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Abstract

This thesis describes an unsupervised approach to determine the translation direc-

tion for parallel texts. Traditional methods in this field rely on large amounts of

homogeneous parallel data, which limits their applicability in real-world scenarios.

This research shows how this caveat can be overcome by leveraging translation prob-

abilities that are generated by neural machine translation (NMT) models for parallel

texts. The e↵ectiveness of this approach at sentence level is tested on a dataset that

encompasses di↵erent language pairs across various resource levels and domains, and

which include human, pre-neural, and neural machine translations. At document

level the e↵ectiveness is even more prominent. Furthermore, the approach is applied

to texts from a real plagiarism case. The approach demonstrates comparable per-

formance to existing methods while being less resource-intensive and showing more

robustness.

Zusammenfassung

Die vorliegende Arbeit untersucht einen nicht-supervisierten Ansatz zur Bestim-

mung der Übersetzungsrichtung bei parallelen Texten. Traditionelle Methoden in

diesem Bereich verwenden grosse Mengen an parallelen Texten, was ihre Anwendung

in realen Situationen einschränkt. Diese Arbeit zeigt, wie dieses Problem mit Hilfe

von Übersetzungswahrscheinlichkeiten neuronaler maschineller Übersetzungsmodel-

le (NMÜ) für parallele Texte überwunden werden kann. Die Wirksamkeit dieses

Ansatzes auf Satzebene wird an einem Datensatz geprüft, der verschiedene Sprach-

paare mit unterschiedlicher Menge an Ressourcen, sowie menschliche, vor-neuronale

und neuronale maschinelle Übersetzungen über mehrere Domänen umfasst. Auf

Dokumentebene ist die Wirksamkeit des Ansatzes noch ausgeprägter. Zusätzlich

wird der Ansatz an Texten eines echten Plagiatfalls angewendet. Der Ansatz zeigt

vergleichbare Wirksamkeit zu bestehenden Methoden, ist dabei jedoch weniger res-

sourcenintensiv und weist eine grössere Robustheit auf.
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1 Introduction

Translation direction detection is the task of identifying the source side and the

translation in a parallel text pair. It is a complex task that can prove challenging

even to professional translators, but it is not impossible to solve. The source lan-

guage leaves traces in the translation, which can be used to detect the translation

direction manually as well as automatically.

The influence of the source text on its translation is a common phenomenon, which

is called interference [Toury, 1980]. Interference belongs to a set of characteristics

that are found in translations but not in original texts [Toury, 1980; Blum and

Levenston, 1978; Blum-Kulka, 1986; Baker, 2019; Volansky et al., 2015]. These

characteristics appear consistently and in such a large number that some of them

are considered translation universals [Blum and Levenston, 1978] and characterize

translations so distinctively that they have earned a name for their own language

variety: translationese [Gellerstam, 1986]. Human translators are not the only ones

susceptible to producing translationese. Automatically generated translations by

machine translation (MT) systems exhibit similar characteristics, occasionally even

to a larger degree [Riley et al., 2019].

Nonetheless, the characteristics of translationese can be subtle and are hardly recog-

nized by the human eye if the translation is of good quality. This can pose problems

in a variety of scenarios in research as well as in real-life scenarios. Accurately

identifying these subtleties is not just a matter of academic interest; it has practi-

cal implications in fields such as legal investigations and academic integrity, as the

following subsection will illustrate.

1.1 Motivation

The crucial role of the capability to determine translation direction can be exempli-

fied with the following plagiarism allegation case [Zenthöfer, 2022a,b; Ebbinghaus,

2022]: In February 2022, two expert plagiarism investigators were commissioned

to inspect a German coroner’s 1987 dissertation for plagiarism. Multiple sections

1



Chapter 1. Introduction

from this dissertation seemed to be uncited translations of the English version of

Romanian conference proceedings that were published in the German Democratic

Republic (GDR) in 1983. Both investigators quickly came to the following conclu-

sion: The dissertation was plagiarized.

The case became more complex when the coroner’s alma mater investigated follow-

ing this allegation. The supposed proceedings were not to be found in any university

library around the world but mysteriously surfaced on a newly created account on

a reseller website shortly before the investigators were commissioned. Additionally,

the English version contained some prominent content errors, such as an awkwardly

translated technical term that would not have been used by any expert on the

subject, and contained inconsistencies that seemed laid out to fit the coroner’s dis-

sertation rather than to cohere to the actual proceedings. Furthermore, the font,

pictures, and material of the physical copy were all dating back to the early 2000s

rather than the 1970s or 80s [Zenthöfer, 2022a,b; Ebbinghaus, 2022].

All of this and more pointed towards the proceedings in reality being a modern-

day forgery to frame the coroner. Meanwhile, the researchers involved have come

to the conclusion that the overlapping parts between the two texts are translations

from German into English rather than the other way around and that the plagiarism

allegations arose from a carefully planned scheme with an incredible amount of e↵ort

that managed to fool even professional investigators, with substantial consequences

for everyone involved [Zenthöfer, 2022a,b; Ebbinghaus, 2022].

Given the considerable investment of time and resources dedicated to detecting the

translation direction in the plagiarism allegation case, one can clearly see the need

for a system that can automatically detect the translation direction between parallel

texts. Interestingly, such systems do already exist.

Previous research in the fields of computational linguistics (CL) and translation

studies has shown that translated texts can be accurately identified automatically

[Baroni and Bernardini, 2006; Ilisei et al., 2010; Koppel and Ordan, 2011; Rabi-

novich and Wintner, 2015; Sominsky and Wintner, 2019]. However, so far these

systems have relied on traditional machine learning methods. These methods re-

quire a considerable amount of text that matches the domain of the texts that are

to be identified. The conditions of resource availability and matching domain are

rarely met in real-life scenarios, such that people have to resort to more tedious

investigative labor, as the above-described plagiarism allegation case illustrates.

This pretext calls for a novel method to detect the translation direction without the

need for excessive amounts of data. Hence, this thesis proposes an unsupervised

2



Chapter 1. Introduction

translation direction detection approach, which leverages translation probabilities

generated by neural machine translation (NMT) models. This method leans on

di↵erent streams of natural language processing (NLP) research, such as automatic

translation evaluation and text similarity [Thompson and Post, 2020; Vamvas and

Sennrich, 2022], where translation probabilities are used in tasks, which require high

attention to stylistic detail between parallel texts – a trait that is beneficial for the

translation direction detection task as well.

1.2 Hypothesis and Research Questions

The main hypothesis in this work is that NMT models produce higher probabilities

when confronted with a sentence pair in the original translation direction than when

confronted with the same sentence pair in the inverse direction. It is based on the

intuition that by training an NMT model on pairs of original sentences and their

translations for a translation task, it implicitly also learns that the characteristics

of translationese are on the target side. As a result, it will exhibit higher confidence

when confronted by a sentence pair that matches this stylistic asymmetry, and

consequently, produce higher translation probabilities for this direction. Based on

this assumption the translation direction with the higher probability will be chosen

as the original one, by which one then can infer which side of the sentence pair is

the original and which the translation.

The e�cacy of this approach will be examined by using a diverse range of NMT

models, which encompass diverse architectural (e.g.: bilingual vs. multilingual) and

training data-related (e.g.: data augmentation) properties, to produce the proba-

bilities. The evaluation will be conducted on a comprehensive dataset comprised

of multiple years worth of test sets from the Conference on Machine Translation

(WMT)1. The resulting data set encompasses multiple language pairs at di↵erent

resource levels, across various domains. By including the reference translation as

well as the system outputs, the dataset covers di↵erent translation strategies: human

translations, pre-neural, and neural machine translations. To illustrate the real-life

application capability, the approach is applied to excerpts from the dissertation and

alleged conference proceedings from the above-described plagiarism allegation case.

To the best of my knowledge, the approach proposed in this work is novel and

subjected to experimental validation for the first time. This being considered, the

following research questions shall be answered within this thesis:

1
The main annually reoccurring conference on machine translation and machine translation re-

search, including shared tasks on di↵erent aspects of machine translation [Harison, 2023].

3



Chapter 1. Introduction

1. Can translation probabilities be used for translation direction detection?

2. Can potential biases be mitigated by normalizing the translation probabilities?

3. What other properties do translation probabilities display in terms of transla-

tion direction?

1.3 Thesis Structure

In this first chapter, the topic translation direction detection is briefly introduced

and the motivation for research in this specific field is exemplified. Furthermore,

the leading hypothesis and research questions for this work are presented. Chapter

2 establishes a background in translation studies, provides the terminology for the

following work, and puts it into a linguistically motivated frame. The relevant

computational concepts for this field are introduced in an additional section within

that chapter. In Chapter 3, the findings of previous work on the topic of translation

direction detection are presented and connections between this thesis and related

work are established. The methodical specificities are described in Chapter 4, where

details on the approach, models, and data that are used in this work are provided.

Chapter 5 presents the outcome of this work’s research, which will be discussed in

Chapter 6. Finally, the work is concluded in Chapter 7.

4



2 Background

As Section 1 has indicated, not being able to identify the translation direction can

have detrimental real-life consequences. However, the motivation for the work de-

scribed in this thesis is not restricted to solving novel-worthy criminal schemes. This

work is ultimately performed from a research perspective in the field of CL. More

precisely, it shows how computational methods from the field of NLP can be used on

a problem that is rooted in the linguistic theories of translation studies. Therefore,

an introduction into these topics is necessary to establish a common background.

The first section of this chapter briefly introduces the fundamental concept of MT

and gives a short overview of common techniques and highlights those which are

relevant to understanding the methods used in this thesis. After the technical back-

ground, this chapter delves deeper into the linguistic theory behind translations

with a brief historical overview of translation studies that focus on translationese

as a specific register. The findings of the latter in terms of the characteristics of

translationese are outlined. And lastly, the scientific relevance of this topic is em-

phasized by summarizing the consequences of translationese in the areas of NLP,

more specifically MT, and the interdisciplinary field of forensic linguistics.

2.1 Neural Machine Translation

This first section is dedicated to exposing the fundamental concepts of NMT systems,

which are not only the current state-of-the-art in MT but also lie at the core of the

methodical part of this thesis. Initially, a brief overview of the core concept of MT

is described and is tied to key concepts of a classic bilingual MT system. Afterward,

insight into the more recent multilingual machine translation (MMT) systems will

be provided, including the entailing advantages, disadvantages, and new possibilities

that they bring along.

5



Chapter 2. Background

2.1.1 Bilingual Machine Translation

The task of an NMT system is to produce the most probable translation (T ⇤) in a

specific target language given an input (S) in a specific source language [Bahdanau

et al., 2016; Sennrich, 2022]:

T
⇤ = argmax

T
P (T |S) (2.1)

To achieve this, a neural model, consisting of two components – an encoder and a

decoder –, is trained on a parallel corpus of the chosen language pair to maximize

the conditional probability of the sentence pairs. [Bahdanau et al., 2016; Gehring

et al., 2017; Vaswani et al., 2017].

Bilingual MT is the most basic form MT can take, by incorporating a single lan-

guage pair and being able to translate in one translation direction only. Training

is usually done on vast amounts of parallel data of one language pair, requiring

millions of sentences in each language to achieve usable results. As a consequence,

NMT systems only perform well on language pairs, where large amounts of data are

available, and perform poorly on lesser-resourced language pairs [Mohammadshahi

et al., 2022].

E↵orts are made to find a solution to improve performance for low-resource lan-

guages. Examples include back-translation, where monolingual data from the target

side is automatically translated into the source side and the resulting parallel corpus

is used as additional training data [Sennrich et al., 2016; Edunov et al., 2018]; unsu-

pervised NMT, which are translation systems trained without parallel data [Artetxe

et al., 2017; Lample et al., 2018; Garcia et al., 2020; Ko et al., 2021]; multi-task

learning [Domhan and Hieber, 2017], or, more recently, MMT [Firat et al., 2016;

Johnson et al., 2017; Zhang et al., 2020; Thompson and Post, 2020; Fan et al., 2021;

Tang et al., 2021; Goyal et al., 2021; Mohammadshahi et al., 2022], which will be

discussed in more depth in the following subsection.

2.1.2 Multilingual Machine Translation

MMT models, unlike their single-pair counterparts, are capable of handling multiple

language directions within a single model. This substantially reduces operational

costs during training and deployment in production systems [Arivazhagan et al.,

2019]. Furthermore, due to joint training techniques that transfer knowledge from

high-resource to lesser-resourced languages, a positive e↵ect on the translation per-

6



Chapter 2. Background

formance of low-resource language pairs is found [Zoph et al., 2016; Nguyen and

Chiang, 2017]. This goes to the extent that translations are enabled for language

pairs, for which no parallel data was seen during training: a process called zero-shot

translation [Aharoni et al., 2019; Arivazhagan et al., 2019]. A side e↵ect of enabling

zero-shot translations is that one can now “translate” from the source language back

into the source language, e↵ectively performing paraphrasing [Thompson and Post,

2020], a topic, which is further discussed in Section 3.2.

A notable downside of MMT models is their large size. If they are supposed to reach

the translation performance of their single-pair counterparts, the model capacity has

to be increased substantially [Aharoni et al., 2019; Arivazhagan et al., 2019; Zhang

and Toral, 2019], which in turn calls for larger multilingual datasets – making the

MT problem in this setting even more resource-intensive. One consequence is that

oftentimes specialized hardware is required to even use the models. To bypass

this problem to some extent, some MMT models focus on translating only from

and to English. Since this does not resolve the issue, e↵orts go into finding novel

data mining strategies, leveraging existing data augmentation techniques, and model

scaling to create MMT systems that include language pairs without having to center

around English [Fan et al., 2021].

One example, of a model scaling technique is knowledge distillation. A smaller, more

compact model (student model) can be trained with the output or intermediate

representations of the larger initial model (teacher model). Although this technique

requires a large model to begin with, it is quite popular, since it decreases the

time and memory consumption of the student model compared to its teacher, while

at the same time keeping the performance on par. This enables broader public

accessibility. [Hinton et al., 2015; Kim and Rush, 2016; Hu et al., 2018; Akula et al.,

2022; Mohammadshahi et al., 2022].

This section illustrated how the translation problem is modeled, and which tech-

niques in NMT can be used to solve it by encompassing both single-pair systems

and the expansive capabilities of multilingual models. It has also highlighted the

high costs at which state-of-the-art MT systems come and which e↵orts have been

made to reduce them. Given the increased presence of MT systems and their ac-

cessibility, e↵orts have been made to expand the use of MT systems to other tasks,

which is also the aim of this thesis.

7



Chapter 2. Background

2.2 Translationese

After establishing the technical background, this section focuses on theories from

translation studies. Beginning with terminological explanations and how they came

about in the field of translation studies, this section leads to the definition of the

problem that is to be solved within this thesis. In the following subsection, the

results of translation studies for translationese are briefly summarized to emphasize

the sensitivity that is expected of a system to automatically identify translation

direction. And lastly, the consequences of translationese in di↵erent fields are dis-

cussed to highlight the need of such a system.

2.2.1 Terminology, History and Problem Definition

Translationese is a term originally coined by Gellerstam in 1986 to describe the

distinctive linguistic characteristics that typically appear in translated texts, dis-

tinguishing them from texts originally written in that language. Gellerstam finds

that this is a statistically detectable phenomenon, which suggests that translation

is not simply a matter of swapping words from one language to another but involves

complex interactions between the source and target languages and leaves identifiable

marks on the translated work, introducing an asymmetry between the two types of

texts [Volansky et al., 2015].

The concept of translationese evolved into the broader field of translation studies,

where it became part of a theoretical framework known as “translation universals”

or “laws of translation.” Gellerstam’s initial observations were expanded by scholars

such as Toury [1980, 2012], who proposed two fundamental laws: the law of interfer-

ence, which refers to the remnants of the source text within the translation, and the

law of growing standardization, which is the tendency to conform the translation to

the norms and idioms of the target language [Volansky et al., 2015].

Throughout the 1990s, the research on translationese gained momentum as Baker

[1993] advocated for the use of comparable corpora — collections of translated texts

set against non-translated texts of similar genre and time frames to identify these

characteristics empirically. She proposed that certain features are universal in the

translated text, beyond the influence of specific language systems. Chesterman

et al. [2004] later refined the categorization of universals into two types: S-universals

(source-text related) and T-universals (target-text related), necessitating di↵erent

types of corpora for study. Parallel texts for S-universals and comparable texts for

T-universals.

8
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The continuing study of translation universals with corpus linguistic methods led

to an increase in resources, such that the research in this field became increasingly

empirical and computational [Volansky et al., 2015]. Not only have these resources

been used to reveal the characteristics of translated texts, but by 2006, the first au-

tomatic text classifier was built to distinguish original from translated texts [Baroni

and Bernardini, 2006]. The system is based on the previously discovered translation

universals, which in this context are called by the computationally connoted term

features [Volansky et al., 2015]. It is worth noting that this first system was based

on a comparable corpus, which, as Section 3 will illustrate, most of the research has

been focused on [Baroni and Bernardini, 2006; Van Halteren, 2008; Kurokawa et al.,

2009; Ilisei et al., 2010; Ilisei and Inkpen, 2011; Koppel and Ordan, 2011], with only

a minority dedicated to parallel corpora [Sominsky and Wintner, 2019].

In the realm of automatic text classification, the choice of corpora changes the task

at hand: If a comparable corpus is used, the task is usually defined as translation

detection. In translation detection, the task is to identify translations among original

texts, usually, in a monolingual setting. If a parallel corpus is at the core of the study,

on the other hand, the task is framed as translation direction detection: The same

text is available in one or more languages and the classifier’s task is to identify from

which source language into which other target language(s) the translation has been

performed. The work described in this thesis is framed as a translation direction

detection task on parallel corpora.

2.2.2 Characteristics of Different Types of Translations

As outlined in Subsection 2.2.1, the di↵erences between original and translated have

been studied extensively. However, in reality, we are confronted by more than simply

one type of translation. A myriad of translation strategies exist, and all of them

influence the translations in terms of the degree of translationese and asymmetry

between source and target text. The simplest distinction can be based on whether

the translation was produced manually by a human or automatically via a machine

translation system. Automatically generated translations can be grouped further

based on the model’s architecture type: NMT or statistical machine translation

(SMT). The following points summarize previous research’s findings on the three

types of human, statistical, and neural translations:

• Human Translation (HT) The characteristics found in human translations

are interference, simplification, explicitation, and normalization. Interference

has already been mentioned above, as it is the most obvious sign for transla-
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tionese. It is the phenomenon that the source language influences the target

language in the translation in its word order [Toury, 1980]. Simplification is

the phenomenon that translations tend to be simpler than the source text

[Blum and Levenston, 1978; Baker, 1993; Laviosa, 2021]. Explicitation refers

to explicitly spelling out information that was implicit in the source [Baker,

1993], while normalization refers to the phenomenon that translators show

a preference for grammaticality rather than proximity to the source [Baker,

1993; Toury, 2012].

• Statistical Machine Translation (SMT) Since MT systems are trained

on parallel texts that consist of human translations on the target side, it is

no surprise that MT also shows signs of translationese. Those signs, however,

di↵er from those observed in HT. In general, SMT tends to oversimplify the

translation when compared to HT as well as NMT [Bizzoni et al., 2020]. It

also exhibits more lexical variety and has a higher lexical density than NMT.

This means that SMT translations have a higher proportion of content words

(nouns, verbs, adjectives, adverbs) and are less repetitive [Toral, 2019].

• Neural Machine Translation (NMT) Research has shown that NMT

translations exhibit more interference than (HT) by following the source word

order more strictly and being more monotone [Toral and Sánchez-Cartagena,

2017; Burlot and Yvon, 2019; Zhou et al., 2019; Voita et al., 2021]. Compared

to SMT, NMT systems produce more changes in word order, however, the re-

orderings are closer to the reference translation than the ones of SMT systems.

Additionally, the output from NMT systems is generally more fluent [Toral and

Sánchez-Cartagena, 2017; Toral, 2019; Bizzoni et al., 2020], which aligns with

the normalization phenomenon in HT. Further findings have shown that model

distillation can make translationese even more prominent [Riley et al., 2019;

Akula et al., 2022].

In summary, the linguistic characteristics of translationese can be very subtle and

nuanced for all three categories. However, when the focus is shifted towards MT,

these subtleties become more pronounced – but with clear di↵erences between SMT

and NMT.

In this thesis, one of the aims is to delve deeper into how these di↵erences of trans-

lationese are reflected in NMT probabilities and, ultimately, how they a↵ect the

translation direction detection. Hence, the test dataset in this work is split into

these three categories to provide a comprehensive comparison: HT, NMT, and pre-
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NMT1. Translations that would belong into an intermediate category, for example

because they have been produced using machine translation systems and human

post-editing2, or the distinction between native and non-native3 text are disregarded

in this work for simplicity’s sake.

2.2.3 Consequences for Natural Language Processing Research
and Applications

So far, this section has primarily been focused on the description of translationese

and tracing its history in research. Now that this foundation has been formed,

it is worth exploring the underlying motivations behind identifying the translation

direction, or translationese in a broader sense. This subsection will explore those

motivations in the realm of NLP research and its applications – stressing its signif-

icance beyond the theoretical confines of translation studies.

Machine Translation: Most evidently, MT is a field in NLP, where translationese

has direct as well as indirect impact. Early work in the field of translation (direction)

detection was motivated to a large extent by improving SMT systems. These systems

greatly benefited from parallel training data, in which the translation direction aligns

with their translation direction [Kurokawa et al., 2009].

For NMT, there have been indications that systems, which are trained on source

original data, outperform systems trained on data with reverse translation direction

or mixed settings if evaluated with source original test data by using an automatic

reference-based metric like BLEU [Papineni et al., 2002; Sominsky and Wintner,

2019; Bogoychev and Sennrich, 2019]. If the translations are evaluated manually,

however, the system that was trained on source original parallel text only was rated

worst, especially in terms of fluency [Bogoychev and Sennrich, 2019]. For MT eval-

uation a consensus has been reached that the inclusion of reverse-created test data

confounds the results of automatic evaluation metrics [Toral et al., 2018; Läubli

et al., 2018; Freitag et al., 2019; Zhang and Toral, 2019; Graham et al., 2020]. This

led to the discarding of reverse-created test data in all WMT test sets from 2019

onwards [Barrault et al., 2019].

Additionally, a more recent study has brought to attention that mismatches in

1
Includes all non-neural systems, such as SMT and rule-based systems, before the transition to

NMT in the field

2
For more information on the characteristics of translations that have been automatically pro-

duced and manually post-edited see: Toral [2019]

3
For more information on this distinction see: Rabinovich et al. [2016]
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directionality can be even more fine-grained, suggesting that mismatches between

the test data and the model, training data and the test data, and between the data

(both training and test set) and the model all have di↵erent e↵ects on the MT

performance and should be treated with care [Ni et al., 2022].

Cross-Lingual Benchmarks and Applications: Other areas of NLP that are

a↵ected by translationese are those that require multilingual datasets either to train

or to test their systems. Multilingual datasets can be either created by collecting

and annotating di↵erent data in di↵erent languages separately [Clark et al., 2020], or

by collecting one dataset in a single language and translating it into other languages

afterward to create parallel texts [Artetxe et al., 2019].

While the majority of these datasets are designed for assessment purposes, the goal

of cross-lingual transfer learning is to utilize the extensive datasets available in one

language, usually English, to develop multilingual models. These models are created

to e↵ectively generalize across various languages. This is achieved by incorporating

translations either in the training phase or within the test set.

Examples, where cross-lingual transfer learning is used, are natural language infer-

ence (NLI) and question answering (QA). There, research has found that perfor-

mance loss that was previously assigned to language transfer was rather due to the

mismatch between original and translated texts, hence their systems’ performances

are assumed to be underestimated by current benchmarks [Artetxe et al., 2020].

Forensic Linguistics: All of the aforementioned subjects have real-life applica-

tions, that to some extent influence people’s daily lives. However, the field that

carries the most dramatic consequences in real life, is arguably forensic linguistics,

where linguistic techniques are applied to legal cases, such as the plagiarism allega-

tion case, outlined in Section 1, as well as to research [Olsson and Luchjenbroers,

2014]. With the world’s increasing digitalization the number of computational ap-

proaches to forensic linguistics has risen steeply as well. Early approaches focused

on corpus linguistic analyses and treating corpora as large bodies of linguistic evi-

dence, but methods are becoming more computationally sophisticated [Olsson and

Luchjenbroers, 2014; Sousa-Silva, 2018].

The main foci of computational forensic linguistics lie in tasks such as authorship

analysis, profiling, stylometry, and plagiarism detection, which are occupied with

identifying the author of a text. When dealing with multilingual texts or trans-

lations, understanding the direction of translation can provide insights into the

author’s linguistic background and potentially their identity – a topic called cross-
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lingual authorship identification [Sousa-Silva, 2018].

As for plagiarism detection, translation takes an important role since translation-

based plagiarism poses one of the biggest challenges in the field [Maurer et al., 2006],

as it was illustrated in Chapter 1 with the plagiarism allegation case. The detection

of translation-based plagiarism oftentimes includes manual linguistic analyses as

well as comparison translations from multiple di↵erent machine translations, which

are taken into account to identify the translation direction [Sousa-Silva, 2018]. At

this point, it is also worth mentioning that forensic linguists oftentimes have to rely

on small “DIY corpora”, since most publicly available corpora do not match the

di↵erent styles that are encountered in the texts that are subject of investigation

[Sousa-Silva, 2018].

To summarize, in the field of MT, the influence of translation direction is evident,

both in terms of system training and evaluation, with studies highlighting the com-

plexity and varied e↵ects of translationese on NMT system performance and the

evaluation thereof. Similarly, for cross-lingual benchmarks and applications like NLI

and QA, the role of translationese in creating multilingual datasets is significant,

a↵ecting the accuracy and reliability of these systems. With forensic linguistics,

those challenges seem to culminate in a field with profound real-life impact, where

the detection and understanding of translation direction is a most valuable asset

that is either di�cult to obtain through manual labor or not obtainable at all due

to a lack of su�cient data. Hence, in all three of those fields translation direction

detection would be an asset, particularly if it does not require large volumes of text

data

13



3 Related Work

The related work can be divided into two parts by subject and method: previous

research on translation direction detection and previous work with translation prob-

abilities. Both areas will be outlined below, not only highlighting the novelty of this

thesis but also demonstrating how the former research area could overcome caveats

by using methodologies of the latter.

3.1 Translation (Direction) Detection

Within the scope of translation detection, numerous successful systems have been

documented and published over the past decade and a half. The task was formu-

lated in di↵erent ways, such as the classification of original and translated texts in

monolingual settings, detection of a source language in a multilingual setting, or as

determining the translation direction in a bilingual setting – as it is done within this

work as well. This section is intended to provide a comprehensive overview of the

various systems that have been employed to solve those tasks, their performance,

and an analysis of their advantages and drawbacks. Given that most of the work

has focused on supervised detection, a summary of this area will be presented ini-

tially. Afterwards, the more limited yet still significant endeavors for unsupervised

detection will be described.

3.1.1 Supervised Methods

In 2006 Baroni and Bernardini introduced an early method for translation detection

to di↵erentiate original texts from translations by employing an ensemble of support

vector machines (SVMs) [Joachims, 1998, 1999]. Their experiments were conducted

on a monolingual, comparable corpus of Italian geopolitical news articles at docu-

ment level (here: article). Drawing on translation studies and the characteristics of

translationese (see Section 2.2), they used linguistic features such as the distribu-

tion of function verbs, personal pronouns, and adverbs. This approach achieved an
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accuracy of well above 80%, with follow-up experiments demonstrating the system’s

reliability to surpass even the human judgment of professional translators.

In subsequent years, similar methods were adopted and the results improved, show-

ing the methods’ capabilities in various languages and language pairs [Van Halteren,

2008; Kurokawa et al., 2009; Ilisei et al., 2010; Ilisei and Inkpen, 2011; Koppel and

Ordan, 2011], including experiments in Hebrew, a lesser-resourced language [Avner

et al., 2016]. The main di↵erences between the systems were mostly tied to the

choice of linguistic features. Examples of linguistic features that have proven useful

for this task were part of speech tags or lemmas [Baroni and Bernardini, 2006; Van

Halteren, 2008; Kurokawa et al., 2009], function word frequencies [Koppel and Or-

dan, 2011], character-level features [Popescu, 2011; Avner et al., 2016], surface and

lexical features [Ilisei et al., 2010; Volansky et al., 2015], syntactic features [Ilisei

et al., 2010; Rubino et al., 2016] and morpheme-based features [Avner et al., 2016;

Volansky et al., 2015], to name a few.

More notable work has been published by Sominsky and Wintner [2019], who ac-

complished overcoming the restriction of having to use large text chunks to obtain

reliable results for translation direction detection. They achieve accuracy scores of

over 80% at phrase and sentence level in a single-domain setting, while their best-

performing system reaches a 72% accuracy for one language pair (French$English)

in a multi-domain setting with three domains. These results are achieved by tran-

sitioning from traditional machine learning to neural systems – while still relying

on linguistic features. Their research contributed novel insights regarding the ef-

fectiveness of the task on short text segments and by formulating the problem of

translation direction detection on parallel text instead of translation detection on

comparable corpora.

Although supervised classification with linguistically motivated feature engineering

proves to be e↵ective in the task of translation detection in the work described over

the last few paragraphs, recent work introduces new approaches. Pylypenko et al.

[2021] describe the transition to systems that rely on representation learning (em-

beddings) instead of linguistic features and that BERT-based models outperform

the traditional SVM classifiers. One motivation behind this transition, besides the

scientific interest to explore state-of-the-art methods, lies with manually designed

features perhaps being “partial and non-exhaustive in a sense that they are based on

our linguistic intuitions, and thus may not be guaranteed to capture all discrimina-

tive characteristics of the input data seen during training”, as stated by Pylypenko

et al. [2021, p. 8596]. While these newer models deliver better results (Accuracy:

84%-90%), they operate at paragraph level, making them more innovative but less
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e↵ective on smaller text chunks compared to the work described in Sominsky and

Wintner [2019] [Pylypenko et al., 2021].

Despite the success of supervised translation (direction) detection systems, there

are notable limitations to consider. Firstly, the supervised approach of the text

classification task requires a lot of labeled data to train systems that achieve the

results described above. Consequently, the systems are restricted to cases where

large labeled corpora are readily available or can be collected before building the

system. Secondly, once the systems have been built and are ready for application,

they reach the reported accuracies only in single-domain settings. When the num-

ber of domains was increased the accuracy has shown to drop. Lastly, each of the

systems mentioned in the work above has been tested on a fairly narrow set of lan-

guages. This highlights the necessity for further research regarding the applicability

to a wider linguistic landscape and the adaptability of a translation (direction) de-

tection system to multiple domains. E↵orts to address the resource limitations of

supervised systems have led to the development of unsupervised systems, which will

be discussed in the following subsection.

3.1.2 Unsupervised Methods

Notwithstanding their success, e↵orts to address the resource limitations of super-

vised systems have led to the development of unsupervised systems. The most

notable successes are the work of Rabinovich and Wintner [2015] and Nisioi [2015].

In 2015, Rabinovich and Wintner propose a method for unsupervised detection of

translationese based on clustering algorithms. In their work, they use K-Means

clustering [Lloyd, 1982] with a principal component analysis (PCA) [Jolli↵e, 2003]

with a set of linguistic features that seem to capture the di↵erences between original

texts and translationese for French!English. With a subsequent majority voting

of the individual feature’s results, they achieve accuracies on in-domain datasets

high above 80% and 90%. They state that in a mixed-domain setting, a simple

clustering is not enough, since the domain signal is too dominant and overshadows

the signal of translationese. To overcome this hurdle, they introduce a two-phase

clustering method, in which they first cluster the texts into domains and then clus-

ter these clusters in a second step into either translations or original texts. With

this method, they outperform previous attempts of supervised mixed-domain exper-

iments for translation direction detection by reaching accuracy scores up to 90%.

These experiments, however, were conducted on only 2-3 domains, where the exam-

ple with three domains reaches only 67%.
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A second unsupervised method was proposed in 2015 for the task of authorship at-

tribution. Nisioi [2015], in his work on unsupervised translation detection, describes

how distinguishing between original and translated literary work can succeed with a

corpus by the multilingual author Vladimir Nabokov. Similar to the work described

above, Nisioi [2015] utilizes a clustering algorithm. However, instead of using K-

Means, he employs a generalization of Ward’s method [Ward, 1963], which starts

with one cluster per document and, consecutively, merges two clusters based on a

minimum distance. Same as above they use lexical features as described in Volansky

et al. [2015], in addition to features that have been tied to authorship attribution

[Juola, 2008; Koppel et al., 2009]. He first collects the Russian-English corpus of

the author’s work, which has largely been translated by the author himself – his

earlier work from Russian to English and the other way around for his later work.

The corpus is parallel on document-level (here: novel). Then, Nisioi [2015] applies

his method to both languages, treating them as two corpora, and argues that if the

approach results in similar results in both languages, he can be confident that the re-

sults are based on distinctions between translations/translator and original/author.

He works on entire documents as well as on chunks of 2000 tokens, achieving F1-

scores over 90% in all cases but English on chunk level, where they report a drop to

60-80%.

However, both of these systems have their limitations. Even though the amount of

data decreases drastically in clustering compared to a supervised setting, because

the need for training data dissolved, Rabinovich and Wintner [2015] describe that

their system works best with an increasing number of text chunks. These text

chunks consist of at least 250 and up to 2000 tokens, reaching satisfactory results

at 1000-token chunks. The same tendencies are seen in the work of Nisioi [2015].

His systems perform on full-length novels, while cutting them into smaller chunks

significantly decreases their performance.

It is also worth noting that clustering algorithms such as K-means are highly sus-

ceptible to unbalanced data. This means that if the proportion of translations and

original text clusters are not the same, the results might be skewed. Even though

Rabinovich and Wintner [2015] mention experiments, in which the dataset was not

balanced, it seems that they only tested a 2:1 ratio. Furthermore, the two clusters

obtained by this method still need to be labeled as either a cluster of translations or

original texts, which requires either manual inspection of the texts in each cluster

or a labeling algorithm [Rabinovich and Wintner, 2015].
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Additionally, both methods rely on manually extracted linguistic features, which

require a thorough occupation of the linguistic properties of the texts and introduce

a labor intensity that may not scale well. This method does not leverage the more

advanced and automated feature extraction techniques that have become the norm

in the years following their publication and have shown to be more e↵ective in a

multitude of tasks, as it has been described in Section 3.1.1.

A last point worth mentioning is that even though the two-phase clustering setup for

mixed-domain data achieves good results, it is shown in the paper that it decreases

drastically if three domains are mixed. Presumably, these accuracies would decline

even further if more domains were involved. Additionally, the two-phase method

requires the number of domains in the dataset to be known beforehand – which is

again unlikely to be known in real-life scenarios. The latter point does not arise

in Nisioi [2015], however, an e↵ect is seen with the influence of authorship in their

results which is comparable to the domain overshadowing e↵ect in Rabinovich and

Wintner [2015].

In summary, the unsupervised methods for translation detection introduced in Ra-

binovich and Wintner [2015] and Nisioi [2015] prove to be e↵ective but face practical

challenges for real-world application. Their dependency on large text chunks, sus-

ceptibility to data imbalance, the necessity for manual labeling, and reliance on

feature extraction limit their e↵ectiveness outside controlled experimental settings.

Furthermore, while their approaches show e↵ectiveness in specific scenarios, they

do not fully address the complexity of real-life datasets, which are often more var-

ied in terms of domain and shorter in text length. These constraints underline the

need for more robust, flexible, and scalable approaches to accommodate the complex

and diverse nature of translation detection in practical, real-world scenarios, which

could be achieved by adjusting the problem formulation to a translation direction

detection and choosing so far unexplored methods for unsupervised classification.

3.2 Translation Probabilities

Methodically, the work in this thesis relies on translation probabilities. Translation

probabilities are a by-product of NMT systems, that have proven to be valuable

data points in settings where parallel texts are compared. An overview of which

tasks have been solved by using translation probabilities is given in the following

subsection.
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3.2.1 Filtering of Noisy Parallel Corpora

Junczys-Dowmunt [2018] proposed the use of translation probabilities to filter noisy

parallel data. Noisy parallel corpus filtering is a task, in which misaligned or poorly

translated parallel texts are removed from a parallel corpus. The author described

the approach of modeling bilingual adequacy between parallel texts with cross-

entropy scores that were generated by two NMT models that have inverse trans-

lation directions and were trained on the same data in inverse directions. For each

sentence (x, y) he produced a single score f(x, y) as the product of partial scores

fi(x, y):

f(x, y) =
Y

fi(x, y) (3.1)

Thereby generating the valuesHA(y|x) andHB(x|y) for the conditional cross-entropy
of the probability distributions PA(·|·) and PB(·|·), where x corresponds to the source

and y to the target for models A (trained in the original direction) and B (trained

in the inverse direction). Once the conditional cross-entropy scores were generated,

Junczys-Dowmunt [2018] calculated a score “to find maximal symmetric agreement

(minimal absolute di↵erence) of dissimilar distributions (two translation models over

inverse translation directions) trained on the same data (same parallel corpus)”, as

written by Junczys-Dowmunt [2018, p. 3]. Since this calculation produces only

positive values with 0 being the best possible score, he negated and exponentiated

them to turn them into values between 0 and 1, where 1 is the best possible score:

adq(x, y) = exp(�(|HA(y|x)�HB(x|y)|+
1

2
(HA(y|x) +HB(x|y)))) (3.2)

Using this score in addition to a language filter and a cross-entropy di↵erence filtering

[Moore and Lewis, 2010], Junczys-Dowmunt [2018] achieved successful results in the

WMT18 shared task on parallel corpus filtering and thereby proved the translation

scores’ comparison capabilities.

3.2.2 Automatic Machine Translation Evaluation and Zero-Shot
Paraphrasing

Another branch of text similarity research focuses on the use of bilingual corpora

for paraphrase extraction, where paraphrase probabilities (formulated as translation

probabilities) of phrases (P (y|x)) and their inverse counterparts (P (x|y)) are used
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to rank paraphrases for a given phrase [Callison-Burch et al., 2006; Mallinson et al.,

2017]. In 2020, Thompson and Post brought translation probabilities back into

the field of MT by proposing a metric for the automatic evaluation of machine

translations that is based on these paraphrase probabilities of parallel text.

Thompson and Post [2020] started by building a system for paraphrasing. Essen-

tially, the system was an MMTmodel trained on parallel text. However, they treated

paraphrasing in this paper as a zero-shot translation task – translating from source

language to source language (see Section 2.1.2).

Once their paraphrasing system was trained, Thompson and Post [2020] utilized it to

estimate the probability of outputs from MT systems based on their corresponding

human references. These probabilities could then be interpreted as the performance

of an MT system on a given sentence pair. Similarly to Junczys-Dowmunt [2018],

they first generated partial scores that were at token level and needed to be com-

bined for a sequence-level score. They consider two the following methods to do so

[Thompson and Post, 2020]:

G(y|x) =
|y|X

t=1

logp(yt|yi<t, x) (3.3)

H(y|x) = 1

|y|G(y|x) (3.4)

Equation 3.3 describes the aggregation of token-level probabilities into one sequence

probability by summing up the individual values, while Equation 3.4 normalizes

these values by averaging by sequence length. For the case of reference-based evalu-

ation, y denotes the system output that is to be evaluated while x denotes its human

reference. Thompson and Post [2020] explored the scores for the other direction as

well (y: human reference; x: system output) and averaged the scores of both di-

rections to penalize missing information on either side. For their quality estimation

metric, they considered the system output as y and the source sentence as x.

Thompson and Post’s experiments show that their MMT system can be used as a

lexically/syntactically unbiased, multilingual paraphraser, and its probabilities (as

seen in Equation 3.4) can be interpreted as MT quality estimation metrics, achieving

state of the art results in both areas. This highlights the usefulness of NMT systems

outside of the realm of basic machine translation on one hand, and the information

richness of the estimated probabilities by such systems on the other.
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3.2.3 Text Similarity Measures

The two previously described methods can be described as text similarity measures.

More recently, Vamvas and Sennrich [2022] analyzed di↵erent translation-based sim-

ilarities and they proposed a new measure as well as corresponding normalization

techniques.

Vamvas and Sennrich [2022] compared three di↵erent translation-based similarity

measures: Firstly, direct translation probability in a bilingual setting (see Equation

3.5, left), which was based on Junczys-Dowmunt [2018] and Thompson and Post

[2020]. Secondly, the probability of pivot translation (Equation 3.6, left), where the

paraphrastic similarity was estimated by translation to a pivot language [Mallinson

et al., 2017]. And thirdly, translation cross-likelihood, for which a translation into

any language was generated and an estimation was made of how likely it was that

the generated sequence was a translation of the source sentence (see Equation 3.7,

left). Each of these probabilities was normalized before being used as a similarity

measure [Vamvas and Sennrich, 2022]:

Pdirect(y|x) = p(y|x) ! NMTScore-direct(y|x) = p(y|x)
p(y|y) (3.5)

Ppivot(y|x) = p(y|x0) ! NMTScore-pivot(y|x) = p(y|x0)

p(y|y0) (3.6)

Cross-likelihood(y|x) = p(x0|y) ! NMTScore-cross(y|x) = p(x0|y)
p(x0|x) (3.7)

The authors call the first two normalization strategies that are seen on the right side

of Equations 3.5 and 3.5 reconstruction normalization, since p(y|y) is the probability
that the sentence remains identical when zero-shot paraphrasing is performed, as

described in Section 3.2.2. The third normalization strategy (Equation 3.7, right)

follows a normalization technique by Mallinson et al. [2017] [Vamvas and Sennrich,

2022].

The scores are tested on a variety of languages and language pairs, achieving high

accuracies in multilingual paraphrase identification. An ablation study also shows

that the high accuracies are to a large extent due to the probability normalization –

especially for the first two scores. Altogether, this once again shows “the usefulness

of NMT translation probabilities for similarity tasks that require high attention to

detail” Vamvas and Sennrich [2022, p. 206].
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In conclusion, previous work on translation probabilities has shown that NMT sys-

tems can be used for other tasks than mere translation. They have shown significant

results in various applications, including filtering noisy parallel corpora, evaluating

machine translation output, and other text similarity measures. These results sug-

gest that the probabilities, generated by NMT systems, are not only meaningful

but also rich in information about single sentences and their translations or para-

phrases. This includes aspects like word order, which has proven useful in diverse

settings where parallel texts need comparison or evaluation. Given these character-

istics, it seems promising to employ translation-probability-based methodologies in

the translation direction detection task, which would not only diminish the amount

of data that is needed to solve the task but also eliminate the necessity for training

a model for this specific task.
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4 Methods

4.1 Unsupervised Translation Direction Detection

The main task in this work is to identify the translation direction between a lan-

guage S and a language T given a parallel sentence pair and, consequently, establish

which side is the original and which the translation. This is to be achieved by com-

paring the conditional translation probability P (t|s) of a sentence pair, produced

by an NMT model MS!T in one translation direction S ! T , with the conditional

translation probability P (s|t) in its inverse direction T ! S, produced by a model

MT!S. The higher probability is assumed to be assigned to the sentence pair, for

which the original matches the source s and t is the translation. Figure 1 illustrates

this process.

Figure 1: Illustration of the translation direction detection workflow and decision
process. The original sentence is marked with an asterisk (*).
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4.1.1 Translation Probabilities for Translation Direction Detection

NMTmodels are usually trained to minimize cross-entropy on a training set [Junczys-

Dowmunt, 2018]. The cross-entropy One can use NMT models to generate the cross-

entropy scores of the target given the source sentence by providing a source and a

target. However, these scores are first generated partially, such that each token

in the sentence is assigned a score. This aligns with Equations 3.4 and 3.3 before

they are combined to sentence-level scores [Junczys-Dowmunt, 2018; Thompson and

Post, 2020]. To aggregate the partial scores, the approach by Thompson and Post

[2020] was followed by averaging the scores:

H(t|s) = 1

|y|

|y|X

t=1

logp(yt|yi<t, x) (4.1)

However, this score is not yet interpretable as a conditional probability. To achieve

this, the approach follows Junczys-Dowmunt [2018], by negating and exponentiating

the score to obtain values between 0 and 1:

P (t|s) = exp(�H(t|s)) (4.2)

This process was performed once in the translation direction S ! T and once in

the inverse direction T ! S using the corresponding NMT models.

Since this approach is based on the hypothesis that translation probabilities obtained

from source original sentence pairs are higher, P (t|s) and P (s|t) were compared to

see which conditional probability is higher to perform the binary decision for the

translation direction detection:

Original Translation Direction =

8
<

:
S ! T, if P (t|s) > P (s|t)

T ! S, otherwise

4.1.2 Translation Probability Normalization

Previous approaches suggested that raw translation probabilities are not ideal to

base a decision on and normalizing the probabilities first should be considered

[Mallinson et al., 2017; Vamvas and Sennrich, 2022]. Hence, the normalization

approach for direct probabilities in Vamvas and Sennrich [2022] was followed to

normalize the conditional probabilities that were obtained as described in the pre-
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vious subsection:

Pnorm(t|s) =
P (t|s)
P (t|t) (4.3)

And its inverse:

Pnorm(s|t) =
P (s|t)
P (s|s) (4.4)

In the context of this work, the zero-shot translation probabilities were explored as

a possibility to balance potential biases of the NMT model towards one translation

direction in the sentence pair and to improve the overall classification performance.

Since zero-shot probabilities can only be generated by MMT models [Johnson et al.,

2017], the normalization technique was only applied to those experiments, for which

MMT models were used to generate translation probabilities. The single-pair models

were therefore omitted in the normalization experiments.

4.1.3 From Sentence to Document Level

The initial experiments were conducted at sentence level. The datasets used in this

work provide information on document a�liation, such that document-level results

can be inferred based on the results at sentence level. This was done by aggregating

the predicted sentence-level results of a document and choosing the document-level

label based on a majority vote on the predicted sentence-level labels (hard voting)

[Brownlee, 2021].

4.2 Models

The selection of the NMT models that were used to generate the probabilities in the

experiments was based on multiple conditions: First, the models had to be publicly

available to use them in the experiments for this work as well as in a potential

reproduction thereof. Second, the models should cover as many languages and

directions from the collected dataset as possible – including low-resource language

pairs – to test the robustness and universal applicability of the approach. The

straightforward choice to meet this condition was to utilize MMT models. However,

a range of architectures, data settings, and model sizes should be covered to allow

room for exploration and comparison. For that reason, bilingual single-pair models
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were also included in the selection. For the bilingual models, one model had to be

available for each translation direction. The final selection of models consists of the

MMT models NLLB (in di↵erent sizes), M2M100, SMaLL100, and 14 single-pair

Opus MT models.

4.2.1 Opus-MT

The Opus-MT models are a set of mostly bilingual NMT models [Tiedemann and

Thottingal, 2020]. For each language pair in the dataset two bilingual Opus models

were chosen – one for each translation direction. The aim was to choose models

that are equal (or as similar as possible) in terms of architecture, size, and train-

ing dataset for both translation directions. Unfortunately, not every Opus model

is accompanied by a research paper explaining its architecture, such that most of

the information on the models stems from their respective model cards and a gen-

eral paper [Tiedemann and Thottingal, 2020], which describes the whole Opus-MT

project. Based on that information all of the Opus models that were chosen for

this work were released between 2019 and 2020. They were implemented using the

MarianMT framework [Junczys-Dowmunt et al., 2018], were based on the standard

transformer architecture, and have been trained on the parallel OPUS corpus [Tiede-

mann, 2012; Tiedemann and Thottingal, 2020], and, to my understanding, none of

the chosen models adopted back-translation as a data augmentation method. Al-

though they are the oldest models in this selection, their performance is strong for

high-resource language pairs, but exhibit weakness in low-resource settings [Tiede-

mann and de Gibert, 2023].

4.2.2 Many-to-Many Multilingual Model (M2M-100)

The Many-to-Many Multilingual Model (M2M-100) is the earliest MMT model in

this work’s selection, having been released in 2020. It covers 100 languages, thereby,

enabling translations for all directions in the dataset of this work, providing a more

controlled setting than by using the bilingual Opus models, and additionally, en-

abling zero-shot translations. The model architecture is based on the transformer

architecture that combines parameter sharing for all directions with parameter shar-

ing for a specific language group. To collect training data, a data mining strategy was

applied, which exploits language similarity to avoid mining in all directions, focus-

ing on non-English-centric directions. Additionally, they leverage back-translation

to improve the translation performance for zero-shot and low-resource language pairs

that score between 2 and 10 BLEU points. For the experiments in this work, the
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418 million parameter version of the model was chosen. At the time of its re-

lease, it performed comparable to bilingual systems for high-resource language pairs

and competitively for low-resource language pairs [Fan et al., 2021; Tiedemann and

de Gibert, 2023].

4.2.3 Shallow Multilingual Machine Translation Model
(SMaLL-100)

The Shallow Multilingual Machine Translation Model (SMaLL-100) is a distilled

version of the M2M-100 12 billion parameter model, coming at a size of 200-600

million parameters, covering the same 100 languages. It was released in 2022. The

same architecture as in M2M-100 had been employed, using a subset of its training

data, which was uniformly sampled for all language pairs. Therefore, again a focus

on improving performance for low-resource language pairs was set. Its translation

performance exceeds the one of M2M-100-418M, being more comparable to its 1.2B

relative while matching the size of the former [Mohammadshahi et al., 2022].

4.2.4 No Language Left Behind (NLLB)

The No Language Left Behind (NLLB) models are MMT models from 2022, which

come in various versions, making them ideal candidates to explore the impact that

certain di↵erences, such as size or distillation of the NMT model can have. They

cover 200 languages and also enable zero-shot translations [Akula et al., 2022]. Sim-

ilarly to their predecessors, they utilize the same shared model capacity for multiple

language pairs. While Akula et al. [2022] implement a Sparsely Gated Mixture of

Experts (MoE) model architecture that activates only a subset of model parameters

per input, compared to a dense transformer, which activates all model parameters

per input, only the transformer models were chosen for this work because the MoE

model with a size of 54.5 billion parameters is too large for the hardware that was

used to conduct the experiments here [Akula et al., 2022]. As MMT models, each

of the chosen NLLB models also covered all of the languages in the dataset, once

again providing a more controlled setting than in a bilingual case. The following

NLLB model versions were chosen:

NLLB-1.3B: NLLB-1.3B is a 1.3 billion parameter model. It is not only the largest

model chosen from the NLLB-family, but also the largest model overall in this work.

The model was trained on data obtained by diversified data mining techniques and

included back-translated data obtained by NMT and SMT models on a large scale,
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covering more than 300 directions [Akula et al., 2022]. As the largest and newest

undistilled model used in this work, it exhibits the highest translation performance

overall [Tiedemann and de Gibert, 2023].

NLLB-distilled-1.3B: This model version is a 1.3 billion parameter model that

has been distilled from the 54.4B MoE model. It has been chosen as a model to

compare to NLLB-1.3B [Akula et al., 2022]. In terms of translation, it performs

comparable to its undistilled counterpart [Tiedemann and de Gibert, 2023].

NLLB-distilled-600M: The smallest model of the NLLB selection is a 600 mil-

lion parameter model, which has also been distilled from the 54.4B MoE. It has

been chosen as a direct comparison to the larger NLLB-distilled-1.3B, to explore

the e↵ect of model size in distilled models [Akula et al., 2022]. It has the lowest

translation performance in the set of NLLB models, but still outperforms the older

model families [Tiedemann and de Gibert, 2023].

4.3 Dataset

Similarly to the selection of NMT models, the test dataset for the experiments

described in this work had to meet several conditions: First, the data had to be

parallel and sentence-aligned. Second, the original translation direction had to be

known. Third, the translations in the dataset should cover multiple translation

strategies including HT and MT translations. These also had to be marked as such.

Furthermore, a variety of language pairs – including low-resource language pairs –

translation directions, and domains had to be covered to test the robustness of the

approach.

In this context of identifying the translation direction, the WMT test datasets pre-

sented an exemplary fit. Not only does each sentence come with an aligned set of one

source sentence and (at least) one professionally translated human reference trans-

lation, but also with corresponding translations from multiple MT systems, since

WMT releases the general shared task (former news task) participating systems’

outputs alongside the test data. The competitive nature of the WMT shared tasks

ensures that the system output translations are representative of state-of-the-art

machine translation techniques.

Four di↵erent years’ worth of WMT test datasets were included in this work. By

doing so the set includes not only translations generated by NMT but also by SMT

and rule-based MT systems. According to that, the collected test set for the exper-

iments was split into three categories based on the translation strategy: HT data
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Direction Num. Sents Num. Docs HT NMT Pre-NMT

cs→en 2957 185 4415 14621 10493

cs→uk 1930 1037 1930 23160 -

de→en 4032 568 6016 25943 13491

de→fr 1984 271 1984 9920 -

en→cs 2957 200 4415 14621 10493

en→de 4032 430 6016 25943 13491

en→ru 4733 356 4733 30613 8988

en→uk 3308 297 3308 30334 -

en→zh 3850 344 5724 50254 -

fr→de 1984 281 1984 9920 -

ru→en 4733 372 4733 30613 8988

uk→cs 1930 648 1930 23160 -

uk→en 3308 967 3308 30334 -

zh→en 3850 435 5724 50254 -

Total 45588 6391 56220 369690 65944

Table 1: Overview of the translations used for the high-resource test dataset.

(reference translations), NMT data (translations by NMT systems), and pre-NMT

data (translations by systems that are statistical- or rule-based before the field’s

transition to NMT).

The language pairs for the main test set were chosen based on whether all the

models in Section 4.2 support it, such that a direct comparison between the models’

ability to identify the translation direction is possible. This test set encompasses a

total of 14 directions, 7 languages1, 7 language pairs, 11 domains, and 3 scripts2.

An overview of the detailed statistics of the collected test set in terms of number

of sentences, documents and translations for the main experiment is provided in

Table 1. This dataset was balanced at the level of sentences per language pair, such

that each translation direction is represented by as many examples as its inverse

counterpart. In the following sections of the work, this test set will referred to

as the high-resource test set. This label is somewhat of a simplification since the

classification of resource availability into low-, mid-, and high-resource depends on

the source. While Akhbardeh et al. [2021] label all pairs as high-resource, this is

not the case for Mohammadshahi et al. [2022], who label cs, uk and zh as medium-

1
Czech (cs), German (de), English (en), French (fr), Russian (ru), Ukranian (uk), Chinese (zh).

2
Latin, Cyrillic, Chinese.
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Direction Num. Sents Num. Docs HT NMT

bn→hi 503 145 503 4527

hi→bn 503 138 503 4527

xh→zu 503 145 503 2515

zu→xh 503 138 503 2515

en→ha 997 65 997 14955

ha→en 997 100 997 14955

Total 4006 732 4006 43994

Table 2: Overview of translations used for the low-resource test dataset.

resource languages.

Furthermore, an additional, smaller test set consisting of low-resource directions3

was collected. It consists of 5 new languages3, 3 language pairs, and 3 scripts4.

The overview for the low-resource test set is given in Table 2. This dataset was

also balanced within language pair. It was used for follow-up exploration with the

best-performing systems for the high-resource language pairs.

In addition to the WMT data, a supplementary test set was curated, comprising

excerpts from translations related to the plagiarism allegation case described in

Chapter 1. This dataset introduces an element of real-world complexity, as it in-

volves translations that might not adhere strictly to professional standards nor does

it have to fit into either of the aforementioned categories of translation strategy.

Such a dataset provides a unique opportunity to test the robustness and adaptabil-

ity of the translation direction detection system in a scenario that extends beyond

controlled environments, thereby presenting a more holistic evaluation of its capa-

bilities.

The following subsections delve deeper into the characteristics of each subset and

why it was included in the test dataset in this work. They will provide comprehensive

details about the language pairs, domains, and resource settings encompassed within

these subsets.

3
This again depends on the source. In Mohammadshahi et al. [2022] zu, xh, and ha are classified

as low, while the rest is classified as medium. In Akula et al. [2022] hi, xh, and zu are classified as

high, while bn and ha are classified as low. en is not a low-resource language but in combination

with ha it forms a low-resource language pair.

3
Bengali (bn), Hindi (hi), Hausa (ha), Xhosa (xh), Zulu (zu)

4
Latin, Devanagari, Bengali
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4.3.1 WMT16: Pre-Neural and Early Neural System Outputs

In 2016, a significant shift in the machine translation landscape became evident as

NMT systems began to replace SMT systems. This transition is notably illustrated

in the findings of the WMT16 shared task, where NMT systems consistently out-

performed pre-NMT strategies [Bojar et al., 2016]. Given this context, it is fitting

to incorporate system outputs from the WMT16 shared task into this test set, cap-

turing a blend of predominantly later pre-NMT outputs and early NMT outputs.

Moreover, reference translations have also been included to form the HT category

in this test set.

The parallel data is organized for sentence level, sorted by their associated document,

and annotated in order to discern whether the source sentence is the original or the

translation. Only source-original parallel sentences were selected for this work, the

rest were discarded. It is worth noting that only sentences from the news task were

used. Consequently, the data sourced from WMT16 originates exclusively from one

domain, namely newspaper articles. The reference translations were produced by

professional translators [Bojar et al., 2016].

4.3.2 WMT22: State of the Art System Outputs and Different
Domains

At the beginning of this study, the WMT22 test dataset was the most recent WMT

test data release. By 2022, all of the participating systems in the WMT shared

task have transitioned to NMT, which is why that year’s system outputs form a

well-sized corpus of state-of-the-art machine translations. Hence, it was chosen to

form – together with the WMT16 data – the basis for this study. Additionally, by

2022 the standard news task has evolved into the general machine translation task,

such that it encompasses not only the news domain but also the domains social,

e-commerce, and conversational that were collected as follows [Kocmi et al., 2022]:

• news: Content sourced from online news websites.

• social Comprises public Reddit discussions, maintaining individual posts

as distinct documents; for languages with limited Reddit content, alternate

sources like social media pages for Chinese and Zen blog platform for Russian

were used.

• e-commerce Involves product descriptions provided by various companies.

• conversational For languages like English, German, French, and Chinese,
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the data include agent-customer dialogues, with each message treated as a

separate document and only using messages written in the original language.

The resulting documents were oftentimes short.

The data were provided in a similar manner as for WMT16 with aligned sentences

but with document-level annotations. However, for the WMT22 test set, there was

no need for filtering samples that are source-original because they aimed to collect a

test set that fulfills this condition to begin with, being aware of the e↵ects of trans-

lationese in test data sets [Freitag et al., 2019; Läubli et al., 2020; Graham et al.,

2020; Kocmi et al., 2022]. Translations by various professional translation agen-

cies were used as reference translations. Only the language pairs zh$en, de$en,

uk$en, and cs$en received translations from the same agency and were checked

by a second translator. The language pairs zh$en, cs$en, and de$en received a

second reference in each direction from di↵erent translators. Furthermore, cs$en

has a third reference, because the first reference was deemed to be of low quality.

Hence, an additional with grammar tools corrected version was added [Kocmi et al.,

2022].

This means that there might be di↵erences in quality between the di↵erent reference

translations over all the language pairs. However, in the case of this work, this is

a welcome characteristic, since it gives an indication about the robustness of the

translation detection over di↵erent qualities of HT.

4.3.3 WMT23: More Recent State of the Art System Outputs

By the later stages of this study, the WMT23 test data set and system outputs were

released. The reasons to include this were twofold. For one, the NLLB models (see:

Subsection 4.2.4) were released after the release of the WMT22 test data, which

opens the possibility that this data was part of the NLLB training set. Hence, if a

model were to perform exceptionally well on an earlier subset, but not on this one,

it would be a sign of the model overfitting on the earlier data. Secondly, a field like

NLP research evolves at a rapid pace, an experiment over several months implies

on the fly adaptation in order to contribute to the existing body of research. As for

the time this is being written, the findings of WMT23 have not been released yet.

Hence, little details on how the data were assembled can be provided here at the

moment besides the metadata given in XML files that contained the translations.

The XML files were structured in the same manner as for the previous years, giving

the same information about the associated document and domain. The domain

labels among the chosen directions were the following, while the explanations are
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based on the interpretation of the name and data, and therefore, might not be

completely accurate:

• mastodon: Texts from the micro-blogging platform Mastodon.

• clipboard: Details are unclear, although some of the text seems to be written

dialogues.

• speech: Likely to be transcriptions of spoken language.

• voice: It is not clear how this domain di↵ers from the speech domain.

• games: Most likely reviews for games.

• manuals: Manuals for a variety of things, such as games and technical hard-

ware.

• userreview, reviews, user review These were listed as three separate

domains, however, due to their similarity, it is assumed that they represent

the same domain. User reviews for online orders.

4.3.4 WMT21: Low-Resource Languages

A subset of the WMT21 data and their corresponding system output were added to

broaden the test set’s resource settings, in order to test the best-performing systems’

robustness on low-resource languages. WMT21 was chosen because that year’s news

translation task added especially low-resourced languages into their general task –

namely xh$zu, hi$bn, and ha. Although these language pairs were part of the

general translation task, the source texts of the language pairs xh$zu and hi$bn

were – in contrast to the other language pairs, which were extracted from online news

sites – part of the FLORES-101 benchmark [Goyal et al., 2021] and were extracted

from Wikipedia [Akhbardeh et al., 2021]. In Table 2 more in-depth statistics on the

low-resource test dataset can be found.

4.3.5 Real-World Example: Plagiarism Allegation Incident

As discussed in Subsection 2.2.3, determining the translation direction without hav-

ing to rely on a training set would be a valuable asset in forensic linguistics. There-

fore, in addition to evaluating the methods presented in this work on translations

generated in a controlled setting, evaluating them on real-world data provides valu-

able insights. Owing to the excerpts of the plagiarism allegation case being publicly
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available5, they were used in this analysis. The excerpts form a corpus of 86 parallel

sentences in German and English. Current research confirms that the English ver-

sion of the text is translated [Zenthöfer, 2022b; Ebbinghaus, 2022]. However, it is

still open for discussion whether the text was manually or automatically translated,

or automatically translated and manually edited6. For this specific language pair

(de$en), the optimal system found in this work was applied to determine its align-

ment with current research findings and to gather indications about the translation

strategies used.

4.4 Evaluation Metrics

Since the translation direction task in this work is formulated as a binary classifi-

cation and the classes in the dataset are balanced at sentence level, accuracy was

used as the main evaluation metric, calculated as follows [Czakon, 2023]:

ACC =
tp+ tn

tp+ fp+ tn+ fn
(4.5)

In the case of the experiments described in this work, true positives tp are the

instances that were correctly classified in one direction of a language pair, true

negatives tn are the instances that were correctly classified into the other direction

of the same language pair, and the false negatives fn and false positives fp were

the instances that were incorrectly classified for each respective direction.

Furthermore, in Subsection 5.2.1 bias towards one translation direction within a

language pair is presented. The bias scores B are calculated as follows:

B = abs(50� Bprc) (4.6)

Since the datasets are balanced within a language pair, in the ideal case, Bprc is 50%,

which would mean that the classification predicted each direction an equal number

of times. To make this measure more intuitively interpretable, the percentages Bprc

have been converted to the absolute di↵erences to 50%. Hence, the higher the

number in the table, the higher the bias, with 0 being the best possible and 50

being the worst possible score.

5
Gathered, aligned, and kindly provided by Dr. Jannis Vamvas

6
For more information on the characteristics of manually edited machine translations see Toral

[2019]
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4.5 Tools, Software and Libraries

During the execution of the experimental phase of this thesis, a range of tools

were employed that are listed here for a holistic description of the experimental

environment7. The HuggingFace Transformers library [Wolf et al., 2020] was pivotal

and was utilized for all model implementations. However, it is worth noting that for

the SMaLL-100 model using an additional script was necessary [Mohammadshahi

et al., 2022]. PyTorch [Paszke et al., 2019] served as the primary framework for the

usage of all models. In addition, the Opus models required the SentencePiece [Kudo

and Richardson, 2018] and SacreMoses libraries, whereas SMaLL-100 also required

SentencePiece.

7
All of the data and code for data preparation, experiments, and result analysis can be found in

the following repository:

https://github.com/miwytt/unsupervised-translation-direction-detection
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5 Results

5.1 Unsupervised Translation Direction Detection

The first section of this chapter focuses on the results of the initial experiment,

providing insight into the general translation direction detection capability of this

approach using various models. The focus lies on presenting the results for di↵erent

translation strategies but also for di↵erent resource settings. The chapter begins

with a presentation of high-resource language pairs before moving on to the task of

classifying low-resource language pairs.

5.1.1 High-Resource Language Pairs

Opus NLLB-dist-600M NLLB-dist-1.3B NLLB-1.3B M2M-100-418M SMaLL-100 Avg.

cs$en 74.22 67.12 67.08 66.78 74.38 72.24 70.30

de$fr 60.77 67.40 67.77 67.98 69.51 72.93 67.73

en$ru 69.42 68.30 64.97 66.23 72.11 73.34 69.06

de$en 77.04 73.85 71.82 72.55 74.95 74.93 74.19

en$uk 67.93 65.22 66.05 65.11 75.39 75.53 69.20

cs$uk 73.61 73.37 72.06 72.20 74.53 76.17 73.66

en$zh 65.58 56.10 55.19 55.15 73.79 76.84 63.78

Macro-Avg. 69.80 67.34 66.42 66.57 73.52 74.57 69.70

Table 3: Accuracy (%) per language pair for NMT at sentence level. The scores
marked in bold are the best scores for each model, whereas the underlined
scores are the best scores for each language pair.

The results of the main experiment are listed in Table 3 for NMT, Table 4 for HT,

and Table 5 for pre-NMT. They show the accuracy for all language pairs in the

dataset for each of the tested models. The highest results overall can be observed

for NMT, with all of the results reaching above-chance accuracy – showing that

translation direction can indeed be detected using the approach described in this

work. However, there are some substantial di↵erences that need to be addressed.
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One observation that can be made from Table 3 is that the di↵erent NMT mod-

els exhibit di↵erences in performance for NMT data. In this case, a di↵erence of

8.15% can be observed between the average accuracies of the best-performing model,

SMaLL-100, and the worst-performing model, NLLB-dist-1.3B. SMaLL-100, as the

best-performing model in this setting, outperforms the other models in all but two

language pairs, cs$en and de$en, for which the Opus model pairs and M2M-100

perform better – Opus reaching the single best result overall with 77.04%.

More pronounced di↵erences can be seen when the results between the language

pairs are compared. In this case, the di↵erence between averages reaches 10.41%

(best: de$en and worst: en$zh) and ranges between 17.75% (NLLB-dist-600M;

again best: de$en and worst: en$zh) and 4.6% (SMaLL-100; best: en$zh and

worst: cs$en) for the individual models’ results.

Moving on to Table 4 for HT: First, one can observe an overall drop in performance

compared to the NMT data. Nonetheless, the results still show a performance above

chance in most cases, with average accuracy scores ranging between 57.89% (NLLB-

dist-1.3B) and 66.33% (SMaLL-100), displaying a di↵erence of 8.44%. The best

scores were obtained for the language pairs de$fr reaching 73.05% (best overall

result for HT) with NLLB-dist-1.3B.

While the performance gap between the models is less prominent here than for

the NMT data, the performance gap between the di↵erent language pairs grows

with the largest di↵erence between average performances of language pairs being

13.37% (best: de$fr and worst: en$ru). The di↵erences between the language

pairs within the results from one model range from 9.57% (Opus; best: cs$uk and

worst: de$en) to 23.38% (NLLB-1.3B; best: de$fr and worst: en$zh ).

Opus NLLB-dist-600M NLLB-dist-1.3B NLLB-1.3B M2M-100-418M SMaLL-100 Avg.

cs$en 62.14 57.34 57.74 57.52 64.46 64.05 60.54

de$fr 62.53 70.56 73.04 72.99 68.65 71.42 69.87

en$ru 59.14 54.53 52.34 53.50 59.22 60.24 56.50

de$en 57.01 55.29 53.37 54.07 62.17 61.83 57.29

en$uk 56.54 54.56 54.62 55.17 71.72 71.33 60.66

cs$uk 66.58 64.33 64.40 65.05 66.40 67.41 65.70

en$zh 57.27 50.25 49.74 49.61 66.48 68.05 56.90

Macro-Avg. 60.17 58.12 57.89 58.27 65.59 66.33 61.06

Table 4: Accuracy (%) per language pair for HT at sentence level.
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Opus NLLB-dist-600M NLLB-dist-1.3B NLLB-1.3B M2M-100-418M SMaLL-100 Avg.

cs$en 37.05 30.73 25.49 26.62 38.72 38.98 32.93

en$ru 24.94 17.81 13.68 14.80 32.24 32.95 22.74

de$en 33.32 26.71 21.07 22.58 41.85 40.99 31.09

Macro-Avg. 31.77 25.08 20.08 21.33 37.60 37.64 28.92

Table 5: Accuracy (%) per language pair for pre-NMT at sentence level.

Here, SMaLL-100 reaches top accuracy only for three language pairs, tying with

M2M-100. Nonetheless, SMaLL-100 outperforms M2M-100 in terms of average ac-

curacy by reaching 66.33%. Although the result is not as strong for HT as it is for

NMT, the best-performing model for HT is again SMaLL-100.

Finally, the results for the pre-NMT outputs show a substantial drop in performance

for all models and language pairs, reaching well below-chance results in all cases. The

overall best result is reached for de$en with 41.85% by using M2M-100, while the

lowest scores are reached by NLLB-dist-1.3B for en$ru. On average, the language

pair that was most discernible in terms of translation direction is cs$en. And,

SMaLL-100 continues to be the best-performing model as in previous datasets.

In summary, the results show clear di↵erences in the classification power of NMT

models between the three categories. While the results for automatically generated

translations by NMT systems lie well above chance, and the results for manually

translated sentences seem discernible with the approach as well, the last table of

results indicates that the method fails for translations that were generated using

pre-NMT systems.

5.1.2 Low-Resource Language Pairs

Given the performance in the main experiment, the SMaLL-100 and M2M-100 were

chosen to explore their performance on low-resource languages. SMaLL-100 was the

straightforward choice for this follow-up experiment as the best-performing system

in the main experiment. However, due to their similar performance on HT (see:

Table 4) and their relatedness, both were tested in a low-resource setting. Table 6

shows the results for NMT, while Table 7 depicts the results for HT.

For NMT in this resource setting, M2M-100 outperforms its distilled counterpart
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M2M-100-418M SMaLL-100 Avg.

en$ha 50.82 49.98 50.40

bn$hi 66.11 53.02 59.57

xh$zu 62.72 57.02 59.87

Macro-Avg. 59.88 53.34 56.61

Table 6: Accuracy (%) per language pair for NMT in a low-resource setting.

noticeably by reaching an average of 59.88% and performing with an accuracy of

over 60% for bn$hi and xh$zu, where SMaLL-100 only reaches little above chance

accuracy. For en$ha no detection power is observable on this dataset using either

model.

For HT results (Table 7), SMaLL-100 regains its place as the best-performing sys-

tem, however, only with a small margin to M2M-100 (0.6%). Similarly to the results

in Subsetion 5.1.1 on high-resource HT, the translation direction of the low-resource

HT were more di�cult to detect. The task on low-resource language pairs brings the

accuracies down to 50%, indicating that the systems fail to detect the translation

direction in this setting.

M2M-100-418M SMaLL-100 Avg.

en$ha 49.90 49.90 49.90

bn$hi 49.30 50.70 50.00

xh$zu 50.99 51.39 51.19

Macro-Avg. 50.06 50.66 50.36

Table 7: Accuracy (%) per language pair for HT in a low-resource setting.

To summarize, the results for low-resource language pairs are lower than in a high-

resource setting. Nonetheless, accuracy scores can be reached that are above chance

by using M2M-100 for NMT data. The results for HT data stay at around 50%.
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5.2 Bias and Normalization

The observation that the translation-probability-based translation direction detec-

tion approach results di↵er between language pairs, translation strategy, and re-

source level poses the question if there are di↵erence between translation directions

as well. The exploration in this section attempts to quantify the potential discrep-

ancy with a bias score. The goal is to determine whether a bias towards a translation

direction exists. Furthermore, the results of the attempt to mitigate potential bi-

ases for high-resource languages and improve overall results using the normalization

strategy, which has been described in Subsection 4.1.2, are shown.

5.2.1 Bias before Normalization

To measure the potential bias towards one translation direction, bias has been quan-

tified as described in Subsection 4.4. Tables 8, 9 and 10 depict those bias scores.

Table 8 shows the bias scores for the NMT dataset. One can observe that on average

SMaLL-100 has the lowest signs of bias, achieving scores close to 0 (en$uk), which

indicates almost no bias towards a certain translation direction of the pair. The

NLLB models, on the other hand, exhibit the highest signs – NLLB-dist-600M

scoring the worst with a score of above 40 for en$zh. Notable is also the high range

of scores that the NLLB models exhibit for the di↵erent language pairs, ranging

from almost no bias to nearly completely biased.

As for the language pairs, it seems that en$ru, with an average score 4.01, is least

susceptible to the bias, whereas en$zh with 29.73 is most vulnerable.

Opus NLLB-dist-600M NLLB-dist-1.3B NLLB-1.3B M2M100-418M SMaLL-100 Avg.

en$zh 23.07 40.97 42.03 41.51 20.12 10.69 29.73

en$uk 12.48 28.12 23.45 26.89 3.50 2.19 16.10

cs$uk 1.96 10.04 7.42 8.70 8.37 0.09 6.10

en$ru 9.65 0.67 5.82 1.50 4.93 1.47 4.01

de$en 3.44 10.34 6.14 8.54 8.40 5.69 7.09

cs$en 6.17 23.31 18.45 21.38 0.33 6.10 12.62

de$fr 29.21 18.69 14.60 15.22 21.39 13.61 18.79

Macro Avg. 12.28 18.88 16.84 17.68 9.58 5.69 13.49

Table 8: Bias for NMT data before normalization.
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Opus NLLB-dist-600M NLLB-dist-1.3B NLLB-1.3B M2M100-418M SMaLL-100 Avg.

en$zh 21.11 41.35 41.67 41.14 22.08 12.46 29.97

en$uk 7.45 25.98 18.48 22.24 0.17 1.56 12.65

cs$uk 7.93 18.01 16.42 16.81 12.56 2.75 12.41

en$ru 9.66 0.59 4.35 1.45 12.15 7.35 5.93

de$en 0.21 10.46 4.53 6.98 5.09 2.50 4.96

cs$en 4.53 22.92 16.28 19.01 6.34 1.95 11.84

de$fr 30.87 19.57 15.72 16.03 21.37 14.01 19.60

Macro Avg. 11.68 19.84 16.78 17.67 11.39 6.08 13.91

Table 9: Bias for HT data before normalization.

The scores for HT in Table 9 display a very similar pattern to the scores for the NMT

dataset, reaching an overall bias score of almost 14%. The models with the highest

and lowest scores align with the above-described results as well. The language pair

with the on average lowest bias score is in this case de$en, while en$zh continues

to reach the highest bias score.

Finally, the bias scores for the pre-NMT dataset continue to align with the previous

two sets of results in terms of the model with SMaLL-100 reaching the lowest bias

scores, while NLLB-dist-600M reaches the highest bias score – thus being the most

vulnerable to bias overall. The average scores at the level of the language pair are

slightly lower.

In summary, this subsection has shown that the models are susceptible to bias to

a translation direction within a language pair. The models di↵er substantially in

terms of bias exhibition and do so consistently for all translation strategies.

Opus NLLB-dist-600M NLLB-dist-1.3B NLLB-1.3B M2M100-418M SMaLL-100 Avg.

en$ru 2.29 3.34 1.55 3.32 2.55 0.37 2.24

de$en 6.77 12.61 8.94 11.02 11.40 7.52 9.71

cs$en 6.73 19.95 14.83 16.88 0.94 4.69 10.67

Macro Avg. 5.26 11.97 8.44 10.41 4.96 4.19 7.54

Table 10: Bias for pre-NMT data before normalization.
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5.2.2 Bias and Accuracy after Normalization

In order to explore the e↵ects of probability normalization on the bias, a subset of the

dataset and models were chosen for a follow-up experiment. Due to the normaliza-

tion technique utilizing zero-shot translation probabilities, only MMT-model-based

probabilities were possible to be normalized. Normalization was explored for the

worst model in terms of bias scores (NLLB-dist-600M), as were the four language

pairs most a↵ected by the bias of the model since those results had the largest poten-

tial for correction. Additionally, the results for the same language pairs by M2M-100

and SMaLL-100 were chosen as comparative data, such that the normalization ef-

fect is not only further explored on di↵erent model sizes and architectures, but also

on results that were indicating di↵erent levels of bias. The original bias score as

well as the original translation direction detection accuracy (left) are presented in

comparison to the normalized scores (right) in Table 11, 12 and 13.

Table 11 summarizes the results for the NMT dataset. For NLLB-dist-600M an im-

provement can be seen in three out of the four tested language pairs. The bias score

for en$zh indicates the largest improvement, showing almost complete mitigation

of the bias as well as an improvement for the classification accuracy. Similar e↵ects

can be observed for the M2M-100 results for en$zh, whereas the SMaLL-100 results

show an improvement of the bias scores for the language pairs cs$en and de$fr.

The normalized SMaLL-100 results exhibit the least amount of decreased bias.

NLLB-dist-600M M2M-100-418M SMaLL-100

en$zh 40.97 | 2.40 20.12 | 0.08 10.69 | 18.99

– Accuracy 56.10 | 63.89 73.79 | 74.94 76.84 | 71.51

en$uk 28.12 | 16.04 3.50 | 6.24 2.19 | 9.20

– Accuracy 65.22 | 62.45 75.39 | 73.87 75.53 | 71.02

cs$en 23.31 | 30.72 0.33 | 3.81 6.10 | 2.46

– Accuracy 67.12 | 57.74 74.38 | 70.01 72.24 | 70.04

de$fr 18.69 | 7.49 21.39 | 19.69 13.61 | 11.51

– Accuracy 67.40 | 59.90 69.51 | 63.99 72.93 | 69.18

Table 11: Bias and accuracy (%) for NMT subset of dataset (before | after) normal-
ization.
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NLLB-dist-600M M2M-100-418M SMaLL-100

en$zh 41.35| 8.47 22.08| 5.54 12.46 | 20.51

– Accuracy 50.25 | 53.09 66.48 | 66.28 68.05 | 66.12

en$uk 25.98 | 25.70 0.17| 0.05 1.56 | 12.62

– Accuracy 54.56 | 52.84 71.72 | 71.27 71.33 | 67.42

cs$en 22.92 | 27.63 6.34 | 4.56 1.95 | 2.37

– Accuracy 57.34 | 54.44 64.46 | 62.86 64.05 | 64.66

de$fr 19.57 | 9.90 21.37| 19.62 14.01 | 11.54

– Accuracy 70.56 | 61.90 68.65 | 63.27 71.42 | 67.44

Table 12: Bias and accuracy for HT subset of dataset (before | after) normalization.

A further point to note in this setting is that although normalization seems to have a

positive e↵ect in terms of bias mitigation, it rarely improves the translation direction

detection accuracy. Most of the results show a slightly decreased accuracy. The only

exceptions are the results for en$zh by NLLB-dist-600M and M2M-100, which show

an improvement of 7.79% and 1.15%. The SMaLL-100 accuracy scores decrease for

all language pairs.

The results for the HT dataset in Table 12 paint a similar picture, especially for

NLLB-dist-600M. There are, however, multiple notable di↵erences. Firstly, bias

scores for M2M-100 are lowered for all four language pairs, even the ones that were

almost unbiased during the initial experiment (en$uk), indicating a positive e↵ect

in terms of bias mitigation for HT results from this model. The SMaLL-100 results

show once again improvement for de$fr in terms of bias. Although the bias score

for cs$en has not been lowered as above, a small rise in accuracy can be noted.

However, the overall accuracy scores do not seem to be positively a↵ected by the

normalization with small losses in performance by all models for almost all the

language pairs.

Finally, the subset of tested pre-NMT data is presented in Table 13. In this setting,

a positive e↵ect on all results has been shown in terms of translation direction detec-

tion accuracy and for SMaLL-100, the bias seems to have been reduced. However,

the accuracy stays in all cases far below 50%.

In summary, the comparison of the initial and normalized results has shown that

while the normalized results indicate a lowered bias for previously heavily biased
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NLLB-dist-600M M2M-100-418M SMaLL-100

cs$en 19.95 | 25.0 0.94 | 1.18 4.69 | 2.42

– Accuracy 30.73 | 36.52 38.72 | 41.09 38.98 | 40.4

Table 13: Bias and accuracy on pre-NMT subset of dataset (before | after) normal-
ization.

cases, the classification accuracy experiences losses for all translation strategies but

pre-NMT. Not only has the normalization di↵erent e↵ects on translations with dif-

ferent strategies but also di↵erent on di↵erent language pairs depending on the NMT

model that was used to generate the probabilities. Since the results prove incon-

clusive in most cases, the following results are based on unnormalized translation

probabilities.

5.3 Results at Different Text Lengths

This section presents the results across varying text lengths, employing two ap-

proaches to scrutinize the sentence-level data. Initially, by majority vote aggregated

sentence-level outcomes are inspected to understand how translation direction de-

tection fares at document level. Secondly, the influence of text length at sentence

level is examined, providing a nuanced view of the performance across di↵erent text

sizes.

5.3.1 From Sentences to Documents

In this subsection, the results for translation direction detection at document level

are presented. The aggregation from sentence level to document level was performed

using a majority vote as explained in 4.1.3. For the high-resource language pairs,

the follow-up experiment was only performed on the results of the best-performing

system, SMaLL-100. For the low-resource language pairs both SMaLL-100 as well

as M2M-100 were considered, due to M2M-100’s superior performance on the low-

resource NMT dataset. The document-level results for all three data categories

are presented in Table 14 for high-resource language pairs and Table 15 and 16 for

low-resource language pairs.
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NMT Human Pre-NMT Macro-Avg.

de$fr 78.05 78.66 - 78.36

de$en 79.10 68.45 19.45 55.67

cs$uk 80.05 71.57 - 75.81

en$zh 83.44 70.75 - 77.10

cs$en 84.20 76.23 16.53 58.99

en$ru 85.60 67.88 10.03 54.50

en$uk 86.04 85.64 - 85.84

Macro-Avg. 82.35 74.17 15.34 54.37

Table 14: Accuracy scores for HT, Pre-NMT, and NMT datasets at document level
using SMaLL-100 at document level.

Table 14 demonstrates a noticeable improvement at the document level compared to

the results at the sentence level. While SMaLL-100 results at sentence level for NMT

data show a range between 72% and 76% with an average of 74.57%, at document

level a boost of almost 8% can be observed, with accuracy ranging from little below

80% to 86%. An equivalent e↵ect is seen for the results for the HT dataset: The

sentence-level average of 66% is raised to 74%. However, in contrast to the positive

enhancement of the results for NMT and HT data, the accuracy scores for pre-NMT

have experienced a decrease to an average accuracy of 15%.

The document-level results for low-resource language pairs with SMaLL-100 did not

seem to benefit from the majority vote strategy. Table 15 illustrates the results,

showing that there is a drop in performance for both the NMT and HT dataset.

NMT HT Macro-Avg.

bn$hi 46.33 44.35 45.34

en$ha 50.00 50.00 50.00

xh$zu 51.62 44.78 48.20

Macro-Avg. 49.32 46.36 47.85

Table 15: Low resource accuracy scores for HT, Pre-NMT, and NMT datasets using
SMaLL-100 at document level.
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NMT HT Macro-Avg.

bn$hi 62.12 41.14 51.63

en$ha 50.00 50.00 50.00

xh$zu 58.81 43.71 51.26

Macro-Avg. 57.31 44.95 51.13

Table 16: Low-resource accuracy scores for HT, Pre-NMT, and NMT datasets using
M2M-100 at document level.

The results produced with M2M-100 in Table 15, however, paint a slightly better

picture. While the results for HT score lower than above, the results for NMT reach

an accuracy score of over 60% for the language pair bn$hi and 58% for xh$zu.

The results for en$ha score the same accuracy as in this setting as they do with

SMaLL-100.

5.3.2 From Characters to Sentences

Figure 2: Mean accuracy per language pair over sentence length (in characters). The
dashed line marks 50% accuracy.

Figure 2 illustrates how the sentence length (in characters) a↵ects the mean accuracy

per language pair for the SMaLL-100 results. For visibility purposes this figure has

been cut at 150 characters – a larger range is shown in Appendix A. The figure shows

a steep increase in accuracy within the first 20 characters. For longer sentences, the

trend is still increasing with all language pairs passing the 50% accuracy mark at

a sentence length of 60 characters. With approximately 80 characters a plateau is

reached with an average accuracy of 70%. This plateau stays consistent for longer
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sentences apart from occasional outliers.

5.4 Results for Different WMT Datasets

In this section of the report, the data was segregated based on the WMT year. This

division allows to provide a more granular and specific examination of the results.

By analyzing each dataset separately, corresponding to its respective year, trends,

patterns, and anomalies that are specific to each time period can be recognized.

Table 17 depicts the accuracy scores for NMT data. The upper row shows the results

when the di↵erent NLLB models are used. Each of these tables shows that the

direction detection was more successful for the newer datasets, which correspond to

the system outputs of newer NMT models. All NLLB models achieve scores around

50% for WMT16 translations, scoring as low as 36% for en$ru with NLLB-1.3B

and as high as 57.65%. The results for WMT22 system outputs show an increase

in performance compared to the older data. For this subset accuracy scores range

from 52.56% to 72.83% with the majority of language pairs reaching well above 60%.

Another small increase in performance can be seen for the WMT23 dataset. There,

a range between 56.97% and 79.97% can be observed. In general, the NLLB models

show a trend of performing best for the latest system outputs.

NLLB-dist-600M

WMT16 WMT22 WMT23

de$en 50.87 73.51 79.97

en$uk - 64.87 65.61

en$zh - 53.75 57.74

cs$en 57.65 68.20 -

de$fr - 67.40 -

en$ru 46.90 66.67 71.79

uk$cs - 73.37 -

NLLB-dist-1.3B

WMT16 WMT22 WMT23

de$en 40.36 72.27 77.79

en$uk - 65.52 66.63

en$zh - 52.64 56.97

cs$en 51.63 68.83 -

de$fr - 67.77 -

en$ru 36.38 62.17 70.18

uk$cs - 72.06 -

NLLB-1.3B

WMT16 WMT22 WMT23

de$en 42.73 72.83 78.59

en$uk - 64.52 65.74

en$zh - 52.56 56.97

cs$en 52.86 68.36 -

de$fr - 67.98 -

en$ru 39.32 64.51 70.32

uk$cs - 72.20 -

Opus-MT

WMT16 WMT22 WMT23

de$en 60.91 77.19 80.32

en$uk - 70.18 65.36

en$zh - 66.28 65.10

cs$en 73.02 74.36 -

de$fr - 60.77 -

en$ru 56.48 66.59 73.16

uk$cs - 73.61 -

M2M-100

WMT16 WMT22 WMT23

de$en 63.98 74.03 79.93

en$uk - 77.53 72.95

en$zh - 74.28 73.45

cs$en 69.48 74.94 -

de$fr - 69.51 -

en$ru 64.79 70.15 74.55

uk$cs - 74.53 -

SMaLL-100

WMT16 WMT22 WMT23

de$en 64.04 74.06 79.74

en$uk - 76.95 73.90

en$zh - 77.62 76.29

cs$en 68.08 72.72 -

de$fr - 72.93 -

en$ru 64.39 72.34 75.08

uk$cs - 76.17 -

Table 17: Accuracy (%) for NMT sorted by language pair and WMT year for each
model.
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The second row, which displays the result for Opus, M2M-100, and SMaLL-100,

shows a similar trend, but less evidently so. The lowest scores are still observed for

the WMT16 dataset, ranging from 56.48% to 73.02% (both by using Opus). Again,

an increase in performance on the newer dataset, WMT22, is observable, but the

increase is less substantial than above. Opus ranges from 60.77% to 77.19%, while

M2M-100 ranges from 69.51% to 77.53%, and SMaLL-100 for 72.34% to 77.62%.

And although the results for the latest system outputs range from 65.10% to 80.32%

(Opus), from 72.95% to 79.93% (M2M-100), and 73.90% to 79.74% (SMaLL-100),

in contrast to the NLLB models, the results for WMT23 do not surpass the results

for WMT22 in all cases.

In Table 18 the results for each NMT model on the HT data are presented. The

first row again shows the results when using the probabilities generated by the

NLLB models. The di↵erences between the results for each WMT subset are less

prominent than for NMT. While results for the earliest translations range from

49.30% to 53.90%, the WMT22 results range from 49.63% to 73.04%, and WMT23

from 49.59% to 71.86%. Hence, the results for HT by NLLB have a higher overlap

performance overlap between each dataset than for NMT data. The largest range

and highest scores are achieved for the WMT22 dataset. However, the WMT22

covers more language pairs than the other two datasets, providing more possibilities

to perform better. For those language pairs that are covered with both WMT22

and WMT23, the NLLB scores are higher for the former for en$uk in all cases and

for en$zh in the larger two models. The models achieve better results for de$en

and en$ru in all cases for the WMT23 dataset.

The second row shows a similar pattern, although with generally higher scores. The

scores for WMT16 data show a range from 56.44% to 59.23% (Opus), from 56.17%

to 58.77% (M2M-100), and from 56.48% to 60.32% (SMaLL-100). For WMT22

translations, the results start at 53.94% and reach up to 66.58% (Opus-MT), 61.84%

up to 75.42% (M2M-100), and 60.79 up to 75.57% (SMaLL-100). The results show

a similar but slightly lower range for the latest translations ranging from 49.84%

to 72.95% (Opus), from 59.08% to 73.77% (M2M-100), and from 59.81% to 73.32%

(SMaLL-100). Similarly to the results in the upper row, the best scores are found

for the WMT22 and WMT23. And when comparing those two years in terms of

language pairs, en$uk and en$zh show higher scores for WMT22, while de$en

and en$ru do so for WMT23.
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NLLB-dist-600M

WMT16 WMT22 WMT23

de$en 53.90 53.51 71.49

en$uk - 57.28 50.51

en$zh - 50.12 50.48

cs$en 51.90 60.12 -

de$fr - 70.56 -

en$ru 50.57 55.11 57.46

uk$cs - 64.33 -

NLLB-dist-1.3B

WMT16 WMT22 WMT23

de$en 50.13 52.11 70.95

en$uk - 57.57 50.23

en$zh - 49.80 49.62

cs$en 51.29 61.04 -

de$fr - 73.04 -

en$ru 47.46 52.42 56.50

uk$cs - 64.40 -

NLLB-1.3B

WMT16 WMT22 WMT23

de$en 50.00 53.12 71.86

en$uk - 57.99 50.97

en$zh - 49.63 49.59

cs$en 51.26 60.73 -

de$fr - 72.99 -

en$ru 49.30 52.99 57.60

uk$cs - 65.05 -

Opus-MT

WMT16 WMT22 WMT23

de$en 59.27 53.94 72.95

en$uk - 60.83 49.84

en$zh - 58.21 55.47

cs$en 57.97 64.30 -

de$fr - 62.53 -

en$ru 56.44 59.99 60.74

uk$cs - 66.58 -

M2M-100

WMT16 WMT22 WMT23

de$en 58.77 61.84 73.77

en$uk - 75.42 65.93

en$zh - 67.67 64.22

cs$en 57.91 67.83 -

de$fr - 68.65 -

en$ru 56.17 62.40 59.08

uk$cs - 66.40 -

SMaLL-100

WMT16 WMT22 WMT23

de$en 60.37 60.79 73.32

en$uk - 75.57 64.69

en$zh - 69.30 65.66

en$cs 58.94 66.68 -

de$fr - 71.42 -

en$ru 56.48 64.45 59.81

cs$uk - 67.41 -

Table 18: Accuracy (%) for HT sorted by language pair and WMT year for each
model.

5.5 Real-World Example

This chapter has provided insights into how unsupervised translation direction de-

tection as described in this work has performed given di↵erent models and a varied

test dataset. The results suggest that under most circumstances the translation

direction can be detected. To illustrate this further, the approach is tested on real-

world data from the plagiarism allegation case described in Chapter 1. Since this

data set consists of parallel sentences in German and English, the approach has

been tested once with the overall best-performing NMT model, SMaLL-100, and,

additionally, with the best-performing model for this language pair for NMT, Opus.

The results are presented in Table 19. They show that with translation probabili-

ties by both models being higher for de!en than for en!de in well over 65% of the

data, the results align with the current stage of the investigation in the plagiarism

allegation case: The text seems to have been translated from German to English,

indicating against the alleged plagiarism.
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Opus SMaLL-100

de!en 66.27 69.77

Table 19: Results for data from the plagiarism allegation case.

5.6 Translation Probabilities

This section is intended to illustrate the distribution of the translation probabilities

based on the three translation strategy categories: HT, NMT, and pre-NMT. The

left side of Figure 5.6 shows the translation probability distribution when the trans-

lation model was confronted with the original direction, while the right side of the

figure depicts the probability distribution of the inverse scenario.

Looking at the left figure one can observe that when confronted with HT for the

original direction, the model generates on average the lowest probabilities, while

pre-NMT probabilities are on average slightly higher, and NMT-based probabilities

are higher than both other categories while covering also a broader spectrum of

probabilities.

Figure 3: Comparison of translation probabilities in both translation directions gen-
erated by SMaLL-100.
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The right figure, on the other hand, shows that this pattern does not stay consistent

for the inverse direction. In this scenario, the model generated the highest prob-

abilities for the pre-NMT dataset followed by NMT and, finally, by HT at equal

intervals.

In summary, this section highlights the notable di↵erences in translation probabili-

ties among the three translation strategies - HT, NMT, and pre-NMT. It underscores

the discrepancies that emerge from the previously reported results, emphasizing the

varying performance for these strategies in the translation direction detection task.
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6 Discussion

6.1 Result Interpretation

The primary objective of this thesis was to explore the capability of identifying the

translation direction in parallel sentence pairs in an unsupervised manner. This

was pursued by comparing the conditional translation probabilities generated by

NMT models when confronted with the same sentence pair in both possible transla-

tion directions. The assumption was that the NMT model would produce a higher

probability for the original direction.

In Section 1.2 the following research questions were formulated:

1. Can translation probabilities be used for translation direction detection?

2. Can potential biases be mitigated by normalizing the translation probabilities?

3. What other properties do translation probabilities display in terms of transla-

tion direction?

The results at sentence level and particularly at document level indicate a positive

response to the first research question: Translation probabilities can be used to

detect translation direction. For a high- to mid-resource setting on the language

pairs tested in this work SMaLL-100 is an appropriate choice without normalization

by zero-shot translation probabilities. The approach works best for sentence pairs

where the translations were generated by NMT models. It can also be applied to

manual translations, but the accuracy decreases. The approach seems to be least

e↵ective when faced with translations that were generated by pre-NMT systems. In

a low-resource setting, the accuracies are lower, but they can still be regarded as an

indication for a specific translation direction – for the low-resource language pairs

that were tested here, M2M-100 seems to be the most suitable choice. This short

summary shows that the approach leads to a range of di↵erent results depending

on several factors, such as the NMT model, which generates the probabilities, the

language pair, and the translation strategy. How these factors influence the results

is analyzed in more detail in the Subsections 6.1.1 and 6.1.2.
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Secondly, the next research question concerns biases and their mitigation. The

results suggest that there is a detectable bias when trying to detect the translation

direction. This bias varies similarly to the detection accuracy depending on the

model and language pair. A mitigation attempt by normalizing the probabilities

before making the binary decision has proven to be semi-successful. Subsection

6.1.3 provides a closer look into this topic.

Furthermore, the variety of results advocates for a closer analysis of the transla-

tion probabilities that were produced during these experiments. Subsection 6.1.4

formulates an attempt to answer the third research question by showing that the

probabilities can be grouped into distinctive categories depending on the translation

strategies. This observation can be used to explain the results obtained in this work

to some extent by linking them to the linguistic observations of previous research.

Moreover, it can be used as a foundation for future work.

Finally, the results are compared to previous work in Subsection 6.1.5 to contextu-

alize the performance of the approach described in this work, before discussing the

limitations in Section 6.2 and, finally, outlining the future work in Section 6.3.

6.1.1 Model Related Influences

The experiments cover several NMT models to produce translation probabilities.

The models di↵er in terms of size, training data, and training strategy. On aver-

age, SmaLL-100 is the best-performing model for the high-resource dataset for all

translation strategies, as well as for the HT subset of low-resource data. M2M-100

proves to closely follow the SMaLL-100 results and even outperformed it on the

NMT dataset for low-resource language pairs. The bilingual Opus models scored

almost comparably to M2M and SMaLL-100 – even outperforming them for one

language pair in the NMT dataset, while the NLLB models take the last place.

This outcome suggests the following: A larger model size does not necessarily have

a positive influence on the translation direction detection capabilities, nor do more

recent models necessarily outperform older ones. Furthermore, bilingual models

are not generally better or worse than multilingual ones, but they require more

extensive preparation beforehand, as one must collect and align comparable models

for each specific translation direction, a process that can be more time-consuming

and restrictive.

A last model-related point is the e↵ect of model distillation. Three distilled mod-

els were considered in the experiments: NLLB-dist-600M, NLLB-dist-1.3B, and
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SMaLL-100. Two out of three models outperformed their undistilled counterparts.

Additionally, the smaller NLLB-dist-600M outperformed its larger relative NLLB-

dist-1.3B. This could be connected to the in Subsection 2.2.2 mentioned character-

istic that translations by distilled NMT models display more interference. Hence,

they might assign higher probabilities where interference is present on the target

side. In order to ascertain this hypothesis, further investigation of the translation

probabilities paired with a qualitative analysis of the translations would be required.

6.1.2 Robustness for Diverse Datasets

This subsection evaluates the robustness of the translation direction detection method

across diverse datasets that are characterized by various translation strategies, lan-

guages, resource settings, text lengths, and domains.

Translation Strategy The test dataset is categorized by translation strategy into

HT, NMT outputs, and pre-NMT outputs. This categorization was aimed at cap-

turing the e↵ects of the strategies on translation direction detection. The results

consistently showed the highest accuracy for NMT outputs, suggesting that the

NMT systems are more adept at identifying translations similar to their own out-

put. HT data, while slightly more challenging, still produced accuracies above 50%

in most cases. However, for pre-NMT data, the accuracy drops significantly be-

low chance levels, indicating the model’s inability to recognize translation patterns

that are vastly di↵erent from its training data. This outcome aligns with the de-

scriptions of translationese types and suggests that non-neural translations deviate

considerably from the NMT model’s “expectations” of translation style.

There is an overall tendency across the experiments for results for pre-NMT to yield

the opposite of the other two translation strategies. Considering this consistency,

one could argue in favor of the opposite hypothesis for pre-NMT data, namely, that

the inverse translation direction yields higher translation probabilities by an NMT

model. In this case, the results would reach accuracy up to approximately 80%.

Languages and Language Pairs: The detection’s e↵ectiveness varies across dif-

ferent language pairs and models. This variation in performance points to an im-

portant observation. It suggests that the disparities are mainly due to the model’s

underlying training data. The intrinsic linguistic properties of the languages seem

to play a secondary role.

Text Length: Subsection 5.3.2 reveals a positive correlation between text length

and translation direction detection accuracy. This observation is consistent with
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prior research and seems intuitively logical — more text provides more context for

accurate classification. As little as 60 characters are su�cient for the system to

reliably determine translation direction across higher-resourced language pairs.

The thought that more text improves the detection accuracy is followed in the exper-

iments, by providing document-level results by sentence-level label-based majority

voting. The document-level results show that for settings, in which the detection is

performing well at sentence-level, the accuracy can be improved even further.

Resource Setting: The scores for higher-resourced language pairs were higher than

the ones for lower-resourced language pairs, indicating that resource levels form a

caveat for this approach as they do in many other NLP subjects. However, the

lower-resourced language pairs still achieved above-chance accuracy scores, espe-

cially for NMT outputs. An interesting observation was the accuracy drop and bias

in predictions for language pairs with uneven resource availability, such as en$zh.

This is further discussed in Subsection 6.1.3.

Age of the Data: In Section 5.4, the accuracy scores for individual WMT datasets

are presented. The results from the NMT datasets indicate an interesting trend:

Newer systems tend to perform better on outputs generated by newer systems,

while older systems show better results on outputs from older systems. Further-

more, the particularly high accuracy scores for the WMT22 HT dataset suggest

that translations from the 2022 WMT are more easily identifiable in terms of trans-

lation direction. On the other hand, the lower scores observed for the WMT16 HT

dataset could imply that the test dataset from that year might not be as metic-

ulously curated in terms of translation direction as those from subsequent years.

The addition of multiple reference translations to the WMT22 test set by the or-

ganizers underlines this point. Another point of interest is the consistently high

accuracy scores for the de$en pair across all models and translation strategies in

the WMT23 dataset. This anomaly calls for further exploration, possibly through

qualitative analyses or examining simple statistics like sentence length, to better

understand the underlying factors.

Domain: The test dataset encompasses 11 di↵erent domains, including genres like

news, manuals, and reviews, and mediums such as text and speech. Despite this vari-

ety, the top-performing systems yield similar results as previous work that was work-

ing with fewer domains. This indicates a certain degree of domain-independence.

Real-World Dataset: Finally, the real-world dataset experiment, employing both

the overall best-performing model (SMaLL-100) and the best model for the specific

language pair (Opus), shows SMaLL-100’s superiority. The accuracies, although
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lower than those for NMT outputs, are higher than for human translations. A

lower classification accuracy can be expected when the experiment setting is less

controlled. One aspect that is not controlled in this example is the translation

strategy. So far, it is unknown whether the translations in this dataset were produced

manually, automatically, or automatically with manual editing. The result could

therefore be interpreted as an indication that the translations were indeed a product

of a mixture of strategies. This would align with the accuracy positioned between

the accuracies that are scored during the experiments for NMT and HT, respectively.

6.1.3 Bias and Normalization

One e↵ect observable over all NMT models is a bias towards one of the translation

directions in a language pair. The biases are found to be most pronounced in the

NLLB models’ results for language pairs like en$zh, en$cs, en$uk, and en$ha.

One aspect that those language pairs have in common is the di↵erence between data

availability within the languages in the pair. English is a very high-resource lan-

guage, with most of the world’s research and language applications centering around

it [Fan et al., 2021]. Languages like Czech and Ukranian provide less resources –

the most extreme case in this set of examples being Hausa [Mohammadshahi et al.,

2022]. Results for language pairs, where resource levels are more equal, show less

bias. Taking these observations into account discrepancy between resource levels

within the language pair might be the reason for the bias.

As a potential solution, reconstruction normalization as proposed by Vamvas and

Sennrich [2022] is explored. The attempt proves to be semi-successful, because this

strategy shows a positive e↵ect in terms of bias mitigation only for models and lan-

guage pairs, for which bias was most pronounced, e.g.: NLLB-dist-600M for en$zh

NMT. It is less successful where bias is small to begin with, e.g.: SMaLL-100 for

en$uk NMT. Furthermore, it has a negative e↵ect on the classification accuracy of

almost all NMT and HT data – for pre-NMT all accuracy scores improved. This

outcome suggests that di↵erent models might require di↵erent normalization strate-

gies and allows room for research for more elaborate and specific normalization and

bias mitigation techniques according to the NMT model and translation strategy.

The question also arises why these biases are more pronounced in the newer and

larger NLLB models, whose capability to translate from and into low-resource lan-

guages is emphasized in its corresponding paper [Akula et al., 2022]. The models

employed several di↵erent techniques to compensate for the low-resource settings,

such as sharing the model’s capacity over multiple translation directions, elaborate
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data mining techniques, and back-translation. All of these techniques might be

reflected in their model’s translation probabilities.

One characteristic, which sets the NLLB models apart from the other models is its

large-scale use of back-translation. While it improves the translation performance on

low-resource languages, introducing training data inverse to the actual translation

direction of the model might a↵ect the model’s ability to detect translationese.

However, this hypothesis would have to be tested in a more controlled setting.

6.1.4 Translation Probabilities

The view on the translation probability per translation strategy in Subsection 5.5

underlines the existing results and provides room for interpretation. The translation

probabilities for HT are on average the lowest in both the original and the inverse

direction. This implies that the NMT model “perceives” HT as less probable than

both NMT and pre-NMT in both directions. Pre-NMT data in the original direction

yield similar probabilities as HT, in the opposite direction, however, the probabilities

are on average higher than the other two, almost displaying the same probabilities

as NMT in the original translation direction, which is ultimately the reason for the

low accuracy scores in this category. The probabilities for NMT are the highest in

the original direction, which seems intuitive, given that the model producing the

probabilities is an NMT model – it assigns the highest output to those translations

that it would most likely generate itself. The inverse probabilities are slightly lower,

thus, providing grounds for the successful translation direction detection. Overall,

the probabilities for MT for both directions are higher than those for HT, which

reflects the underlying di↵erence between those strategies.

6.1.5 Comparison to Previous Work

Thematically, the closest previous work to what has been presented here is by Somin-

sky and Wintner [2019] (see: Section 3.1). Their work on sentence-level direction

detection reaches results in a similar range for de$fr to the ones reported in Section

5.1 using the SMaLL-100. Hence, the results achieved in this work can be regarded

as competitive. However, the unsupervised approach here comes with two great

benefits over the supervised approach by Sominsky and Wintner [2019]. For one,

this approach requires no training data at all, being therefore much less resource in-

tensive and practical to use. Secondly, the results from this approach are calculated

over 11 domains, while the maximum reported in Sominsky and Wintner [2019] is
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3 domains. Nonetheless, the single-domain results by Sominsky and Wintner [2019]

are not exceeded.

This work’s results can be compared to other unsupervised approaches for similar

tasks. For instance, Rabinovich and Wintner [2015] achieved an average accuracy

of 82% in mixed-domain settings. These settings involved 1 to 3 domains (again

en$fr) and used text chunks of 2000 character length. In contrast, the approach

proposed in this work shows almost comparable performance. It reaches an accuracy

of 78% at the document level in the same language pair. Notably, it requires less

data to achieve this result. Furthermore, this work includes over 11 domains in its

dataset. This suggests that the approach is more robust across di↵erent domains.

A third comparison with Vamvas and Sennrich [2022] should provide insight into

how using translation probabilities for translation direction detection compares to

other methods in which translation probabilities are used. Although the scores are

not directly comparable, because Vamvas and Sennrich [2022] use the probabili-

ties for a di↵erent task, they are compared nonetheless to emphasize the capabili-

ties of translation probability-based approaches. The accuracy scores reached with

translation-based measures for text similarity show a range of 65% to 77% (without

normalization). This aligns with the range for single sentence pairs in the transla-

tion direction detection task here. One major di↵erence to Vamvas and Sennrich’s

approach is, however, that the reconstruction normalization improves the results for

their task, which is not the case here.

6.2 Limitations

Although the presented method has its advantages, which have been highlighted

multiple times within this work, there are some limitations to be aware of. One

of the most evident limitations is the approach’s susceptibility to bias toward one

translation direction. The results suggest that the bias varies to high degrees, de-

pending on which language directions are to be detected and which model is used

to generate the probabilities. Although the experiments in this work have given

insight into which models are most prone to the bias for which language pairs and a

normalization approach to mitigate the bias has been proposed, an optimal solution

was not found.

Another limitation is weakness when it comes to low resource settings. These

two limitations are presumably closely tied to the NMT model’s training data

(im)balance and the resulting translation performance, which leads to the next lim-
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itation, namely, the method’s reliance on existing large models. Training a whole

translation model for such a task seems uneconomical; hence, one needs to rely on

publicly available models.

Fortunately, the machine translation community provides a number of publicly avail-

able models. These models, however, can be very large and sometimes require special

hardware to run, which drastically reduces their accessibility. If the models can be

used without specialized hardware, they are still large and require a substantial

amount of time to generate the probabilities for a large number of translations in

both directions.

Ultimately, even when all the specified conditions are fulfilled, the approach outlined

in this paper does not fully resolve the translation direction task. There is significant

potential for improvement, especially for pre-NMT data. While the results for NMT

and HT data are satisfactory, they are not without flaws. Additionally, e↵orts to

mitigate bias have not been entirely e↵ective. This underscores the fact that this

research is intended to serve as a first foundation for future studies.

6.3 Future Work

This research has opened up several avenues for future exploration in the field of

translation probability-based translation direction detection. Being one of the first

studies of its kind, it paves the way for a more in-depth understanding and enhance-

ment of the methodologies used, as well as exploration of new areas. The following

subsections outline some potential directions for future research.

6.3.1 Expanding the Described Experiments

This study represents a starting point for translation probability-based translation

direction detection. Future research can build upon this foundation, exploring new

methods and refining existing ones to improve accuracy and reliability.

In this work, one possibility is described of how to generate translation probabilities.

Alternative approaches to generating translation probabilities could be explored.

Di↵erent methods might yield more accurate or insightful results.

This can also be applied to the probability normalization process, where a more

nuanced method could be developed, perhaps also specified for certain models and

language pairs. For example, the Opus models were not covered by the normalization
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method in this work.

Additionally, the document-level result inference could be explored with a more

subtle voting method, e.g., basing the vote on the average translation probabilities

(soft voting) rather than the sentence labels.

Lastly, in this work, only a handful of possible influences on the system were chosen

for investigation. This set of influences could be expanded and explored in more

detail. For example, the influence of back-translation in training data might be an

interesting aspect to investigate in a more controlled setting, where NMT models

are specifically trained for the experiments at hand.

6.3.2 Research on Low-Resource Languages

The performance of translation models on the direction detection task seems closely

linked to the resource availability of the languages involved. Future research should

focus even more on improving translation model performances for low-resource lan-

guages, particularly those overshadowed by high-resource languages like English.

This would not only enrich the research field of machine translation and improve

the translation quality of MT systems but also broaden the accessibility of these

systems.

6.3.3 Translation Detection

As Section 3 illustrated, a lot of previous research has focused on translation de-

tection, rather than translation direction detection. Reformulating the task to the

former has one main advantage: There is no need for parallel text. Monolingual

data su�ce to detect whether the text is an original or a translation. Future re-

search could explore the application of the methodologies proposed in this work for

translation detection as an even less resource-intensive alternative.

6.3.4 Translation Strategy Identification

Lastly, the translation probabilities that have been explored in this work have shown

to be distinctive properties for each translation strategy (HT, NMT, pre-NMT).

These probabilities could potentially be used to automatically identify the transla-

tion strategy. Future studies might explore the use of clustering methods, leveraging

probabilities and di↵erences in probabilities as key features. Alternatively, compar-
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ing the translation probabilities to the probabilities of a reference corpus might give

insight into which translation strategy has been applied.
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7 Conclusion

The main goal of this thesis was to investigate the potential for determining the

translation direction in parallel sentence pairs using an unsupervised approach. Al-

though there are existing solutions for this problem, all previous work required a

substantial amount of homogeneous parallel data to succeed, making it unfit for

most real-world scenarios.

A di↵erent stream of research has looked into exploiting translation probabilities

produced by neural machine translation models for text similarity tasks. This has

proven successful for tasks, in which a high level of attention to detail for the texts

was necessary, requiring minimal amounts of parallel data. In this work, these two

research streams have been combined.

Here, the conditional translation probabilities generated by NMT models have been

compared for the same sentence pair in each of the two possible translation direc-

tions. It was hypothesized that the NMT model would assign a higher probability

to the sentence pair in its original translation direction, and thereby uncover which

direction is the original one. Once the sentence-level results had been obtained, they

were used to infer the results for whole documents. Furthermore, the results were

checked for biases, which, in turn, led to a bias mitigation attempt using probability

normalization.

This approach was tested using a selection of di↵erent NMT models to generate

the translation probabilities based on a diverse dataset. The dataset included a

variety of language pairs with di↵erent resource availabilities, human, pre-neural,

and neural machine translations, a variety of domains, and an extra test set from a

real plagiarism allegation case.

The findings confirm that the translation-probability-based approach is valid for

unsupervised translation direction detection. Good results were shown at sentence

level and even better results at document level. The best results in this work have

shown this approach to be comparable to previous methods, but also o↵er a less

resource-intensive option and demonstrate robustness, particularly when analyzing

neural machine translations and human translations. However, there are multiple
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factors to consider. Although there is one system that works best for nearly all

conditions, it is advised to choose the NMT model and normalization strategy ac-

cording to the application setting, which is defined by language pair, resource level

of the included languages, and translation strategy.

The work aligns with previous research on translation probabilities, indicating that

they are indeed sensitive to the stylistic di↵erences between parallel texts. The

findings from this work suggest that these translation probabilities can be connected

to translation studies and provide room for linguistically motivated explanations.

While the unsupervised translation direction detection approach demonstrated in

this thesis shows positive results, it also uncovers areas requiring further investiga-

tion and refinement. Considering the novelty of this approach, I hope, this work can

be used as a foundation for future research.

63



References

R. Aharoni, M. Johnson, and O. Firat. Massively multilingual neural machine

translation. arXiv preprint arXiv:1903.00089, 2019.

F. Akhbardeh, A. Arkhangorodsky, M. Biesialska, O. Bojar, R. Chatterjee,

V. Chaudhary, M. R. Costa-jussa, C. España-Bonet, A. Fan, C. Federmann,

M. Freitag, Y. Graham, R. Grundkiewicz, B. Haddow, L. Harter, K. Heafield,

C. Homan, M. Huck, K. Amponsah-Kaakyire, J. Kasai, D. Khashabi, K. Knight,

T. Kocmi, P. Koehn, N. Lourie, C. Monz, M. Morishita, M. Nagata, A. Nagesh,

T. Nakazawa, M. Negri, S. Pal, A. A. Tapo, M. Turchi, V. Vydrin, and

M. Zampieri. Findings of the 2021 conference on machine translation (WMT21).

In Proceedings of the Sixth Conference on Machine Translation, pages 1–88,

Online, Nov. 2021. Association for Computational Linguistics. URL

https://aclanthology.org/2021.wmt-1.1.

B. Akula, L. Barrault, G. M. Gonzalez, P. Hansanti, and J. Ho↵man. No

Language Left Behind: Scaling Human-Centered Machine Translation - Meta

Research. 2022.

N. Arivazhagan, A. Bapna, O. Firat, D. Lepikhin, M. Johnson, M. Krikun, M. X.

Chen, Y. Cao, G. Foster, C. Cherry, W. Macherey, Z. Chen, and Y. Wu.

Massively Multilingual Neural Machine Translation in the Wild: Findings and

Challenges, 2019. URL https://arxiv.org/abs/1907.05019.

M. Artetxe, G. Labaka, E. Agirre, and K. Cho. Unsupervised neural machine

translation. arXiv preprint arXiv:1710.11041, 2017.

M. Artetxe, S. Ruder, and D. Yogatama. On the cross-lingual transferability of

monolingual representations. arXiv preprint arXiv:1910.11856, 2019.

M. Artetxe, G. Labaka, and E. Agirre. Translation artifacts in cross-lingual

transfer learning. EMNLP 2020 - 2020 Conference on Empirical Methods in

Natural Language Processing, Proceedings of the Conference, pages 7674–7684,

2020. doi: 10.18653/v1/2020.emnlp-main.618.

64

https://aclanthology.org/2021.wmt-1.1
https://arxiv.org/abs/1907.05019


Chapter 7. Conclusion

E. A. Avner, N. Ordan, and S. Wintner. Identifying translationese at the word and

sub-word level. Digit. Scholarsh. Humanit., 31:30–54, 2016. URL

https://api.semanticscholar.org/CorpusID:1389695.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate, 2016.

M. Baker. Corpus Linguistics and Translation Studies — Implications and

Applications. Text and Technology, page 233, jun 1993. doi:

10.1075/Z.64.15BAK. URL https://benjamins.com/catalog/z.64.15bak.

M. Baker. Corpus linguistics and translation studies*: Implications and

applications. In Researching translation in the age of technology and global

conflict, pages 9–24. Routledge, 2019.

M. Baroni and S. Bernardini. A new approach to the study of translationese:

Machine-learning the di↵erence between original and translated text. Literary

and Linguistic Computing, 21(3):259–274, 2006. ISSN 02681145. doi:

10.1093/llc/fqi039.

L. Barrault, O. Bojar, M. R. Costa-jussà, C. Federmann, M. Fishel, Y. Graham,
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A Figures

Figure 4: Larger view on the e↵ect of sentence length on accuracy per language pair
with more outliers towards the end while trend stays the same.
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