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Example sentence

The world is a stage, but the play is badly
cast.

– Oscar Wilde
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Evalua on of quality: requirements

A metric that evaluates transla on quality should meet the following
criteria:

Ç low cost: evalua on should be fast and cheap
Ç compelling: metric should be easy to interpret
Ç consistent: repeated evalua ons should lead to the same results
Ç correct: evalua on should be truthful.

→ Problem: Subjec vity.
There is no (singular) «thruth» (ground truth) in transla on.
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How to evaluate quality?
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Pros and Cons

Manual evalua on
+ more reliable
– costly
– slow

Automa c evalua on
– less reliable
+ cheap
+ fast
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Example

Original:
The world is a stage, but the play is badly cast.

Google Translate:
Die Welt ist eine Bühne, aber das Spiel ist schlecht besetzt.

→ How good is this transla on?
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Example

Original:
The world is a stage, but the play is badly cast.

Google Translate:
Die Welt ist eine Bühne, aber das Spiel ist schlecht besetzt.

On a scale from 1 to 5,
Ç how adequate is the transla on? (sentence s ll has the same
meaning)

Ç how fluent is the transla on? (gramma cal, suitable style)

11/52
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Example

Original:
The world is a stage, but the play is badly cast.

Google Translate:
Die Welt ist eine Bühne, aber das Spiel ist schlecht besetzt.

DeepL:
Die Welt ist eine Bühne, aber das Stück ist schlecht besetzt.

Which transla on is be er?
Ç Google Translate > DeepL
Ç Google Translate = DeepL
Ç Google Translate < DeepL
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Absolute manual evalua on

Machine-translated sentences can be evaluated with absolute
numbers. As a conven on, we evaluate adequacy and fluency on a
five point Likert scale.

→What does a fluency of 4 mean exactly?
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Absolute manual evalua on: example (WMT 2006)

Source: Koehn and Monz, 2006
14/52
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Absolute manual evalua on

Adequacy:

5 all meaning
4 most meaning
3 much meaning
2 li le meaning
1 none

Fluency:

5 flawless English
4 good English
3 non-na ve English
2 disfluent English
1 incomprehensible

→What is the difference between «much meaning» and «most
meaning»?

Source: Koehn and Monz, 2006
15/52
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Absolute manual evalua on: problems

Ç unclear defini ons
Ç different people assign different scores on average
Ç some mes, annotators cannot reproduce their own evalua on
Ç evalua on of adequacy and fluency is highly correlated – hard to
tell apart

16/52
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Rela ve manual evalua on

Evalua ons are generally more consistent if two or more systems are
compared, instead of given absolute scores
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Rela ve manual evalua on: example (WMT 2013)

For each ranking task, the judge is presented with a source segment, a
reference transla on, and the outputs of five systems (anonymized
and randomly-ordered). The following simple instruc ons are
provided:

You are shown a source sentence followed by several candidate
transla ons. Your task is to rank the transla ons from best to worst ( es
are allowed).

Quelle: Bojar et al., 2013
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Rela ve manual evalua on: example (WMT 2013)

Source: Bojar et al., 2013
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Rela ve manual evalua on: Pairwise Ranking

Rela ve evalua ons result in pair-wise rela onships between systems
A, B:

A be er than B e B be er than A
41 12 59

→ Is system A truly be er than system B, or are differences due to
chance?
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Rela ve manual evalua on: Pairwise Ranking – Significance

Null hypothesis: Quality gap between systems A and B due to
random varia on.

Alterna ve hypothesis: Quality gap between systems A and B not
due to chance.

To reject the null hypothesis, we expect

Ç less than 5W probability that difference is due to random
varia on→ difference sta s cally significant at 95W (p < 0.05)

or, to be even more strict,

Ç less than 1W probability that difference is due to random
varia on→ difference sta s cally significant at 99W (p < 0.01)
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Rela ve manual evalua on: Pairwise Ranking – Significance

Sta s cal significance can be tested with a sign test.
Example in R:

= #BMQKXi2biU8N- Ryy- T4yX8- �Hi2`M�iBp24]irQXbB/2/]V

1t�+i #BMQKB�H i2bi

/�i�, 8N �M/ Ryy
MmK#2` Q7 bm++2bb2b 4 8N- MmK#2` Q7 i`B�Hb 4 Ryy-
T@p�Hm2 4 yXy33ej
�Hi2`M�iBp2 ?vTQi?2bBb, i`m2 T`Q#�#BHBiv Q7 bm++2bb Bb
MQi 2[m�H iQ yX8

...
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Rela ve manual evalua on: Pairwise Ranking – Significance

Rela ve evalua ons result in pair-wise rela onships between systems
A, B:

A be er than B e B be er than A
41 12 59

→ Is system A truly be er than system B, or are differences due to
chance?

→ Difference in quality is not sta s cally significant, i.e. random.
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Data

Our complete data is split into three parts: a training set, a valida on
set and a test set. Rules:

Ç Size of test set: 1000 to 2000 sentences
Ç select those sentences at random!
Ç automa c evalua on during development of a system
Ç manual evalua on before deployment of a system

25/52

Data



Intui on

How do we evaluate transla ons automa cally?

Any method for automa c evalua on is a func on σ that computes
the similarity between a machine translated segment («hypothesis») h
and 1 or more reference transla ons r

score = σ(h, r) (1)

Similarity measure usually between 0.0 and 1.0, or 0 and 00%.

26/52
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Prerequisites

Ç Similarity func on σ («metric»)
Ç 1..n reference transla ons for each sentence to be evaluated

27/52
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Precision, Recall, F-Measure

Ç Precision = correct
hyp length

How many words in the hypothesis are in the reference
transla on?

Ç Recall = correct
ref length

How many words in the reference transla on are in the
hypothesis?

Ç F1-Measure = 2 · precision·recall
precision+recall

Harmonic mean of precision and recall.

28/52



Precision, Recall, F-Measure: Example

Hypothesis:
Israeli officials responsibility of airport safety

Reference:
Israeli officials are responsible for airport security

Precision = correct
hyp length =

3
6 = 0.5 = 50.0W

Recall = correct
ref length =

3
7 = 0.429 = 42.9W

F1-Measure = 2 · precision·recall
precision+recall =

2 · 0.5·0.429
0.5+0.429 = 2 · 0.214

0.929 = 0.461 =
46.1W
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Precision, Recall, F-Measure: Problem

Hypothese:
airport security Israeli officials are responsible

Referenz:
Israeli officials are responsible for airport security

Precision =

100.0W → word order does not ma er
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Word Error Rate (WER)

Minimal edit distance (Levenshtein distance) of hypothesis to
reference transla on:

WER =
min(subs tu ons + inser ons + dele ons)

ref length

31/52
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Word Error Rate (WER): Example

Hypothesis:
Israeli officials responsibility of airport safety

Reference:
Israeli officials are responsible for airport security

WER = min(subs tu ons + inser ons + dele ons)
ref length =

4
7 = 0.571 = 57.1W
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Word Error Rate (WER): Problem

Hypothesis:
This airport’s security is the responsibility of the Israeli security
officials

Reference:
Israeli officials are responsible for airport security

WER >100W → cares too much about exact sequence of words in
the reference
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Transla on Error Rate¹ (TER)

TER (Snover et al., 2006) is WER with a twist: moving an en re phrase
(phrasal shi ) counts as 1 edit opera on.

¹Also known as Transla on Edit Rate.
34/52
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Bilingual Evalua on Understudy (BLEU)

BLEU (Papineni et al., 2002) is by far the most popular evalua on
metric for transla on quality. Core ideas:

Ç compute ngram overlap of the hypothesis with mul ple
reference transla ons¹

Ç No recall; compensated with a «Brevity Penalty»
Ç final value is a weighted geometric mean of ngram precision
(usually n=1,2,3,4).

Ç computed for a corpus, not a single sentence, otherwise ngram
precision for high orders (e.g. n=4) would be 0 most of the me

¹Actually, we o en use only one reference.
35/52



BLEU: Brevity Penalty

BP = min

(
1.0, exp

(
1− ref length

hyp length

))

Ç «punish» if hypothesis is shorter than reference
Ç mul ple references: use the length of the reference that is
closest to hypothesis length (s. Koehn, 2010, S. 227)

36/52



BLEU: Brevity Penalty

BP = min

(
1.0, exp

(
1− ref length

hyp length

))
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BLEU: ngram precision

P =

(
N∏

n=1

λnpn

) 1
N

Ç N: highest ngram order (usually 4)
Ç n: ngram precision of ngram order n
Ç λn: weight of ngram precision of order n (usually 1.0)

38/52
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BLEU

BLEU = BP · P

= min

(
1.0, exp

(
1− ref-länge

hyp-länge

))
·
(

N∏

n=1

λnpn

) 1
N

39/52
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BLEU: Example

Hypothesis:
airport security Israeli officials are responsible

Refrence:
Israeli officials are responsible for airport security

1-grams:

(airport) (security) (Israeli) (officials) (are) (responsible)→ p1 =
6/6
2-grams: (airport security) (security Israeli) (Israeli officials) (officials
are) (are responsible)→ p2 = 4/5
3-grams: (airport security Israeli) (security Israeli officials) (Israeli
officials are) (officials are responsible)→ p3 = 2/4
4-grams: (airport security Israeli officials) (security Israeli officials are)
(Israeli officials are responsible)→ p4 = 1/3

Brevity Penalty: min
(
1.0, exp

(
1− 7

6

))
= 0.846
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BLEU: Example

Hypothesis:
airport security Israeli officials are responsible

Reference:
Israeli officials are responsible for airport security

BLEU = BP · (p1 · p2 · p3 · p4)
1
4

= 0.846 ·
(
6

6
· 4
5
· 2
4
· 1
3

) 1
4

= 0.511

( = o en reported as 51.1, as percent value.)
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BLEU: Several References

For several references,

Ç an n-gram is covered if it appears in any reference (but note
clipping)

Ç brevity penalty is

Ç the one reference length that is closest to the hypothesis length
Ç or the shorter length, if two references (e.g. 9, 11) have the same
distance to hypothesis length (e.g. 10)
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BLEU: Clipping

Hypothesis:
are are are are are are are

Reference:
Israeli officials are responsible for airport security

every ngram counts as correct only as o en as it appears in the
reference

→ 1-gram precision is 1/7, instead of 7/7!
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BLEU: Clipping – Example

Hypothesis:
the the the the the the the

Reference 1:
the cat is on the mat

Reference 2:
there is a cat on the mat

1-gram precision p1 =

2/7

2-gram precision p2 =

0/7
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BLEU: Problems

Ç Ignores relevance of words
Some words are vital in a transla on, others unimportant; with
BLEU all have the same weight

Ç Example:
Ç Reference: «gave it to Trump»
Ç Hypothesis «gave it at Trump» gets a worse score than «gave it to
rhododendron»

Ç BLEU value is very context-dependent
value depends on things like number of references, language,
domain, preprocessing steps such as tokenisa on etc.

Ç As MT gets be er, BLEU becomes more inadequate
Is BLEU s ll the way to go for NMT?

see also Callison-Burch et al., 2006
45/52



METEOR

METEOR (Banerjee and Lavie, 2005) is a popular alterna ve (or
complementary) to BLEU

Ç idea: recall is more important than precision to make sure
meaning is covered in the transla on

Ç Alignment of words in hypothesis and reference
Ç 3-step matching:

Ç surface form; or else
Ç stem (via stemming) with penalty; or else
Ç seman c class (via Wordnet) with penalty; or else
Ç no matching possible
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METEOR: Problems

Ç many hyperparameters (e.g.. weights for stem and synonym
matches)

Ç more complicated computa on than BLEU
Ç language-dependent: needs stemmer and synonym list for every
language

Ç compute-intensive (alignment, stemming, synonym lookup)
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Overview: Manual Evalua on
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Overview: Automa c Evalua on
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