dealing with lemmatization include Gleim et al. [2019], who
investigate POS-tagging and lemmatization in morphologically rich languages such
as German and Latin. Similarly, Passarotti et al. [2017] provide further research on
the morphological analysis of Latin. The authors introduce a downloadable package
of the 3.0 version of Lemlat2, a morphological analyser for Latin. Its main compo-
nents include word form analysis, treatment of spelling variation, and a resource for
derivational morphology of Latin.

In recent years, different NLP tools have been provided by Passarotti et al. [2019]
in their "LiLa Knowledge Base of Linguistic Resources"3, which is dedicated to
building linguistic resources for Latin. In order to build rich knowledge graphs, the
authors use Linked Open Data practices as well as unique identifiers to connect words
to distributed textual and lexical resources. Franzini et al. [2019] investigate the
expansion of the Latin WordNet. This paper‘s focus is to identify the most effective
method for its inclusion in the LiLa Knowledge Base of Latin Resources. This
inclusion in the Knowledge Base of word formation information is further discussed
by Litta et al. [2019]. The authors present how such theoretical and practical issues
are addressed in the project. This investigation of word formation by Litta et al.
[2019] is continued in Passarotti et al. [2021]. Furthermore, Passarotti et al. [2020]
discuss the interlinking of lemmas from the lexical collection of the LiLa Knowledge

2https://github.com/CIRCSE/LEMLAT3
3https://lila-erc.eu

24

Chapter 4. Related Work on NLP for Latin

Base and related challenges raised by harmonizing different lemmatization strategies
with different linguistic resources for Latin.

In the field of MT, several papers deal with the Latin language as well. From the
Transformer4 models collection, Bamman and Burns [2020] introduce a contextual
language model called Latin BERT5. While Fischer et al. [2022] use the base con-
figuration of the Transformer model [Vaswani et al., 2017], Latin BERT is trained
on a variety of sources spanning the Classical era to the 21st century in order to
perform POS-tagging tasks as well as text prediction tasks, but has not (yet) been
trained for NMT tasks [Bamman and Burns, 2020]. Garcia and Tejedor [2020] deal
with NMT, too, but work with the language pair Latin-Spanish. The authors use
a Transformer-based MT system model as well, and train it on the Bible parallel
corpus. Furthermore, they use the Saint Augustine corpus to study the domain
adaptation case from Bible texts to the newly built corpus. They state that using
in-domain data improves the translation quality of the systems [Garcia and Tejedor,
2020].

There are a few more sources investigating different methods in NLP of Latin on a
general level. An early work by McGillivray [2013] provides information about Latin
corpora, tools, and various techniques for NLP until the year 2013. More recently,
a general work treating digital approaches in classical philology is written by Burns
[2019]. The authors discuss strategies to cope with digital resources of ancient Latin
and Greek, including data collection, annotation, and open data sources for these
languages [Burns, 2019]. Furthermore, Sprugnoli et al. [2022] give an overview of the
second edition of EvaLatin, a campaign for the evaluation of NLP tools for Latin.
They report results of three shared tasks, namely Lemmatization, POS-tagging, and
Features Identification.

Recently, there has been a lot of research in Latin NLP. However, none of the
methods from the literature above deals with the optimization of the Latin-German
language pair in NMT exclusively besides the Bullinger project. While this section
focuses on several NLP tasks with Latin, the next Section 4.2 addresses approaches
similar to the sentence segmentation approach for the optimization of Latin-German
NMT in this thesis.

4https://huggingface.co/docs/transformers/index
5https://github.com/dbamman/latin-bert

25

Chapter 4. Related Work on NLP for Latin

4.2 Work on Related Data Augmentation Techniques

Related work on sentence segmentation, compression, or simplification in order to
augment the training data has been the subject of research in recent years. Trans-
lating long source sentences is a problem of NMT still not entirely solved [Li et al.,
2021; Kondo et al., 2021; Sountsov and Sarawagi, 2016]. With the architectures
of attentional Encoder-Decoder networks [Stahlberg, 2020], the fixed-length source
sentence encoding could be replaced by an attention mechanism. This fixed length
of the encoding was hypothesized to be a reason for the poor translations by Cho
et al. [2014]. Their explanation is that, since this fixed-length vector is ideal for
short sentences, it would not be capable of encoding the complicated structure and
meaning of a long sentence [Cho et al., 2014].

Pouget-Abadie et al. [2014] work on a solution with automatic sentence segmenta-
tion by chopping the source sentence into shorter clauses. First, each segment is
independently translated by the NMT model, which in their case has an RNN archi-
tecture. After that, these translated clauses are put together in a concatenation and
thus form a final translation. For these long sentences, the results of Pouget-Abadie
et al. [2014] show an improvement in translation quality. Nevertheless, long-distance
reorderings still pose a problem in this approach, as they are only possible within a
clause [Stahlberg, 2020]. Even though Fischer et al. [2022] used a Transformer model
for the translation, the segmentation technique is similar to the approach used in
this thesis in that subsequences of a sentence are translated individually. Instead of
POS-tags, Pouget-Abadie et al. [2014] used a so-called "confidence score" to choose
segments to translate. This confidence score reflects how confidently the system can
translate a subsequence, which is measured by the log-probability of a generated
candidate translation using an RNN Encoder–Decoder [Pouget-Abadie et al., 2014].

Another approach on automatic long sentence segmentation is proposed by Kuang
and Xiong [2016]. The authors also work out a method to segment long sentences
into several clauses by introducing a split and reordering model. For a long source
sentence, this method collectively detects the optimal sequence of segmentation
points. As in Pouget-Abadie et al. [2014], the NMT system translates each seg-
mented clause independently into a target clause. Without the need for a specific
reordering step, the translated target clauses are recomposed to a final translation.
Kuang and Xiong [2016] use an RNN Encoder-Decoder model as well, but trans-
late the clauses with an attention-based NMT system, which makes the use of a
reordering system obsolete.

Inspired by the idea of long sentence segmentation into shorter clauses, another tech-

26

Chapter 4. Related Work on NLP for Latin

nique includes hierarchy-to-sequence attentional NMT models and is implemented
by Su et al. [2018]. Their goal is to find optimal model parameters for long parallel
sentences as well as exploiting different scopes of contexts better. The segmented
clause serves as input to the encoder. Using a hierarchical neural network struc-
ture, words, clauses, and sentences are then modelled at different levels. In order to
capture contexts for the translation prediction, the decoder applies attention mod-
els. The segmentation itself is done according to the source-side punctuation. Su
et al. [2018] use punctuation markers such as commas and question marks, which is
applied in this thesis as well.

Tien and Minh [2019] investigate long sentences in NMT, too, and propose a method
to extract bilingual phrases in order to create a phrase-aligned bilingual corpus. To
optimize the NMT model, a preprocessing technique for long sentences is imple-
mented. The segmented phrases are obtained using the phrase table generated by
the Moses toolkit [Koehn et al., 2007].

Zhang and Matsumoto [2019], who also work on a sentence segmentation approach
for low-resource NMT, use a corpus augmentation method which consists in seg-
menting long sentences via back-translation. With the generation of pseudo-parallel
sentence pairs, they are able to improve the translation performance. The authors
first obtain the word alignments of parallel sentences of their language pair. As in
[Su et al., 2018] and in this thesis, the splitting is implemented by taking punctuation
symbols such as ",", ";", and ":" into account [Zhang and Matsumoto, 2019].

Berrichi and Mazroui [2021] develop two techniques for segmenting long sentences
into smaller sub-sentences. One method uses a list of collected lexical markers as
segmentation points. These markers are collected through text analysis and consist
of words that serve as link between two segments of a sentence such that the segments
may be examined separately at the syntactic and semantic levels. Thus, similarly
to the POS-tagging information for splitting positions in this thesis, the authors use
specific semantic segmenters. A second method integrates parallel phrases extracted
by an SMT system into the NMT model. Like Tien and Minh [2019], the authors
used the SMT system Moses for the creation of a phrase translation table [Berrichi
and Mazroui, 2021].

Şahin and Steedman [2019] introduce a Data Augmentation technique involving
dependency tree morphing. By "cropping" sentences through the removal of de-
pendency links as well as "rotating" sentences by moving the other tree fragments
around the root, the authors augment training sets of low-resource languages. The
cropping is implemented by identifying sentence parts to focus on in the dependency
tree, such as subjects and objects. By defining a focus such as the subject or the

27

Chapter 4. Related Work on NLP for Latin

object, they form smaller sentences and remove all dependency links other than the
focus. In order to apply the rotating, the authors choose the root as sentence center.
The flexible tree fragments, which are defined by the morphological typology of the
language, are then rotated around the root [Şahin and Steedman, 2019].

A technique for sentence compression is proposed by Li et al. [2020]. The authors
use the focus property of Transformer-based encoders, as the core of a sentence
is not specifically focused on. This aims at using a relatively short sequence for
maximizing the absorption and retention of large amounts of data. With the self-
attentional Transformer method, the most salient part of a sentence representation
can be established [Li et al., 2020]. This sentence compression method differs from
this thesis’ approach, as no direct segmentation is applied, but can still be important
for the project as Fischer et al. [2022] also use a Transformer architecture.

Besides the segmentation of sentences, the substitution of sentence parts has been
investigated in recent research as well. To deal with long sentences in NMT, Shi
et al. [2021] work on techniques summarized as "substructure substitution". These
techniques generate new examples while keeping the same label, whereas this process
is repeated until the training set reaches a desired size. In the setting with POS-
tags, the corresponding POS-tags of a text span function as substructure labels [Shi
et al., 2021].

As current standard NMT model, the Transformer has difficulty to translate long
sentences, Neishi and Yoshinaga [2019] explore reasons for this issue. They investi-
gate differences between Transformers and RNN-based models in how they handle
position information which is essential to process sequential data. The authors
demonstrate that relative position, in contrast to absolute position, helps translat-
ing sentences that are longer than those in the training data [Neishi and Yoshinaga,
2019].

Similar to Neishi and Yoshinaga [2019], Kondo et al. [2021] come up with a new
thought for the same question. They train their model differently by only using the
given parallel corpora as training data in order to generate long sentences through
the concatenation of two sentences. The authors assume the major issue with poor
performance in long sentence translation in low-resource languages is caused by an
insufficient number of long sentences in the training data. They further improve
translation quality when their method is combined with backtranslation [Kondo
et al., 2021].

Several sentence segmentation methods have been proposed in the field of speech
recognition. [Dalva et al., 2018] propose a sentence segmentation approach including

28

Chapter 4. Related Work on NLP for Latin

semi-supervised learning strategies in order to determine the sentence boundaries of
a stream of words that are output by automatic speech recognizers. In their paper,
Wang et al. [2019] suggest a sentence segmentation approach working with multi-
shifted RNNs. The goal of the authors is to segment the unpunctuated transcripts
which are generated by automatic speech recognition for a simultaneous interpreta-
tion. The multi-shifted RNN model applies sentence segmentation by shifting target
signals by multiple durations of time to ensure the next few words belong to a new
sentence [Wang et al., 2019]. Similar to Dalva et al. [2018] and Wang et al. [2019],
Li et al. [2021] state that sentence boundary segmentation has a large impact on
quality of NMT performances, which they can be solved by implementing a Data
Augmentation strategy to expose the model to bad segmentations during training.

Other Data Augmentation methods have been proposed in recent research. Among
them, Kumar et al. [2020] present an approach for Data Augmentation using pre-
trained Transformer models. Fischer et al. [2022] use pretrained models in the
context of the pretraining step in the pipeline in order for the model to learn fluent
German from a larger training corpus. The chosen language pair for the corpus is
German-Italian, as Italian is closely related to Latin [Fischer et al., 2022].

Further Data Augmentation techniques for low-resource translations are investigated
by Xia et al. [2019]. On a more general basis, Feng et al. [2021] discuss recent Data
Augmentation approaches for NLP. Similarly to Feng et al. [2021], Chen et al. [2021]
describe Data Augmentation for limited data conditions.

Despite many useful techniques of sentence segmentation and simplification dis-
cussed in this section, the translation of long sentences in NMT is still a challenge
[Stahlberg, 2020], which is also the case for the Bullinger corpus [Fischer et al.,
2022]. In this context, Section 5.1 highlights the advances in translation quality as
the corpus grows, and Section 7.4 explains the sentence segmentation methods of
this work.

29

5 Corpus and Training Data

5.1 The Corpus

The text corpus of letters used in the Bullinger Digital Project, referred to as
Bullinger corpus in this thesis, contains the correspondence of Swiss reformer Hein-
rich Bullinger, who lived from 1504 until 1575. There are different editions of his
letters. In ongoing projects, letters since 1523 have been edited and published in
chronological order in around 20 volumes.

Many original letters of the HBBW edition (Heinrich Bullinger Briefwechsel) are
stored in the State Archives of the Canton of Zurich (Staatsarchiv des Kantons
Zürich1) and in the Zurich Central Library (Zentralbibliothek Zürich2). The HBBW
edition is created by the Institute for Swiss Reformation History3 and its letters are
accessible to the public via an electronic edition in PDF4.

These letters make up around 90% of the Bullinger correspondence. The other
originals of the letters are scattered in libraries all over the world, and a particularly
large number of them are in the Cantonal Library of Vadiana5 in St. Gallen, where
the VBS edition is stored.

Today, the work on the Bullinger correspondence is divided into two subprojects.
The Heinrich Bullinger-Stiftung6 ensures further publication of the letters (tran-
scription, commentary, and translation) and the continuation of the edition in book
form. The edition enterprise has its own website7.

The second subproject commissioned by the Department of Computational Linguis-

1https://www.zh.ch/de/direktion-der-justiz-und-des-innern/staatsarchiv.html
2https://www.zb.uzh.ch/de/
3https://www.uzh.ch/cmsssl/irg/de.html
4http://teoirgsed.uzh.ch/
5https://www.sg.ch/kultur/kantonsbibliothek-vadiana.html
6https://www.bullinger-stiftung.ch
7https://www.irg.uzh.ch/de/bullinger-edition.html

30

Chapter 5. Corpus and Training Data

tics at the University of Zurich8 includes the creation of a database with metadata
from each individual letter and links to scans currently being created in the State
Archives of the Canton of Zurich (Staatsarchiv des Kantons Zürich9) and in the
Zurich Central Library10.

The Heinrich Bullinger-Stiftung11 has the goal to make Heinrich Bullinger’s cor-
respondence accessible to the public and to facilitate new historical and linguistic
research. To do this, the correspondence must be deciphered, translated, explained
in terms of content and placed in its cultural-historical context. The aim of the
Bullinger Digital Project12 is to make the letters that have not yet been edited digi-
tally accessible and to bring all the correspondence together in a database accessible
via the Internet.

The Bullinger corpus consists of more or less 10’000 letters written to Heinrich
Bullinger in the 16th century, and additional 2’000 letters written by himself to
members of his correspondence network. The letters include topics such as politics
and religion and cover a wide range in terms of formality. With the customized
MT model for 16th century Latin, all Latin sentences can be translated into modern
German [Fischer et al., 2022]. This chapter describes the data and detailed methods
used in the creation of the Bullinger corpus and the training data.

For the Bullinger Digital Project, most of the training data is collected by the
research team. They used sentence alignment tools such as the LASER (Language-
Agnostic SEntence Representations) library [Schwenk et al., 2017], which is applied
to the data in combination with the Bitext Miner Algorithm [Schwenk et al., 2021]
and the Vecalign Algorithm [Thompson and Koehn, 2019]. The LASER library
comes with an encoder to create sentence embeddings. This encoder is trained on
Latin and German and almost 100 languages more. With these sentence embeddings,
similar sentences can be found across languages [Fischer et al., 2022].

As pointed out in 3.3, Latin is a low-resource language coming with only few texts
and parallel data, which makes NMT for the Latin-German language pair challeng-
ing. On the OPUS website for example [Tiedemann, 2016], which is a website that
hosts many parallel corpora, only 100,000 translated sentences are available for the
language pair Latin-German, and also other combinations with Latin do not show
greater numbers of segments [Fischer et al., 2022].

8https://www.bullinger-digital.ch
9https://www.zh.ch/de/direktion-der-justiz-und-des-innern/staatsarchiv.html

10https://www.zb.uzh.ch/de/
11https://bullinger-stiftung.ch/
12https://www.bullinger-digital.ch/about

31

Chapter 5. Corpus and Training Data

In the Bullinger corpus, training data is collected from different sources and also
generated and translated manually. The language stage of these sources ranges from
Classical Latin texts to modern day Vatican publications [Volk et al., 2022a]. Even
though the training data covers Latin from a wider range than only 16th century,
Fischer et al. [2022] find more data generally yields better results and systems get
more robust. From the above mentioned OPUS Corpora, Fischer et al. [2022] use
the two largest data sets for the training data of the Bullinger corpus, namely the
Wikimatrix Corpus and the bible-uedin Corpus. The Wikimatrix Corpus contains
17,000 automatically aligned sentence pairs and was created by Facebook Research.
On the other hand, the bible-uedin Corpus created by Christodouloupoulos and
Steedman [2015] consists of the translation from Latin of the bible. 30,000 sentence
pairs are included in the training data of the Bullinger corpus.

A part of the training data also consists of manually translated sentences. A small
number of sentences of the Bullinger collection is translated by a scholar of the Swiss
Reformation Studies Institute at the beginning of the project. This small number
of translated sentences is later used as the primary test set. Additional manual
translations by the Swiss Reformation Studies Institute have periodically been added
to the training data later on [Fischer et al., 2022]. While 154 segments is a small
number of manual translations, these high-quality translations of in-domain data are
of very high value, as for low-resource languages, NMT systems usually work better
when the quality is high and noise can be avoided [Magueresse et al., 2020]. Fischer
et al. [2022] also collect a large part of their training data from different websites.
The three main websites used were the official website of the Vatican13, the weekly
news summary of Vatican News14, and the Library of the Church Fathers15.

The translations of the official Vatican website include different scriptures from the
Apostolic Constitutions, Catholic Catechisms, as well as constitutions, decrees and
declarations of the Second Vatican Council. The added data consists of 60,589 quasi-
parallel sentence pairs [Fischer et al., 2022]. Vatican News creates a news summary
which is published weekly in Latin and German since 2004. Out of the entries,
additional 6,139 sentences are added to the training data. Even though modern
Latin is not entirely identical to the target domain, the high quality of the close
translations are extremely valuable for the training data [Fischer et al., 2022].

From the Library of the Church Fathers, 21,573 parallel segments were added to
the training data. This library consists of a collection of ancient Christian literature

13https://www.vatican.va
14https://www.vaticannews.va/de.html
15https://bkv.unifr.ch/de

32

Chapter 5. Corpus and Training Data

with German translations, containing authors such as Hieronymus, Ambrosius, or
Augustinus. Fischer et al. [2022] crawl all Latin source texts which have a German
translation. With an average of 40 German tokens, the sentence length is remarkably
high. Another 35,620 parallel segments can be collected from the Biblia Vulgata, a
Latin translation of the Bible from the 4th century translated into German in the
1830s [Fischer et al., 2022].

Besides this additionally collected data through web crawling, English translations
of Classical Latin can be used from the Perseus Digital Library [Clérice et al., 2022].
After downloading all text from their git repository16, English-Latin sentence pairs
are mined and English sentences are then translated into German via DeepL17 in
order to create a Latin-German parallel corpus. Additional 14,870 sentence pairs
were added from the Perseus Digital Library [Fischer et al., 2022].

A part of the data is added from transcriptions and translations from other projects
which used letters of the Bullinger correspondence, namely from the Zurich Let-
ters [Robinson, 1846], the Blarer Correspondence [Schiess and Badische Historische
Kommission, 1908], and the regests. Fischer et al. [2022] scan these letters and apply
an OCR software to digitize the text.

1,825 English-Latin sentence pairs are collected from Zurich Letters [Robinson,
1846], which consist of the correspondence between different Swiss reformers, among
them Bullinger, with English Bishops. The letters, which are available in Latin and
English, are aligned and the English sentences are again translated into German
with DeepL. This edition is valuable for the training data as it is identical to the
target domain [Fischer et al., 2022].

The Blarer Correspondence [Schiess and Badische Historische Kommission, 1908]
contains the correspondence between Bullinger and the Blarer brothers Ambrosius
and Thomas. As the German translations of these letters are merely summaries,
GoogleTranslate18 is used to translate the German sentences of the letters into Latin,
since the quality of GoogleTranslate has been improved recently. This approach was
based on the idea of backtranslation [Sennrich et al., 2016]. These additional 2,868
German segments with Latin translations were marked with a special symbol to
highlight that these sentences are backtranslations, as they tend to be erroneous.

Regests are German summaries of the content preceding the already edited Bullinger
letters. 24,188 segments can be added to the training data by using the regests and

16https://github.com/PerseusDL
17https://www.deepl.com
18https://translate.google.com

33

Chapter 5. Corpus and Training Data

again their backtranslations with GoogleTranslate. Even though the use of second
person singular from the letters is replaced by third person use in the summaries, us-
ing the regests guarantees that the model encounters the names of most of Bullinger’s
correspondents, and covers most of the other named entities and specific vocabulary
[Fischer et al., 2022].

5.2 The XML Structure

The data from the Bullinger corpus comes with a specific XML structure which is
the same for each letter. The Extensible Markup Language19 (XML) is a markup
language and file format. It us used for storing, transmitting, and reconstructing
arbitrary data. XML is, of many current formats of annotation, the format which
emerged to be the most widespread form of annotation [Gries and Berez, 2017].

As described on the Website of the Bullinger Digital Project20, the letters are or-
ganized by their respective editions. Each edition directory contains a number of
letters with the corresponding edition number and each letter is represented in one
XML file. Within the XML file, the structure is the same for each letter: It con-
tains the metadata, the regest of the letter, as well as the transcription of the letter
content itself [Volk et al., 2022b].

The metadata normally contain information such as the letter’s source and its refer-
ences, its date, numbers of corresponding scanned pages, the sender and addressee
of the letter, and languages contained in the letter. The "letter" part of the XML
file contains one sentence per line, each containing an attribute specifying in which
language the sentence is written. Besides the 75% of the letters written in Latin,
there are another 25% written in Early High German, while the languages may as
well appear together in one letter [Volk et al., 2022b]. This language attribute comes
into play during the extraction of the long sentences, as will be described in Section
7.2.

19https://www.w3.org/XML/
20https://www.bullinger-digital.ch/

34

6 Tools and Resources

Below, I introduce and describe the tools and resources used in this master’s thesis.
I do the programming with the Python Programming Language1. For the POS-
tagging, I use two different models: The CLTK2 POS-tagger and the POS-tagger
by UDPipe3. The Neural Machine Translation of the project uses the Transformer4

architecture and the SOCKEYE5 framework.

6.1 The Python Programming Language

Python is a programming language with efficient high-level data structures. These
high-level data types allow the expression of complex operations in a single state-
ment. Statements are grouped by indentation instead of beginning and ending
brackets, as it is often the case in other programming languages such as Java for
example. Besides, the declarations of variables or arguments are not necessary in
Python [Python Software Foundation, 2001-2022].

Python is an interpreted programming language, in which the interpreter reads and
executes the source code instead of a direct translation by the target machine, as it is
the case for compiled programming languages. Python also has a simple approach to
object-oriented programming. With this approach to object-oriented programming,
while some classes in Python are pre-defined, it is also possible to define new classes
and create instances of them. With the definition of a class, the operations that can
be performed on it are specified [Python Software Foundation, 2001-2022].

The Python programming language is known for its readable syntax and dynamic
typing, which makes it useful for scripting and rapid application development. The
Python interpreter is easily extensible with new functions and data types that are

1https://www.python.org/about/
2https://docs.cltk.org/en/latest/
3https://lindat.mff.cuni.cz/services/udpipe/run.php
4https://huggingface.co/docs/transformers/index
5https://github.com/awslabs/sockeye

35

Chapter 6. Tools and Resources

implemented in C, C++, or in other languages that can be called from C. When
writing scripts in Python, i.e. writing longer programs in a text editor to prepare
the input for the interpreter and running it with that file as input, it is possible to
split content into several files. These definitions from one module can be imported
into other modules to reuse functions from other scripts. A module is, per definition,
a file that contains Python definitions and statements. The name of the file is the
module name with an appended suffix .py [Python Software Foundation, 2001-2022].

Besides modules, it is also possible to import packages and libraries. A package
is a way of structuring Python’s module namespace and groups together a collec-
tion of modules. Packages use “dotted module names”. The import of a method
from the multi-module package NumPy may thus be from numpy.random import

default_rng, for example. As a simplification, packages can be thought of as direc-
tories in a file system, while modules are files within directories [Python Software
Foundation, 2001-2022].

A library is also defined as a collection of related modules and packages which are
grouped together, but with the specific goal to use them in a program or another
library. An example for a library is the Matplotlib library, which is a standard library
for the generation of data visualizations in Python [Python Software Foundation,
2001-2022].

In this thesis, I use Python for all the different steps of the splitting process. In a
combination of different scripts, I use the programming language for the extraction
of long Latin sentences from the XML data, for the POS-tagging step, and also for
the splitting itself. I describe these steps in more detail in Section 7.

6.2 POS-Tagging Models

In this thesis, I use two different POS-tagging models to test how well they work
on the Bullinger letters with 16th century epistolary Latin. The CLTK POS-tagger6

and the UDPipe POS-tagger7 will be described in the following sections.

6https://docs.cltk.org/en/latest/
7https://lindat.mff.cuni.cz/services/udpipe/run.php

36

Chapter 6. Tools and Resources

6.2.1 CLTK

The Classical Language Toolkit (CLTK) is a Python library and open-source frame-
work. It offers Natural Language Processing for pre-modern languages [Johnson
et al., 2014–2021]. CLTK was founded in 2014, supporting NLP for historical lan-
guages. It addresses the need for complete text analysis pipelines for less-resourced
historical languages such as Greek and Latin. The advantage of CLTK is that
NLP tasks such as tokenization, lemmatization, part-of-speech tagging and related
morphological analysis can be performed without resorting to external tools, web
applications, or web services [Burns, 2019].

Pipelines which are pre-configured are available for 19 languages, among them Clas-
sical Chinese, Gothic, Hindi, Middle High German, and Latin. The CLTK library
comes with a few native data types, namely Word, Sentence, Doc, Process, and
Pipeline [Johnson et al., 2014–2021].

First of all, the Process data type takes and returns a Document, also called Doc. A
process does some specific information processing within the Doc and annotates each
Word object at Doc.words. The Word data type contains all processed information
for each word token. It has several attributes, such as Word.lemma, Word.pos,
or Word.embedding. The data is added to each Word by a process. A Sentence

data type, on the other hand, contains the sentence embeddings, which consist of a
weighted average of these word embeddings of the sentence [Johnson et al., 2014–
2021].

The Doc data type contains the original input string to NLP().analyze(), called
Doc.raw, which is the command used when processing data to obtain analyzed
output data. The Doc data type also contains Doc.words. This is a list of Word

objects which is the input and output of each Process and as well the final output of
the NLP() function. And finally, the Pipeline data type contains a list of Process
objects called Pipeline.processes. For some languages, predefined pipelines are
available. For all languages, however, custom pipelines can be created [Johnson
et al., 2014–2021]. Details about the usage of the CLTK library in this thesis will
be discussed in Section 7.3.

6.2.2 UDPipe

UDPipe 2 is a trainable pipeline which can perform sentence segmentation, tokeniza-
tion, POS-tagging, lemmatization and dependency parsing as well. It can be trained
on annotated data in CoNLL-U format, but already trained models are available for

37

Chapter 6. Tools and Resources

almost all Universal Dependencies8 treebanks [Straka, 2018].

The UDPipe model makes use of an artificial neural network with a single joint
model for the processes of POS-tagging, lemmatization and dependency parsing. It
is trained on the CoNLL-U training data as well as pretrained word embeddings. It
can be freely used for non-commercial purposes and provides annotation models for
more than 50 languages, including Latin. Many of these languages are non-Indo-
European, such as Arabic, Indonesian, or Irish [Straka, 2018].

While UDPipe is available as a downloadable program compatible with Linux, Win-
dows and OS X, it can as well be used as a web application. When using UDPipe as
a downloaded program, the desired Universal Dependencies language models need
to be downloaded as well. Besides that, it is also usable as library in programming
languages such as C++, Python, Perl, R, Java, C# [Straka, 2018].

When using the web service, the language in one of the three training models needs
to be selected and the input text to annotate has to be provided as raw text or as
a file. The model can annotate Part-of-Speech labels as well as more complex sets
of grammatical features, such as case, person, gender, and tense to each individual
word [Straka, 2018]. More information on the models used in this thesis will be
provided in sections 7.3 and 8.1.

6.3 Neural Machine Translation Framework

In the experiments on the Bullinger Corpus, Fischer et al. [2022] implement the
Transformer architecture in its base configuration by Vaswani et al. [2017]. As
framework, they use the SOCKEYE9 framework by Hieber et al. [2017]. The SOCK-
EYE framework is an open-source sequence-to-sequence toolkit for NMT. It serves
as an experimental platform for researchers as well as a framework for training
and applying models. As mentioned in Section 3.1.1, the three most prominent
encoder-decoder architectures are attentional recurrent neural networks, convolu-
tional networks, and self-attentional transformers. The toolkit is written in Python
and is built on Apache MXNET10 [Chen et al., 2015], and thus offers scalable train-
ing and inference for all of these three architectures [Hieber et al., 2017]. A further
advantage of SOCKEYE is the support of a wide range of optimizers, as well as
normalization and regularization techniques and recent inference improvements. A

8https://universaldependencies.org/
9https://github.com/awslabs/sockeye

10https://mxnet.incubator.apache.org/

38

Chapter 6. Tools and Resources

user can customize different model settings, incorporate new designs, or run existing
standard training recipes [Hieber et al., 2017].

While the presence of many independent toolkits brings diversity to the field, it does
not contribute to the possibility to compare architectural and algorithmic improve-
ments. SOCKEYE addresses the need for an NMT toolkit which contains all the
best ideas from current literature and findings in the fast changing field of NMT.
As a lot of engineering is required to achieve “production-ready” performance and
the optimum between translation quality and computational efficiency, it allows for
hyper-parameter tuning, architecture modifications, and empirically effective heuris-
tics [Hieber et al., 2017].

39

7 Methods

This chapter describes my methods for all the steps of the sentence splitting task. I
start with the extraction of long sentences from the corpus. With the extracted sen-
tences, I test different POS-taggers and with the gold standard of the POS-tagging
step, I experiment with different splitting approaches to create shorter sequences to
translate. The code used is visible in the dedicated Git repository1. In order to
facilitate the running of the scripts, shell scripts are provided occasionally. A short
description of the pipeline is provided in the corresponding README file.

7.1 The Corpus Structure

As pointed out in Section 5.1, the complete corpus of the Bullinger letters includes
more or less 12’000 letters from the 16th century [Fischer et al., 2022]. The final
digital version of all Latin texts from the Bullinger Digital Project and their Machine
Translations into German are available digitally2 [Volk et al., 2022b]. During the
digitization process, the letters were brought into an XML format.

To achieve this format, as described in Section 5.2, the letters of the Bullinger
corpus were scanned by Fischer et al. [2022] and an OCR software was applied
for the digitization of the text. The digitized letters are formatted in an XML
structure organized in different directories according to their edition. Each XML
file containing one letter consists of the metadata, the regest, and the transcription
of the letter [Volk et al., 2022b].

The following example in Figure 0 shows the structure of such an XML file as well
as the letter itself, which is structured with one sentence per line.

1https://github.com/sabrinabraendle/ma-bullinger-split.git
2https://www.bullinger-digital.ch/

40

Chapter 7. Methods

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<file>
<metadata id="10016" id_hbbw="1" id_irg_sort="1" id_sort="100010">
...

</metadata>
<regest fk_bibliography="1" nr="1" page="45">
...

</regest>
<letter lang="la" edition="HBBW" vol="1"
fk_bibliography="1" nr="1" page="45">
...

</letter>
<footnotes fk_bibliography="1" nr="1">
...

</footnotes>
</file>

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<file>
...
<letter lang="la" edition="HBBW" vol="1"
fk_bibliography="1" nr="1" page="45">
<div ref_regest="1">
<p>
<s lang="la" state="auto">...</s>

</p>
<p>
<s lang="la" state="auto">Mitto tibi, mi ... </s>
<s lang="la" state="auto">Dedico eas nomini tuo, ... </s>
...

</p>
<p>
<s lang="la" state="auto">Ex academia nostra ... </s>

</p>
<p>
<s lang="la" state="auto">Henrichus Bull[ingerus], ... </s>

</p>
</div>

</letter>
...

</file>

Figure 0: XML Letter Structure in the Bullinger Corpus

41

Chapter 7. Methods

7.2 Sentence Extraction

In the sentence extraction step, I use the script extraction.py to search for the
Latin sentences in the "letter" part of each XML file, which make up 75% of all
letters. Each letter is structured in the XML file with one sentence per line, whereas
the language is marked by an attribute such as lang="la". In a first step, I loop
over all .xml files and collect all sentences in Latin and store them in lists if they
have the sentence lengths I want to investigate. Punctuation symbols are counted
as tokens as well in this task. The three different length categories are defined as

1. 15-19 tokens,

2. 20-24 tokens,

3. and 25 or more tokens.

Once all Latin sentences of the desired lengths are collected in the three lists, 200
sentences are randomly sampled from each category. For each length category, a
text file is created containing the sentence and one sentence of the corresponding
length per line, with the corresponding edition one line above the sentence.

7.2.1 Length Categories

In the test set of the Bullinger corpus, shorter sentence lengths are more frequent.
The train set contains a larger number of longer sentences than the test set. However,
most sentences of the train set are shorter than 30 tokens. A visualization of the
frequency of different sentence lengths in the test and train set is shown in Figure
1.

The definition of "long" sentences generally depends on the language and the cor-
pus. The literature suggests that models specifically show a performance drop in
translating sentences that are longer than those in the training data [Kondo et al.,
2021; Neishi and Yoshinaga, 2019]. Berrichi and Mazroui [2021] find in their study
that the translation quality drops significantly when the sentence length is greater
than 30 words, which makes them define "long" sentences as sentences longer than
30 words. Kuang and Xiong [2016] perform their experiments on sentences longer
than 30 words, too. In this thesis, I intend to observe changes in the translation
quality when sentences of all three length categories are split into shorter sequences.

42

Chapter 7. Methods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 34 35 37 38 39 41 44 47 50 53 64 75

sentence length

0

2

4

6

8

10

12

fre
qu

en
cy

 in
 c

ou
nt

s

Distribution of Sentence Length Frequencies in Train and Test Set
testfrequencies
trainfrequencies

Figure 1: Sentence Length Distribution of the Train and Test Set

7.2.2 Extraction Challenges

Challenges when extracting Latin sentences include the parsing of the .xml files
and the corresponding work with the Python package lxml3. It is sensible to parse
the .xml files with the os.walk() command, which traverses the root directory and
thus accesses the directories’ files inside the root.

Furthermore, the command "".join(element.xpath("text()")) makes sure the
complete text from a sentence is extracted, as parts or tokens in the text are marked
with special tags, such as <entity id="204" type="pers">Wernhere</entity>

for named entities. The complete data and code is in the dedicated Git repository4.

3https://lxml.de/
4https://github.com/sabrinabraendle/ma-bullinger-split.git

43

Chapter 7. Methods

7.3 POS-Tagging

In this section, I discuss the process of POS-tagging long Latin sentences as well
as the elaboration of a POS-tagging gold standard in order to compare different
POS-taggers. While POS-tagging annotation for low-resource languages can be
done manually and then be extended to greater amounts of data with automatic
methods, which is usually more efficient [Zennaki et al., 2015], this thesis uses the
already existing POS-taggers from the CLTK5 and from UDPipe6.

7.3.1 Sentence Formats for the POS-Tagging Models

After extracting long sentences of the three length categories, the CLTK POS-
tagger can be directly applied to the extracted sentence files with a one-sentence-
per-line format by the installed cltk package. For this step, I use the script
cltk_postagger.py. The output of the Latin NLP model (NLP(language="lat"))
can be linguistically analyzed by the standard method .analyze(text=input). By
using the .tokens and the .pos methods, the tokens and their corresponding POS-
tag are written to an output file.

UDPipe offers a web service for tagging, where the input can be provided as raw
text or as complete input files [Straka, 2018]. In order to obtain the desired out-
put format, the extracted files need to be formatted differently using the script
udpipe_formatter.py. The input file can be processed with one sentence per line,
and the tokens separated by a tab space. On the web service, the models used are the
three UD 2.10 model versions "latin-ittb-2.10-220711", "latin-proiel-2.10-220711",
and "latin-perseus-2.10-220711". Further web service settings used in this thesis
include the horizontal input format and the tokenizer which takes pre-segmented in-
put. The horizontal format specifies that each sentence is on a separate line and its
tokens are separated by spaces. The pre-segmentation tokenizer takes input which
is assumed to be already segmented. Each sentence is expected to be tokenized with
respect to sentence breaks and on a separate line [Straka, 2018].

7.3.2 POS-Tagging Models

In this section, I provide information on the different POS-tagging models and their
functionalities with respect to the Bullinger corpus data and the POS-tagging step

5https://docs.cltk.org/en/latest/
6https://lindat.mff.cuni.cz/services/udpipe/run.php

44

Chapter 7. Methods

of the splitting pipeline.

7.3.2.1 CLTK

The Python library Classical Language Toolkit (CLTK) is an NLP framework ded-
icated to the processing of pre-modern languages. It is characterized by a modular
processing pipeline and provides models and entire pipelines for approximately 20
languages. The software architecture contains diverse algorithmic structures [John-
son et al., 2021]. For morphological parsing in the case of Latin, the CLTK relies on
Stanza7. The morphological taggers output values such as the word class and gram-
matical categories, which are then normalized to the CLTK data types described
in Section 6.2.1 that model the annotations of the Universal Dependencies project
[Johnson et al., 2021].

Stanza is based on neural network components, with modules built on top of the
PyTorch8 library [Qi et al., 2020]. Stanza features a neural network pipeline and
has pretrained neural models for 70 languages. For POS-tagging, Stanza uses a
bidirectional long short-term memory network (Bi-LSTM) as the basic architecture.
The POS module labels the words with their universal POS (UPOS9) tags as well
as treebank-specific POS (XPOS) tags [Qi et al., 2020].

Unfortunately, it is not yet possible to report any formal evaluations of CLTK’s
models’ accuracies, as most parts of the pipelines wrap models trained by upstream
projects, such as Stanza. While accuracy reports of these projects are available
respective to their training sets, they lack evaluations against outside benchmarks
which do not yet exist for pre-modern languages [Johnson et al., 2021].

Thus, while the CLTK is predominantly created for the use on classical languages,
its neural architecture and relatively high amount of training data makes it an
interesting toolkit for this thesis, even though the training data might not entirely
cover the domain of 16th century epistolary Latin [Fischer et al., 2022].

7.3.2.2 UDPIPE

UDPipe 2 provides already trained models for almost all Universal Dependencies10

treebanks. UDPipe uses a single joint model for the processes of POS-tagging,

7https://stanfordnlp.github.io/stanza/
8https://pytorch.org/
9https://universaldependencies.org/u/pos/

10https://universaldependencies.org/

45

Chapter 7. Methods

lemmatization and dependency parsing. For POS-tagging, UDPipe applies a multi-
layer bidirectional LSTM to process embedded words, just as the CLTK (see Section
7.3.2.1) [Straka, 2018]. The 2.10 models, which are used in this thesis, additionally
implement multilingual BERT and RobeCzech to provide contextualized word em-
beddings. These models are based on Universal Dependencies 2.10 treebanks [Straka
et al., 2021].

The three UDPipe models used in this thesis include the ITTB model, the PERSEUS
model, and the PROIEL model. Performances are available for these three models.
For POS-tagging, the models achieve the following results based on F1 scores and
measured against the testing portion of the data evaluated against raw text [Straka
et al., 2021].

UDPipe Model performance training data size

latin-ittb-ud-2.10-220711 98.91 450’515 tokens

latin-perseus-ud-2.10-220711 91.83 200’163 tokens

latin-proiels-ud-2.10-220711 96.69 29’138 tokens

Table 1: Specifications of the used UDPipe models [Straka et al., 2021]

The ITTB model, with the largest training data size of the three models, is trained on
the ITTB treebank11. It contains Latin data from the Index Thomisticus Treebank.
The data comes from the Index Thomisticus corpus by Roberto Busa. This corpus
contains the complete work by Thomas Aquinas, who lived from 1225 until 1274,
and 61 other authors related to Thomas. The texts are written in Medieval Latin
[Cecchini et al., 2018].

The PROIEL model is trained on Latin data from the PROIEL treebank12. It covers
most of the Vulgate New Testament translations, as well as selections from Caesar’s
Gallic War, from Cicero’s Letters to Atticus, from the first book of Cicero’s De
officiis, and from Palladius’ Opus Agriculturae [Cecchini et al., 2018].

Finally, the PERSEUS model is trained on the Universal Dependencies PERSEUS
Latin Treebank13. This treebank consists of an automatic conversion of a selection
of passages from the Latin Dependency Treebank 2.1. The original data were mor-
phologically and syntactically annotated in a semi-automatic way. The Morpheus
morphological analyzer is used for the morphological annotation and lemmatization.
The syntactic annotation is done manually. The Latin treebank contains parts of

11https://universaldependencies.org/treebanks/la_ittb/index.html
12https://universaldependencies.org/treebanks/la_proiel/index.html
13https://universaldependencies.org/treebanks/la_perseus/index.html

46

Chapter 7. Methods

works from Augustus, Cicero, Vergil, Ovid, Petronius, Tacitus, and a few other
authors [Cecchini et al., 2018].

Even though the training data of the PROIEL model and the PERSEUS model date
back to the 4th century or earlier, the two models are taken into account for the
POS-tagging. And, while Thomas Aquinas lived in the 13th rather than the 16th

century, the ITTB model covers Medieval Latin, which is promising for the goal of
this thesis.

7.3.3 The Tagsets

The UPOS tagset of the Universal Dependencies Project includes all of the POS-tags
in table 2.

UPOS word class

ADJ adjective

ADP adposition

ADV adverb

AUX auxiliary

CCONJ coordinating conjunction

DET determiner

INTJ interjection

NOUN noun

NUM numeral

PART particle

PRON pronoun

PROPN proper noun

PUNCT punctuation

SCONJ subordinating conjunction

SYM symbol

VERB verb

X other

Table 2: UPOS Tagset14

While the CLTK uses the features defined by version 2 of the Universal Dependencies
project [Johnson et al., 2021], the three UDPipe treebanks lack some of the tags.
None of the three uses the SYM tag. Additionally, the ITTB treebank does not use
INTJ, the PROIEL does not use PART and PUNCT, and the PERSEUS treebank
has no AUX, DET, or PART tag [Cecchini et al., 2018]. For the gold standard in

47

Chapter 7. Methods

this thesis, the UPOS tagset is used, with some specific adaptations and strategies
for the comparison described in Section 7.3.4.

7.3.4 Tagging Decisions

For the gold standard of the POS-tagged files, the tags DET and PART were mapped
to PRON and ADV, respectively. As not all of the models make use of the DET
tag, I decide to count this tag as pronoun, as in attributive position all pronouns
become DET. By the models which use PART, only the word non is tagged with this
POS-tag, which is why I replaced it with ADV in the gold standard. The evaluation
of the different models with respect to the gold standard is done with the script
accuracies.py.

As not all models use the AUX tag, I replace it with VERB. Uncategorizable words
such as non-Latin words are tagged with the X tag. Tokens tagged with X in the
gold standard are excluded from the evaluation, as they are not relevant for the
research questions of this thesis.

7.4 Sentence Splitting

I implement the Data Augmentation method of splitting long sentences into smaller
sequences on POS-tagged files obtained from the gold standardization using the
script splits.py. For the splitting, I examined different splitting rules with different
positions for the split. These different splitting rules are pointed out in Section 7.4.1.

7.4.1 Splitting Rules

As described in Section 2.1.2, syntactical discontinuities are frequent in Latin. To-
kens functioning as subjects, objects and predicates do not have any fixed positions.
Nevertheless, it is possible to group tokens in a Latin sentence into clauses with
a complete semantic prediction, as every grammatically correctly formed sentence
of Latin consists of one or more clauses. Since a sentence that consists of several
clauses, which is often the case for long sentences, is syntactically composed through
coordination or subordination, it seems sensible to consider punctuation markers or
conjunctions as splitting positions [Horrocks, 2011].

48

Chapter 7. Methods

7.4.1.1 Splitting at Punctuation Markers

Similar to Su et al. [2018] and Zhang and Matsumoto [2019], I implement splitting
at punctuation markers. This rule is based on the assumption that most clauses are
separated by commas or similar tokens. Using this splitting rule, I inspected three
translation scenarios:

1. Translating all clauses separately.

2. Putting the first and last sentence part back together and translate the clause
composition.

3. Only splitting the sentence at a punctuation marker in the middle of the
sentence, and translating these two sentence halves.

I implement the segmentation by first splitting at every punctuation marker. Once
I obtain the splits, I translate them with the Bullinger NMT system. An example of
the first splitting method can be seen in 7.1. The second splitting method consists
of adding the first and the last part of each sentence, following the observation that
a subject often occurs in the beginning of a sentence, and a predicate rather in the
end. Example 7.2 shows a sentence split in half and its corresponding translation.
The third experiment includes identifying punctuation markers and only splitting
the sentence in the middle, irrespective of the number of punctuation-separated
clauses it contains. An example is shown in 7.3.

(7.1) Nos
We

erimus
will.be

fortes
brave

in
in

domino,
the.Lord,

licet
even.though

diffugiant
flee

multi
many

iam
already

ex
out

urbe
city

nostra
our

et
and

suas
their

dimittant
transfer

pecunias.
money

split-MT-de. ’Wir werden stark sein im Herrn. , auch wenn viele aus
unserer Stadt fliehen und ihr Geld vergeben .’
MT-de. ’Wir werden tapfer im Herrn sein, obwohl viele aus unserer Stadt
fliehen und ihr Geld entlassen.’
ref-de. ’Wir werden tapfer sein im Herrn, auch wenn schon viele aus unserer
Stadt fliehen und ihr Geld übergeben.’
en. ’We will be brave in the Lord, even though many are already fleeing our
city and transferring their money.’
[accessed 10th October 2022]

(7.2) Utinam
If.only

familiam
family

meam
my

possem
I.could

dimittere
send

ad
to

vos,
you,

si
in.case

altius
deeper

ingruerint
increase

mala,
the.evils,

quo
in.order.to

fortius
better

agere
act

possem!
be.able.to!

49

Chapter 7. Methods

split-MT-de. ’Ich wünschte, ich könnte meine Familie zu euch schicken. ,
damit ich stärker handeln kann!’
MT-de. ’Ich wünschte, ich könnte meine Familie zu euch gehen lassen, wenn
die Übel vertieft werden, damit ich stärker handeln könnte!’
ref-de. ’Wenn ich doch meine Familie zu euch senden könnte, falls die Übel
weiter zunehmen, um allein besser agieren zu können!’
en. ’If only I could send my family to you in case the evils continue to
increase, in order to be able to act better on my own!’
[accessed 10th October 2022]

(7.3) Quam
How

vera
true

sint,
they.are,

nescio;
I.don’t.know;

sunt
there.are

tamen,
however,

qui
who

pro
as

certissimis
certain

venditent.
will.sell.

split-MT-de. ’Wie wahr sie sind, weiss ich nicht. ; es gibt jedoch einige, die
sie für die sichersten verkaufen.’
MT-de. ’Wie wahr sie sind, weiss ich nicht; aber es gibt einige, die sie für
die Gewissheit verkaufen.’
ref-de. ’Wie wahr diese Nachrichten sind, weiss ich nicht; es gibt aber Leute,
die sie als ganz sicher ausgeben.’
en. ’How true this news is, I don’t know; but there are people who pass it off
as quite certain.’
[accessed 10th October 2022]

7.4.1.2 Splitting at Conjunctions

Conjunctions are used to combine clauses in a sentence through coordination or
subordination [Horrocks, 2011]. Similar to Berrichi and Mazroui [2021], who identify
words that serve as links between two sentence segments and use them as semantic
segmentation markers as splitting position, I use tokens with a conjunctional POS-
tag CCONJ or SCONJ as splitting position.

With the SCONJ tags, I split the sentences before the token tagged with SCONJ and
store the segments as new sequences. Additionally, I store a sequence by excluding
the clause containing the SCONJ completely. The second splitting position is defined
as the next punctuation marker. This segmentation is based on the assumption that
the sentence still has meaning without the subordinating clause. Example 7.4 shows
the splitting process at each SCONJ tag of a sentence, example 7.5 one of the
extraction of the clause starting with SCONJ.

In the case of CCONJ tags, I implement the splitting of the sentences before each

50

Chapter 7. Methods

CCONJ token as well. I then store all obtained segments as new sequences and
translate these. An example for the splitting at CCONJ tokens is shown in example
7.6.

(7.4) Si
When

ille
he

advenerit,
will.have.arrived,

fortassis
perhaps

negotia
affairs

imperii
of.the.realm

tractabuntur.
will.be.dealt.with.

split-MT-de. ’Wenn er angekommen ist, Vielleicht werden die
Angelegenheiten des Reiches behandelt.’
MT-de. ’Wenn er angekommen ist, wird er vielleicht mit den
Angelegenheiten des Reiches befasst werden.’
ref-de. ’Wenn er angekommen sein wird, werden vielleicht die
Reichsangelegenheiten behandelt werden.’
en. ’When he will have arrived, perhaps the affairs of the realm will be dealt
with.’
[accessed 10th October 2022]

(7.5) Accepit
Take

a
from

Ioanne
Johannes

Blasio
Blasius

iuramentum
oath

eum
he

aliud
anything.else

non
not

scire
know

quam
that

episcopum
bishop

atque
and

comites
followers

illos
his

viros
men

esse
be

probos.
righteous.

split-MT-de. ’Es liess Johannes Blasius schwören, daß er nichts anderes
wisse. Diesen Bischof und seine Gefolgsleute seien rechtschaffene Männer.’
MT-de. ’Es liess Johannes Blasius schwören, dass er den Bischof und seine
Gefolgsleute für rechtschaffene Leute halte.’
ref-de. ’Es liess Johannes Blasius schwören, dass er nichts anderes wisse, als
dass der Bischof und seine Gefolgsleute rechtschaffene Leute seien.’
en. ’It made Johannes Blasius swear that he knew nothing but that the
bishop and his followers were righteous people.’
[accessed 10th October 2022]

(7.6) De
About

libris
books

apud
with

nos
us

absolutis
appeared

his
this

nundinis
fair

nondum
not.yet

potui
been.able.to

expiscari;
find.out,

sed
but

hac
this

hebdomada
week

id
that

efficiam.
I.will.do.

split-MT-de. ’Von den bei uns abgeschlossenen Büchern, die auf diesen
Messen abgefasst wurden, konnte ich noch nicht herausfinden; Aber in dieser
Woche werde ich es tun.’
MT-de. ’Was die bei uns abgeschlossenen Bücher angeht, so konnte ich
noch nicht herausfinden, aber ich werde es in dieser Woche tun.’
ref-de. ’Über die zu dieser Messe bei uns erschienenen Bücher konnte ich
noch nichts in Erfahrung bringen; aber in dieser Woche werde ich das tun.’

51

Chapter 7. Methods

en. ’I have not yet been able to find out about the books published at this
fair, but I will do so this week.’
[accessed 10th October 2022]

7.5 Neural Machine Translation of the Splits

In order to evaluate the translation quality with these splitting rules, I follow two
different approaches:

1. Translating the clauses separately into German and recomposing them to sen-
tences.

2. Adding the separately translated clauses to the training data.

These two procedures are explained more precisely in Section 7.5.1 and Section 7.5.2.

7.5.1 Recomposing translated Clauses into Sentences

After the automatic splitting of the POS-tagged sentences with the script splits.py,
I translate the files with the separate split clauses using the webservice15 of Bullinger
Digital into German. The translated German clauses are then automatically recom-
posed to sentences using the script splits2sents.py.

In order to evaluate the quality of these recomposed sentences, I perform a manual
qualitative analysis on the output of the third length category of 25 and more tokens,
assessing the adequacy as well as the fluency of a translated and recomposed sentence
with scores of 0 or 1. Adequacy estimates whether the output conveys the same
meaning as the input sentence. Therefore adequacy is not given if parts of the
message are lost, added, or distorted. Fluency, on the other hand, assesses whether
the output is fluent in the target language, including grammatical correctness as
well as idiomatic word choices.

7.5.2 Adding Clause Translations by GoogleTranslate to the

Training Data

During the translation of shorter subsequences of the sentences, it became clear that
the Bullinger NMT system has difficulties translating clauses that are not complete

15https://translate.bullinger-digital.ch/

52

Chapter 7. Methods

sentences. It is plausible that, as the system is mainly trained on data contain-
ing complete sentences, it produces complete sentences on the target side as well.
Since GoogleTranslate improved the translation quality for language pairs including
Latin, GoogleTranslate was already used by Fischer et al. [2022] for backtransla-
tions from German sentences of the Blarer letter into Latin. Therefore, I examine
the translation of clauses with GoogleTranslate as well. The hypothesis is that
the translation quality can be increased as the model is trained on more in-domain
data. For this experiment, split sentences of four splitting rules are used: splitting
at each punctuation marker, splitting at each CCONJ tag, splitting at each SCONJ
tag and extracting this clause, and splitting at SCONJ tag. In order to implement
GoogeTranslate, the API accessible for the Bullinger Digital Project is used. After
translating, the clauses are added to the training data in order to evaluate whether
this improves the model performance.

The first step in this approach is to extract all long sentences of the three lengths
categories from the XML data corpus. I then split them based on the splitting rules
and evaluate the translation quality after the application of the GoogleTranslate
API. For the extraction of all long sentences, I use the script extraction_all.py.
The script remove_testsents.py makes sure no test sentences are contained in
the input file. The POS-tagging is applied on all extracted sentences by the script
traintest_google_postagger.py. For the training, it is crucial to shuffle the input
sentences, which is done by the script traintest_google_shuffle.py. After the
shuffling, I apply the splitting with the script traintest_google_splits.py. The
output split clauses are then translated using the GoogleTranslate API and are then
added to the training data in order to train a model and evaluate its performance.

53

8 Results

This chapter describes the results of the POS-tagging and the splitting experiments.
The results are manually inspected and include an error analysis as an evaluation
of the applied methods.

8.1 POS-Tagging

In this section, I discuss the results from the application of the different POS-tagging
models to the Latin sentences of the three length categories.

I make the following comparisons:

1. Overall accuracies of the POS-taggers

2. Accuracies per length category

3. Detailed accuracies per POS-tag

8.1.1 Evaluation of the POS-Tagging Results

The accuracies obtained from the gold standard shown in Figure 2 suggest that the
CLTK POS-tagger achieves best results with a mean accuracy over all models and
sentence length categories of 91.95%. The ITTB model reaches an overall accuracy
of 86.19%, closely followed by the PERSEUS model with a mean accuracy of 85.24%.
The lowest accuracy is achieved by the PROIEL model with 69.93%.

The sentence length seems to have a smaller impact on the result than the model
choice, as there are only small differences in their overall accuracies. The accuracy
over all models and tags is highest for the length category of 20-24 tokens with
84.14%. The category of 15-19 tokens follows with 83.02% and, unsurprisingly, the
category of 25 and more tokens shows the lowest accuracy with 82.83%. However,
the differences are small.

54

Chapter 8. Results

cltk ittb perseus proiel
POS models

0

20

40

60

80
ac

cu
ra

cy
 in

 %

Total POS tagger accuracies
length 15+
length 20+
length 25+

Figure 2: Overall accuracies of the four POS-taggers

The models perform very differently depending on specific POS-tags. While certain
tags are almost consistently tagged correctly by all models, others are more prob-
lematic. As Figure 3, Figure 4, and Figure 5 show, the model performances with
respect to different POS-tags look similar across the three length categories. Thus,
the accuracy in relation to a POS-tag seems to depend on the model and less on the
sentence length.

These performance differences between models in the accuracy of specific POS-tags
are visible in Figure 6, for example. While the PROIEL model performs moderately
well on PROPN tags across all sentence lengths with an average performance with
69.79%, both the ITTB and the CLTK model show low average performances with
30.14% and 19.74%, respectively. The PROPN POS-tag is not part of the tagset
of the PERSEUS model. While the accuracies of the same model are not identical
across sentence lengths, they stay on a similar level.

Observing the ADJ POS-tag, on the other hand, all models achieve good accuracies,
whereas the ITTB model performs slightly worse than the other models with an
average accuracy of 75.2%, which is shown in Figure 7.

55

Chapter 8. Results

ADJ ADP ADV CCONJ NOUN NUM PRON PROPN PUNCT SCONJ VERB

POS tags

0

20

40

60

80

100
ac

cu
ra

cy
 in

 %

POS accuracies for length 15+
cltk
ittb
perseus
proiel

Figure 3: POS-tagger accuracies with sentence length 15-19 tokens

ADJ ADP ADV CCONJ NOUN NUM PRON PROPN PUNCT SCONJ VERB

POS tags

0

20

40

60

80

100

ac
cu

ra
cy

 in
 %

POS accuracies for length 20+
cltk
ittb
perseus
proiel

Figure 4: POS-tagger accuracies with sentence length 20-24 tokens

56

Chapter 8. Results

ADJ ADP ADV CCONJ NOUN NUM PRON PROPN PUNCT SCONJ VERB

POS tags

0

20

40

60

80

100

ac
cu

ra
cy

 in
 %

POS accuracies for length 25+
cltk
ittb
perseus
proiel

Figure 5: POS-tagger accuracies with sentence length 25 tokens or longer

cltk ittb perseus proiel
POS models

0

10

20

30

40

50

60

70

ac
cu

ra
cy

 in
 %

PROPN POS accuracies
length 15+
length 20+
length 25+

Figure 6: PROPN POS-tag accuracies across all models

57

Chapter 8. Results

cltk ittb perseus proiel
POS models

0

20

40

60

80
ac

cu
ra

cy
 in

 %

ADJ POS accuracies
length 15+
length 20+
length 25+

Figure 7: ADJ POS-tag accuracies across all models

A similar tendency can be seen in Figure 8 on the CCONJ tag. With an average
over the sentence categories of 82.11%, the accuracy of the PROIEL model is clearly
lower than that of the other models. The CLTK model shows the best performance
with 95.82% accuracy on average. A similar result is achieved for the SCONJ POS-
tag as shown in Figure 9. Again, the PROIEL model achieves the lowest average
accuracy with 68.32%, and the CLTK model the highest one with 98.29%.

As the coordinating and the subordinating conjunctions are important POS-tags
for the splitting step of this work, it is crucial to rely on a POS-tagger with good
accuracies of these tags, the best of which being the CLTK tagger.

8.1.2 Error Analysis

For the error analysis, the script pos_error_analysis.py detects incorrectly tagged
tokens and exports them into an analysis table. There are a few patterns which
occur repeatedly for specific POS-tags, occasionally depending on the models. As
the results are very similar for the different length categories, I present the error
plots of the longest category and examples from the Bullinger corpus [Volk et al.,
2022b].

58

Chapter 8. Results

cltk ittb perseus proiel
POS models

0

20

40

60

80

100
ac

cu
ra

cy
 in

 %
CCONJ POS accuracies

length 15+
length 20+
length 25+

Figure 8: CCONJ POS-tag accuracies across all models

cltk ittb perseus proiel
POS models

0

20

40

60

80

100

ac
cu

ra
cy

 in
 %

SCONJ POS accuracies
length 15+
length 20+
length 25+

Figure 9: SCONJ POS-tag accuracies across all models

59

Chapter 8. Results

1. Incorrect annotation of PROPN

In 42.3% of all cases across all models and sentence lengths, PROPN is mis-
taken for a NOUN, as shown in Figure 10 for the sentence length of 25 and
more tokens. An example for such an error is shown in 8.1. Especially for rare
tokens, it is plausible that all POS-taggers used can mistake proper nouns for
nouns, since the difference between NOUN and PROPN is of a purely seman-
tic rather than morphosyntactic nature. The lexical character of PROPN tags
makes them anomalous in the UPOS scheme [Sprugnoli et al., 2022]. The
CLTK model scores lowest on this POS-tag, while the PROIEL model scores
best.

(8.1) S
NOUN

.
PUNCT

Remitto
VERB

nunc
ADV

exemplum
NOUN

tuę
PRON

illius
PRON

modestissimę
ADJ

ad
ADP

Philippum
PROPN

epistolę
NOUN

et
CCONJ

gratiam
NOUN

habeo
VERB

plus
ADV

quam
ADV

maximam
ADJ

,
PUNCT

de. ’Ich gebe dir jetzt ein Exemplar deines bescheidenen Briefes an
Philipp zurück und danke dir mehr als möglich’
en. ’I am now returning a copy of your humble letter to Philipp and
thank you more than I can’
[accessed 17th October 2022]

VERB ADJ NUM NOUN SCONJ ADV ADP PUNCT PRON
annotation

0

25

50

75

100

125

150

175

200

fre
qu

en
cy

 in
 c

ou
nt

s

PROPN Error Plot (length: 25)
cltk
ittb
perseus
proiel

Figure 10: Error Plot for PROPN tag

60

Chapter 8. Results

2. Incorrect interpretation of ADJ and NOUN

In most erroneous annotations for nouns, they are interpreted as adjectives
and vice versa. This becomes obvious in Figure 11 and Figure 12. In Latin,
adjectives and nouns or proper nouns almost completely overlap on their in-
flectional paradigms. Thus, a distinction based on formal criteria can incur in
difficulties [Sprugnoli et al., 2022]. Frequently, both parts of speech are also
misinterpreted as verbs. These errors occur in all models, among them most
often in the ITTB model. Example 8.2 shows the noun hypocrita misinter-
preted as adjective, and example 8.3 the adjective mendax misinterpreted as
a noun, in the same sentence.

ADJ VERB NUM ADV PROPN PUNCT CCONJ ADP PRON SCONJ
annotation

0

20

40

60

80

fre
qu

en
cy

 in
 c

ou
nt

s

NOUN Error Plot (length: 25)
cltk
ittb
perseus
proiel

Figure 11: Error Plot for NOUN tag

(8.2) ,
PUNCT

quum
SCONJ

hypocrita
NOUN

tamen
ADV

vanus
ADJ

de. ’, doch der Heuchler ist eitel’
en. ’, but the hypocrite is vain’
[accessed 17th October 2022]

(8.3) ,
PUNCT

quum
SCONJ

hypocrita
NOUN

tamen
ADV

vanus
ADJ

et
CCONJ

mendax
ADJ

de. ’, doch der Heuchler ist eitel und lügnerisch’
en. ’, but the hypocrite is vain and lying’
[accessed 17th October 2022]

61

Chapter 8. Results

PRON ADP NOUN VERB ADV NUM PROPN
annotation

0

5

10

15

20

25

30

35

40

fre
qu

en
cy

 in
 c

ou
nt

s

ADJ Error Plot (length: 25)
cltk
ittb
perseus
proiel

Figure 12: Error Plot for ADJ tag

3. Mistakes in PRON

As shown in Figure 13, PRON identification errors are mostly due to an er-
roneous annotation as ADJ tags. This can be caused by the same reasons as
errors in tagging nouns, as inflectional paradigms of nouns and adjectives can
overlap in pronouns as well [Sprugnoli et al., 2022]. Such an error is visible in
example 8.4, where omnia is mistaken for an adjective.

(8.4) ,
PUNCT

cum
SCONJ

ostendimus
VERB

omnia
PRON

legi
VERB

in
ADP

scriptis
VERB

Zvinglii
PROPN

et
CCONJ

Oecolampadii
PROPN

,
PUNCT

de. ’, indem wir in den Schriften von Zwingli und Oecolampadius alles
gelesen haben,’
en. ’, having read everything in the writings of Zwingli and
Oecolampadius,’
[accessed 17th October 2022]

62

Chapter 8. Results

ADJ NOUN PUNCT VERB SCONJ NUM CCONJ ADV ADP PROPN
annotation

0

50

100

150

200

250

300

350

400

fre
qu

en
cy

 in
 c

ou
nt

s

PRON Error Plot (length: 25)
cltk
ittb
perseus
proiel

Figure 13: Error Plot for PRON tag

4. Mistakes in conjunctions CCONJ and SCONJ

Both CCONJ and SCONJ tokens are most frequently mistaken for adverbs.
This can be seen in Figure 14 and Figure 15. In a few cases, these two POS-tags
are misinterpreted as pronouns, and the CCONJ tags even as nouns, verbs,
or adjectives. Example 8.5 shows a misinterpretation as adverb for a CCONJ
tag for the token nec, example 8.6 for a SCONJ tag with the token tametsi.

(8.5) ,
PUNCT

quod
SCONNJ

illius
PRON

me
PRON

participem
ADJ

esse
AUX

volueris
VERB

,
PUNCT

nec
CCONJ

dubito
VERB

,
PUNCT

de. ’, die du an ihm teilhaben willst, und ich bezweifle nicht,’
en. ’that you want to share in it, and I have no doubt,’
[accessed 17th October 2022]

(8.6) ,
PUNCT

tametsi
SCONJ

et
ADV

quedam
PRON

de
ADP

ista
PRON

cum
ADP

Pellican
PROPN

quoque
ADV

communicarim
VERB

.
PUNCT

de. ’, auch wenn ich einiges über dieses Thema mit Pellican teilen
würde.’

63

Chapter 8. Results

en. ’, although I would share some things with Pellican on the subject.’
[accessed 17th October 2022]

ADV NOUN VERB PRON ADJ SCONJ PUNCT ADP
annotation

0

10

20

30

40

50

60

fre
qu

en
cy

 in
 c

ou
nt

s
CCONJ Error Plot (length: 25)

cltk
ittb
perseus
proiel

Figure 14: Error Plot for CCONJ tag

ADV PRON NOUN CCONJ ADP ADJ VERB
annotation

0

10

20

30

40

50

60

70

fre
qu

en
cy

 in
 c

ou
nt

s

SCONJ Error Plot (length: 25)
cltk
ittb
perseus
proiel

Figure 15: Error Plot for SCONJ tag

64

Chapter 8. Results

Besides the differing accuracies for individual POS-tags, it is noteworthy that all
four models perform best on the sentence length category of 20-24 tokens, followed
by the category of 15-19. The category of the longest sentences with 25 and more
tokens shows the lowest model performance. Supposing that a sentence length of
20-24 tokens is frequent in Latin, it is possible that the POS-taggers work best on
sentence lengths they were trained on. Furthermore, very long sentences (25 and
more tokens) could be a reason for the model’s performance drops in POS-tagging
for sentences longer than 25 tokens, as it does in a similar way in the work of Berrichi
and Mazroui [2021] or Kuang and Xiong [2016] for Machine Translations.

8.1.3 Weaknesses of the Models

As the four POS-tagging models were trained on different data, the models have
their individual strengths and weaknesses. An analysis of the models is provided in
the following sections.

8.1.3.1 CLTK

As most parts of the pipelines of CLTK wrap models trained by upstream projects
such as Stanza, the CLTK POS-tagger is a well trained model when considering
that Latin is a low-resource language. Even though it is predominantly created for
the use on classical languages, it achieves the highest overall accuracies of the four
models [Johnson et al., 2021].

A weakness of the CLTK tagger is the incorrect annotation of PROPN tags. Never-
theless, the CLTK tagger performs well on the conjunction tags as well as on most
other tags, which ensure its reliability. The high accuracy of the model is also plau-
sible since the interest in Classical Latin has generally been greater than in Medieval
Latin. Studies on Latin grammar have focused on the limited span of the classical
era and literary sources which emerged during this time, as it was considered the
qualitative peak of Latin [Giacomelli, 1996].

8.1.3.2 UDPIPE

Surprisingly, the ITTB model did not outperform the CLTK model, even though it is
trained on the largest training data size of the three UDPipe models and the training
data includes Medieval Latin from the Index Thomisticus corpus, stemming from the
13th century [Cecchini et al., 2018]. The model, similar to the CLTK tagger, shows a

65

Chapter 8. Results

low performance on PROPN tags over all sentence length categories. Nevertheless,
for all other POS-tags, the average accuracy is acceptable, only dropping slightly
for the PRON tag compared to the CLTK tagger.

Covering training data from 4th century or earlier, it is plausible that the PROIEL
model and the PERSEUS model show a lower performance on the Latin data of the
Bullinger letters [Cecchini et al., 2018]. Specifically, the PERSEUS model scores
moderately well on PRON and SCONJ tags, with average accuracies of 81.21%
and 84.44%. The PROIEL model shows particularly low scores on PRON and
SCONJ as well, only achieving mean accuracies of 62.75% and 68.32%, respectively.
Nevertheless, the scores on PROPN and ADV tags are remarkably high compared
to the other models, achieving average 69.79% and 92.28%.

Still, these tags are not the most important ones for the research questions at hand.
These peculiarities can be caused by differing training data as well as the relatively
small training sets of these two models. The fact that Latin is a low-resource lan-
guage results in sparse training data, especially from ancient times. Even though
the classical era in Latin was much more in the focus of research, the size of the
training data is rather small, and both models are outperformed by the CLTK model
[Giacomelli, 1996].

8.1.4 Discussion of the POS-Tagging Process

As observed in the results of the POS-tagging task, the choice of the POS-tagging
model seems to have a larger impact on the performance than the length of a sen-
tence. Even though all models performed best on sentence lengths of 20-24 tokes,
the performance differences are small. Furthermore, the four models have different
strengths and weaknesses with respect to different POS-tags, possibly due to the
data they were trained on.

All models had difficulties annotating PROPN tags, which denote proper nouns.
Mostly, such tokens are mistaken for nouns. In addition, adjectives and nouns are
often mistaken for one another as the inflectional paradigms overlap to a great ex-
tent. This also applies to pronouns, on certain occasions [Sprugnoli et al., 2022].
Furthermore, coordinating and subordinating conjunctions are occasionally erro-
neously tagged as adverbs.

For the 16th century epistolary Latin of the Bullinger letters, the POS-tagger from
CLTK achieves the best overall accuracies, especially for the POS-tags which are
crucial for the splitting step in this thesis. The POS-tags which need to obtain a

66

Chapter 8. Results

good accuracy in the tagging step include the PUNCT tags, as well as the CCONJ
and SCONJ tags [Fischer et al., 2022].

8.2 Sentence Splitting

In the following sections, I discuss the results of the splitting method with the split-
ting rules implemented in the script splits.py and the results of the translations
described in 7.4. With these splits, I carry out the following two translation exper-
iments:

1. Recomposing clause translations by Bullinger NMT into sentences

2. Adding clause translations by GoogleTranslate to the training data

8.2.1 Evaluation of the Splitting Rules

I first evaluate the general translation quality in Bullinger NMT of each splitting rule
after the application of the splitting technique in this section. For the first experi-
ment, I perform a simple manual qualitative evaluation on the files with sentences of
25 or more tokens. The evaluation is done according to the two criteria of adequacy
and fluency. Using the script evaluate_splits2sents.py, the evaluation yields
differing results for the different splitting rules. Figure 16 presents an overview of
the results of the manual evaluation. In Section 8.2.2 and 8.2.3, I proceed with a
detailed error analysis of the respective translation experiments.

8.2.1.1 Splitting at Punctuation Markers

As described in Section 7.4.1.1, I examine the following experiments using splitting
rules with punctuation markers:

1. Translating all clauses separately.

2. Putting the first and last sentence part back together and translate the clause
composition.

3. Only splitting the sentence at a punctuation marker in the middle of the
sentence, and translating these two sentence halves.

The results for the first splitting rule show that it yields sensible clauses, as suggested
in Su et al. [2018] and Zhang and Matsumoto [2019] as well, even though the clauses

67

Chapter 8. Results

CCONJ sep PUNCT firstlast PUNCT halves PUNCT SCONJ extract SCONJ sep
splitting rules

0

10

20

30

40

50

60

70

80

ac
cu

ra
cy

Evaluation of Adequacy and Fluency in Recomposed Sentences
Adequacy
Fluency

Figure 16: Evaluation of Bullinger NMT with different Splitting Rules

tend to be short occasionally. The translation of all separate clauses split at punc-
tuation markers produces a more exact translation than the translation of the same
long sentence without splits, which is reflected in a score of 60.61% in the manual
evaluation. A problematic aspect is that Bullinger NMT has difficulties translating
short and incomplete sentences, which results in a lack of fluency in these cases as
is shown in example 8.7 and reflected in a score of only 26.26%. Recomposing a
sentence from the first and the last part of a sentence produces good translations
in some occasions, but not consequently over a larger amount of sentences. The
obtained adequacy score in the manual evaluation is 45.46%. An example is shown
in 8.8. Since the resulting sentence is shorter in length, it loses most of its sentence
information, which results in this lack of adequacy. Splitting a sentence in halves, on
the other hand, works well. This is especially the case when the sentence structure
consists of two parts of equal length. The adequacy score reaches 79.80%, the flu-
ency score 76.77%. In other cases, however, translating two halves may lack context
as well, which is shown in example 8.9. However, in most cases, the greatest part of
the sentence information is preserved. Overall, this splitting rule represents a good
compromise between the aim of producing shorter sentences and not creating too
many fluency breaks, as only one split is applied.

68

Chapter 8. Results

(8.7) De
About

libris
books

apud
with

nos
us

absolutis
appeared

his
this

nundinis
fair

nondum
not.yet

potui
been.able.to

expiscari;
find.out,

sed
but

hac
this

hebdomada
week

id
that

efficiam.
I.will.do.

split-MT-de. ’Von den Büchern, die bei uns freigesprochen wurden, konnte
ich noch nicht fischen. ; aber in dieser Woche werde ich es tun .’
MT-de. ’Was die bei uns abgeschlossenen Bücher angeht, so konnte ich
noch nicht herausfinden, aber ich werde es in dieser Woche tun.’
ref-de. ’Über die zu dieser Messe bei uns erschienenen Bücher konnte ich
noch nichts in Erfahrung bringen; aber in dieser Woche werde ich das tun.’
en. ’I have not yet been able to find out about the books published at this
fair, but I will do so this week.’
[accessed 10th October 2022]

(8.8) Diu
long.time

nihil
nothing

ad
to

te
you

scripsi,
I.have.written,

chare
dear

mi
my

Myconi,
Myconius,

sed
but

modo
now

copiosius
more.extensively

tecum
with.you

colloquar
converse

per
through

librum,
book,

quem
that

mitto.
I.send.

split-MT-de. ’Ich habe dir lange nichts geschrieben. , den ich sende.’
MT-de. ’Ich habe dir lange nichts geschrieben, mein lieber Myconus, aber
jetzt werde ich mich ausführlicher mit dir durch das Buch unterhalten, das
ich dir schicke.’
ref-de. ’Ich habe lange nicht an dich geschrieben, mein lieber Myconius,
aber nun möchte ich mich mit dir durch das Buch unterhalten, welches ich
hier schicke.’
en. ’I have not written to you for a long time, my dear Myconius, but now I
would like to converse with you through the book I am sending here.’
[accessed 10th October 2022]

(8.9) Pro
For

benignitate
kindness

autem
however

tua,
your,

qua
with.which

me
me

quam
for

plurimis
many

annis
years

perpetuo
perpetually

complecteris,
you.embrace,

tibi
you

gratias
thanks

ago
I.make

immortales.
infinitely.

split-MT-de. ’Für deine Güte, mit der du mich in vielen Jahren immer
wieder umarmst , danke Ihnen unsterblich.’
MT-de. ’Für deine Güte, mit der du mich in vielen Jahren immer wieder
umarmst, danke ich dir unsterblich.’
ref-de. ’Für deine Güte, mit der du mich <schon> sehr viele Jahre
bedenkst, sage ich dir unendlichen Dank.’
en. ’For your kindness, with which you have thought of me for many years, I
thank you infinitely.’
[accessed 10th October 2022]

69

Chapter 8. Results

8.2.1.2 Splitting at Conjunctions

While Berrichi and Mazroui [2021] identify semantic segmentation markers, which
are words that serve as links between two sentence segments, I use conjunctions as
positions to split a sentence at. The approach to extract the subordinating clauses
yields sensible clauses. During the translation, however, the separate clauses mostly
lack important context information in order for the system to translate the sentence
meaning correctly, which is reflected in example 8.10 and in an adequacy score
of 47.48%. Better adequacy is reached with the splitting rule where a sentence is
segmented at each SCONJ-tag. This segmentation yields sensible subsequences, too.
The translation system occasionally has difficulties interpreting the structure of a
subsequence due to a lack of context, as can be seen in example 8.11. However, an
adequacy score of 58.59% is reached, and also a moderate fluency score of 60.61%. A
possible reason for the better performance with this split can be the number of splits
applied. With normally one to three splits, most of the context in long sentences
is still preserved. Even though coordinating conjunctions combine two clauses that
are equal to each other, the translation of sentence parts split at CCONJ-tags only
reaches an adequacy score of 42.42%, possibly due to occasionally short sequences.
The fluency, however, still reaches a reasonable score of 65.66%, which is reflected
in example 8.12.

(8.10) Utinam
If.only

is
that

sim,
be,

mi
my.dear

Bullingere,
Bullinger,

qui
that

aliquando
one.day

non
not

ingratum
ungrateful

me
myself

declarare
prove

possim!
I.could!

split-MT-de. ’Utinam is sim, Mein Bullinger, der ich eines Tages nicht
undankbar erklären kann!’
MT-de. ’Ich wünschte, mein Bullinger, dass ich mich eines Tages nicht
undankbar erklären kann!’
ref-de. ’Wenn ich mich doch eines Tages ganz dankbar erweisen könnte,
mein lieber Bullinger!’
en. ’If only one day I could prove myself quite grateful, my dear Bullinger!’
[accessed 10th October 2022]

(8.11) Faxit
May.have.caused

gratia
grace

Christi
of.Christ

salutaris,
saving,

ut
that

filio
Son

dei
of.God

syncere
through.right

cognito
knowledge

in
in

ipso
Him

aeternum
eternally

vivas.
you.live.

split-MT-de. ’Gebe die Gnade Christi des Heils, Wie du im Sohne Gottes
aufrichtig erkennst und in ihm ewig lebst.’
MT-de. ’Gebe dir die heilsame Gnade Christi, damit du, nachdem du den

70

Chapter 8. Results

Sohn Gottes aufrichtig erkannt hast, in ihm ewig lebest.’
ref-de. ’Die heilsame Gnade Christi möge bewirkt haben, dass du nach der
rechten Erkenntnis des Sohnes Gottes in ihm ewig lebst.’
en. ’May the saving grace of Christ have caused you to live eternally
according to the right knowledge of the Son of God in Him.’
[accessed 10th October 2022]

(8.12) Roga
Pray

igitur
so

dominum,
to.the.Lord,

ut
as

facis,
you.do,

pro
for

misera
miserable

et
and

afflicta
afflicted

ecclesia.
church.

split-MT-de. ’Bete also, wie du es tust, für elend Und die heimgesuchte
Kirche’
MT-de. ’Bete also, wie du es tust, für diese elende und übel mitgenommene
Kirche zum Herrn.’
ref-de. ’Bete also, wie du es tust, für diese elende und übel mitgenommene
Kirche zum Herrn.’
en. ’Pray to the Lord, then, as you do, for this miserable and afflicted
church.’
[accessed 10th October 2022]

8.2.2 Error Analysis of Bullinger NMT Sentence Translations

After the translation of the Latin clauses, the German output is recomposed to
sentences by the script splits2sents.py. As mentioned in Section 8.2, Figure 16
presents an overview of the results obtained from the qualitative manual evaluation
on the files with sentences of 25 or more tokens. Specific errors occurred more
frequently in some splitting scenarios than in others. In this section, I discuss the
most important observations.

1. Splitting at punctuation markers occasionally results in MT output that lacks
fluency.

As mentioned in Section 8.2.1.1, Bullinger NMT has difficulties translating
short and incomplete sentences, as is shown in example 8.7. An advantage of
splitting at each punctuation marker and separately translating each clause
is the completeness of context of the sentence. Less frequently than in other
settings, sentence parts or words are omitted or lost with this splitting rule.

Nevertheless, this rule most often lacks fluency of the German output, and
the clauses do not always represent well-connected sentence parts, which is
reflected by the low fluency score in the manual evaluation of 26.26%. A

71

Chapter 8. Results

possible explanation for this observation could be the training process of the
model, as the Bullinger NMT system is mainly trained on complete sentences.
This is as well suggested by the translation output of example 8.12 with a
CCONJ POS-tag. This tag normally combines complete sentences and results
in a better partial translation in these examples.

2. Splitting at all punctuation markers and at conjunctions often produces short
clauses, which are occasionally copied.

For the same reasons, possibly, Latin words are occasionally not translated
at all, which can be seen in examples 8.10. A plausible explanation for the
copying of Latin words instead of their translation could be the lack of context.
However, translations of the splitting rule at each punctuation marker still
reach 60.61% in adequacy, as most of the sequences are translated accurately.

3. Only using the first and last punctuation split generally loses information and
lacks fluency and context.

While shorter sentences can be produced by this splitting rule, in most cases,
the context is not sufficient to produce an accurate translation. This is shown
in example 8.8 above. Additionally, with short clauses, Latin words are not
translated, possibly also because these sentences tend to lack context. Conse-
quently, translations of this splitting rule reach 45.46% in both adequacy and
fluency.

4. Splitting at the punctuation marker in the middle of the sentence produces a
fluency break.

Sentences composed after splitting at the punctuation marker in the middle of
the sentences generally show a fluency break at this point of the translation,
as shown in example 8.9. On the other hand, most of the sentence information
is even obtained in the translation of long sentences of more than 25 tokens.
The accuracies of 79.80% in adequacy and 76.77% in fluency exceed those of
the splitting rule at each punctuation marker with even more fluency breaks.

5. Several conjunctions in one sentence make the structure obscure.

The translation of split segments at SCONJ-tags does not always yield sensible
translations. This could be caused by the fact that a subordinating clause is
usually not placed at the end of a sentence, but only in certain cases. The
same is true for sequences split at CCONJ-tags, as these splits can be very
short occasionally. Therefore, the NMT system has difficulties interpreting the
structure of a subsequence starting with a token tagged as SCONJ or CCONJ.

72

Chapter 8. Results

An example is provided in 8.10.

8.2.3 Error Analysis of GoogleTranslate Clause Translations

This experiment consists of extracting a shuffled sample of sentences longer than
15 tokens using the script extraction_all.py, translating separate splits obtained
from traintest_google_postagger.py, traintest_google_shuffle.py, and
traintest_google_splits.py into German using the GoogleTranslate API, and
adding them to the training data. The automatic evaluation of the model perfor-
mance on the test set with the BLEU score suggests that the translation quality
cannot be increased by adding the split clauses. Before adding the GoogleTranslate
data to the training data, the MT system reaches 21.16 BLEU, and afterwards 21.06
BLEU. However, the BLEU score increases to 21.96 when the names contained in the
translated test set file are postprocessed semi-automatically with find-and-replace
commands, and the BLEU score thus exceeds the one of the former model. As
the Bullinger NMT system performs well on the translation of names contained in
the Bullinger letters, it is obvious that using GoogleTranslate can reduce the over-
all translation quality due to this issue. Table 3 shows the different BLEU scores
reached by the systems with and without the additional training data translated by
GoogleTranslate, as well as with postprocessing.

Model Description BLEU score

e38 without GoogleTranslate 21.16

e39 with GoogleTranslate 21.06

e39 with GoogleTranslate and postprocessed names 21.96

Table 3: BLEU of the GoogleTranslate Experiment

Besides the automatic metric of BLEU, it is crucial to carry out a human evalua-
tion, especially because a rather small testset is used for the Bullinger letters. The
comparison between texts translated by the newly trained and the previous model
provide information about the strengths and weaknesses of the new model trained on
texts containing splits. Compared texts include the testset as well as files containing
segmented sentences that are not included in the training data. The following error
analysis lists the most frequently occurring issues with these translations:

1. Bad translation of names.

In the model trained on data which includes segmented sentences translated
by GoogleTranslate, it is noticeable that names are not translated as well as

73

Chapter 8. Results

in the previous model. Sometimes names are even anglicised. As the Bullinger
NMT system has not been trained on English data, this is rather due to the use
of GoogleTranslate, which might be trained on multi-lingual data, than due to
the sentence segmentation. Examples for such problematic name translations
are visible in example 8.13.

(8.13) ,
,

per
through

quae
which

non
not

solum
only

Tigurinae
in.Zurich

split-MT-de. ’, durch die nicht nur Tigurinae’
MT-de. ’durch die du nicht nur in Zürich’
ref-de. ’durch die nicht nur in Zürich’
en. ’through which not only in Zurich’
[accessed 6th November 2022]

2. High occurrence of English sentence parts.

Besides the anglicising of names on the Bullinger letters, there are a striking
number of English phrases in the translated sentences, as shown in example
8.14. This observation could as well be due to a multilingual model Google-
Translate could be using [Fischer et al., 2022].

(8.14) Contra
In.return

ego
I

tibi
you

mitto
send

Epitome
Epitome

reformationis
of.the.Reformation

Anglicae
English

split-MT-de. ’Andererseits sende ich Ihnen den Epitome of the
English Reformation’
MT-de. ’Dagegen schicke ich dir das Epitome der englischen
Reformation’
ref-de. ’Dagegen schicke ich dir das Epitome der englischen
Reformation’
en. ’In return I am sending you the Epitome of the English
Reformation’
[accessed 6th November 2022]

3. Form of politeness.

In some sentences, the form of politeness is chosen, even though it is an infor-
mal sentence. Example 8.15 shows such a form of politeness, where de. "Sie"
is used instead of de. "du".

(8.15) ,
,

hoc
this

senciamus
we.feel

split-MT-de. ’, lassen Sie uns das verstehen’

74

Chapter 8. Results

MT-de. ’, wollen wir das denken’
ref-de. ’, wir fühlen das’
en. ’, we feel this’
[accessed 6th November 2022]

4. Misinterpretation of short clauses.

Occasionally, short clauses are treated as complete sentences and interpreted
as questions instead of phrases belonging to a longer sentence. One instance
of this issue can be seen in example 8.16. Generally, the new model has the
tendency to form shorter translations than the previous model, which is likely
due to both the training on shorter sentence segments, and possibly also the
use of GoogleTranslate.

(8.16) Quis
Who

enim
for

hoc
this

split-MT-de. ’Wer ist das?’
MT-de. ’Denn wer würde das’
ref-de. ’Denn wer [würde] das’
en. ’For who [would] this’
[accessed 6th November 2022]

5. Copying of short clauses.

In other cases, short clauses are copied instead of translated, possibly because
of lack of context. Example 8.17 presents this copying issue. This can be ob-
served more often in the model trained on shorter segments as well. A possible
explanation for this issue could lie in the additional training data. If short se-
quences of the segmented Latin data are not recognized by GoogleTranslate
and therefore copied instead of translated to German, these copied sequences
also occur in the training data, consequently.

(8.17) Nam
For

is
is

ea
that

split-MT-de. ’Nam ist EA’
MT-de. ’Denn das’
ref-de. ’Denn das’
en. ’For that’
[accessed 6th November 2022]

6. Tendency to paraphrase expressions containing nouns.

75

Chapter 8. Results

In addition, in the translated text of the model trained on segmented sentences,
a tendency to use fewer nouns than its predecessor can be observed. Example
8.18 shows an instance of this difference in the two models.

(8.18) Porro
Further

non
no

dubium
doubt

est
is

,
,

split-MT-de. ’Ferner ist es nicht zweifelhaft.’
previous-MT-de. ’Es gibt keinen Zweifel daran,’
MT-de. ’Es ist kein Zweifel daran’
en. ’There is no doubt about it,’
[accessed 6th November 2022]

8.2.4 Discussion of the Splitting Process

Assessing the methods used for the first experiment of recomposing translated sen-
tence splits to complete sentences, the results suggest that splitting at the middle
punctuation marker is the most successful splitting method. The method represents
a good optimum between the goal of producing shorter sentences and not creating
too many fluency breaks, as only one split is applied. While other methods such
as splitting at each punctuation marker or extracting subordinating clauses yields
sensible sentence splits, the translation quality often drops due to a lack of context
in very short clauses.

The GoogleTranslate experiment showed that it is possible to add shorter sentence
sequences consisting of splits to the training material in order to augment the train-
ing data. The BLEU score, as an automatic metric of the quality of a translation,
remained similar to the system without the additional GoogleTranslate data with
21.06 compared to 21.16. With additional postprocessing of the translation of the
testset, consisting of corrections of incorrectly translated names due to the use of
GoogleTranslate, BLEU increases to a score of 21.96. While automatic metrics are a
useful measure of quality, it is still important to perform a human evaluation. This is
because these two types of evaluation do not always coincide for high-quality trans-
lation systems, and automatic metrics should generally reflect the human assessment
of systems. The error analysis shows that with segmented sentences translated by
GoogleTranslate in the training data, the model tends to copy Latin words more
frequently, including names. Occasionally, English sentence parts occur in German
translations. Additionally, the form of politeness is used incorrectly in certain cases.

Thus, considering the BLEU score, the answer to the research question whether the
translation quality of 16th century epistolary Latin into German can be improved by

76

Chapter 8. Results

splitting long sequences into smaller units is yes. The evaluation on the testset of
the Bullinger data suggest that Data Augmentation by adding split sentence clauses
translated by GoogleTranslate could increase the performance of the system. The
splitting rules including the segmentation of sentences on the middle punctuation
marker as well as before tokens annotated with SCONJ-tags proved to be the most
successful ones. This follows the observation of Su et al. [2018] and Zhang and
Matsumoto [2019] that sensible splits of long sentences can be applied on punctua-
tion markers, and is supported by the declaration of Horrocks [2011] that sentences
consisting of several clauses are syntactically composed through coordination or sub-
ordination. These two splitting rules segment a long sentence into two to four parts.
While the translation of short segments occasionally obtained from splitting at each
punctuation marker yields an unsatisfying quality, the results of the two methods
mentioned above suggest that the obtained moderate sentence length is optimal to
deal with long sentences and to avoid separations of discontinuously represented
constituents [Horrocks, 2011].

77

9 Conclusion

9.1 Summary and Main Splitting Results

In this thesis, I aimed to optimize the translation quality from Latin to German
as part of the Bullinger Digital Project1. The Bullinger Digital Project has the
goal to make Heinrich Bullinger’s correspondence accessible to the public and create
a database with metadata and links to the digital recordings for each individual
letter. The NMT system used in the Bullinger Digital Project is based on the
Transformer architecture. A challenge for state-of-the-art NMT systems of today is
the translation of long sentences. As the NMT system developed in the Bullinger
Digital Project performs well on short and medium Latin sentences, long sequences
still pose challenges to the NMT model [Fischer et al., 2022].

Thus, this thesis investigated Data Augmentation methods to improve translations
of such long sentences. With use of POS-tagging, I applied sentence segmentation on
long sentences based on difference splitting methods, similar to Su et al. [2018] and
Zhang and Matsumoto [2019]. For the POS-tagging step, the tagger from the CLTK
showed the best performance and was used subsequently. The most promising split-
ting methods proved to be segmentation of a sentence on the middle punctuation
marker, as well as segmenting a sentence before each subordinating conjunction. I
conducted different experiments on the segmented Latin sentences. The first exper-
iment consisted of the translation and recomposition of complete sentences. The
second one involved the translation of the segments using GoogleTranslate, and the
subsequent addition of these translations to the training data in order to train a new
NMT model. With an additional semi-automatic postprocessing step, incorrectly
translated names could be corrected. With this experiment, the evaluation on the
testset achieved 21.96 BLEU, exceeding the performance of the previous model with
21.16 BLEU.

These results answer my first research question at the beginning of this thesis. The
quality of the Neural Machine Translation of 16th century epistolary Latin into Ger-

1https://www.bullinger-digital.ch/about

78

Chapter 9. Conclusion

man can indeed be slightly improved by splitting long sentences into smaller units.
An important reason for the improvement is the addition of more in-domain training
data. The second research question is whether the improvement can be carried out
by automatically splitting sentences and recomposing the translated subsequences to
complete sentences after separate translation into German. This approach proved to
be feasible as well. Besides the qualitative manual evaluation in this thesis, it would
nevertheless be interesting to evaluate this approach quantitatively. The third re-
search question can be answered positively, too. In terms of the BLEU score, adding
the split sequences separately to the training material improved the model perfor-
mance when including a postprocessing step. The investigation and evaluation of
sensible sentence positions to perform splits showed that the most promising split-
ting methods are splitting a sentence at the middle punctuation marker, as well as
splitting it before each subordinating conjunction. Both methods yield a reasonable
sentence length to maintain the sentence fluency while keeping most of the context
needed for an adequate translation. For further research, these two methods prove
to be the most interesting ones.

9.2 Outlook

While, for high-resource language pairs, long sentences are translated in good quality,
the model performance drops for low-resource language-pairs such as those contain-
ing Latin [Neishi and Yoshinaga, 2019; Kondo et al., 2021]. This makes long sentence
translation a major issue in low-resource scenarios [Kondo et al., 2021]. Future re-
search to tackle this problem should be carried out in the field of Data Augmentation.
Other promising sentence simplification and segmentation techniques appear to be
attention-based methods to translate sentence clauses separately [Kuang and Xiong,
2016; Su et al., 2018; Li et al., 2020], segmenting and translating separate clauses
using statistical tools such as the Moses toolkit [Koehn et al., 2007; Tien and Minh,
2019; Berrichi and Mazroui, 2021], corpus augmentation via segmentation of long
sentences using back-translation [Zhang and Matsumoto, 2019], clause substitution
by maintaining the same label [Shi et al., 2021], and exploring possibilities of po-
sitional encoding when using Transformer architectures for translation [Neishi and
Yoshinaga, 2019].

For further work related to this thesis, I consider it most interesting to split and
translate Latin sentences from the Bullinger texts using GoogleTranslate by only
applying the two best-working splitting methods, and then adding the translations
to the training data in order to train another Transformer model. Furthermore, it

79

Chapter 9. Conclusion

can be promising to evaluate the methods used in this thesis on other low-resource
language pairs where the source language has the tendency to feature long sentences,
as long sentences tend to be an issue for several low-resource language pairs in NMT.
With further research in low-resource NMT, more sparse-data languages such as
Latin can be made accessible to speakers of other languages, and historical and
linguistic knowledge can be preserved and spread for further research and learning.

80

Glossary

A glossary of this thesis’ most important terms is provided in this section.

accuracy A basic score for evaluating automatic annotation tools such as parsers
or part-of-speech taggers. It is equal to the number of tokens correctly
tagged, divided by the total number of tokens.

adequacy A measure on whether the of a machine translation system conveys
the same meaning as the input sentence and whether part of the message is
lost, added, or distorted.

BLEU score (bilingual evaluation understudy) An algorithm for evaluating the qual-
ity of text which has been machine-translated from one natural language to
another. It is equal to a weighted geometric mean of all the modified n-gram
precisions, multiplied by the brevity penalty.

context vector A representation of the weighted sums of source sentence anno-
tations. It is equal to the multiplication of the encoder hidden states and
their respective alignment scores.

data augmentation In natural language processing, an approach to generate or
collect more data in order to obtain better results in low-resource scenarios.

fluency A measure on whether the output of a machine translation system is
fluent in the target language. This involves both grammatical correctness
and idiomatic word choices.

gold standard A data set which has been annotated (either manually or auto-
matically) and then manually corrected. Gold standards are used for testing
and evaluating automatic NLP tools.

hidden state A vector representing an intermediate form of the original input data
in a neural network. It captures previous information and gets updated with
each new data piece such as a new word in the sentence to translate by an
NMT model.

81

Glossary

hyperparameter A parameter whose value is used to control the learning pro-
cess of a model. By contrast, other parameters are usually node weights
and derive their values via training.

low-resource language A language which has few or no labelled or unlabelled data.
Oftentimes a low-resource language is endangered, less computerized, less digi-
tized, less studied, less commonly taught and sometimes also has a low density
and low prestige.

part-of-speech tagging A process in corpus linguistics of annotating a word
in a text or corpus with its corresponding part of speech based on both its
definition and its context.

source language In machine translation, the language to translate into the tar-
get language.

target language In machine translation, the language to translate the source
language into.

82

References

M. M. I. Alam and A. Anastasopoulos. Fine-Tuning MT Systems for Robustness
to Second-Language Speaker Variations. In Proceedings of the Sixth Workshop
on Noisy User-Generated Text (W-NUT 2020), pages 149–158, 2020.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. CoRR, abs/1409.0473, 2014.

D. Bamman and P. J. Burns. Latin BERT: A Contextual Language Model for
Classical Philology. CoRR, abs/2009.10053, 2020.

S. Berrichi and A. Mazroui. Addressing Limited Vocabulary and Long Sentences
Constraints in English–Arabic Neural Machine Translation. Arabian Journal for
Science and Engineering, 46(9):8245–8259, 2021.

P. J. Burns. Building a Text Analysis Pipeline for Classical Languages. Digital
Classical Philology: Ancient Greek and Latin in the Digital Revolution, 10:
159–176, 2019.

F. M. Cecchini, M. Passarotti, P. Marongiu, and D. Zeman. Challenges in
Converting the Index Thomisticus treebank into Universal Dependencies.
Proceedings of the Universal Dependencies Workshop 2018 (UDW 2018), 2018.

J. Chen, D. Tam, C. Raffel, M. Bansal, and D. Yang. An Empirical Survey of Data
Augmentation for Limited Data Learning in NLP. CoRR, abs/2106.07499, 2021.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. Mxnet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. CoRR, abs/1512.01274, 2015.

A. Chernyavskiy, D. Ilvovsky, and P. Nakov. Transformers:“The End of History”
for Natural Language Processing? In Proceedings of Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 677–693,
Bilbao, 2021.

83

References

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches. CoRR,
abs/1409.1259, 2014.

C. Christodouloupoulos and M. Steedman. A Massively Parallel Corpus: The Bible
in 100 Languages. Language Resources and Evaluation, 49(2):375–395, 2015.

T. Clérice, L. Cerrato, A. Babeu, B. Almas, N. Jovanović, A. Gessner, P. J. Burns,
Stella, mkonieczny9805, M. Munson, M. Jøhndal, maryam foradi, zachhimes,
MMernitz, M. Seydi, G. G. A. Celano, S. Scott, S. J. Huskey, and TDBuck.
PerseusDL/canonical-latinLit: None, Apr. 2022. URL
https://doi.org/10.5281/zenodo.6418631.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov.
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988. Association for Computational Linguistics, 2019.

D. Dalva, U. Guz, and H. Gurkan. Effective Semi-Supervised Learning Strategies
for Automatic Sentence Segmentation. Pattern Recognition Letters, 105:76–86,
2018.

A. Erdmann, C. Brown, B. Joseph, M. Janse, P. Ajaka, M. Elsner, and M.-C.
de Marneffe. Challenges and Solutions for Latin Named Entity Recognition. In
Proceedings of the Workshop on Language Technology Resources and Tools for
Digital Humanities (LT4DH), pages 85–93, 2016.

S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and
E. Hovy. A Survey of Data Augmentation Approaches for NLP. CoRR,
abs/2105.03075, 2021.

L. Fischer, P. Scheurer, R. Schwitter, and M. Volk. Machine Translation of 16th
Century Letters from Latin to German. In Proceedings of the Second Workshop
on Language Technologies for Historical and Ancient Languages. LREC, 2022.

G. Franzini, A. Peverelli, P. Ruffolo, M. Passarotti, H. Sanna, E. Signoroni,
V. Ventura, and F. Zampedri. Nunc Est Aestimandum: Towards an Evaluation
of the Latin WordNet. In CLiC-it, 2019.

E. M. Garcia and Á. G. Tejedor. Latin-Spanish Neural Machine Translation: from
the Bible to Saint Augustine. In Proceedings of LT4HALA 2020-1st Workshop on
Language Technologies for Historical and Ancient Languages, pages 94–99, 2020.

84

https://doi.org/10.5281/zenodo.6418631

References

D. Garrette, H. Alpert-Abrams, T. Berg-Kirkpatrick, and D. Klein. Unsupervised
Code-Switching for Multilingual Historical Document Transcription. In
Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
pages 1036–1041, 2015.

J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin. A Convolutional Encoder
Model for Neural Machine Translation. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 123–135. Association for Computational Linguistics, 2016.

R. Giacomelli. Storia della lingua latina. Jouvence, 1996.

R. Gleim, S. Eger, A. Mehler, T. Uslu, W. Hemati, A. Lücking, A. Henlein,
S. Kahlsdorf, and A. Hoenen. A Practitioner’s View: A Survey and Comparison
of Lemmatization and Morphological Tagging in German and Latin. Journal of
Language Modelling, 7(1):1–52, 2019.

S. T. Gries and A. L. Berez. Linguistic Annotation in/for Corpus Linguistics.
Handbook of Linguistic Annotation, pages 379–409, 2017.

R. Guarasci. Developing an Annotator for Latin Texts using Wikipedia. Journal of
Data Mining and Digital Humanities, 2017.

M. A. Hedderich, L. Lange, H. Adel, J. Strötgen, and D. Klakow. A Survey on
Recent Approaches for Natural Language Processing in Low-Resource Scenarios.
In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
pages 2545–2568. Association for Computational Linguistics, 2020.

F. Hieber, T. Domhan, M. Denkowski, D. Vilar, A. Sokolov, A. Clifton, and
M. Post. Sockeye: A Toolkit for Neural Machine Translation. CoRR,
abs/1712.05690, 2017.

V. C. D. Hoang, P. Koehn, G. Haffari, and T. Cohn. Iterative Back-Translation for
Neural Machine Translation. In Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation, pages 18–24, Melbourne, 2018.

G. Horrocks. Latin Syntax. A Companion to the Latin Language, pages 118–143,
2011.

K. P. Johnson, P. J. Burns, J. Stewart, and T. Cook. CLTK: The Classical
Language Toolkit, 2014–2021. URL https://github.com/cltk/cltk.

85

https://github.com/cltk/cltk

References

K. P. Johnson, P. J. Burns, J. Stewart, T. Cook, C. Besnier, and W. J. Mattingly.
The Classical Language Toolkit: An NLP Framework for Pre-Modern
Languages. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing: System Demonstrations, pages 20–29, 2021.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,
B. Cowan, W. Shen, C. Moran, R. Zens, et al. Moses: Open Source Toolkit for
Statistical Machine Translation. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Companion Volume Proceedings
of the Demo and Poster Sessions, pages 177–180, 2007.

S. Kondo, K. Hotate, M. Kaneko, and M. Komachi. Sentence Concatenation
Approach to Data Augmentation for Neural Machine Translation. In
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Student Research Workshop, pages
143–149. Association for Computational Linguistics, 2021.

S. Kuang and D. Xiong. Automatic Long Sentence Segmentation for Neural
Machine Translation. In Natural Language Understanding and Intelligent
Applications, pages 162–174. Springer, 2016.

V. Kumar, A. Choudhary, and E. Cho. Data Augmentation using Pre-Trained
Transformer Models. In Proceedings of the 2nd Workshop on Life-long Learning
for Spoken Language Systems, pages 18–26. Association for Computational
Linguistics, 2020.

D. Li, I. Te, N. Arivazhagan, C. Cherry, and D. Padfield. Sentence Boundary
Augmentation for Neural Machine Translation Robustness. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7553–7557. IEEE, 2021.

Z. Li, R. Wang, K. Chen, M. Utiyama, E. Sumita, Z. Zhang, and H. Zhao. Explicit
Sentence Compression for Neural Machine Translation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34.05, pages 8311–8318,
2020.

E. Litta, M. Passarotti, and C. Culy. Formatio Formosa Est. Building a Word
Formation Lexicon for Latin. In CLiC-it/EVALITA, 2016.

E. Litta, M. Passarotti, and F. Mambrini. The Treatment of Word Formation in
the LiLa Knowledge Base of Linguistic Resources for Latin. In Proceedings of

86

References

the Second International Workshop on Resources and Tools for Derivational
Morphology, pages 35–43, 2019.

A. Magueresse, V. Carles, and E. Heetderks. Low-Resource Languages: A Review
of Past Work and Future Challenges. CoRR, abs/2006.07264, 2020.

M. Mayrhofer. Zur Gestaltung des etymologischen Wörterbuches einer
"Großcorpus-Sprache": Veröffentlichungen der Kommission für Linguistik und
Kommunikationsforschung/Österreichische Akademie der Wissenschaften,
Philosophisch-Historische Klasse. Veröffentlichungen der Kommission für
Linguistik und Kommunikationsforschung / Österreichische Akademie der
Wissenschaften, Philosophisch-Historische Klasse, 1980.

B. McGillivray. Methods in Latin Computational Linguistics. Brill, 2013.

K. Mokhtar, S. S. Bukhari, and A. Dengel. OCR Error Correction:
State-of-the-Art vs an NMT-based Approach. In 2018 13th IAPR International
Workshop on Document Analysis Systems (DAS), pages 429–434. IEEE, 2018.

R. Murthy, A. Kunchukuttan, and P. Bhattacharyya. Addressing Word-Order
Divergence in Multilingual Neural Machine Translation for Extremely Low
Resource Languages. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 3868–3873.
Association for Computational Linguistics, 2018.

M. Neishi and N. Yoshinaga. On the Relation between Position Information and
Sentence Length in Neural Machine Translation. In Proceedings of the 23rd
Conference on Computational Natural Language Learning (CoNLL), pages
328–338, 2019.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: A Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages 311–318, 2002.

M. Passarotti, M. Budassi, E. Litta, and P. Ruffolo. The Lemlat 3.0 Package for
Morphological Analysis of Latin. In Proceedings of the NoDaLiDa 2017
Workshop on Processing Historical Language, 2017.

M. Passarotti, F. Mambrini, G. Franzini, F. M. Cecchini, E. Litta, G. Moretti,
P. Ruffolo, and R. Sprugnoli. Interlinking Through Lemmas. The Lexical
Collection of the LiLa Knowledge Base of Linguistic Resources for Latin.
Linguistic Studies and Essays, 58(1):177–212, 2020.

87

References

M. Passarotti, E. Pellegrini, M. Litta, and F. M. G. Moretti. The Two Approaches
to Word Formation in the LiLa Knowledge Base of Latin Resources. Resources
and Tools for Derivational Morphology (DeriMo 2021), page 105, 2021.

M. C. Passarotti, F. M. Cecchini, G. Franzini, E. Litta, F. Mambrini, and
P. Ruffolo. The LiLa Knowledge Base of Linguistic Resources and NLP Tools for
Latin. In LDK (Posters), pages 6–11, 2019.

P. Poccetti, D. Poli, and C. Santini. Una Storia Della Lingua Latina. Carocci,
1999.

J. Pouget-Abadie, D. Bahdanau, B. Van Merrienboer, K. Cho, and Y. Bengio.
Overcoming the Curse of Sentence Length for Neural Machine Translation using
Automatic Segmentation. In roceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 78–85. Association for
Computational Linguistics, 2014.

Python Software Foundation. Python. https://www.python.org/doc/,
2001-2022. [Online; accessed 09-October-2022].

P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning. Stanza: A Python
Natural Language Processing Toolkit for Many Human Languages. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations. Association for Computational Linguistics,
2020.

H. Robinson. The Zurich Letters: Comprising the Correspondence of Several
English Bishops and Others, with Some of the Helvetian Reformers, During the
Early Part of the Reign of Queen Elizabeth, volume 3. University Press, 1846.

G. G. Şahin and M. Steedman. Data Augmentation via Dependency Tree
Morphing for Low-Resource Languages. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 5004–5009.
Association for Computational Linguistics, 2019.

T. Schiess and Badische Historische Kommission. Briefwechsel der Brüder
Ambrosius und Thomas Blaurer 1509-1548. Ernst Fehsenfeld, 1908.

S. Schulz and M. Keller. Code-Switching Ubique Est - Language Identification and
Part-of-Speech Tagging for Historical Mixed Text. In Proceedings of the 10th
SIGHUM Workshop on Language Technology for Cultural Heritage, Social
Sciences, and Humanities (LaTeCH), pages 43–51. Association for
Computational Linguistics, 2016.

88

https://www.python.org/doc/

References

H. Schwenk, K. Tran, O. Firat, and M. Douze. Learning Joint Multilingual
Sentence Representations with Neural Machine Translation. ACL Workshop,
Repl4NLP, 2017.

H. Schwenk, V. Chaudhary, S. Sun, H. Gong, and F. Guzmán. WikiMatrix:
Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia. In
Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages 1351–1361. Association for
Computational Linguistics, 2021.

R. Sennrich and B. Zhang. Revisiting Low-Resource Neural Machine Translation:
A Case Study. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 211–221. Association for Computational
Linguistics, 2019.

R. Sennrich, B. Haddow, and A. Birch. Improving Neural Machine Translation
Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
86–96. Association for Computational Linguistics, 2016.

H. Shi, K. Livescu, and K. Gimpel. Substructure Substitution: Structured Data
Augmentation for NLP. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 3494–3508. Association for
Computational Linguistics, 2021.

S. Singh and A. Mahmood. The NLP Cookbook: Modern Recipes for Transformer
Based Deep Learning Architectures. IEEE Access, 9:68675–68702, 2021.

P. Sountsov and S. Sarawagi. Length Bias in Encoder Decoder Models and a Case
for Global Conditioning. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1516–1525. Association for
Computational Linguistics, 2016.

R. Sprugnoli, M. Passarotti, C. Flavio Massimiliano, M. Fantoli, and G. Moretti.
Overview of the Evalatin 2022 Evaluation Campaign. In Proceedings of the
Second Workshop on Language Technologies for Historical and Ancient
Languages (LT4HALA 2022), Language Resources and Evaluation Conference
(LREC 2022), pages 183–188, 2022.

F. Stahlberg. Neural Machine Translation: A Review. Journal of Artificial
Intelligence Research, 69:343–418, 2020.

89

References

M. Stoeckel, A. Henlein, W. Hemati, and A. Mehler. Voting for POS Tagging of
Latin Texts: using the Flair of FLAIR to Better Ensemble Classifiers by
Example of Latin. In Proceedings of 1st Workshop on Language Technologies for
Historical and Ancient Languages, pages 130–135, Marseille, 2020.

M. Straka. UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 197–207, Brussels, Belgium, 2018. Association for
Computational Linguistics.

M. Straka, J. Náplava, J. Straková, and D. Samuel. RobeCzech: Czech RoBERTa,
a Monolingual Contextualized Language Representation Model. In International
Conference on Text, Speech, and Dialogue, pages 197–209. Springer, 2021.

J. Su, J. Zeng, D. Xiong, Y. Liu, M. Wang, and J. Xie. A Hierarchy-to-Sequence
Attentional Neural Machine Translation Model. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 26(3):623–632, 2018.

B. Thompson and P. Koehn. Vecalign: Improved Sentence Alignment in Linear
Time and Space. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 1342–1348, 2019.

J. Tiedemann. OPUS–Parallel Corpora for Everyone. In Proceedings of the 19th
Annual Conference of the European Association for Machine Translation:
Projects/Products, 2016.

H. N. Tien and H. N. T. Minh. Long Sentence Preprocessing in Neural Machine
Translation. In 2019 IEEE-RIVF International Conference on Computing and
Communication Technologies (RIVF), pages 1–6. IEEE, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you Need. Advances in Neural
Information Processing Systems, 30, 2017.

M. Volk, L. Fischer, P. Scheurer, R. Schwitter, P. Ströbel, and B. Suter. Nunc
Profana Tractemus. Detecting Code-Switching in a Large Corpus of 16th
Century Letters. In Proceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 2901–2908. LREC, European Language Resources
Association, 2022a.

M. Volk, P. Scheurer, B. Schroffenegger, and R. Müller. Bullinger Digital.
https://www.bullinger-digital.ch/about, 2022b. [Online; accessed
10-October-2022].

90

https://www.bullinger-digital.ch/about

References

X. Wang, M. Utiyama, and E. Sumita. Online Sentence Segmentation for
Simultaneous Interpretation using Multi-Shifted Recurrent Neural Network. In
Proceedings of Machine Translation Summit XVII: Research Track, pages 1–11,
2019.

A. Way and M. Hearne. On the Role of Translations in State-of-the-Art Statistical
Machine Translation. Language and Linguistics Compass, 5(5):227–248, 2011.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et al. Transformers: State-of-the-Art Natural
Language Processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45,
2020.

M. Xia, X. Kong, A. Anastasopoulos, and G. Neubig. Generalized Data
Augmentation for Low-Resource Translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5786–5796.
Association for Computational Linguistics, 2019.

O. Zennaki, N. Semmar, and L. Besacier. Utilisation des Réseaux de Neurones
Récurrents pour la Projection Interlingue d’Étiquettes Morpho-Syntaxiques à
Partir d’un Corpus Parallèle. In Proceedings of TALN 2015, pages 213–220,
Caen, France, 2015.

J. Zhang and T. Matsumoto. Corpus Augmentation by Sentence Segmentation for
Low-Resource Neural Machine Translation. CoRR, abs/1905.08945, 2019.

B. Zoph, D. Yuret, J. May, and K. Knight. Transfer Learning for Low-Resource
Neural Machine Translation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 1568–1575.
Association for Computational Linguistics, 2016.

91

Lebenslauf

Persönliche Angaben

Sabrina Brändle
Rebbergstrasse 21B
8422 Pfungen
sabrina.braendle@uzh.ch

Schulbildung

seit 2020 Master-Studium Digitale Linguistik an der Universität Zürich
2019-2021 Master-Studium Vergleichende germanische Sprachwissenschaft

und Slavische Sprachwissenschaft/Literaturwissenschaft
an der Universität Zürich

2016-2019 Bachelor-Studium Vergleichende germanische Sprachwissenschaft
und Slavische Sprachwissenschaft/Literaturwissenschaft
an der Universität Zürich

Berufliche und nebenberufliche Tätigkeiten

seit März 2022 IT und Sprachtechnologie beim Schweizerischen Idiotikon
Mai-Juli 2020 Human Resources Praktikum Pflegezentren Stadt Zürich
Oktober 2013-Juli 2017 Sachbearbeitung Leistungen SWICA AG

92

	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Linguistic Background
	Characteristics of the Latin Language and the Bullinger Letters
	The Complexity of Defining "Latin"
	Characteristics of the Latin Syntax

	The Challenge of Processing Low-Resource Languages in NLP

	Technical Background
	Neural Machine Translation
	Encoder-Decoder Models
	Recurrent Neural Machine Translation
	Convolutional Neural Machine Translation
	Self-Attentional Neural Machine Translation

	Neural Machine Translation Decoding

	Low-resource Scenarios in Neural Machine Translation
	Transfer Learning
	Data Augmentation

	Neural Machine Translation of the Latin in the Bullinger Letters

	Related Work on NLP for Latin
	Work on Natural Language Processing of the Latin Language
	Work on Related Data Augmentation Techniques

	Corpus and Training Data
	The Corpus
	The XML Structure

	Tools and Resources
	The Python Programming Language
	POS-Tagging Models
	CLTK
	UDPipe

	Neural Machine Translation Framework

	Methods
	The Corpus Structure
	Sentence Extraction
	Length Categories
	Extraction Challenges

	POS-Tagging
	Sentence Formats for the POS-Tagging Models
	POS-Tagging Models
	CLTK
	UDPIPE

	The Tagsets
	Tagging Decisions

	Sentence Splitting
	Splitting Rules
	Splitting at Punctuation Markers
	Splitting at Conjunctions

	Neural Machine Translation of the Splits
	Recomposing translated Clauses into Sentences
	Adding Clause Translations by GoogleTranslate to the Training Data

	Results
	POS-Tagging
	Evaluation of the POS-Tagging Results
	Error Analysis
	Weaknesses of the Models
	CLTK
	UDPIPE

	Discussion of the POS-Tagging Process

	Sentence Splitting
	Evaluation of the Splitting Rules
	Splitting at Punctuation Markers
	Splitting at Conjunctions

	Error Analysis of Bullinger NMT Sentence Translations
	Error Analysis of GoogleTranslate Clause Translations
	Discussion of the Splitting Process

	Conclusion
	Summary and Main Splitting Results
	Outlook

	Glossary
	References
	Lebenslauf

