
Technical Report

Stand-off Markup in TEI Documents:
Improving the Structure of the Text+Berg

Corpus

Author: Mathias Müller

mathias.mueller@uzh.ch

Institute of Computational Linguistics

University of Zurich, Switzerland

Current version: 02 —— October 3, 2016

Stand-off annotations in TEI documents: discussing the case of Text+Berg 1

Contents

1 Introduction 2

2 What exactly is stand-off markup? 3

3 Stand-off architecture in TEI documents 6
3.1 When to use stand-off markup in TEI documents 6

3.2 How to technically realize stand-off markup in TEI 7

3.2.1 Using stable identifiers and TEI vocabulary 7

3.2.2 Automatic internalization with techniques external to TEI 9

4 XInclude and XPointer: Including and addressing XML 10
4.1 XInclude . 10

4.2 XPointer . 11

4.3 Tool support . 13

5 Examples of stand-off markup with XInclude and XPointer 14
5.1 Proof of concept with XInclude . 15

5.2 TEI projects that have used XInclude and XPointer 16

6 Recommended scenarios for Text+Berg 18
6.1 Scenarios . 19

6.2 Closing remarks and current state of affairs 20

7 References and resources 21
7.1 Specifications and standards . 21

7.2 Community efforts . 21

7.3 Published literature . 22

7.4 Tools . 23

7.5 Color coding scheme . 24

Stand-off annotations in TEI documents: discussing the case of Text+Berg 2

1 Introduction

This document serves two purposes. First, it is an introduction to stand-off markup in the con-

text of the Text Encoding Initiative (TEI) Guidelines for encoding language resources. Second,

it presents several scenarios showing how stand-off markup could actually be introduced into

an existing code base, the Text+Berg corpus. I have been very careful to make those scenarios

as tangible and explicit as possible, in order to allow informed decisions on the adoption of

stand-off markup.

Even though this document was written in the course of a project that focuses on one spe-

cific corpus, the Text+Berg multilingual resources of the Institute of Computational Linguistics,

University of Zurich, virtually everything applies to TEI corpora in general. The reading will

require prior knowledge of at least XML and TEI P5.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 3

2 What exactly is stand-off markup?

When language resources are stored in our digital age, and especially if their creators have

linguistic uses in mind for them, they are not stored merely as text. For many applications of

electronic text in computational linguistcs and related fields, text is only useful if information

is added on top of the actual text content. Additional information can either mean meta data

(for example, the time and place a certain corpus has come into being) or any description,

interpretation or analysis of – even imposing structure on – the data. It is wise to uphold a

strict separation between the actual data and any additional information, much in the same way

as web development tells us to always separate content from presentation. And that is where

markup finally comes into play.

Markup is a technique, usually with a finite set of key words or instructions to make the re-

sult machine-readable, that allows annotating the source text with additional information while

making sure that the two dimensions are never confused. The only type of markup language that

is of interest here is XML markup, and most of the readers should already be familiar with it.

This is not an introduction to the XML standard, please inform yourself elsewhere and only read

on as soon as you are comfortable with the topic. Returning to the properties of XML markup,

the following XML example illustrates how content is easily separated from annotation:

<s authored="Noam Chomsky">Colorless green ideas sleep furiously.</s>

Listing 1: source.xml

If needed, the source text can be extracted from this XML snippet with ease. In a simple

case, this setup, i.e. the source text and all annotations kept in the same file, might already be

sufficient. In real-world projects, researchers are often confronted with constraints that make it

impossible to organize their language resource in this way. For instance, they might be required

to leave all the source content intact (other reasons are discussed later in this chapter). Then, it

would be advisable to think about stand-off markup.

Stand-off markup describes markup that is, for some reason, removed from the precise

location it is meant to ”mark up”. Developing our example above, a stand-off version could

look like:

<s xml:id="s123">Colorless green ideas sleep furiously.</s>
<author>

<name>Noam Chomsky</name>
<occurrence reference="#s123"/>

Stand-off annotations in TEI documents: discussing the case of Text+Berg 4

</author>

Listing 2: A stand-off version of source.xml (only an XML fragment)

where the <s> and <author> elements are separable items, but still reside in the same physical

file on storage. But there is nothing stopping us from storing stand-off annotations in a separate

file:

<s xml:id="s123">Colorless green ideas sleep furiously.</s>

<author>
<name>Noam Chomsky</name>
<occurrence reference="source.xml#s123"/>

</author>

Listing 3: Stand-off markup in separate files

The most extreme form of stand-off markup, aptly named “extreme stand-off markup”, posits

that the source text should not contain any markup whatsoever, to guarantee that the annotations

do not interfere with the source:

Colorless green ideas sleep furiously.

Listing 4: source.txt

<s xml:id="s123">
<xi:include href="source.xml"/>

</s>

Listing 5: segmentation.xml

<author>
<name>Noam Chomsky</name>
<occurrence reference="segmentation.xml#s123"/>

</author>

Listing 6: authors.xml

Adding many more levels is left as an exercise for the reader, but it should be easy to see the

kind of frameworks stand-off annotations lead to. Usually, annotations layers are organized hi-

erarchically, in the sense that, in our example, segmentation.xml is the first stand-off document

that references the source text. All subsequent stages do not directly reference the source doc-

ument anymore. If very well planned, the extreme stand-off markup approach can be powerful,

but there is a catch. With current XML technologies, it is definitely impossible to implement

a solution that automatically internalizes data from all annotation layers. Given the gigantic

size of today’s language corpora, we absolutely rely on automatic means of processing the texts

Stand-off annotations in TEI documents: discussing the case of Text+Berg 5

Figure 1: General architecture of stand-off markup, either internal to the source document or

stored externally. The process of merging the content back together is called internalization.

and assembling components. The precise reason for this impossibility is a (slightly technical)

shortcoming of the XInclude specification: extreme stand-off would require XIncluding parts

of the source text with character offset pointers (presumably using the string-range() function

of the xpointer() scheme), which is currently impossible because an XInclude element does not

allow parse="text" and the presence of the xpointer attribute at the same time. Put

another way, XInclude only addresses specific parts of documents if they are well-formed XML

documents. I highly recommend rereading this section after consulting the chapter on XInclude

and XPointer.

Even if extreme stand-off is out of the question, information can be kept in several files, but

it should always be possible to 1) reconstruct the relationships between multiple documents and

2) assemble all pieces back together to form a whole. The first requirement is usually realized

with links, references or pointers that are truly indispensable in such a framework, whereas

the techniques to assemble stand-off markup are less straightforward and only possible with

custom tools, regrettably only for use in a specific project. As mentioned already, the concept

of stand-off markup does not limit the number of files involved, which comes in handy for the

development of corpora with several layers of annotation. Typically, text is annotated on the

levels of parts of speech, lemmata, polarity, syntax, named entities, times and places and so on.

Figure 1 summarizes all that has been said so far on stand-off document structures.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 6

3 Stand-off architecture in TEI documents

At this point, we can make the leap to a specific vocabulary of XML markup: TEI P5 – and to

how stand-off markup is envisioned in the current release of the TEI guidelines. A large part

of chapter 16 (“Linking, Segmentation and Alignment”) is devoted to stand-off architecture,

although TEI only half-heartedly embraces the concept. Much of the planned work on TEI

stand-off has fallen by the wayside, together with the W3C efforts on the technologies used

for TEI stand-off that have not exactly been fruitful until today. Still, chapter 16 outlines the

reasons for using stand-off markup and how to realize stand-off in practice. Before we delve

into the rationale behind stand-off markup, it should be noted that the following is still greatly

hindering actual implementations: There is no agreed upon container for stand-off markup

in the TEI vocabulary (though many variants have been put forward, including <standoff>,

<stf>, <stdf>, <stand-off> and <stfGrp>) and there is no consensus about where stand-off

markup should be put in a TEI document. There, the most prominent suggestions are inside

<teiHeader>, <back> of the text or as the <text> of a separate document.

3.1 When to use stand-off markup in TEI documents

Stand-off annotations are not the norm within TEI, and are definitely more complicated concep-

tually, compared to TEI documents that only have internal markup. Therefore, the adoption of

stand-off markup should be a well-considered decision. The TEI Guidelines and the TEI Wiki

cite the following reasons for using stand-off markup, and I have added my own thoughts:

• The source document is read-only, for example because it is supplied by a third party that

bars any modifications.

• The source document should not be modified for other reasons, e.g. because of a firm

belief that markup should not interfere with source text.

• It should be possible to publish the annotations without the source text, e.g. due to legal

issues.

• Introducing stand-off markup can help to avoid redundancy.

• It is known that the majority of the user base only needs access to a certain part of the

annotations, and do not want to be troubled with the stand-off markup.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 7

If none of the above is true for your project, you should probably reconsider your decision to

use stand-off markup. After clarifying use cases for stand-off architecture, the next subsection

will discuss how exactly it can be realized with the means available to us in TEI.

3.2 How to technically realize stand-off markup in TEI

So far we have only been concerned with explaining the concept of stand-off markup without

showing any actual TEI XML. Be warned that some of the ideas presented in this section are

purely theoretical considerations – that have not been followed up with an implementation.

3.2.1 Using stable identifiers and TEI vocabulary

Remember that one of the most basic tenants of stand-off markup is that the relationships be-

tween the source text and the stand-off annotations must be traceable at all times. Referring,

linking or pointing to things becomes a lot easier if the target content has an ID – a stable identi-

fier that is unique throughout the whole document. This is in line with the XML standard itself,

which defines an attribute xml:id that resides in the predefined namespace xml:. Any decent

XML processor requires that all values of xml:id in a document must be unique, otherwise

it will reject the document as being malformed. Given that all targets have an ID, the TEI pro-

vides a number of elements and attributes to establish relationships between stand-off markup

and the source fragment they annotate. Let us recall the example from previous sections, a TEI

document fragment with an ID:

<s xml:id="s123">Colorless green ideas sleep furiously.</s>

Listing 7: source.xml

Now, there are several simple methods to express a relationship, each with slightly different

semantics. There is an element <ptr> that simply “points to another location”:

<person>
<persName>Noam Chomsky</persName>
<ptr target="#s123">
<ptr target="source.xml#s123"/>
<ptr target="http://www.example.com/source.xml#s123">

</person>

Listing 8: stand-off.xml with TEI pointers

The example above illustrates three different kinds of pointers (in this order): A pointer to an-

other location in the same document, a pointer to a location in another document and finally a

Stand-off annotations in TEI documents: discussing the case of Text+Berg 8

pointer to a location in a document from a remote server. Note that pointers have no inherent

semantics, apart from pointing to things – it is not defined what kind of relationship they es-

tablish or what purpose the pointing should serve. Thus, the intended use of pointers should be

detailed in the documentation of your own TEI document format, or additional attributes should

be used to clarify the intended purpose.

Another method, closely related to pointers, is the <ref> element, which references another

location. Again, the intended meaning of the reference is a matter of interpretation, but <ref>
is commonly used for cross-references in texts, along the lines of “see figure 2 for illustration”.

If this element were to be employed for stand-off markup, this is what the result could look like:

<person>
<persName>Noam Chomsky</persName>
<p>Noam Chomsky has coined the sentence
<ref target="source.xml#s123">
Colorless green ideas sleep furiously.
</ref>.

</p>
</person>

Listing 9: stand-off.xml with TEI references (indented to improve formatting)

The <ptr> and <ref> elements also have in common their directionality. They establish a

relationship that is essentially one-way; it is always clear which location is doing the pointing

and which one serves as the target. To encode a bidirectional (or “non-directional”) relationship,

the TEI offers the <link> element:

<person xml:id="p234">
<persName>Noam Chomsky</persName>

</person>
<link target="source.xml#s123 #p234"/>

Listing 10: stand-off.xml with TEI links establishing a non-directional relationship

Besides the elements mentioned so far, there is a whole array of attributes useful for pointing

and linking, mostly within att.global.linking and att.pointing. Those attributes will not be

explained here, except for the corresp attribute. The following example makes use of this

attribute and is more comprehensive than the examples we have seen so far, in that it is a valid

TEI document:

<TEI xmlns="http://www.tei-c.org/ns/1.0">
<teiHeader>

<fileDesc>
<titleStmt>

Stand-off annotations in TEI documents: discussing the case of Text+Berg 9

<title></title>
</titleStmt>
<publicationStmt>

<p></p>
</publicationStmt>
<sourceDesc>

<p></p>
</sourceDesc>

</fileDesc>
</teiHeader>
<text>

<body>
<p>

<s xml:id="s123">Colorless green ideas sleep furiously.</s>
</p>

</body>
<back>
<div type="persons">
<listPerson>
<person xml:id="p234">
<persName corresp="#s123">Noam Chomsky</persName>

</person>
</listPerson>

</div>
</back>

</text>
</TEI>

Listing 11: stand-off.xml with corresp attribute

3.2.2 Automatic internalization with techniques external to TEI

All elements and attributes presented in this section are convenient methods of expressing rela-

tionships between the source content and the stand-off markup, especially because an xml:id

attribute is allowed on any XML element. Yet, none of them solves the problem of internaliza-

tion, that is, assembling the parts back together. The TEI guidelines suggest to use XInclude

and XPointer for that. Both of those W3C technologies will be explained in detail in the next

chapter.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 10

4 XInclude and XPointer: Including and addressing XML

4.1 XInclude

XInclude is an XML technology and an official W3C recommendation. It introduces an ele-

ment <xi:include> that has its own namespace and is interpreted by a compliant XML proces-

sor not as actual XML content, but as a placeholder for content that should be included from

elsewhere, and inserted at the precise location of the <xi:include> element. More precisely,

XInclusions have replacement semantics – once the XInclude statement is executed, the origi-

nal <xi:include> element disappears from the document. The general syntax of an XInclude

statement is:

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
href="resource.xml" parse="text|xml" xpointer="fragment_identifier">
<xi:fallback>fallback content</xi:fallback>
</xi:include>

Listing 12: XInclude syntax

There is an href attribute that identifies an external document, the parse attribute declares

the format of the said document (either text only, or XML) and finally there is an attribute

xpointer which can hold an XPointer fragment identifier, which is used to identify a portion

of the target document. A number of restrictions are placed on the XInclude mechanism:

• if href is present, the XInclusion definitely targets an external resource

• if href is missing, the XInclusion definitely includes from the same document

• if href is absent, xpointer must be present

• if parse="text", then xpointer cannot be present

• if an XInclusion fails, the <xi:include> element is replaced with the content of <xi:fallback>
if there is such an element

One of the not-so-obvious consequences of this set of restrictions is that XInclude will not

work with an extreme stand-off framework, because there would be no way to reference parts

of the original, source document that does not have any markup. The use of <xi:fallback>
is discouraged in TEI, rather, the processing should fail when XInclusions cannot be executed.

Before studying an actual example of XInclude used to internalize TEI stand-off markup, it

is worth looking at the value of the xpointer attribute, a so-called “fragment identifier”.

XPointer is a W3C recommendation in its own right, and will be explained in the next section.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 11

Figure 2: The XPointer framework acts as a modular container for XPointer schemes

4.2 XPointer

XPointer is a language for addressing parts of XML documents, very much like XPath. The

W3C defines an overarching framework (the “XPointer Framework”) to hold all the subcom-

ponents of XPointer, the so-called schemes (do not confuse with schemas). Each scheme has

its own capabilities and functions. Since the schemes do not depend on each other, they can be

implemented in isolation when implementing all of them would be too cumbersome, consid-

ering that very few people use XPointer. Apart from modularization, the second advantage of

a framework that acts as a container is that it facilitates the addition of new schemes. To this

end, the W3C have set up an XPointer scheme registry, although it is rarely consulted. Figure 2

shows the three predefined schemes:

• element() Addressing XML elements that have an ID or via their position in the tree. The

W3C rules that an application only qualifies as compliant to the XPointer recommenda-

tion if it implements the element() scheme.

• xpointer() The most comprehensive scheme, supports string functions, XPath expres-

sions and addressing with IDs, the most prominent function being string-range().

• xmlns() Holds namespace declarations by associating namespace prefixes with names-

pace URIs and making the declared prefixes available to other schemes.

As for the XPointer language itself, the general syntax is:

Stand-off annotations in TEI documents: discussing the case of Text+Berg 12

<pointer xpointer="http://www.example.com#xpointer(//item[1])"/>

Listing 13: XPointer syntax (the attribute value only)

The first part before # is an URI that identifies an XML resource, either local or on a remote

system, and everything that comes after # is called an XPointer fragment identifier. xpointer
parenthesizing the expression inside should be interpreted as follows. The xpointer() scheme

must be used for evaluation, and the expression //item[1] is evaluated according to the rules de-

fined in the xpointer() scheme working draft. In this case, the expression is an XPath expression

that selects all elements that are called “item”, but only if they are the first child element with

this name, relative to their parent.

XPointer expressions can point to either locations, ranges or points inside an XML docu-

ment. As such, they are a clear extension to the XML processing model: In XDM, the current

data model for XML, locations could be thought of as positions in the tree, but ranges and

points have no representation whatsoever. This makes integration of XPointer with existing

XML technologies a challenge.

But even if implementing XPointer is hard, the XPointer framework and the schemes have

simply received little attention. This makes problems arise, which can be summarized suc-

cinctly: the unstable status of the W3C documents, the TEI guidelines themselves being unclear

on the subject, differences between TEI and W3C XPointer schemes, scheme naming confusion

and, finally, a severe lack of tool support for XPointer.

After much deliberation, the XPointer framework was finally published as a W3C recom-

mendation, but many of the schemes are working drafts that “may be updated, replaced, or

obsoleted by other documents at any time.” Naturally, developers are cautious to implement

working drafts – even more so because these documents have now been working drafts for

more than ten years. The situation is similar in the TEI guidelines, where the use of XInclude

and XPointer is discussed in chapter 16. The main obstacle is “that the specification (the TEI

Guidelines) doesn’t properly address what implementation would mean” (Cayless and Soroka,

2010). The guidelines themselves also acknowledge this fact, for instance by stating that the

semantics of internalization are not exactly authoritative:

However, internalization is not clearly defined for all stand-off files, because the structure of

the internal and external markup trees may overlap. In particular, when an external markup

document selects a range that overlaps partial elements in the source document, it is not clear

how the semantics of internalization (inclusion) should work, since partial elements are not

Stand-off annotations in TEI documents: discussing the case of Text+Berg 13

XML objects.

Since internalization is vital to stand-off architecture, it is unfortunate that its definition in the

guidelines is still unclear. But the devil is also in the details: in many places, the TEI version

of schemes and functions deviate from the one laid out by the W3C. To illustrate this, consider

the two incarnations of string-range():

string−range(node set, substring, offset, length)
Listing 14: Signature of the W3C string-range() function

string−range(fragment identifier, offset, length)
Listing 15: Signature of the TEI string-range() scheme

Not only is the “substring” argument missing in the TEI version of string-range(), the

TEI string-range() is also, confusingly, conceived of as an XPointer scheme in its own

right, not as a function of the xpointer() scheme, as in the W3C version. A possible explanation

for this “unfortunate homonymy” (Bański, Tei Wiki on XPointer) is that the TEI stand-off work-

ing group had no hope that the W3C xpointer() scheme would ever be implemented. Redefining

the function that retrieves string ranges as a scheme makes it independent of the implementation

status of the xpointer() scheme.

4.3 Tool support

Because of the reasons laid out above, and because of sheer lack of interest, there are very few

implementations of XInclude and XPointer, and all of them are incomplete.

• Popular XML editors like Oxygen1 do not XInclude if the target is in the same docu-

ment because of XML parser streaming, which makes it impossible to include parts of

the document while it is still being read. Presumably, all streaming parsers have this lim-

itation and it is perhaps not an outlandish claim that in the near future, almost all XML

processing will be streamable.

1See http://www.oxygenxml.com/xml_editor/xinclude_support.html for Oxygen docu-

mentation.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 14

• Saxon2, the most reliable XSLT processor, very often used for XML processing, does not

have its own implementation of XInclude. It depends on the XML parser to XInclude

before handing the document tree to Saxon. This is only possible with Xerces. Xerces

does not support the xpointer() scheme3.

• There is only one XSLT 2.0 implementations of XInclude that I am aware of: XIPr, only

wholesale includes with href or with an xpointer attribute, but only using the element()

scheme.

• Then there is a set of XSLT 2.0 stylesheets (http://rotorz.com/ xml/2009/XPointer/) that

are an implementation of the XPointer framework, supporting the xmlns(), xmlns-local(),

element(), xpath1(), xpath2() schemes – but not xpointer().

• There is only one tool4 that implements XInclude and the xpointer() XPointer scheme:

xmllint5. xmllint supports the xmlns(), element() and xpointer() schemes, including the

W3C string-range() function. Yet, xmllint is not an XSLT processor and cannot

transform XML documents once the XInclusions are done.

To make a long story short, setting up your language resource as stand-off TEI documents with

XInclude instructions that automatically assemble content will

• definitely require custom tools if the XInclusions entail selecting parts of strings from

other documents and if it should be possible to directly apply XSLT transformations to

the XIncluded result.

• most likely require custom tools otherwise. As you know by now, XInclude and XPointer

are not exactly mature technologies and you may need to spend a lot of time reading the

unwieldy W3C specifications.

5 Examples of stand-off markup with XInclude and XPointer

This section first gives a complete (hypothetical) example of stand-off documents with XInclude

and XPointer. Then, I present two actual projects that have used XInclude and XPointer.
2See http://saxon.sourceforge.net/ to download the latest free version (9.6 at the time of writing).
3See https://xerces.apache.org/xerces2-j/faq-xinclude.html for more details on

XPointer with Xerces.
4http://www.w3.org/XML/2002/10/LinkingImplementations.html lists several others, but

all of them are unavailable.
5See http://xmlsoft.org/xmllint.html for online synopsis and documentation. xmllint is avail-

able in most Unix-like environments.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 15

5.1 Proof of concept with XInclude

The following sample documents illustrate how XInclude can be used to establish relationships

between documents, and how the XPointer string-range() function can be used to address

targets from the source document. The example is taken from the TEI guidelines, but adapted

to work with xmllint, because the functions presented in the guidelines are not implemented. It

is worth reiterating that XIncluding substrings from a text document without XML markup is

impossible. Therefore, wrapping the text content in a single XML element (as is done in the

source document of this example) is the closest we can get to extreme stand-off markup.

<content>
To make a prairie it takes a clover and one bee, One clover,
and a bee, And revery. The revery alone will do, If bees are few.
</content>

Listing 16: source.xml with minimal markup (only indented to improve formatting)

<text xmlns:xi="http://www.w3.org/2001/XInclude">
<body>

<head>Poem</head>
<l>

<xi:include href="source.xml" parse="xml"
xpointer="xpointer(string-range(/, ’To’, 1, 48))"/>

</l>
<l>

<xi:include href="source.xml" parse="xml"
xpointer="xpointer(string-range(/, ’To’,49, 23))"/>

</l>
<l>

<xi:include href="source.xml" parse="xml"
xpointer="xpointer(string-range(/, ’To’,72, 12))"/>

</l>
<l>

<xi:include href="source.xml" parse="xml"
xpointer="xpointer(string-range(/, ’To’,84,26))"/>

</l>
<l>

<xi:include href="source.xml" parse="xml"
xpointer="xpointer(string-range(/, ’To’,110,17))"/>

</l>
</body>

</text>

Listing 17: stand-off.xml with XInclude processing

Stand-off annotations in TEI documents: discussing the case of Text+Berg 16

The document containing the stand-off markup (stand-off.xml) can now be processed

automatically by xmllint with the --xinclude switch:

$ xmllint −−xinclude stand−off.xml > internalized.xml

Listing 18: Unix command to perform XInclusion

The output file will then look like:

<text xmlns:xi="http://www.w3.org/2001/XInclude">
<body>

<head>1755</head>
<l>

To make a prairie it takes a clover and one bee,
</l>
<l>

One clover, and a bee,
</l>
<l>

And revery.
</l>
<l>

The revery alone will do,
</l>
<l>

If bees are few.
</l>

</body>
</text>

Listing 19: Result of XInclusion redirected to a file

5.2 TEI projects that have used XInclude and XPointer

Even after searching very carefully, I could not find more than two examples of TEI documents

that are described as containing stand-off markup and using XInclude and XPointer. The first

example is a representation of a papyrus, created by Hugh Cayless6. The document makes

use of XPointer expressions as values of the corresp attribute, but does not use XInclude

at all. Also, the string-range() scheme proposed by the TEI guidelines is used, which has no

implementation, as you know by now. This means that the correspondence between an entry

in the list of persons and the XPointer target cannot be established automatically, only with

manual inspection or custom tools.
6See https://gist.github.com/hcayless/2653676 for a Github repository with the code.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 17

<TEI>
<!--Header omitted-->
<text>

<back>
<div type="persons">
<listPerson>
<person xml:id="tm_person_195364">
<persName corresp="#string-range(//lb[@n=’1’],3,6)"

ref="http://www.trismegistos.org/name/3756">Κράτης</persName>
</person>
<person xml:id="tm_person_195365">
<persName corresp="#string-range(//lb[@n=’2’],0,9)"

ref="http://www.trismegistos.org/name/2811">Διονύσιος</persName>
</person>
<person xml:id="tm_person_195370">
<persName corresp="#string-range(//lb[@n=’4’],0,4)

#string-range(//lb[@n=’17’],11,4)"
ref="http://www.trismegistos.org/name/8865">Ἀτᾶς</persName>

</person>
</listPerson>

</div>
</back>

</text>
</TEI>

Listing 20: A papyrus represented as a TEI document with XPointer references

However, the example above does not use XIclude at all. To my knowledge, the only project that

holistically embraces the concept of stand-off markup, and also uses XInclude and XPointer

where applicable, is the national corpus of Polish (Bański and Przepiórkowski, 2009). It is

described as a multi-layered corpus, the layers corresponding to one of the labels in figure 3.

Still, the authors point out that the shortcomings of XInclude as a language, contradict-

ing specifications and the undecidedness of the TEI guidelines regarding stand-off annotations

greatly hindered the development of the corpus. Unfortunately, the corpus is only available

through a search interface, and the source is not available for inspection.

Regarding the fate of XInclude and XPointer, it is fair to say that there will be no break-

throughs in the near future. It would be very unwise to make your corpus design depend on

schemes or functions that are not implemented yet, because it is not likely that they will ever be

implemented. There are other methods to organize stand-off annotations, although they require

more effort and a priori knowledge about corpus structure.

Now that we have discussed the notion of stand-off markup in general, surveyed all means

available in TEI to reference, link to or point to content and studied XInclude and XPointer

Stand-off annotations in TEI documents: discussing the case of Text+Berg 18

Figure 3: The stand-off architecture of the national corpus of Polish. Each annotation level

references the source document or more fundamental stages of annotation.

in detail, we are now well prepared to make informed decisions about the Text+Berg corpus

structure.

6 Recommended scenarios for Text+Berg

There are several ways to go about improving the corpus structure of Text+Berg, depending on

how much work should be put into it, but I regard the following as the absolute minimum that

must be done:

• IDs must conform to the XML specification (e.g. cannot contain colons or start with

numbers) and be consistent throughout and across documents.

• The main yearbook documents holding the articles must be stored in a standardized for-

mat like TEI.

• There must be a schema for all parts of the corpus (the main documents, the NER docu-

ments, the sentence alignment and TimeML files) to ensure validity. The schemata should

be written in either DTD, XML Schema or RelaxNG.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 19

Regarding the stand-off nature of the NER, TimeML and alignment files, I would advise against

overusing XInclude and XPointer. The problems associated with those technologies are ex-

plained in detail in earlier chapters. If XInclude is used at all, it should only be used for whole-

sale inclusions of other documents, which is supported by a good many XML applications. If it

is guaranteed that IDs are consistent and well-formed, and can always be resolved to a specific

document and target, putting the content back together is not rocket science. Put another way,

the advantage of automatic internalization with XInclude is clearly eclipsed by the disadvantage

of lacking tool support.

6.1 Scenarios

The scenarios are listed in ascending order with respect to complexity and effort required. Also,

they build upon each other, i.e. B entails A, C entails A and B and so on.

(A) TEI for the main documents
Only turn main book documents into TEI documents. Only make IDs consistent across docu-

ments, mostly adding document names to the references that already exist. Write schemata for

at least the main articles.

(B) TEI for all documents except TimeML
Make all documents TEI documents, with the exception of TimeML files, since TimeML is

already a full-flegded standard. The alignment files would contain <linkGrp> and <link>
elements (similar to XCES), the NER files would contain <persName> and vocabulary for

geographical entities.

(C) XInclude content from the main document into NER, alignment and TimeML files
XInclude the content from the source document into the NER and alignment documents, and

make the references intra-document IDREF values that are only valid after the content has been

XIncluded. However, documents would not be valid TEI if no XInclusion can take place.

(D) Almost extreme stand-off markup
Source text only with minimal segmentation (paragraphs), or even all text inside one single root

element, then additional layers of annotation that are stand-off, each Xincluding content with

Xpointer string ranges or similar. A lot of effort required, restructuring work would perhaps not

outweigh the benefits.

Stand-off annotations in TEI documents: discussing the case of Text+Berg 20

6.2 Closing remarks and current state of affairs

My personal recommendation would be to implement scenarios A and B because they bring

practical benefits without complicating corpus access for non-specialist users. As of release

152 in October 2016, scenario A has already been implemented and most of the work required

for scenario B is done. Specifically, I have already written

• an XSLT 2.0 stylesheet that transforms the main documents to TEI. T+B2TEI.xsl,

current version: 6. Requires Saxon 9.* installed on your system. A compliant (but slightly

outdated: 9.1) version of Saxon is installed on our servers.

• a documentation detailing how elements and attributes in the main article files are trans-

formed: mapping main.pdf. This document only describes the mapping for scenario

A. The mapping for all other file formats (alignment files, NER files, TimeML files) is

described in mapping auxiliaries.pdf.

• transformations for the NER, alignment and TimeML files. The stylesheets are called

ner fix.xsl, alignments fix.xsl and timex fix_xsl respectively. The NER

and alignment files are turned into valid TEI documents, in the TimeML files only the IDs

are fixed.

Caution: The NER and TimeML transformations will only produce the correct re-
sult if they are passed the ID of the yearbook they reference as a command line
parameter.

Use the transformations for those auxiliary files at your own risk. As of release 152,
we do not guarantee that the output will be useful.

• a complete XML Schema for the original Text+Berg format that is guaranteed to validate

all documents in the current release (151): TB schema release 152.xsd

• a TEI ODD document for the main Text+Berg TEI documents on the basis of which any

kind of schema can be generated. Current version: TEI schema T+B.odd. Ideally,

the ODD document is transformed to RelaxNG, the current version of the generated RNG

schema is TEI schema T+B.rng.

—— July 2015, Mathias Müller

Stand-off annotations in TEI documents: discussing the case of Text+Berg 21

7 References and resources

7.1 Specifications and standards

Normative W3C documents
XInclude recommendation: http://www.w3.org/TR/xinclude/

XPointer Framework: http://www.w3.org/TR/2002/PR-xptr-framework-20021113/

xpointer() scheme: http://www.w3.org/TR/xptr-xpointer/

xmlns() scheme: http://www.w3.org/TR/2002/PR-xptr-xmlns-20021113/

element() scheme: http://www.w3.org/TR/2002/PR-xptr-element-20021113/

XLink recommendation: http://www.w3.org/TR/xlink11/

Markup standards for encoding language resources
Relevant chapter of the TEI P5 Guidelines:
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SA.html

XCES, includes stand-off variants:
http://www.xces.org/schema/#standoff

PAULA:
https://www.sfb632.uni-potsdam.de/images/doc/PAULA_P1.1.2013.1.21a.pdf

LAF, an ISO standard:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326

XSTANDOFF:

http://www.lrec-conf.org/proceedings/lrec2014/pdf/308_Paper.pdf

TimeML specification:

http://www.timeml.org/site/publications/timeMLdocs/timeml_1.2.1.html

7.2 Community efforts

List discussions
Most recent TEI-L thread on the future of XPointer schemes and current implementations:

http://tei-l.970651.n3.nabble.com/String-range-pointing-td4027078.html#

a4027090

Discussing the name and place of a stand-off element in TEI:

http://sourceforge.net/p/tei/feature-requests/378/

Workgroup and Wiki
Summary of the council-appointed TEI workgroup on stand-off markup, mostly unimplemented, theo-

Stand-off annotations in TEI documents: discussing the case of Text+Berg 22

retical considerations:

http://www.tei-c.org/Activities/Workgroups/SO/sow06.xml

Stand-off use cases in the TEI Wiki, sadly with only one example:

http://wiki.tei-c.org/index.php/Stand-off_use_cases

TEI Wiki article on XPointer in the TEI context:

http://wiki.tei-c.org/index.php/XPointer

General discussion of personography with TEI:

http://danielgriff.in/2014/personography-or-thinking-about-people-with-tei/

Code samples and proposals
Example of personographic annotations with stand-off:

https://gist.github.com/hcayless/2653676

Tentative ODD proposal for stand-off annotations 2014:

http://sourceforge.net/p/lingsig/code/HEAD/tree/branches/standoff/proposal.

odd.xml

Tentative ODD proposal for stand-off annotations 2015:

https://github.com/laurentromary/stdfSpec/blob/master/Specification

Attempted implementation of TEI XPointer schemes with XSLT 2.0 functions (proof of concept only):

https://github.com/hcayless/tei-string-range

7.3 Published literature

Proposing the structure of stand-off TEI, specifically an <stf>, <standoff> and <stfGrp> element:

Pose, J., Lopez, P. and Romary, L (2014). A Generic Formalism for Encoding Stand-off Annotations in

TEI. HAL. URL: https://hal.inria.fr/hal-01061548/document.

Identifying stand-off annotations as a weak spot of the TEI P5 Guidelines, confirming that tool support

is virtually inexistent, and that stand-off recommendations are not instructive:

Bański, P. (2010). Why TEI stand-off annotation doesn’t quite work: and why you might want to use it

nevertheless. In: Proceedings of Balisage: The Markup Conference 2010, Montréal, Canada, August 3

- 6, 2010. Balisage Series on Markup Technologies, vol. 5 (2010). URL: http://www.balisage.

net/Proceedings/vol5/html/Banski01/BalisageVol5-Banski01.html

Attempt to implement the TEI custom XPointer string-range() scheme with XSLT 2.0 functions:

Cayless, H. A., and Soroka, A. (2010). On Implementing string-range() for TEI. In: Proceedings of Bal-

isage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. Balisage Series on Markup

Stand-off annotations in TEI documents: discussing the case of Text+Berg 23

Technologies, vol. 5 (2010). URL: http://www.balisage.net/Proceedings/vol5/html/

Cayless01/BalisageVol5-Cayless01.html

An actual use case where stand-off annotations were used in a large TEI project:

Bański, P. and Przepiórkowski, A. (2009). Stand-off TEI Annotation: the Case of the National Corpus of

Polish. In: Proceedings of the Third Linguistic Annotation Workshop, ACL-IJCNLP 2009, pages 64–67,

Suntec, Singapore, 6-7 August 2009. URL: http://www.aclweb.org/anthology/W09-3011

A general discussion about the use of markup languages to encode cultural heritage texts:

Schmidt, D. (2010). The inadequacy of embedded markup for cultural heritage texts. Literary and Lin-

guistic Computing (2010) 25 (3), pages 337–356. First published online April 16, 2010. URL: http:

//www.hki.uni-koeln.de/sites/all/files/courses/3227/Schmidt-2010.pdf

Oft-cited paper on structuring texts with multiple layers of annotation in a stand-off fashion:

Dipper, S. (2005). Xml-based stand-off representation and exploitation of multi-level linguistic annota-

tion. In Berliner XML Tage 2005, Humboldt-Universität zu Berlin, 12. bis 14. September 2005, pages

39–50. URL: http://www.linguistics.ruhr-uni-bochum.de/˜dipper/papers/xmltage05.

pdf

On the impossibility of Xincluding stretches of text (poster presentation by Piotr Bański):

http://bansp.users.sourceforge.net/pdf/Banski-Balisage2010-poster.pdf

Encoding biblical texts with TEI P5 stand-off means:

Cummings, J. (2009). Converting Saint Paul: A new TEI P5 edition of The Conversion of Saint

Paul using stand-off methodology. Literary and Linguistic Computing (2009) 24 (3). URL: http:

//www.lrec-conf.org/proceedings/lrec2014/pdf/308_Paper.pdf

Rethinking Pointers in TEI:

Cayless, H. A. (2013). Rebooting TEI Pointers. Journal of the Text Encoding Initiative [Online], Issue

6, December 2013, Online since 22 January 2014. URL: http://jtei.revues.org/907

7.4 Tools

Saxon, the most reliable and free XSLT processor (Dr. Michael Kay):

http://www.saxonica.com/welcome/welcome.xml

XPointer Framework for XSLT 2.0 (Lea Hayes):

Stand-off annotations in TEI documents: discussing the case of Text+Berg 24

http://rotorz.com/xml/2009/XPointer/

XIPr XInclude Stylesheets (Dr. Eric Wilde):

https://github.com/dret/XIPr

Oxygen, a powerful XML Editor (Syncro Soft SRL):

http://www.oxygenxml.com/

Altova XML Spy, an XML Editor:

http://www.altova.com/xmlspy.html

xmllint (using the Gnome libxml2, Daniel Veillard):

http://www.xmlsoft.org/

Xerces, a popular XML parser with some XInclude support:

http://xerces.apache.org/

7.5 Color coding scheme

maroon element names

red attribute names, namespace prefixes

blue attribute values, namespace URIs

black text content

green comments

purple TEI classes

