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Abstract

The recent progress in the field of Neural Machine Translation (NMT) called for more

sophisticated evaluation metrics that are capable of accurately assessing high-quality Ma-

chine Translation (MT) outputs. In response to this need, a new generation of MT eval-

uation metrics has been put forth. These metrics are themselves trained neural networks

and are currently considered state-of-the-art. However, they have been repeatedly shown

to suffer from certain blind spots that cause them to unpredictably assign high scores to

bad translations. As these metrics become more widely adopted, the NLP community

is at risk of optimising towards their weaknesses. Hence, it is of crucial importance to

uncover, and ideally remove, the pathologies of neural metrics.

This thesis contributes to the investigation of the shortcomings of neural metrics by scru-

tinising their sensitivity to German compounds. Following the approach by Amrhein and

Sennrich (2022), I will use the metrics under study as utility function in sampling-based

Minimum Bayes Risk (MBR) decoding to explore and quantify their deficiencies.

In a case study on COMET-20, I will show that it is not sensitive enough to German com-

pounds and frequently rewards nonsensical translations with high scores. Having identified

this blind spot, I will delve into strategies to address it. I will show that the underlying lan-

guage model plays a major role in the behaviour of the metric. Replacing the multilingual

language model of COMET-20 with a monolingual German one, substantially enhances

the metric’s sensitivity to errors in German compounds, nouns, named entities and num-

bers. Pre-training the language model with Whole Word Masking further promotes the

metric’s sensitivity to mistakes in compounds and improves the quality of MBR-decoded

translations. However, the blind spots cannot be fully removed.

Further, I will address the issue of metric overfitting and propose an approach to alleviate

the problem. Combining the scores of two metrics during MBR decoding does not only

improve the translation quality, but also counteracts the overfitting effect.

Moreover, I will show that when comparing two identical segments, neural metrics assign

unforeseeable scores that vary from segment to segment. This behaviour has implications

for the implementation of MBR decoding.

Finally, the results indicate that the system-level ranking of MT systems, commonly used

as evaluation measure for metrics, is not an appropriate method to suitably capture the

quality of an MT evaluation metric.



Zusammenfassung

Die jüngsten Fortschritte auf dem Gebiet der neuronalen maschinellen Übersetzung er-

fordern neue, präzisere Evaluationsmetriken, die in der Lage sind, qualitativ hochwertige

maschinelle Übersetzungen (mÜ) korrekt zu bewerten. Als Reaktion darauf wurden Metri-

ken entwickelt, die selbst trainierte neuronale Netzwerke sind und den neuesten Stand der

Technik reflektieren. Allerdings weisen diese Metriken gewisse blinde Flecken auf und be-

werten schlechte Übersetzungen oft unerwartet gut. Da diese Metriken zunehmend verwen-

det werden, läuft die NLP-Gemeinschaft Gefahr, auf deren Schwächen hin zu optimieren.

Um dies zu verhindern, sollten jene Schwächen möglichst bald erkannt und idealerweise

beseitigt werden.

Die vorliegende Masterarbeit leistet einen Beitrag zur Erforschung dieser Schwächen, in-

dem sie die Sensitivität neuronaler Metriken gegenüber deutschen Komposita beleuchtet.

Dazu werden die untersuchten Metriken als Nutzenfunktion im stichprobenbasierten Mi-

nimum Bayes Risk (MBR) Decoding verwendet (vgl. Amrhein and Sennrich, 2022).

Eine Fallstudie zeigt auf, dass COMET-20 zu wenig sensibel auf Fehler in deutschen Kom-

posita reagiert und unsinnige Übersetzungen mit einer guten Bewertung belohnt. Ver-

schiedene Strategien zur Beseitigung dieses blinden Fleckens werden untersucht. Dabei

wird deutlich, dass das Verhalten der Metrik wesentlich durch das ihr zugrunde liegen-

de Sprachmodell beeinflusst wird. Wenn das multilinguale Sprachmodell von COMET-20

durch ein monolinguales, deutsches ersetzt wird, erhöht sich die Sensitivität für Fehler in

deutschen Komposita, Nomen, Eigennamen und Zahlen. Wird das Sprachmodell zudem

mit Whole Word Masking vortrainiert, erhöht sich die Sensitivität für Komposita wei-

ter. Auch die Qualität der MBR-dekodierten Übersetzungen verbessert sich. Die blinden

Flecken werden jedoch nicht vollständig beseitigt.

Ausserdem werde ich auf das Problem des “Metric Overfitting” eingehen und einen möglichen

Lösungsansatz präsentieren. Durch das Kombinieren der Bewertungen zweier Metriken

während des MBR-Decodings wird nicht nur die Übersetzungsqualität besser, sondern

auch der Overfitting-Effekt abgeschwächt.

Zudem werde ich aufzeigen, dass neuronale Metriken nicht immer gleich reagieren, wenn sie

zwei identische Segmente miteinander vergleichen. Die Punktzahlen, die sie dabei vergeben,

sind unvorhersehbar und variieren von Segment zu Segment. Dies hat Auswirkungen auf

die Implementierung des MBR-Decodings.

Schliesslich deuten die Ergebnisse darauf hin, dass die Erstellung einer Rangliste für mÜ-

Systeme, wie sie häufig zur Evaluation von Metriken verwendet wird, keine geeignete

Methode ist, um die Qualität einer mÜ-Metrik angemessen zu erfassen.
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1 Introduction

In recent years, the field of neural machine translation (NMT) has seen considerable

progress, which significantly improved the translation quality achieved by machine trans-

lation (MT) systems.

To detect and quantify the improvement, the translation quality needs to be measured

with objective criteria. This task is complex, as there is not just one correct translation

option. Rather, for a given source sentence, many different valid translations exist. Human

judgement is commonly regarded as gold-standard. However, human quality scores are

expensive and time-consuming to collect, and they are to some degree subjective. As a

faster and cheaper alternative, various automatic evaluation metrics have been proposed

to assess translation quality and guide decisions during the development of an MT system.

These automatic measures are usually based on the comparison of the MT hypothesis with

a human reference translation and sometimes with the source. Ideally, such an evaluation

metric is able to not only reward translation hypotheses that coincide well with the surface

form of the reference, but also hypotheses that use synonyms, a different but correct word

order or that are paraphrases of the reference. In addition, a good metric should punish

the use of antonyms and wrong polarity.

Traditional evaluation metrics, that measure the lexical overlap between the hypothesis

and the reference (e.g., BLEU (Papineni et al., 2002), ChrF (Popović, 2015)), are inca-

pable of capturing such nuances. In consequence, with the continuous improvements of

MT systems, they increasingly fall short in assessing their quality correctly (Ma et al.,

2019; Mathur et al., 2020; Kocmi et al., 2021; Freitag et al., 2021a, 2022b). Hence, the

advancements in NMT called for new, more elaborate evaluation metrics.

In response to this need, a novel approach of deploying a trained neural network as a metric

has been proposed. These neural metrics are based on large pre-trained language models,

such as BERT (Devlin et al., 2019) or XLM-RoBERTa (Conneau et al., 2020), that are

fine-tuned in a regression task on human quality scores. They leverage the pre-trained

language model to encode the hypothesis, the reference and/or the source and to map the

embeddings of the two or three segments being compared into the same shared feature

space. This allows them to evaluate the semantic similarities between the embeddings

and to assign a quality score to the hypothesis accordingly. Hence, they are able to

recognize and reward synonyms and paraphrases with different word choice, word order

and length (Kocmi et al., 2021; Freitag et al., 2022a), even though they still rely to some

degree on surface-level overlap with the reference (Amrhein et al., 2022). Nonetheless,

1



Chapter 1. Introduction

top-performing neural metrics such as BLEURT (Sellam et al., 2020a) and COMET (Rei

et al., 2020a) correlate well with human judgements and are considered state-of-the-art

(Kocmi et al., 2021; Freitag et al., 2022b).

The recent progress in evaluation metrics led to the exploration of alternative decoding

strategies, such as Minimum Bayes Risk (MBR) decoding, that – in contrast to the com-

monly used beam search decoding – takes advantage of the latest improvements in MT

evaluation metrics.

In sampling-based MBR decoding, unbiased samples are drawn from the probability dis-

tribution of the MT model. These samples are used as candidate pool and are compared

against each other to find the consensus translation (Eikema and Aziz, 2020). A utility

function assesses the similarity between the candidates. Typically, an evaluation met-

ric serves as utility function as they are designed to measure the similarity between two

segments. By incorporating powerful metrics in the decoding procedure, MBR decoding

leverages the information provided by the metric and has the potential to further improve

translation quality (Fernandes et al., 2022).

An additional advantage of MBR decoding is that it offers the possibility to shed light

on blind spots of the metric used as utility function. As neural metrics like COMET and

BLEURT are becoming more widespread, it is crucial to scrutinise their strengths and

particularly their weaknesses. As they guide researchers and developers in deciding which

model is best and which directions of research are most promising, adopting them with-

out knowing their downsides entails the risk of biased decision-making and of optimising

towards blind spots of the metric.

A thorough examination of novel metrics is important for several reasons. First, neural

metrics are built on top of large language models that are pre-trained on huge amounts

of natural language data and learn any kind of bias present in the data sets, including

cultural biases regarding gender, race and religion (Chan et al., 2020; Kocmi et al., 2021).

These biases can be reflected in the metric scores (Amrhein et al., 2022). Second, trained

neural metrics are black boxes that do not explain why they assign a certain score to a

translation. Sometimes, they fail unpredictably attributing high scores to bad translations

(Amrhein and Sennrich, 2022).

Biases introduced by black box neural metrics are often subtle and more difficult to uncover

than biases of lexical overlap-based metrics. Amrhein and Sennrich (2022) propose to use

sampling-based MBR decoding to reveal blind spots of the metric used as utility function.

Neural evaluation metrics are usually trained on beam search outputs. In contrast, the

unbiased samples in MBR decoding are generally of a lower quality and contain different

kinds of errors that are less frequent in beam search outputs. When confronted with

such unusual errors, neural metrics may show an unexpected behaviour that hints at their

weaknesses.

With this method, Amrhein and Sennrich (2022) demonstrated that COMET-20 is not

2



Chapter 1. Introduction

sensitive enough towards errors in named entities (NEs) and numbers. Furthermore, they

notice that COMET-20 tends to choose hypotheses with nonsensical German compounds

and polarity errors. However, their evidence for these potential weaknesses is only anec-

dotal, as it was not the focus of their work.

1.1 Research Questions

In this thesis, I extend the work by Amrhein and Sennrich (2022) examining the sensitivity

of neural metrics towards German compounds. I will provide a systematic investigation of

whether German compounds are indeed another blind spot of neural metrics or whether

the appearance of nonsensical compounds in MBR outputs must be attributed to other

factors, e.g. the lower quality of the samples in the candidate pool.

For my experiments, I will focus on translations from English to German for several rea-

sons. Firstly, in German, the formation of compounds is a productive morphological pro-

cess that frequently serves to denote new objects or concepts, e.g. Coronavirus-Richtlinien

(coronavirus guidelines). Secondly, I speak these two languages fluently which is necessary

to judge whether a German compound is a valid translation of the English source text.

Thirdly, working with one of the language pairs studied by Amrhein and Sennrich (2022)

allows for a comparison of my results with their work. To further ensure that my work

is comparable to theirs, I will use the same data sets, MT model and COMET model as

they did.1

In the first part of this thesis, I will examine whether and to what extent German com-

pounds are a blind spot of COMET. To this end, I will use COMET-20 as utility function

in MBR decoding. The obtained translations are then compared to beam search outputs

on the one hand, and to MBR-decoded translations obtained with ChrF and ChrF++

as utility functions on the other hand. The examination reveals that the MBR-decoded

translations obtained with COMET-20 as utility function contain a considerably larger

amount of nonsensical, mistranslated compounds than translation generated with ChrF

and ChrF++ as utility function or via beam search decoding. This is a clear indication

that German compounds are indeed a weakness of COMET-20.

Having identified this blind spot, the question arises whether it is possible to increase

COMET’s sensitivity towards the incorrect formation of German compounds. Amrhein

and Sennrich (2022) showed that retraining COMET-20 on synthetic data is not sufficient

to erase its blind spots. Therefore, I will experiment with exchanging one of the building

blocks of COMET: the underlying pre-trained language model. COMET-20 is built on

the multilingual XLM-RoBERTa that is pre-trained with the Masked Language Modelling

objective (Devlin et al., 2019). Like most language models, XLM-RoBERTa uses Sub-

1The materials and methods are described in Section 3.1.

3



Chapter 1. Introduction

Word Masking (SWM) in this pre-training task.2 Hence, if a word consists of multiple

sub-words, only one sub-word is masked, while the others are visible to the model making

the prediction of the masked token considerably easier.

German compounds are complex words that consist of at least two constituents, which are

most likely split up into two or more sub-words during pre-training. It is therefore possible

that models pre-trained with SWM concentrate on individual sub-words only, neglecting

the relationship between them.

One way to force the model to focus on an entire word, is by using Whole Word Masking

(WWM) in pre-training (Devlin et al., 2019).3 In WWM, all sub-words of a word are

masked simultaneously which makes the task to reconstruct the word more challenging.

The model is forced to predict all parts of a word and most likely gains a better notion of

what a word is and which sub-words belong together. Hence, it is reasonable to assume

that models pre-trained with WWM are better at dealing with German compounds.

To investigate the effect of WWM on the translation of compounds, I will train new

evaluation models and use them as utility function in MBR decoding. I use GBERT

(Chan et al., 2020) as the underlying language model. GBERT is a monolingual German

BERT model that is available in two variants: One is pre-trained with Sub-Word Masking

(GBERTSWM), the other one with Whole-Word Masking (GBERTWWM).

On top of GBERT, I will add a regression layer and train it to predict a quality score for a

hypothesis given a reference. For each of the two variants of GBERT, I train two different

metric models: One that follows the slightly modified training procedure of COMET-

QE (Rei et al., 2021), the other one follows the procedure of BLEURT (Sellam et al.,

2020a). I call the resulting metrics GCOMETSWM, GCOMETWWM, GBLEURTSWM and

GBLEURTWWM.

In contrast to GCOMET and GBLEURT, the original COMET-20 and BLEURT-20 met-

rics rely on multilingual language models. To assess the effect of multilinguality on the

translation of compounds, I additionally train COMETContrastive. It is trained in exactly

the same way as GCOMET, but with the multilingual XLM-RoBERTaBase pre-trained

with SWM as the underlying language model.

Regarding the effect of multilinguality, the hypothesis is less clear than in the case of

WWM. On the one hand, multilinguality often improves performance on various tasks

especially for low-resource languages, as the model benefits from cross-lingual transfer

(Conneau and Lample, 2019; Sellam et al., 2020b). On the other hand, the model capacity

is divided between several languages, which can have a negative impact on the model’s

performance. This phenomenon is known as the curse of multilinguality (Conneau et al.,

2020; Pu et al., 2021). As German is a high-resource language, I expect that a multilingual

model deteriorates the quality of German translations, particularly that of compounds.

2Sub-Word Masking and Whole Word Masking are explained in Section 2.4.
3See github.com/google-research/bert/commit/0fce551
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To confirm or reject the hypotheses regarding the effect of WWM and multilinguality, I

will conduct a series of experiments using the newly trained metrics as utility function

in MBR decoding. Firstly, the overall quality of the MBR-decoded translations will be

measured in terms of various automatic evaluation metrics. Secondly, I will analyse which

utility function generates the most nonsensical compounds in its translations. Thirdly, a

targeted sensitivity analysis as proposed by Amrhein and Sennrich (2022) is conducted to

quantify how sensitive the different metric models are towards targeted changes in German

compounds.

Additionally, the data set created by Amrhein and Sennrich (2022) is used to assess the

sensitivity of the new metrics towards common nouns, named entities and numbers. This

analysis sheds light on the question of whether a metric based on a monolingual language

model pre-trained with WWM is able to remove the blind spots identified in COMET-20

or whether these persist.

On a side note, two other questions that arose during the conductance of the experiments

will be answered. The first one concerns the implementation of MBR decoding. When the

candidate and the support sets are identical, each candidate also occurs in the support set.

When comparing a candidate against the support set, we can either include the comparison

of the candidate to itself or exclude this comparison. This thesis will investigate whether

including or excluding the comparison of two identical segments affects the metric’s choice

of the best translation and hence the MBR output.

The second question concerns the issue of “metric overfitting” (Fernandes et al., 2022).

When we optimise towards a neural metric used as utility function in MBR decoding

and then apply it to evaluate the translation quality of the generated outputs, it does

no longer produce reliable scores. Rather, it rates translations generated with itself as

utility function overly optimistically. The automatic evaluation conducted in 5.1 reveals

a strong overfitting effect for COMET-20. Hence, I will investigate 1) whether this effect

is similarly strong for GCOMETWWM and 2) which factors contribute the most to the

observed overfitting.

In addition, I will experiment with a novel approach. As neural metrics have certain blind

spots, they sometimes unpredictably assign high scores to bad translations. However,

different metrics have distinct blind spots. To overcome the deficiencies of a given metric,

I will combine two metrics in MBR decoding. Hence, a candidate is only chosen as best

translation if it receives a high score from both metrics. I will investigate whether the

combination of metrics 1) will improve translation quality and 2) alleviate the observed

overfitting effect.

The code and other materials used in this thesis are publicly released on GitHub.4 The

newly trained metric models can be downloaded from Google Drive.5

4github.com/sarahkiener/compound-sensitivity
5drive.google.com/compound-sensitivity models
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1.2 Thesis Structure

After the research questions have been presented, Chapter 2 introduces the concept of

MBR decoding, the different types of MT evaluation metrics, their respective strengths

and weaknesses and elucidates the relationship between the evaluation metrics and MBR

decoding. Finally, the chapter explains the differences between Sub-Word Masking and

Whole Word Masking. In Chapter 3, I will show that German compounds are a blind spot

of COMET-20. Chapter 4 explains how the novel metrics, GCOMET and GBLEURT

were trained providing a description of their building blocks and architecture. Further, it

outlines the experiments that were conducted to investigate whether monolingual models

and WWM can improve the translations of German compounds. Chapter 5 presents the

results of these experiments. These results are discussed and interpreted in Chapter 6.

Finally, Chapter 7 summarises the most important contributions of this thesis and provides

an outlook on future work.
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2 Related Work

Recent work has proposed Minimum Bayes Risk (MBR) decoding as an alternative decision

rule to beam search decoding in neural machine translation (NMT). MBR decoding relies

on a utility function, which is typically an evaluation metric that measures the similarity

between a candidate sentence and a (pseudo-)reference. This chapter discusses both the

current state of research in the field of MBR decoding as well as the progress that has been

made regarding machine translation (MT) evaluation metrics. In addition, the chapter

presents studies experimenting with Whole Word Masking as a pre-training technique for

large language models.

2.1 Minimum Bayes Risk Decoding

Modern NMT systems commonly rely on beam search - a tractable approximation to the

maximum a posteriori (MAP) decision rule - as decoding algorithm (Eikema and Aziz,

2020; Müller and Sennrich, 2021). MAP decoding seeks to find among the set of all

possible hypotheses the translation hypothesis that is most probable under a given model.

Hence, MAP decoding aims at identifying the mode of the distribution that the NMT

model has learnt. Since considering every possible translation hypothesis is not feasible

in practice, approximations such as beam search (Graves, 2012; Sutskever et al., 2014)

are needed (Eikema and Aziz, 2020; Müller and Sennrich, 2021; Amrhein and Sennrich,

2022; Fernandes et al., 2022). However, various studies (Ranzato et al., 2015; Sountsov and

Sarawagi, 2016; Koehn and Knowles, 2017; Lee et al., 2019; Ott et al., 2018; Khayrallah and

Koehn, 2018; Stahlberg and Byrne, 2019; Kumar and Sarawagi, 2019; Müller et al., 2020)

report serious pathologies of the beam search algorithm such as: the beam search curse, i.e.

translation quality decreases with a larger beam size, length bias, i.e. the true length of

translations is often underestimated, skewed word frequencies, i.e. frequent tokens in the

training data are found disproportionately often in the model outputs while rare tokens

are underrepresented, copying of input sentences, i.e. if source copies appear on the target

side of the training data, copy hypotheses are overrepresented in the beam search output,

low domain robustness, i.e. the model tends to produce hallucinations under domain shift,

exposure bias, i.e. the mismatch between training and test time arising from training the

model on gold-standard reference sentences that are not available at test time where the

model suddenly has to deal with its own predictions, and non-admissible heuristic search

bias, i.e. candidates are pruned based on their current score without regard to their future
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score (cf. Eikema and Aziz, 2020; Müller and Sennrich, 2021). Moreover, beam search

outputs are usually ranked below human references in professional evaluations (Freitag

et al., 2021a) while the NMT model itself rates its outputs as more likely than human

translations (Ott et al., 2018). Hence, the estimated probability and the actual translation

quality do not always correlate (Freitag et al., 2022a).

Instead of blaming the NMT model or the training algorithm for those biases, Eikema

and Aziz (2020) attribute these deficiencies to the inadequacy of the mode. They argue

that in NMT the search space is so large that the most probable translations together

account for only very little probability mass. Due to this flat probability distribution, the

model’s choice of the best translation, i.e. the mode, is somewhat arbitrary and the beam

search output is a relatively rare outcome under the model. This is in line with Stahlberg

and Byrne (2019), who find that in many cases the mode is the empty sequence. Hence,

Eikema and Aziz (2020) conclude that MAP decoding relying heavily on the mode might

be the source of many of the observed biases while the distribution of the model might

represent well the properties of the training data in terms of length, lexical and word order

statistics. By analysing unbiased samples from the model obtained via ancestral sampling,

they demonstrate that this is indeed the case.

To exploit the available information about the model’s learnt distribution and to make

an informed decision in identifying the best translation among the set of unbiased sam-

ples, Eikema and Aziz (2020) suggest to use Minimum Bayes Risk (MBR) decoding as

a decision rule, a concept from statistical decision theory which takes into account the

model distribution holistically. MBR decoding has already been deployed successfully in

statistical machine translation (Goel and Byrne, 2000; Kumar and Byrne, 2004; Tromble

et al., 2008) and was used in NMT in combination with beam search decoding (Stahlberg

et al., 2017; Shu and Nakayama, 2017). It is well-suited if we trust a model in expectation

but not its mode in particular.

The goal of MBR decoding is to choose from the entire set of possible translations H the

translation candidate y∗ that minimizes the expected cost (risk), given a source sentence

x, the true probability distribution P and a loss function L that compares the transla-

tion candidate hi to the true translation hj . Amrhein and Sennrich (2022) formalize the

problem as:

y∗ = argmin
hi∈H

∑
hj∈H

P (hj |x)L(hi, hj) (2.1)

However, the true probability distribution is unknown and it is unfeasible to sum over

the entire set of possible hypotheses. Therefore, in practice, the problem is approximated

based on the probability distribution of the translation model and a subset of hypotheses.

Eikema and Aziz (2020) suggest to draw a candidate set C of unbiased hypotheses from the

model distribution via ancestral sampling. With the same method, they create a support

set S that can either be identical to the candidate set C or contain different samples.

Then, they apply a utility function u(hi, hj) that assesses each hypothesis hi from the
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candidate set C against each pseudo-reference hj from the support set S and picks the

candidate that maximises the expected utility as the optimum decision y∗. Following this

procedure, Amrhein and Sennrich (2022) reformulate the problem as:

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(hi, hj) (2.2)

The sizes of the candidate and support sets as well as the utility function u are hyper-

parameters of the algorithm (Müller and Sennrich, 2021). In MT, the utility function is

typically a measure of similarity. In principle, any automatic MT evaluation metric can

serve as utility function in MBR decoding (cf. 2.2). The advantage of this method over

MAP decoding is that, even though the translation distribution might be very flat, the

expected utility for the different candidates might be quite distinct and candidates that

are very dissimilar to others (e.g. the empty string, hallucinations) are ruled out. Thus,

MBR decoding can be viewed as a method to find the consensus translation that is closest

on average to all likely candidates and that is able to identify the candidates that share

statistics with the reference translations (Müller and Sennrich, 2021; Eikema and Aziz,

2022; Kumar and Byrne, 2004).

Various studies (Eikema and Aziz, 2020; Müller and Sennrich, 2021; Freitag et al., 2022a;

Eikema and Aziz, 2022; Fernandes et al., 2022) could show that MBR decoding indeed

leverages this potential and is able to perform on par with or even outperform beam

search decoding in terms of both state-of-the-art automatic metrics and human assessment.

Furthermore, sampling-based MBR decoding overcomes some of the drawbacks of beam

search, because sampling allows for more exploration of the distribution and a higher

diversity in the candidate set than beam search decoding (Fernandes et al., 2022). Most

importantly, sampling-based MBR decoding does not suffer from an equivalent of the beam

search curse (Eikema and Aziz, 2022) and it is more robust to domain shift, hallucinations

and copy noise (Müller and Sennrich, 2021). In addition, it alleviates, but does not entirely

resolve the token frequency bias (Müller and Sennrich, 2021).

Despite those improvements over beam search, MBR decoding also exhibits a few draw-

backs. A major downside is its inefficiency compared to beam search. The cost of assessing

the utility function grows quadratically with the number of samples in the candidate and

support sets. Various strategies to overcome this limitation were proposed (Eikema and

Aziz, 2022; Fernandes et al., 2022; Freitag et al., 2022a; Amrhein and Sennrich, 2022).

Moreover, Müller and Sennrich (2021) show that MBR decoding cannot mitigate the

length bias encountered frequently in beam search outputs. Rather, it inherits the length

bias associated with its utility function.

Nonetheless, MBR decoding is a valuable alternative to beam search that mitigates several

beam search biases and thus has the potential to further improve MT quality. In addition,

it leverages the progress in evaluation metrics by incorporating them as utility function.

Hence, these metrics are crucial to the performance of MBR decoding.

9
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2.2 Automatic Evaluation Metrics for Machine Translation

As described in the previous section, MBR decoding requires a utility function that assesses

the similarity between a candidate translation and a (pseudo-)reference. Such similarity

metrics have been proposed long before the advance of MBR as a decoding strategy in

NMT. As a fast and cheap proxy for human assessment scores (Sellam et al., 2020a), they

evaluate the translation quality of sentences produced by an MT system. Most of these

metrics are reference-based. They compare the MT output to the reference translation

and assign a quality score to it. This score does not only allow to judge the overall quality

of a system, but also enables the comparison between the quality of two MT systems

(Kocmi et al., 2021).

During decades, lexical overlap-based metrics that measure the surface similarity between

a hypothesis and a reference were deployed by default (Marie et al., 2021). However, as

machine translations became more and more sophisticated, these metrics increasingly fell

short in assessing their quality correctly (Ma et al., 2019; Mathur et al., 2020; Kocmi

et al., 2021; Freitag et al., 2021a, 2022b). In consequence, the field has seen significant

progress in recent years. Neural metrics have been proposed that rely on pre-trained

word embeddings in order to capture the semantic similarity between the hypothesis,

the reference and, in some multilingual metrics, the source. While the first generation

of neural metrics compares the embeddings of the candidate and the reference in the

embedding space, the newest metrics are themselves neural networks trained on human

quality assessment data (Freitag et al., 2022a). While most recent approaches (Kocmi

and Federmann, 2023) experiment with leveraging large language models, such as GPT

(Radford et al., 2018; Brown et al., 2020), to score the quality of a translation hypothesis,

this thesis focuses on metrics that have been specifically designed for the MT evaluation

task. The majority of these MT metrics can be categorized into four groups that are

described in more detail in the following subsections.1

2.2.1 Metrics Based on Lexical Overlap

Metrics that rely on lexical overlap compare the surface form of the hypothesis to the

surface form of the reference, usually in terms of word or character n-grams. These metrics

are cheap to compute and can be applied to any language which made them a popular

choice for MT evaluations for many years. Further, their performance is predictable and

allows us to determine which substring has the largest impact on the score (Kocmi et al.,

2021). On the downside, string-based metrics are heavily dependent on the quality of the

reference translation as they completely ignore the source sentence. Moreover, they are

unable to recognize paraphrases and do not take the severity of errors into account (Kocmi

1Other metrics exist that do not belong into one of the four groups discussed here. One example is
PRISM (Thompson and Post, 2020) that deploys a sequence-to-sequence paraphraser, that is itself a
trained multilingual NMT model, conditioned on the reference to score an MT hypothesis.
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et al., 2021; Fernandes et al., 2022; Freitag et al., 2021a,b).

By far the most commonly used metric during the last two decades (Marie et al., 2021) is

the Bilingual Evaluation Understudy (BLEU) developed by Papineni et al. (2002). BLEU

measures lexical overlap as the precision of n-gram matches between the hypothesis and

the reference with n ≤ 4. To punish translations that are too short, a brevity penalty

is added. Recent studies demonstrate that BLEU coincides poorly with human quality

judgements and is unable to differentiate correctly between high performing MT systems.

It should therefore be deprecated as the standard metric (Ma et al., 2018, 2019; Mathur

et al., 2020; Kocmi et al., 2021; Freitag et al., 2021b, 2022b).

Another popular string-based metric is ChrF and its variants (Popović, 2015). Instead of

word n-grams, ChrF uses the character n-gram F-score to assess the candidate transla-

tion against the reference. Its variant ChrF++ additionally includes word unigrams and

bigrams (Popović, 2017). While suffering from the same drawbacks as other string-based

metrics, ChrF has a clearly higher correlation with human quality judgements than BLEU

(Ma et al., 2018, 2019; Mathur et al., 2020).Therefore, Kocmi et al. (2021) recommend

ChrF as standard evaluation metric along with COMET.

Many other string-based evaluation metrics have been proposed, among them ROUGE

(Lin, 2004), METEOR (Lavie and Denkowski, 2009), TER (Snover et al., 2006), Charac-

TER (Wang et al., 2016) and BEER (Stanojević and Sima’an, 2015), but it is beyond the

scope of this work to discuss them in detail.

2.2.2 Embedding-Based Metrics

With the advance of neural networks, metrics have been developed that exploit the new

possibilities. They make use of pre-trained word and sentence representations and compare

the embeddings of the hypothesis with those of the reference. Examples of such metrics

are BERTScore (Zhang et al., 2020) and BERTr (Mathur et al., 2019), that both leverage

contextual BERT embeddings (Devlin et al., 2019) to calculate a score based on the

cosine similarity between the hypothesis and the reference, and YiSi-1 (Lo, 2019) that

aggregates inverse-document-frequency-weighted lexical semantic similarities based on pre-

trained embeddings. Metrics based on embedding-overlap are robust and perform well even

with little or no training data (Sellam et al., 2020a). They generally correlate better with

human judgements than string-based metrics, but are outperformed by trained neural

metrics (Ma et al., 2019; Mathur et al., 2020), that, in addition to semantic similarities,

exploit information present in human quality scores like DA or MQM (Rei et al., 2020a).

2.2.3 Trained Neural Metrics

Most recent metrics are trained regression models based on pre-trained contextual em-

beddings and fine-tuned on human quality evaluation scores. They are able to recognize
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synonyms and paraphrases with different sentence structures, word choices and length

compared to the reference translation. Hence, they are less dependent on the translation

quality of the reference and have the potential to rate hypotheses with infrequent but

correct tokens higher than string-based metrics as they are not forced to match surface

n-grams in the reference (Kocmi et al., 2021; Freitag et al., 2022a). Nevertheless, they still

considerably rely on surface-overlap with the reference and hence the translation quality

of the reference still has an impact on the metric’s performance (Amrhein et al., 2022; Rei

et al., 2020b). Trained metrics can be adapted to score task-specific properties like fluency,

faithfulness, grammar and style (Sellam et al., 2020a). Nonetheless, those metrics have

certain drawbacks (Kocmi et al., 2021; Amrhein and Sennrich, 2022). They depend on

their training data which can be a source of biases introduced into the model. Additional

problems for the quality evaluation arise if an MT system is trained on the same data or

incorporates the same pre-trained model as the evaluation metric does. Moreover, trained

evaluation metrics are black boxes that do not always behave as expected. For exam-

ple, they could exhibit difficulties with a specific domain or prefer fluency over adequacy.

Finding the source of unexpected behaviour is difficult in such metrics. Finally, trained

metrics can only be applied to a limited set of languages and their performance can differ

for each language. Nevertheless, they are currently the state-of-the-art in the field (Kocmi

et al., 2021; Freitag et al., 2022a).

Early examples of such metrics are RUSE (Shimanaka et al., 2018) that uses pre-trained

embeddings, and ESIM (Chen et al., 2017; Mathur et al., 2019) that learns the sentence

representations from scratch. Both are then fine-tuned on human judgements of the WMT

Shared Tasks.

Currently, COMET (Rei et al., 2020a) is considered the state-of-the-art evaluation metric

(Kocmi et al., 2021). The COMET-family comprises various neural metrics, including

models trained on Direct Assessment data, Multidimensional Quality Metrics (MQM)

and a reference-free quality estimation model. This thesis focuses on the “standard”

COMET-20 metric as this is the metric scrutinized by Amrhein and Sennrich (2022), on

whose work this thesis builds. COMET builds on the multilingual XLM-RoBERTa model

(Conneau et al., 2020) to encode the candidate and the reference along with the source

sentence in the same cross-lingual space. It is then fine-tuned in a regression task on

Direct Assessment data from the WMT Metrics Shared Task (Rei et al., 2020a). For this

thesis, I worked with wmt20-comet-da (cf. 4.1.3), which was the recommended default

model during the past three years. Only recently, the new default model wmt22-comet-da

was released (Rei et al., 2022) which is able to predict error spans annotating the words

with OK or BAD tags.

BLEURT (cf. 4.1.2) is ranked among the top-performing metrics as well. The first English-

only version of BLEURT (Sellam et al., 2020a) was based on BERT (Devlin et al., 2019),

the current default model BLEURT-20 (Pu et al., 2021) uses multilingual RemBERT

(Chung et al., 2021) embeddings. BLEURT is a fine-tuned regression model trained in

a three-step procedure. After the regular BERT pre-training, it is further pre-trained
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on synthetic, randomly perturbed sentence pairs. Finally, it is fine-tuned on DA scores

from the WMT Metrics Shared Tasks. In contrast to COMET, BLEURT encodes the MT

hypothesis and the reference together as a sentence pair ignoring the source sentence.

2.2.4 Reference-Free Quality Estimation Metrics

As an alternative to the reference-based evaluation metrics, several reference-free quality

estimation (QE) metrics have been developed over the past years. These metrics calculate

the similarity across different languages by comparing the source sentence to the candidate

translation. Their main advantages are that they do not require a reference translation to

score a hypothesis and are hence not affected by a potential reference-bias (Mathur et al.,

2020). Due to the increased difficulty of the quality estimation task, QE metrics usually ex-

hibit a lower correlation to human judgements than reference-based metrics. Nonetheless,

their correlation to human scores is constantly growing and the top-performing systems

such as COMET-QE (Rei et al., 2021) and OpenKiwi-MQM (Kepler et al., 2019; Rei

et al., 2021) already achieve competitive results (Freitag et al., 2021b; Specia et al., 2021).

This indicates that references do not provide as much valuable information as previously

thought (Rei et al., 2021; Kocmi et al., 2021). Future work might well dispense with

references that are expensive and time-consuming to collect (Rei et al., 2021).

2.3 Uncovering Blind Spots in MT Metrics Through MBR

Decoding

The previous sections have shown that on the one hand, MBR decoding has the potential

to overcome the deficiencies of beam search decoding. On the other hand, by incorpo-

rating the latest evaluation metrics into the decoding procedure, MBR can be considered

quality-aware decoding that takes the recent tremendous progress in MT metrics into ac-

count (Fernandes et al., 2022), while beam search entirely ignores these advancements.

Using more powerful metrics that coincide better with human judgement in the decoding

procedure potentially leads to improved translation quality (Fernandes et al., 2022; Freitag

et al., 2022a).

Freitag et al. (2022a) demonstrated that this is indeed the case. Translations obtained

via MBR decoding with the powerful neural BLEURT metric as utility function receive

higher scores from human annotators than translations produced with lexical metrics or

by beam search. The latter two show a strong preference for most likely tokens in order

to increase the chance of matching the surface form of the reference. In contrast, MBR

decoding with BLEURT chooses hypotheses that are not among the highest log likelihood

candidates according to the NMT model, but that are regarded as more appropriate by

human annotators.
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Nonetheless, several pitfalls have been identified for MBR decoding with neural metrics.

First, MBR decoding relies heavily on the quality of the candidate set. Thus, a good

NMT model is needed to produce high-quality candidates and to enable MBR to outper-

form beam search (Freitag et al., 2022a). Second, Fernandes et al. (2022) mention the

issue of “metric overfitting”. When explicitly optimizing for a fine-tuned metric in MBR

decoding, this metric is no longer a reliable indicator for the final evaluation of translation

quality. Typically, a fine-tuned metric scores translations produced by MBR using the

same metric as utility function overly optimistically. By doing so, their correlation with

human judgements drops. This behaviour points to a potential overfitting effect. Instead

of improving translation quality, the systems learn to exploit pathologies inherent in a

certain metric (Fernandes et al., 2022).

To uncover such blind spots of neural evaluation metrics, Amrhein and Sennrich (2022)

propose a novel approach. They suggest to use the metric under study as utility function

in sampling-based MBR decoding to gain insights into its weaknesses. In this setup, the

hypotheses in the candidate and support pool are usually of lower quality than the beam

search outputs, on which the metric model was trained. Hence, when scoring the candi-

dates, the metric is confronted with error types that are rarely encountered in beam search

sentences. These infrequent error types might trigger the metric to behave unexpectedly

and to assign high scores to bad translations. By inspecting the final MBR-decoded output,

i.e. the hypotheses chosen by the metric, Amrhein and Sennrich (2022) identify linguistic

phenomena that are especially challenging for the metric to judge correctly. Having found

a potential weakness in a metric, they compare the frequency of this error type in the

MBR outputs to the frequency of the same error in beam search translations and in MBR

outputs generated with a different utility function. This comparison reveals whether the

identified error type is indeed a blind spot of the metric under study, or whether it poses

a challenge to MT models and evaluation metrics in general.

Applying this procedure, Amrhein and Sennrich (2022) show that COMET-20 is not sen-

sitive enough to errors in named entities and numbers. To investigate these failures of

COMET-20 more systematically, they propose an MBR-based sensitivity analysis. Keep-

ing the support set constant, they apply targeted changes to the translation hypotheses

and include them in the candidate pool along with the correct reference. In the course of

MBR decoding, a reliable metric is expected to assign a considerably higher score to the

correct translations than to the perturbed candidates. By measuring the difference be-

tween the scores assigned to the correct and the perturbed candidates and averaging them

across all examples of one perturbation type, Amrhein and Sennrich (2022) demonstrate

that COMET-20 tends to ignore errors in numbers and named entities rating them only

slightly lower than the correct references. These biases seem to be inherent to COMET-20,

as they cannot be removed by a simple retraining on synthetic data.

This thesis relies on the described approaches by Amrhein and Sennrich (2022) to investi-

gate the sensitivity of COMET-20 and the newly trained neural metrics towards German

compounds.
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2.4 Whole Word Masking in Language Model Pre-Training

Since the introduction of BERT in 2019 (Devlin et al., 2019), large language models have

become popular in the field of Natural Language Processing (NLP). These models are

typically pre-trained on a massive corpus of unlabelled monolingual data. Later, they are

fine-tuned on a labelled data set for a specific downstream task.

When training BERT, Devlin et al. (2019) introduced a new pre-training objective to

learn from unlabelled data: Masked Language Modelling (MLM). This objective was later

adopted by many variants of BERT as well as by other language models such as XLM

(Conneau and Lample, 2019; Conneau et al., 2020; Liu et al., 2020b; Chan et al., 2020)

In the Masked Language Modelling task, 15 % of the tokens in the input sequence are ran-

domly masked by replacing them with the special [MASK] token. The model is then asked

to reconstruct these masked tokens. This strategy allows to train bidirectional representa-

tions. Without masking, the bidirectional conditioning would leak the information on the

other words in the sequence making it very easy for the model to reconstruct any token.

On the downside, this training strategy restricts the learning to the 15 % of masked tokens

(Chan et al., 2020). Another drawback is that the special [MASK] token introduces a dis-

crepancy between pre-training and fine-tuning where the [MASK] token does not occur.

To alleviate this problem, Devlin et al. (2019) opt for three different “masking” strategies.

Of the 15 % of input tokens chosen for masking:

1. 80 % are replaced with the [MASK] token,

2. 10 % are replaced with a random token,

3. 10 % remain unchanged and are not replaced.

To better deal with rare words, BERT splits the input words into sub-word units (Sennrich

et al., 2016) using WordPiece embeddings (Wu et al., 2016). These sub-words (or tokens)

form the basis on which BERT operates. The original BERT model, was pre-trained

with Sub-Word Masking (SWM), i.e. masking was applied on sub-word level. As the

tokens to be masked are selected randomly, it is possible that only one sub-word of a word

is masked while the other sub-words of that word are visible to the model. The following

example illustrates how words in the input sequence are split up into several sub-words,

marked with ##. The line SWM shows a possible outcome of randomly masking some

sub-word tokens:

Input: The cat likes play ##ing with the ball of wool .

SWM: [MASK] cat likes play [MASK] with the ball of [MASK] .

The example illustrates that masking only some tokens of a word reduces the complexity

of the prediction task. Predicting the second [MASK] is very easy, as the beginning of

that word is visible along with the other words in the sequence. In contrast, the prediction

of the third [MASK] is more difficult: Is it a ball of wool, yarn or even light? The first
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Chapter 2. Related Work

[MASK] is also easy to reconstruct, as the definite article is often encountered as the first

word of an English sentence. Here, the simplicity of the prediction task is not owed to the

masking strategy, but to the frequency, with which the masked token occurs.

After the release of the first BERT model, its authors noticed that Sub-Word Masking

tends to oversimplify the prediction task. They propose to use Whole Word Masking

(WWM) instead.2 With WWM, all the tokens of a word are masked at once making

it more difficult for the model to reconstruct the word, while everything else remains

constant, i.e. the overall masking rate is the same as in SWM and each token is still

predicted independently. Hence, the example above is masked as follows with WWM:

Input: The cat likes play ##ing with the ball of wool .

WWM: The cat likes [MASK] [MASK] with the ball of [MASK] .

Figure 1 further illustrates the differences between the two masking strategies and clarifies

how the language model predicts the masked tokens.

Figure 1: Sub-Word Masking and Whole Word Masking for the sentence Kangaroos don’t
eat eucalyptus.

The authors of BERT conclude that WWM is beneficial to Question Answering and Nat-

ural Language Inference.3 Despite this finding, most variants of BERT, such as RoBERTa

(Liu et al., 2020b) and RemBERT (Chung et al., 2021) among many others, and lan-

guage models complementing the training objectives of BERT, like ELECTRA (Clark

et al., 2020), still use Sub-Word Masking or Substitution respectively in their training

procedure.

So far, WWM has mainly been investigated for Chinese language models. Unlike English

subwords that can be further split up into single characters, a Chinese word consists of

several characters that are atomic units. Therefore, Whole Word Masking is needed to

dissolve the association between characters and make the model learn something mean-

2See github.com/google-research/bert/commit/0fce551
3See https://github.com/google-research/bert
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ingful (Dai et al., 2022). WWM was shown to have a beneficial effect on a wide range of

Chinese NLP tasks (Liu et al., 2020a; Dai et al., 2022; Zhou et al., 2020; Cui et al., 2021).

Concerning German, to the best of my knowledge, only Chan et al. (2020) studied the effect

of Whole Word Masking in language model pre-training. They train three German BERT

(GBERT) models, each of the size of BERTBase. Two of them are of particular interest to

this thesis. The first one is pre-trained with Sub-Word Masking (GBERTSWM), while the

second one uses Whole Word Masking (GBERTWWM)4 in pre-training. Everything else

(training data, hyperparameters etc.) is identical for both models. This allows to assess

the effect of the different masking strategies on the performance of the language model.

Evaluating the models on a coarse- and fine-grained hate speech classification task and on

Named Entity Recognition, Chan et al. (2020) conclude that WWM has a beneficial effect.

When compared only to models of the same size, GBERTWWM even reaches a new state-

of-the-art for NER and the coarse hate speech classification task. Hence, Whole Word

Masking is a promising approach for German language models, and has the potential to

improve their performance on various NLP tasks.

In this thesis, I will work with the two presented GBERTSWM and GBERTWWM models

to shed light on the effect that WWM has on trained neural MT evaluation metrics. The

GBERT models as well as the experiments will be described in detail in Chapter 4.

4Chan et al. (2020) call the SWMmodel GBERTData and the WWMmodel GBERTData + WWM. I rename
the models as GBERTSWM and GBERTWWM respectively as these names are more appropriate to the
research questions addressed in this thesis.
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3 Analysis of Compound Translations in
MBR-Decoded Outputs

As outlined in the previous chapters, trained neural evaluation metrics achieve superior

correlations with human quality judgements and reach a new state-of-the-art. Nonetheless,

Amrhein and Sennrich (2022) demonstrated that trained neural metrics have certain blind

spots and are insensitive to specific linguistic phenomena. These weaknesses can cause

the metric to unpredictably assign overly optimistic scores to bad translations. As these

metrics become more widely adopted and are even recommended as a default to evaluate

the quality of MT outputs (Kocmi et al., 2021), it is crucial to uncover and study their

weaknesses, before we can safely optimize towards them.

In their analysis, Amrhein and Sennrich (2022) found first, yet unsystematic evidence that

COMET-20 tends to choose German hypotheses containing nonsensical compounds. So

far, this potential weakness of COMET-20 was not yet studied in detail. The aim of this

thesis is to fill this gap and to provide a systematic analysis of COMET-20’s performance

regarding German compounds.

In German, composition is a complex and productive morphological process. Newly formed

compounds are frequently encountered in German texts. They might denote new objects

or concepts, e.g., Coronapandemie (corona pandemic), or refer to a very specific context

or scenario, such as Horror-Sturz which denotes a severe sports accident. In the formation

of compounds, lexemes loose their inflectional suffixes such that two (or more) word stems

are linked together. Between the constituents a linker element, the so-called Fugenelement,

can appear, as in Arbeit-s-tag (work day).

Nominal compounds are the most frequent compound type in German. While other types

such as verbal, adjectival and adverbial compounds exist, they are clearly less prevalent. In

a nominal compound, the last component is always a noun, while the other constituents

may belong to different parts of speech, e.g. Koch-topf (cooking pot) where the first

component is a verb and Gegen-teil (contrary, opposite) where the first component is a

preposition. However, most commonly, two (or more) nouns are merged.

This thesis will shed light on the behaviour of COMET-20 towards German nominal

compounds. As the evidence suggesting that COMET-20 may struggle with selecting

correct German compounds is still anecdotal, I will first conduct a systematic examination

to determine whether this is indeed a weakness of the metric, or whether other metrics,
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used as utility functions in MBR decoding, exhibit similar difficulties in handling German

compounds.

To this end, I will follow the procedure proposed by Amrhein and Sennrich (2022) (cf.

2.3). To ensure the comparability to their results (cf. 5.3), I use the same models, data

and methods as they did.

3.1 Materials and Methods

The following paragraphs describe the translation model, the implementation of MBR

decoding and the data sets used by Amrhein and Sennrich (2022). In addition, I propose

new methods to specifically examine the translation of German compounds.

3.1.1 Translation Model

As this work focuses on German compounds, a translation model is needed that translates

into German. To keep the comparability with the results of Amrhein and Sennrich (2022)

high, their translation model for the language pair en→de is used. It is a Transformer

Base model (Vaswani et al., 2017) trained with the nematus1 framework (Sennrich et al.,

2017). It consists of 6 encoder layers, 6 decoder layers and 8 attention heads. It uses an

embedding and hidden state dimension size of 512 and a feed-forward network dimension

of 2048. The sub-word vocabulary amounts to a size of 32k and is computed with byte pair

encoding (Sennrich et al., 2016) using SentencePiece (Kudo and Richardson, 2018). The

maximum sequence length during training and decoding is limited to 200 tokens (Amrhein

and Sennrich, 2022).

The model is trained on the parallel data of the WMT 2018 News Shared Task (Bojar

et al., 2018), excluding the ParaCrawl corpus. Hence, the training data includes the Eu-

roparl, the News Commentary and the Rapid-2016 corpora containing 5.9 million sentence

pairs. After deduplicating the corpus, the model was trained on approximately 5.6 mil-

lion sentence pairs (Amrhein and Sennrich, 2022). For a more detailed description of the

translation model including hyperparameters, I refer the reader to Amrhein and Sennrich

(2022).

Amrhein and Sennrich (2022) then used the trained model to generate the samples that

serve as candidate and support sets in MBR decoding based on the evaluation data set

described in the next section.

1github.com/EdinburghNLP/nematus
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3.1.2 Data set for Evaluation and MBR Decoding

Amrhein and Sennrich (2022) evaluate their translation model on the test set of the WMT

2021 News Shared Task (Akhbardeh et al., 2021). The reasons for choosing this data set

for evaluation are three-fold.

1. The data set was not part of the training data of COMET-20. Thus, neither the

source sentences and translations of them nor any quality scores assigned to them

have been previously observed by COMET-20.

2. The data set does not contain any translationese source sentences. All source sen-

tences were originally written in the source language and translated by professional

translators into the target language.

3. The data set contains two references for each source sentence for the translation

direction under study, en→de.

The test set for en→de consists of 1002 sentence triplets, a source and two human reference

translations. Based on these source sentences, Amrhein and Sennrich (2022) use the

translation model described in section 3.1.1 to generate 100 unique translation hypotheses

for each source sentence. This results in a set of 100,200 hypotheses in total.

Throughout this thesis, I will use this set of hypotheses as input to the MBR decoding,

whereby it serves as both candidate pool and support set. The source and/or the reference

sentences of the test set are used for the semi-automated analysis (cf. 3.3), the computation

of various automatic metrics (cf. 3.4 and 4.3.2) and the sensitivity analysis (cf. 4.3.5).

3.1.3 COMET Model

Following Amrhein and Sennrich (2022), the wmt20-comet-da model (Rei et al., 2020b),

referred to as COMET-20, is used as utility function in MBR decoding. Another reason

for selecting this version of COMET is its status as the recommended default model at

the time of planning the thesis.

COMET-20 predicts a Direct Assessment (DA) score for a translation hypothesis given

the source sentence and the reference. It was trained on the DA scores from the WMT17

to WMT19 data sets (Bojar et al., 2017; Ma et al., 2018, 2019) and submitted to the

WMT20 Metrics Shared Task (Mathur et al., 2020).2 It is considered to correlate very

well with human quality scores (Mathur et al., 2020; Freitag et al., 2021b, 2022b; Kocmi

et al., 2021).

2For more details about the model and the data sets see Chapter 4.
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3.1.4 Implementation of MBR Decoding

For sampling-based MBR decoding, this work follows the procedure described in Amrhein

and Sennrich (2022). As proposed by Eikema and Aziz (2020, 2022), they let the transla-

tion model generate 100 unbiased samples for each source segment. Each sample is unique

to avoid that it receives a higher score simply because it occurs multiple times in the

support set. The same 100 samples are used as both the candidate and the support set.

As COMET includes the source sentence x in its analysis, Amrhein and Sennrich (2022)

reformulate the MBR problem as:

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(x, hi, hj) (3.1)

All the analyses and experiments in this thesis with a COMET model as utility function,

use the MBR implementation of Amrhein and Sennrich (2022)3 or a slightly modified

version of it (cf. 4.3.1). In contrast to the MBR implementation of the original COMET

repository4, the implementation by Amrhein and Sennrich (2022) has the advantage that

the support set and the candidate set can contain different hypotheses and a different

number of sentences. Moreover, their implementation is very efficient, as they encode

each segment only once with XLM-RoBERTaLarge and cache the embeddings. This allows

them to compute the scores of all candidate-support pairs in parallel.

In the subsequent sections and chapters, the MBR-decoded outputs obtained with COMET-

20 as utility function (MBRCOMET-20) are compared to the outputs produced with ChrF

and ChrF++ (Popović, 2015, 2017) as utility functions. For the MBR decoding with

these two lexical overlap-based metrics, the implementation5 by Eikema and Aziz (2022)

is applied.

3.2 Manual Exploration of Compound Translations in MBRCOMET-20

Outputs

To gain a first overview over compound translations produced with MBRCOMET-20, the

outputs are inspected manually. To this end, the MBR implementation by Amrhein and

Sennrich (2022) is run with the candidate and support sets described in 3.1.2. The purpose

of this preliminary analysis is to collect further evidence for the observations of nonsensical

German compounds reported by Amrhein and Sennrich (2022) and to examine whether

the formation of nonsensical compounds follows a certain pattern.

3github.com/chanberg/COMET-mbr
4github.com/Unbabel/COMET
5github.com/Roxot/mbr-nmt
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The analyses in this thesis focus exclusively on nominal compounds. Wrongly formed

adjectival compounds are much rarer and other types of compounds occur even less fre-

quently. As the encountered samples of the non-nominal compound types are too small

to be representative on the one hand and have only a small impact on the results on the

other hand, I decided to exclude them from the analysis.

The results of this first, still unsystematic exploration, indicate that COMET-20 indeed

shows difficulties with assessing German compounds correctly. Several error types appear

frequently in the MBR-decoded translations chosen by COMET-20. Table 1 contains a

few illustrative examples.

ID MBR COMET Reference Source

3 Hundemarkt Hundepark dog park

7 Video-Fotografie Videoaufnahme video footage

71 Schraubschwendern Schraubenziehern screwdrivers

244 Gartengebäcken Garten-Gimmicks gardening gimmicks

816 Straßenbündnisse Straßenbahnen trams

74 Löschwagen Lieferwägen vans

118 Schlauchmitteln Arzneimitteln drugs

256 Himmelbäume Obstbäumen fruit trees

51 Alkoholschwester alkoholischen Bruder alcoholic brother

135 Pflegeleiterin Interimstrainer caretaker manager

408 Zieldifferenz Tordifferenz goal difference

676 Twitter-Posten Twitter-Post Twitter post

843 Strahlzentrum strahlendes Zentrum beaming center

Table 1: Examples of mistranslated German compounds

In many cases, COMET-20 chooses a compound whose first constituent was translated

correctly while the subsequent components are incorrect or vice versa (two upper sections

of the table). Moreover, COMET-20 does often not recognize gender mistakes (third

section). It exhibits difficulties with polysemous words as well as loanwords and sometimes

analyses concept boundaries erroneously (forth section). Interesting insights can be gained

from the different kinds of mistakes encountered in compounds. However, this topic is not

further discussed here as it is not the major focus of the thesis. An extensive description

and discussion of the various error types can be found in Appendix B.

It is noteworthy that in many cases the correct German compound is found in one or more

candidates produced by the MT system. In fact, the correct compound is often even among

the most frequent variants in the candidate pool (cf. 4.3.5). In these cases, it is clearly the

metric used as utility function that fails in selecting the correct variant. However, in other

cases, it is the MT model that fails in translating the compound adequately. Consequently,

none of the candidates contains the correct compound. In these cases, the metric only has

the choice between wrong variants. This issue is further addressed in 4.3.5.
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3.3 Semi-Automated Analysis of Compound Translations in

MBRCOMET-20 Outputs

The preliminary manual exploration of the MBRCOMET-20 output revealed several kinds of

mistakes associated with the translation and formation of German compounds. However,

before we can conclude that German compounds are indeed a blind spot of COMET-20,

a more systematic analysis of compound translation and a comparison to other decoding

methods is required.

To that end, the newly formed compounds are extracted from the MBRCOMET-20 transla-

tions of the WMT 2021 News Shared Task test set (cf. 3.1.2). The number of incorrectly

formed compounds that are bad translations is then compared to the number of ill-formed

compounds in the outputs of three other decoding strategies:

• Beam Search: Most state-of-the-art MT systems use beam search for decod-

ing. This algorithm is not known to exhibit specific difficulties with the forma-

tion of German compounds. Hence, it is expected that it will perform better than

MBRCOMET-20 regarding the translation and formation of compounds.

• MBRChrF: To analyze whether incorrect German compounds are a specific blind

spot of COMET-20 or whether they are an artifact of the candidate pool used in

MBR decoding, the MBRCOMET-20 outputs are compared to the outputs obtained

with two other utility functions. The first of them is ChrF. Out of the string-based

evaluation metrics, ChrF and its variants show the highest correlation with human

judgements and are therefore recommended by Kocmi et al. (2021) as secondary

default metric to complement COMET.

• MBRChrF++: ChrF++ is an optimized variant of ChrF that correlates even better

with human judgements (Popović, 2017). It is expected that MBRChrF++ selects

similar candidates as MBRChrF, but that the output qualtiy of MBRChrF++ is slightly

higher. The comparison of MBRCOMET-20 to the basic string-based metric ChrF and

its more sophisticated variant ChrF++ will reveal on the one hand whether string-

based metrics are more stable regarding German compounds than the neural metric

COMET-20 and on the other hand how well MBR performs in terms of compound

formation compared to beam search.

To gain a rough overview over the quality of the different outputs, they will first be

evaluated in terms of various automatic metrics. The aim of this evaluation is to conduct

a sanity check, which assesses whether all outputs are of a reasonable and comparable

quality. Four different evaluation metrics are chosen for this purpose. Two of them are

string-based metrics, namely BLEU and ChrF++. The other two are the neural metrics

BLEURT-20 and COMET-20. As explained in Chapter 2.2, different types of metrics

exhibit distinct strengths and weaknesses. While the scores generated by string-based

metrics are predictable and allow to examine which sub-string has the largest impact on
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the quality score, neural metrics are able to reward paraphrases and synonyms. To gain

a comprehensive picture of the quality of the MT outputs, both types of metrics were

taken into account. BLEU was chosen because it has long been the most popular MT

evaluation metric. However, ChrF++ generally correlates better with human judgement

and is therefore included in the analyses. BLEURT-20 and COMET-20 were selected

because they are currently considered state-of-the-art with the highest correlation with

human quality scores.

Then, the formation of compounds in the outputs obtained with the aforementioned four

decoding strategies is analysed and compared. The focus of this work is on the incor-

rectly formed, nonsensical compounds. To ensure that all mistranslated compounds are

included in the analysis, a broad definition of compound is adopted. A word is considered

as a compound whenever two (or more) constituents are identifiable, even if one (or more)

of these constituents are nonsensical or not entirely correct word stems. An example of an

ill-formed compound in which neither of the components is a correct word stem is Schraub-

schwender, an attempt to translate screw driver (Schraubenzieher in German). The first

compound part lacks the ending -en of the correct stem Schrauben. Such deletions of

characters, as well as insertions of additional characters, are a commonly observed phe-

nomenon in the formation of incorrect compounds. The second part of Schraub-schwender

is completely nonsensical. Nonetheless, the two “stems” are still clearly identifiable as two

parts of a compound. Hence, it is included in the analysis.

Extracting compounds automatically is a complex task and identifying incorrectly formed

compounds that cannot be found in a dictionary or a data corpus is even more challenging.

Therefore, the extraction of ill-formed compounds is approached in a multi-step procedure

that is explained in more detail in the subsequent paragraphs:

1. Automated extraction of unknown words6 from the MT outputs

2. Semi-automatic retrieval of all compounds from the list of unknown words

3. Manual selection of nonsensical compounds from the list of compounds

3.3.1 Extraction of Unknown Words

Incorrectly formed, nonsensical compounds are typically newly invented by the MT model

and are not encountered in an existing data corpus. Hence, in order to identify such novel,

potentially nonsensical items, the words in the MBR-decoded translations are compared

to the words in the training data, i.e. the WMT 2018 News Shared Task corpus excluding

the ParaCrawl dataset, and to the words in the two German references of the WMT

2021 News Shared Task test set. The training corpus consists of large amounts of data.

Hence, a common, canonical word is very likely to appear in it. The reference translations

6Throughout this thesis, a simple operational definition of the term word is used: A word is defined as
the character sequence between two white spaces.
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correspond to the sentences translated via MBR decoding. They enrich the vocabulary

with proper names, numbers and new, but correct compounds that appear in the test

sentences, but that might not be found in the training corpus. A simple pre-processing is

applied to remove punctuation characters, except for hyphens that often form an integral

part of German compounds. This results in a vocabulary with 2,399,484 distinct words.

When a word in the MT output is not found in this large vocabulary, it is reasonable to

infer that the word is a newly formed, non-canonical item.

Finally, each MBR-decoded sentence is compared to its corresponding source sentence,

to exclude untranslated proper names as well as other copied words from the analysis.

Copying of input words is a distinct phenomenon from that of forming novel words and

should be studied separately.

If a machine-translated word is neither found in the large German vocabulary nor in the

source sentence, it is added to the list of “unknown words”. The number of unknown

words encountered in the output is a first indicator of the reliability of a certain decoding

strategy. If the number of unknown words is high, it is very likely that a large part of

them is nonsensical.

3.3.2 Identifying Compounds in the List of Unknown Words

Having identified the unknown, newly created words, the next step is to retrieve the

compounds from that list. This purpose requires a morphological analysis. As outlined

above, automatically conducting a morphological analysis of German words is not trivial,

especially when productive word formation processes such as composition are involved.

Only few tools are designed to handle morphologically productive phenomena in German.

One of them is the Zurich Morphological Analyzer for German (Zmorge) by Sennrich

and Kunz (2014). Zmorge is based on the Stuttgart Morphological Analyzer (SMOR)

(Schmid et al., 2004) that uses finite-state transducers. SMOR splits words into their

morphemes and annotates them with the corresponding tag. In addition to inflection, it

covers productive word formation processes such as derivation and composition (Schmid

et al., 2004). Zmorge uses a slightly modified version of SMOR, with more conventional

lemmatization and tags, and combines it with a large, constantly updated lexicon extracted

from the German Wikitionary that provides additional morphological knowledge (Sennrich

and Kunz, 2014).

Zmorge is used to classify the deduplicated set of unknown words into five different cat-

egories described below. The results returned by Zmorge are then analysed for certain

tags7 listed in Table 2.

According to the appearance of these tags in the analysis returned by Zmorge, the unknown

words are grouped automatically into five classes:

7The list of tags is cited from pub.cl.uzh.ch/users/sennrich/zmorge/

25

https://pub.cl.uzh.ch/users/sennrich/zmorge/


Chapter 3. Analysis of Compound Translations in MBR-Decoded Outputs

tag description

<#> marks the compound boundary

<-> marks the joining element (Fugenelement) in compounds

<TRUNC> marks hyphenation

<∼> marks other morpheme boundaries

Table 2: Zmorge tags related to compounds

• Non-words: If Zmorge is unable to morphologically analyze a certain word and

returns no result for <word>, it is assumed that the respective item is nonsensical

and does not constitute a word.

• Non-nouns / non-compounds: As this work focuses exclusively on nominal com-

pounds, only words tagged as nouns are of interest. Hence, if none of the analyses

by Zmorge contains the tag <+NN>, the item is added to the “no noun” category.

• Known compounds: If one of the analyses returned by Zmorge contains either

the tag <#> or <TRUNC> along with <+NN> it is a compound. For compounds that

exist as lexemes in its vocabulary, Zmorge returns at least one analysis where the

compound is not split up and treated as a conjunct item. In this case, the word

in question is considered as known compound. An example for such an analysis is

given below8:

Schraub<∼>en<#>zieh<∼>er<+NN><Masc><Nom><Sg>
Schraube<∼>n<#>zieh<∼>er<+NN><Masc><Nom><Sg>
Schraubenzieher<+NN><Masc><Nom><Sg>

• New Compounds: If at least one of the morphological analyses includes the tag

<#> together with <+NN> and the word is not known to Zmorge as a lexeme, it is

categorized as new compound. An example is shown below:

Kett<∼>en<#>säule<+NN><Fem><Nom><Sg>
Kette<->n<#>säule<+NN><Fem><Nom><Sg>

• Hyphenated Compounds: If the constituents of a compound are separated by a

hyphen, marked with <TRUNC>, it is assigned to this category.

{Corona}-<TRUNC>Pandemie<+NN><Fem><Nom><Sg>

Inspecting the results of this automatic classification reveals that the accuracy of the

analysis varies considerably between the different categories. While the majority of the

items assigned to new compounds and hyphenated compounds are indeed newly formed

compounds, many items in the class known compounds are actually nonsensical such as

Nacht-brücke (night bridge). In contrast, the category non-compounds contains a few items

8In this and the following examples, only a selection of the analyses by Zmorge is shown.
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that are compounds. Most problematic is the category non-words that includes many

nonsensical compounds for which Zmorge could not find a valid morphological analysis

such as Polizeigelicht, a mistranslation of police custody (Polizeigewahrsam in German).

However, for the purpose of this work, the inclusion of nonsensical compounds in the

analysis is crucial.

Therefore, the automatic classification by Zmorge is manually corrected to identify all

unknown compounds. As composition is a productive morphological process in German,

novel compounds might be correctly formed, valid translations of the source text. There-

fore, the collected compounds are manually classified into correct and incorrect. If nec-

essary, the source and sometimes the reference are consulted to decide if a compound is

correct or not. The resulting list of mistranslated compounds forms the basis for comparing

the performance of different decoding strategies regarding the translation and formation

of German compounds.

3.3.3 Limitations of the Approach

The chosen approach exclusively extracts compounds from the German MT hypothe-

ses, completely ignoring the source sentence. While in most cases, the extracted novel

compound corresponds to a compound in the source as well as in the reference, various

exceptions, where this correspondence does not apply, were observed.

Firstly, a German compound sometimes corresponds to a simple noun in the English

source. An example is the English word tram that translates to German as Straßenbahn.

Any wrong, nonsensical translations such as Straßenbündnis are included in the analysis

of mistranslated compounds. Secondly, the opposite case where an English source com-

pound corresponds to another syntactical construction in German, was also observed. For

example, the most idiosyncratic translation of the Chengdu consulate is das Konsulat in

Chengdu. The German compound das Chengdu-Konsulat sounds unnatural and is in-

cluded in the list of nonsensical compounds. In other cases, German compounds appear

in the translation hypothesis, although neither the source nor the reference words are

compounds.9 These three cases are methodologically unproblematic as they concern a

nonsensical form of a German compound and are hence included in the analysis.

However, such mismatches between syntactical constructions in the source and the target

language complicate the task of semi-automatically identifying mistranslated compounds

and hint at the limitations of the chosen approach.

An English compound might be translated with an inappropriate syntactical construc-

tion in the hypothesis. For example, no-confidence motion corresponds to the German

compound Misstrauensantrag, but is translated as vertrauensloser Antrag in the MT out-

put. The approach is unable to capture wrong translations of English compounds, if they

9See Tables 23 and 27 in Appendix B for examples.
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consist of canonical but inappropriate words.

Moreover, canonical compounds that appear in the hypothesis are discarded from the anal-

ysis, as it is assumed that well-formed compounds are correct translations. However, there

is no guarantee that this is indeed the case. On the contrary, the hypotheses sometimes

contain a canonical but inappropriate compound. For instance, baboon attacks is wrongly

translated as Bombenangriffe (bomb attacks). Even though this translation conveys a very

different meaning, it is disregarded in the analysis as Bombenangriffe is a canonical word.

These limitations need to be taken into account when the results of the analysis are

interpreted. The mere number of incorrectly formed compounds alone is not sufficient

to draw a reliable conclusion on a metric’s blind spot. Nonetheless, the frequency of ill-

formed compounds in the MT output are a first indicator of which metrics exhibit special

difficulties, as it can be assumed that the mentioned limitations apply to all decoding

strategies to a similar extent.

3.4 Results

This section presents the results of the analyses described in the previous paragraphs. To

ensure that the general quality of the MT outputs obtained with different decoding strate-

gies is comparable, a quality evaluation in terms of various MT metrics was conducted.

The results are shown in Table 3.

BLEU ChrF++ BLEURT-20 COMET-20

Beam Search 26.220 52.961 62.841 0.2601

MBR ChrF++ 20.941 48.330 52.114 -0.1084

MBR ChrF 20.390 48.156 51.825 -0.1225

MBR COMET-20 16.980 44.580 57.281 0.2440

Table 3: Evaluation of the translation quality in terms of automatic metrics

According to all four evaluation metrics, the beam search outputs are clearly of the high-

est quality. The metrics agree that the MBR-decoded outputs do not achieve the quality

of the beam search outputs, but three of the four metrics consider them to be of rea-

sonable quality. While the two metrics based on lexical overlap between the hypothesis

and the reference, BLEU and ChrF++, prefer outputs generated with a surface-overlap

metric as utility function, the neural metric BLEURT-20 favorizes outputs obtained with

MBRCOMET-20. Interestingly, the evaluation metric COMET-20 shows a strong preference

for MBR outputs generated with itself as utility function and for beam search outputs.

Translations generated with string-based utility functions are deemed to be of much infe-

rior quality. This quality gap is clearly larger than the one observed in the BLEURT-20

ratings.
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Having confirmed that the MBR-decoded outputs are of reasonable quality, the compounds

in the four MT output sets, each containing 1002 sentences, are analysed according to the

procedure described in 3.3. The results of this analysis are shown in Table 4.

Unknown Words New Compounds Mistranslated Compounds

Beam Search 461 374 241

MBR ChrF++ 790 476 386

MBR ChrF 844 511 415

MBR COMET-20 855 553 447

Table 4: Unknown words, newly formed compounds and mistranslated compounds found
in the output sentences of different decoding strategies

The results demonstrate that MBR decoding, regardless of which utility function was

applied, generates by far more unknown words, and in consequence more novel and ill-

formed compounds, than beam search decoding. Nonetheless, the utility function still

has an effect on the number of unknown words. COMET-20 seems to be less sensitive to

new, and possibly incorrectly formed words and compounds in the translation candidates.

It selects candidates containing unknown words more often than the utility functions

ChrF++ and ChrF. In the analysed 1002 sentences, the MBRCOMET-20 outputs contain

almost twice as many unknown words and mistranslated compounds than the beam search

outputs.

As expected, a large portion of the unknown words are compounds since composition is a

productive morphological process in German that is frequently used in the news domain.

The exact proportions are given in Table 5.

Compounds/Unknown Mistranslated/Compounds

Beam Search 81.12 % 64.45 %

MBR ChrF++ 60.25 % 81.09 %

MBR ChrF 60.54 % 81.21 %

MBR COMET-20 64.68 % 80.83 %

Table 5: Portion of compounds among the unknown words and portion of mistranslated
compounds among the compounds

The results highlight that especially in the beam search outputs most unknown words are

compounds. This rate is clearly lower for the MBR outputs. In addition, it stands out that

more than 80 % of the unknown compounds found in the MBR outputs are incorrectly

formed, nonsensical translations. Regarding the beam search outputs, the proportion of

mistranslations among unknown compounds is still high, but clearly lower than in MBR

decoding.

To gain further insights into which types of unknown words occur most frequently with a

certain decoding strategy, the results are analysed per morphological category in Table 6.
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The table shows the number of unknown items (Its.) found in each of the five categories

presented in 3.3.2 and the number of compounds (Comp.) identified among these items.

Decoding New Known Hyphenated Non-Nouns Non-Words

Its. Comp. Its. Comp. Its. Comp. Its. Comp. Its. Comp.

Beam Search 157 156 6 3 155 153 27 1 116 61

MBR ChrF++ 301 275 4 2 93 87 74 12 318 100

MBR ChrF 322 298 6 4 98 92 81 9 337 108

MBR COMET 310 295 14 12 125 121 71 11 335 114

Table 6: The number of items (Its.) in each morphological category after the automatic
classification with Zmorge and the number of manually identified compounds
(Comp.) in each category

When compared to beam search, all three MBR-based decoding strategies output about

twice as many new and nonsensical compounds (classified as new and non-words by

Zmorge). Moreover, their outputs contain about three times as many items that are

not nouns, mainly unknown adjectives and verbs. In comparison to the other decoding

methods, MBRCOMET-20 outputs include more items that are considered as “known com-

pounds” by Zmorge. However, as described in 3.3.2, most of these items are actually

nonsensical.

Interestingly, beam search shows a much stronger preference for hyphenated compounds

than MBR decoding. More than 40 % of the unknown compounds in the beam search

outputs are hyphenated, while this portion is about 20 % for all three MBR utility func-

tions.

3.5 Discussion

The results presented in the previous section highlight several interesting phenomena that

are discussed in the following paragraphs.

3.5.1 Automatic Evaluation of Translation Quality

The automatic evaluation with different MT metrics revealed that string-based metrics

prefer MBR outputs obtained with a string-based metric as utility function while neural

metrics favor outputs generated with a neural metric as utility function. The effect is

strongest if a metric evaluates MBR outputs produced with itself as utility function, as

the results for ChrF++ and, in particular, COMET-20 show. This “metric overfitting” has

been previously reported by Fernandes et al. (2022). They observe that the “metric gap”

is largest for COMET-20. This finding coincides with the results in Table 3. However,

the strength with which COMET-20 favors translations generated with itself as utility
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function is unexpectedly high and by far exceeds the metric gap reported in Fernandes

et al. (2022). This problem is further addressed in 6.1.

3.5.2 Translation of Compounds

The results in Table 4 illustrate that MBR decoding generates more unknown and, con-

sequently, more incorrectly formed compounds than beam search. This finding is in line

with my expectations. Unbiased MBR decoding is based on a candidate pool generated

via ancestral sampling on sub-word level. In contrast to beam search, ancestral sampling

is not a path-finding algorithm and hence lacks a mechanism to control that the drawn

and juxtaposed sub-words result in a correct and meaningful word. As a result, the word

formation process is more susceptible to errors such as insertion or deletion of characters

or wrong combinations of compound constituents. In consequence, the available candi-

dates from which the utility function can choose are generally of a lower quality than

beam search translations and contain more unknown, non-canonical words. Hence, it is

inevitable that the final outputs exhibit a higher number of incorrect, unknown and pos-

sibly nonsensical words. Improving the quality of the candidate pool without introducing

a strong bias is of crucial importance for future deployment of MBR decoding, but it is

not the focus of this work as it is outside the responsibility of the utility metrics.

What is of interest here, is the question of how the different utility functions of MBR

decoding perform regarding nonsensical compounds, as this comparison allows to reveal

potential blind spots of a metric. The results in Tables 4 and 6 highlight that COMET-20

is insensitive to newly formed words, and in particular to ill-formed compounds. The

translations chosen by COMET-20 exhibit a large amount of unknown words that is in a

similar range as that of ChrF and clearly higher than that of ChrF++. The performance

difference between COMET-20 and ChrF++ is even more striking regarding mistranslated

compounds. COMET-20 even performs worse than ChrF.

These results are surprising as COMET-20 is widely praised for its high correlation with

human judgement, while string-based metrics are criticized for correlating poorly with

human quality scores (Fernandes et al., 2022; Kocmi et al., 2021; Freitag et al., 2021b,a).

It is particularly unexpected that ChrF outperforms COMET-20 regarding the sensitivity

to poorly translated compounds, as ChrF is a relatively simple metric based on character

overlap, while its variant ChrF++ is slightly more sophisticated.

Finally, the results in Table 6 underline that beam search decoding generates especially

many hyphenated compounds. The reasons for this preference are unclear and I leave it

to future work to investigate them.

In conclusion - even though the analysis should be taken with a grain of salt as outlined in

3.3.3 - the results indicate that the supposition of Amrhein and Sennrich (2022) is correct

and nonsensical compounds are indeed a weakness of COMET-20. This unpredictable

behavior is concerning as COMET was proposed as the new default evaluation metric
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that should be widely adopted in future work (Kocmi et al., 2021). Therefore, it is crucial

to understand COMET’s blind spots and weaknesses.

For this purpose, further experiments were conducted aiming at 1) quantifying the sensi-

tivity of COMET-20 towards compounds and 2) finding strategies that enhance the sensi-

tivity of neural metrics towards German compounds. The experimental setup is described

in the next chapter.

Moreover, the preliminary analysis raised questions related to the issue of metric overfit-

ting. As an aside of the subsequent experiments, the metric gap of COMET-20 observed

in the automatic evaluation will be further investigated as well.
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Compounds

As the preliminary MBR-based analysis in Chapter 3 uncovered, COMET-20 is less sen-

sitive to incorrectly formed German compounds than the string-based evaluation metrics

ChrF and ChrF++. Thus, the question arises whether it is possible to increase COMET’s

sensitivity towards the correct formation of German compounds.

To elevate COMET’s sensitivity towards specific linguistic phenomena, I will experiment

with exchanging one of the building blocks of COMET-20: the underlying language model,

XLM-RoBERTaLarge (Conneau et al., 2020). This multilingual model is pre-trained with

the Masked Language Modelling objective using Sub-Word Masking (SWM). Hence, the

model only has to predict one sub-word (or token) of a word, while the other sub-words

are visible to the model which considerably facilitates the task.

German compounds are complex words that consist of at least two constituents, which are

most likely split up into two or more sub-words during pre-training. It is therefore possible

that models pre-trained with SWM do not sufficiently learn about the relationship between

the different components of a compound. The observed error types described in 3.2 and in

Appendix B are in line with this assumption. The MBRCOMET-20 outputs contain many

examples of compounds where one constituent was translated correctly, while the other

one is wrong.

One way to force the model to pay attention to an entire word, is by using Whole Word

Masking (WWM) in pre-training. As explained in 2.4, WWM masks all sub-words of

a word simultaneously, which renders the task to reconstruct the word more challenging.

Even though each sub-word is still predicted independently, the model is forced to produce

all parts of a word. Thus, it is likely that the model gains a better notion of what a word

is and which sub-words belong together.

Hence, it is reasonable to assume that models pre-trained with WWM are better at dealing

with German compounds. This and the subsequent chapters shed light on this hypothesis.

To investigate the effect of WWM on the translation of compounds, I will train new neural

metrics and use them as utility function in MBR decoding.

The German language model GBERT (Chan et al., 2020) will form the basis of the newly

trained metrics, as it is available in two flavours: pre-trained 1) with Sub-Word Masking

and 2) with Whole Word Masking while everything else is kept constant.
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Different types of metric models will be trained. On the one hand, the new metrics should

be comparable to COMET-20 to which Chapter 3 was dedicated. For this purpose, two

German COMET (GCOMET) models are trained, based on the two GBERT variants.

To use the multilingual COMET framework with a monolingual German model, some

adaptations in its architecture are necessary (cf. 4.2.2). Hence, GCOMET is not en-

tirely comparable to COMET-20. To allow for a fairer comparison, COMETContrastive is

trained. The only difference to GCOMET is that it is based on the multilingual XLM-

RoBERTaBase. It serves to investigate the effect of different underlying language models

and to compare the multilingual to the monolingual setting.

On the other hand, two German BLEURT (GBLEURT) models will be trained, based on

the two variants of GBERT. In contrast to COMET, BLEURT was originally designed for

the monolingual evaluation setting and can be easily adapted to the purpose of this work.

Training two distinct types of metrics that are otherwise as similar as possible, using

the same underlying language model and the same training data, allows for insights into

the effects of different metric architectures. This will shed light on the question whether

German compounds are generally a blind spot of neural metrics or whether they are

a specific weakness of COMET. Further, it allows us to investigate whether the different

architectures have an impact on the metrics’ sensitivity towards other linguistic phenomena

and whether the effects of WWM vs. SWM are the same for both metric types.

To answer these questions, various experiments will be conducted. They will not only

measure the sensitivity of different metric types towards specific linguistic phenomena, but

they will also elucidate the issue of metric overfitting and explore different implementations

of MBR decoding.

Before the experimental setup and the experiments are described, the theoretical frame-

work of the deployed models and the data sets are outlined in the next section.

4.1 Materials and Methods

To better understand the models and frameworks that were used for the experiments,

their theoretical background is elucidated in this section. The metrics trained for this

thesis are based on German BERT (GBERT) embeddings described in 4.1.1. Then, the

BLEURT and COMET frameworks are delineated in 4.1.2 and 4.1.3 respectively. Fi-

nally, the datasets used to train and evaluate the GBLEURT and GCOMET models are

described in 4.1.4.

4.1.1 GBERT

To investigate the effect of WWM in comparison to SWM, I work with the embeddings of

two German BERT models (GBERT) provided by Chan et al. (2020) to train my German

34



Chapter 4. Enhancing the Sensitivity towards German Compounds

COMET and BLEURT metrics. GBERTWWM is pre-trained with Whole Word Masking

and is publicly available on Hugging Face as deepset/gbert-base.1 GBERTSWM is pre-

trained in the exact same way, except that it uses Sub-Word Masking instead of WWM.

This model is not publicly available. The authors of GBERT shared it with me upon my

request.

I chose to work with the two GBERT models, because they enable a direct comparison

between SWM and WWM and their effect on the final performance of the fine-tuned

metric model on a downstream task, i.e. scoring the quality of a translation candidate.

Moreover, GBERT uses a cased vocabulary, which is important when investigating the

model’s sensitivity towards errors in German compounds, as German nouns always start

with a capital letter.

The GBERT models use the same architecture and training objectives as the original

BERT model (Devlin et al., 2019). BERT, and hence GBERT, use a bidirectional approach

to pre-train deep representations that are conditioned on both the left and right context of

a word in all layers (Devlin et al., 2019). BERT takes as input either a single sentence or a

sentence pair. Each sequence starts with the special [CLS] token. Its final hidden state is

regarded as an aggregated summary of the information contained in the encoded sequence

and is used as input to classification and regression tasks. If the input is a sentence pair,

sentence A and sentence B are separated by the special [SEP] token. BERT represents

an input token as the sum of three embeddings: 1) the token embedding, 2) the segment

embedding that indicates whether the token belongs to sentence A or B and 3) the position

embedding that indicates the token’s position within the entire sequence (Devlin et al.,

2019).

The pre-training of GBERT involves two different objectives: Next Sentence Prediction

(NSP) and Masked Language Modelling (MLM). In the NSP task, the model learns to

understand the relationship between sentences by predicting whether sentence B is the

next sentence that follows sentence A. For this task, GBERT encodes sentence pairs. In

the MLM objective, GBERT predicts the masked tokens. The masking can either be

applied on sub-word or on whole word level (cf. 2.4).

Both GBERTWWM and GBERTSWM have been pre-trained on the same large-scale corpus

consisting of German monolingual, unlabelled data sets with a total size of 163.4 GB.

Specifically, the German parts of the corpora (see Suárez et al., 2019; Tiedemann, 2012;

Ostendorff et al., 2020) listed in Table 7 were used as training data. As the majority of

these texts were scrapped from the internet, Chan et al. (2020) emphasise that the GBERT

models might have learned various kinds of biases present in the data. One should keep

that in mind when analysing results from experiments with language models.

To train the GBERT models, Chan et al. (2020) use the official Tensorflow training script2

1huggingface.co/deepset/gbert-base
2github.com/google-research/bert
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Dataset Description Size in GB

OSCAR Pre-processed Common Crawl texts 145

OPUS Texts from various domains 10

(movie subtitles, speeches, books, etc.)

Wikipedia Pre-processed Wikipedia texts 6

OpenLegalData Court decisions 2.4

Table 7: Training data of the GBERT models.

of BERT. The models correspond to BERTBase in size, having 110 million parameters.

Apart from the different masking strategies, GBERTSWM and GBERTWWM are trained

with the same hyperparameters (cf. Chan et al., 2020).

4.1.2 BLEURT

BLEURT3 is a reference-based neural evaluation metric designed to predict human judge-

ments of translation quality as precisely as possible. The original version of BLEURT

(Sellam et al., 2020a) is based on BERT embeddings and is limited to English sentences.

To evaluate a certain MT hypothesis, it encodes this hypothesis along with the reference

as a sentence pair.

The training of BLEURT involves three different steps:

1. the normal BERT pre-training as defined in Devlin et al. (2019),

2. further pre-training on a large corpus of synthetic data to enhance BLEURT’s ro-

bustness,

3. fine-tuning BLEURT in a regression task on task-specific ratings from the WMT

Metrics Shared Task.

The regular BERT pre-training is not discussed here and I refer the reader to Devlin et al.

(2019) and to Section 4.1.1 for details. The additional pre-training step aims at fostering

BLEURT’s robustness to variation in the references, potential errors in the MT hypotheses

and domain shift. The synthetic data is perturbed to imitate the variation and mistakes

introduced by MT models, e.g. phrase substitution, lexical alterations, paraphrases, noise,

omissions, sentence truncation and void predictions. Sellam et al. (2020a) define four pre-

training tasks on the synthetic data set and combine the different loss functions in a

weighted sum.

Finally, the model is fine-tuned for quality evaluation in a regression task. BERT (Devlin

3Bilingual Evaluation Understudy with Representations from Transformers
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et al., 2019) converts a reference sentence x with the tokens (x1, ...,xr) and a MT hy-

pothesis x̃ consisting of the tokens (x̃1, ..., x̃p) into a sequence of contextualized vectors,

formalized by Sellam et al. (2020a) as:

BERT (x, x̃) = v[CLS],vx1 , ...,vxr ,vx̃1 , ...,vx̃p (4.1)

where v[CLS] represents the special [CLS] token of BERT that is prepended to every

encoded sequence. On top of this CLS vector, Sellam et al. (2020a) add a linear layer

that learns to predict the quality scores assigned by human annotators to a translation

hypothesis. Hence, Sellam et al. (2020a) describe the regression task as:

ŷ = f(x, x̃) = Wṽ[CLS] + b (4.2)

where ŷ denotes the predicted rating, W the weight matrix and b the bias vector. In the

regression task, both the BERT parameters as well as the linear layer are fine-tuned on

the supervised data set using the mean squared error (MSE) as regression loss (Sellam

et al., 2020a):

lsupervised =
1

N

N∑
N=1

||yi − ŷ||2 (4.3)

The regression task is trained on the WMT Metrics Shared Task data sets from the years

2017 to 2019 using only to-English language pairs. At the time of its release, BLEURT

established a new state-of-the-art regarding the correlation with human judgement in

terms of Kendall’s Tau (Sellam et al., 2020a).

Later, Sellam et al. (2020b) extended BLEURT to other languages by using embeddings

from the multilingual mBERT4 model (Devlin et al., 2019), which was pre-trained on

Wikipedia data in 102 languages (Mathur et al., 2020). For this multilingual BLEURT

model, they omitted the second step of further pre-training and directly fine-tuned the

regression layer on top of the CLS vector. Subsequent work by Pu et al. (2021) used the

multilingual RemBERT embeddings (Chung et al., 2021) and distilled the large BLEURT

model into a smaller model. Their experiments lead to the development of the currently

recommended multilingual BLEURT-20.

4.1.3 COMET

The COMET5 framework has been developed by Rei et al. (2020a) to predict various

kinds of human assessment scores, such as Direct Assessment (DA), Multidimensional

Quality Metrics (MQM) or Human-mediated Translation Edit Rate (HTER). COMET is

a mulitlingual framework based on pre-trained embeddings of XLM-RoBERTa (Conneau

et al., 2020). The multilingual embedding space allows COMET to consider not only

4github.com/google-research/bert
5Crosslingual Optimized Metric for Evaluation of Translation
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the MT hypothesis and the reference, but also the source sentence, which leads to higher

correlation with human judgements. This stands in contrast to BLEURT and most other

reference-based metrics that ignore the source sentence.

Many different models have been trained under the COMET framework, estimator models

as well as translation ranking models, reference-based as well as reference-free models. In

the following paragraphs, I will focus on the two models that are relevant to my own work:

• wmt20-comet-da (COMET-20) is a COMET regression model trained to predict a

DA score given the source, the MT hypothesis and the reference.

• wmt20-comet-qe-da (COMET-QE) is a reference-free COMET regression model

trained to predict a DA score given the source and the MT hypothesis.

At the time when I started to work on this thesis, these two models were the recommended

default models. Only recently, they were replaced by the newest COMET models (Rei

et al., 2022).

Both models are based on three major building blocks: 1) a cross-lingual encoder, 2) a

pooling layer and 3) a predictive neural network that regresses on human DA scores.

Cross-lingual encoder: The pre-trained cross-lingual encoder produces token-level em-

beddings for the source, the hypothesis and the reference. Thanks to the multilinguality of

the encoder, the source is mapped to the same feature space as the hypothesis and the ref-

erence (Rei et al., 2020a). COMET-20 and COMET-QE both rely on XLM-RoBERTaLarge

to encode the input sentences (Rei et al., 2020b), but the COMET framework can be used

with other encoders such as BERT or XLM.

Pooling Layer: Different layers of the pre-trained encoder may contain different kinds

of linguistic information (Zhang et al., 2020). To leverage as much linguistic knowledge

as possible, Rei et al. (2020a) use a layer-wise attention mechanism to combine the em-

beddings of various encoder layers for each token. Then, they apply average pooling to

convert the sequence of token embeddings into a single segment-level representation for

each input.

Estimator Model: Rei et al. (2020a) extract the following features from the segment-

level embeddings of the source s, the hypothesis h and the reference r:

• Element-wise source product: h⊙ s

• Element-wise reference product: h⊙ r

• Absolute element-wise source difference: |h− s|

• Absolute element-wise reference difference: |h− r|

These combined features emphasize the differences between the embeddings in the seman-

tic feature space. Rei et al. (2020a) concatenate them to the embeddings of the hypothesis
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h and the reference r. The source embedding s is not included as the semantic feature

space between different languages is only loosely aligned (Rei et al., 2020a). Hence, this

method results in the final feature vector:

x = [h; r;h⊙ s;h⊙ r; |h− s|; |h− r|] (4.4)

The input vector x is fed into a feed-forward regressor which is trained to minimize the

mean squared error (see Equation 4.3) between the predicted score and the actual human

score (Rei et al., 2020a). Hence, the COMET estimator model uses the same training

objective as BLEURT. However, the features in their input vectors differ: While BLEURT

inputs the [CLS] embeddings of a sentence pair (r, h), COMET extracts additional features

that combine the information from the different embeddings and concatenates them to r

and h.

COMET-20 regresses on z-normalized Direct Assessment scores from the WMT 2017 to

2019 data sets including 24 language pairs (Rei et al., 2020a,b). It correlates well with

human judgements on segment-level and system-level (Mathur et al., 2020), differentiates

successfully between high-performing MT systems and is currently regarded as the top-

performing metric (Kocmi et al., 2021).

COMET-QE is a reference-free quality estimation model. It is based on the same ar-

chitecture as COMET-20 with the difference that it does not include the reference. In

consequence, it extracts only two instead of four combined features: the element-wise

source product h⊙ s and the absolute element-wise source difference |h− s|. In contrast

to the reference-based COMET models, COMET-QE includes the source embedding s in

the final feature vector in exchange for the reference embedding. Hence, the input vector

to the feed-forward regression layer is:

x = [h; s;h⊙ s; |h− s|] (4.5)

The dimensions of the feed-forward layer are reduced to match the reduced size of the

input vector (Rei et al., 2020b, 2021). COMET-QE was trained on DA scores from the

WMT 2017 to 2019 data sets. In the WMT 2020 Metrics Shared Task, it showed a

competitive performance and was the only system able to differentiate correctly between

human translations and MT output (Mathur et al., 2020).

4.1.4 Data Sets

Following both Sellam et al. (2020a) and Rei et al. (2020b), I train the GBLEURT and

GCOMET models on the Direct Assessment data sets from the WMT 2017 to 2019 Metrics

Shared Tasks (Bojar et al., 2017; Ma et al., 2018, 2019) and evaluate them on the official

WMT 2020 Metrics Shared Task data set (Mathur et al., 2020). The WMT Metrics Shared

Task is considered the reference benchmark for the evaluation of metrics that assess the
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quality of MT outputs (Sellam et al., 2020b).

The data sets provide for each segment the source sentence, one or more reference trans-

lations and the hypotheses generated by the MT systems that participated in the WMT

News Shared Task of the respective year. The adequacy of the translation hypotheses is

rated by human annotators on a continuous scale from 0 to 100. The resulting Direct

Assessment scores are normalized for each annotator yielding a z-score (Mathur et al.,

2020).

GBLEURT, GCOMET and COMETContrastive are trained to predict the z-scores given

a German hypothesis and a German reference. For the training, I use the to-German

portion of the WMT 2017 - 2019 Metrics Shared Task data sets as provided by the authors

of COMET on their Github page.6 The number of segments in the training set and the

language pairs from which the segments were extracted are described in Table 8.

WMT segments language pairs

2017 7 025 en→de

2018 10 208 en→de

2019 42 118 en→de, fr→de

total 59 351 en→de, fr→de

Table 8: Training data for GBLEURT, GCOMET and COMETContrastive

As development set, 100 source sentences and their corresponding hypotheses and ref-

erences were chosen from the WMT 2020 Metrics Shared Task data set as provided by

Unbabel.7 As each source segment was translated by various participating MT systems,

the development set contains 722 hypotheses. These segments overlap with the test set.

However, the performance on the development set is exclusively used for early stopping.

It is not used for hyperparameter fine-tuning or to guide any other decision related to

the training of the metric models. Therefore, no data leakage occurs during the training

process.

To evaluate the metric models, the official test set newstest2020 of the WMT 2020

Metrics Shared Task is used, as provided by its organizers.8 Since the trained models

are monolingual, they were only evaluated on to-German segments. These 19 852 German

translation hypotheses were generated by 14 different MT systems.

6github.com/Unbabel/COMET/blob/master/data/README.md
7github.com/Unbabel/COMET/blob/master/data/README.md
8WMT20 data: newstest2020txt-v2.tar.gz
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4.2 Experimental Setup

Having outlined the theoretical background, this section describes the German BLEURT

(GBLEURT) and the German COMET (GCOMET) models trained to investigate the

major research question of this work: Does Whole Word Masking increase the sensitivity

of neural metrics towards mistakes in German compounds?

To extend the scope of the thesis beyond the monolingual setting, COMETContrastive is

trained, that is based on the multilingual XLM-RoBERTaBase, to elucidate the effect of a

multilingual compared to a monolingual model.

4.2.1 GBLEURT

The BLEURT architecture is chosen because it is a reference-based neural evaluation

metric that does not rely on the source segment. Hence, it was originally designed for the

monolingual setting studied in this work. It is well-suited to be used in combination with

the monolingual GBERT models.

As explained in 4.1.2, BLEURT relies on three different building blocks. Firstly, it builds

on a large pre-trained language model. For the purpose of this thesis, two metric models

are trained that rely on two variants of GBERT (Chan et al., 2020): GBERTSWM and

GBERTWWM. In analogy, the two resulting metric models are dubbed GBLEURTSWM

and GBLEURTWWM respectively. Both variants of GBERT use a cased vocabulary and

are of the size of BERTBase having 12 layers, 768 hidden units and 12 attention heads

(Chan et al., 2020).

Secondly, BLEURT is additionally pre-trained on a large corpus of synthetic data to

promote its robustness. This step is omitted for GBLEURT, as such a massive pre-

training is beyond the scope and the resources of this work. In addition, Sellam et al.

(2020a) conclude that, even though skipping the additional pre-training harms the model

slightly, BLEURT is still competitive and Sellam et al. (2020b) omit this step for the

multilingual BLEURT. Hence, the resulting GBLEURT models are nevertheless expected

to be a good choice and to exhibit a competitive performance.

Thirdly, GBLEURT is fine-tuned on a regression task to predict human quality scores given

a reference and an MT hypothesis. The fine-tuning follows the procedure in Sellam et al.

(2020a), described in 4.1.2. The underlying GBERT model encodes the reference x and

the hypothesis x̃ as a sentence pair. This results in a sequence of contextualized vectors

for the reference tokens (x1, ...,xr) and the hypothesis tokens (x̃1, ..., x̃p). As GBERT

belongs to the family of BERT models, it uses the special [CLS] token at the beginning

of the encoded sequence. The representations of the reference and the hypothesis are

separated by the [SEP] token.

GBERT (x, x̃) = v[CLS],vx1 , ...,vxr ,v[SEP ],vx̃1 , ...,vx̃p (4.6)
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On top of the final hidden state of the [CLS]-vector, the linear regression layer is added as

described in Equation 4.2. The regression layer as well as the parameters of GBERT are

fine-tuned on Direct Assessment scores for German segments. The training data corre-

sponds to the German portion of the data sets from the WMT 2017 - 2019 Metrics Shared

Task as described in 4.1.4. Mean squared error is used as regression loss as formalized in

Equation 4.3.

The final architecture of the GBLEURT models is depicted in Figure 2.

Figure 2: Architecture of GBLEURT

For training, the same hyperparameters as in Sellam et al. (2020a) were used, with two

exceptions. As the training set is considerably smaller than that of the original BLEURT,

the number of training steps for fine-tuning is reduced from 40 000 (Sellam et al., 2020a)

to 20 000 for GBLEURT. With the given training corpus and batch size, 20 000 training

steps correspond to iterating through the entire corpus approximately ten times. Training

and evaluation are run in parallel. According to the reduced number of training steps,

the model is evaluated and saved every 500 steps on the validation data (in contrast to

BLEURT which is evaluated every 1 500 steps (Sellam et al., 2020a)). The full list of

hyperparameters is shown in Table 16 in Appendix A.

The training scripts were implemented using the Hugging Face library9. The models

are trained on a NVIDIA GeForce GTX TITAN X for approximately 37 hours in the

case of GBLEURTWWM and 39 hours in the case of GBLEURTSWM. After training,

the best model checkpoint is chosen based on its performance on the validation data. For

GBLEURTSWM, the best checkpoint was obtained after 1 000 steps. For GBLEURTWWM,

the model reached its best performance after 3 500 steps.

9huggingface.co/
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The [CLS]-vector on which the regression layer is built has a fixed-width of 512 tokens.

In order to avoid that the model is trained on truncated examples, sentence pairs (i.e.

the reference and hypothesis together) with more than 512 tokens are filtered out from

the training data prior to training. The filtering, though, revealed that none of the sen-

tence pairs in the training corpus exceeded 512 tokens. In contrast, the test set contains

such examples. However, to ensure that the model produces predictions for every input

example, filtering is not applied at inference time. Rather, sentence pairs exceeding the

maximum sequence length are truncated.

4.2.2 GCOMET

Based on the observations by Amrhein and Sennrich (2022), the preliminary analysis of

metrics’ blind spots focused on COMET-20 as exemplary showcase of neural metrics. As

the analysis demonstrated that COMET-20 is not sensitive enough towards mistakes in

German compounds, it is of particular interest to investigate whether said sensitivity could

be improved when COMET builds on an encoder pre-trained with WWM.

However, GBERT that is available in the two pre-training flavours SWM and WWM is

a monolingual German model. Consequently, it cannot readily be used with COMET

that relies on a cross-lingual encoder. To enable the usage of GBERT with COMET, the

framework has to be adapted to the monolingual setting. These adaptations are described

in the following paragraphs.

In the monolingual setting, the source is discarded from the analysis and the dimensions of

COMET have to be reduced accordingly. Such a dimension reduction to adjust COMET to

only two instead of three input segments was already implemented by Rei et al. (2020a,b)

to obtain a reference-free quality estimation metric that considers the source and the

hypothesis.

For the purpose of this thesis, the reference-free COMET-QE model wmt20-comet-qe-da

is adapted to the monolingual setting and transformed into a source-free, reference-based

model. As outlined in 4.1.3, the COMET framework relies on three major building blocks.

For GCOMET, these blocks were adjusted as follows:

Firstly, the cross-lingual encoder of COMET-QE is replaced with the monolingual GBERT

model. Instead of the source, the reference is encoded along with the hypothesis. Like for

GBLEURT, two variants are trained based on the two versions of GBERT: GCOMETSWM

and GCOMETWWM.

Secondly, a pooling layer is added that extracts the most relevant linguistic information

from each encoder layer and summarises the token embeddings in a single segment-level

representation. For GCOMET, the pooling layer of the COMET-QE model is used without

modification.

Thirdly, the estimator model is trained in a regression task to predict human quality scores
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given a reference and an MT hypothesis. In the COMET framework, the input vector

to the regression layer is a concatenation of segment-level representations and extracted

features. The feature vector for GCOMET is constructed in analogy to that of COMET-

QE (cf. Equation 4.5) replacing the source with the reference. That means, that the

element-wise reference product h ⊙ r and the absolute element-wise reference difference

|h − r| are extracted and concatenated to the embeddings of the hypothesis h and the

reference r. This results in the final feature vector:

x = [h; r;h⊙ r; |h− r|] (4.7)

This feature vector is fed into the feed-forward regression layer. Like GBLEURT, the

two GCOMET regression models are trained on Direct Assessment scores for the German

segments of the data sets from the WMT 2017 - 2019 Metrics Shared Task (cf. 4.1.4).

Mean squared error as defined in Equation 4.3 is used as regression loss.

The architecture of the GCOMET models is illustrated in Figure 3.

Figure 3: Architecture of GCOMET

To train GCOMET, the same hyperparameters were used as for wmt20-comet-qe-da (cf.

Rei et al., 2021). The most relevant hyperparameters are summarised in Table 17 in

Appendix A. GCOMET is implemented as a PyTorch Lightning10 model like all other

models of the COMET family. The models were trained on a NVIDIA GeForce RTX

3090 for around 2.5 hours. After training, the model with the best performance on the

validation data was chosen. For GCOMETSWM as well as for GCOMETWWM, the best

model was obtained after 11 130 training steps.

10pytorchlightning.ai
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4.2.3 COMETContrastive

The newly trained GCOMET models are monolingual German models, while the original

COMET-20 is a multilingual model. This difference might play a role in the model’s sen-

sitivity towards German compounds and is worth to be investigated. However, GCOMET

and COMET-20 are not directly comparable. Firstly, COMET-20 is trained on DA scores

for all languages of the WMT 2017 - 2019 Metrics Shared Tasks, while GCOMET has

only seen the German portions of these data sets. Secondly, COMET-20 receives addi-

tional information from the source segment. Thirdly, the underlying language model of

COMET-20, XLM-RoBERTaLarge, is much larger than that of GCOMET as shown in

Table 9 (cf. Conneau et al. (2020)).

Model Languages Layers Hidden States Attention Heads Vocab Params

GBERT 1 12 768 12 31k 110M

XLM-RBase 100 12 768 12 250k 270M

XLM-RLarge 100 24 1024 16 250k 550M

Table 9: Sizes of different language models

Hence, when comparing GCOMET to COMET-20 it would remain unclear to what extent

observed differences are owed to the effect of multilinguality and to what degree they must

be attributed to the bigger size of the underlying language model, the larger amount of

training data and the additional information from the source.

In order to assess the impact of multilinguality on the model’s sensitivity to specific lin-

guistic phenomena more reliably, COMETContrastive was trained. It is designed to be as

comparable as possible to GCOMET, differing only in the chosen encoder.

COMETContrastive is based on XLM-RoBERTaBase (Conneau et al., 2020), which is more

comparable in size to GBERT (cf. Table 9). XLM-RoBERTaBase covers 100 languages

and is pre-trained on a clean Common Crawl corpus with a masked language modelling

objective using sub-word masking.

COMETContrastive is trained with the same hyperparameters and on the same data sets as

the two GCOMET models (see Table 17 in Appendix A). The best model was obtained

after 18 550 training steps. Like GCOMET, COMETContrastive encodes the reference and

the MT hypothesis. The source segment is disregarded in order to avoid that the model

has access to additional information.

4.2.4 Evaluation

Before the newly trained metrics are deployed in MBR decoding, their performance is

evaluated on a standard test set, to verify that they are of reasonable quality. To ensure

the comparability with other models, the official evaluation procedure of the WMT 2020
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Metrics Shared Task (Mathur et al., 2020) is run.11 The evaluation measures the system-

level Pearson correlation (r) between the predicted DA scores and the actual human scores

defined by Mathur et al. (2020) as:

r =

∑n
i=1(Hi −H)(Mi −M)√∑n

i=1(Hi −H)2
√∑n

i=1(Mi −M)2
(4.8)

where H is the mean human assessment score of all systems in a certain translation

direction and M is the corresponding mean score predicted by a given metric. Hi and Mi

are the scores assigned to the ith MT system by a human and a metric respectively. They

are calculated as the average of all segment-level scores for the given ith MT system.

Table 1012 shows the system-level Pearson correlation of the newly trained metrics on

the WMT 2020 Metrics Shared Task test set for en→de. The results are compared to

the performance of other metrics briefly discussed in Chapters 2 and 4. The left part of

the table reports the correlation over all 14 MT systems for the language pair en→de.

The models trained for this thesis perform slightly worse than the previously existing

multilingual neural metrics. As already noticed by Sellam et al. (2020b), multilinguality

seems to boost correlation of metric models with human judgements. This effect can

be observed for GBLEURT and the multilingual mBERT-L2, that is very comparable in

size and training method, as well as for GCOMET and COMETContrastive. The fact that

COMETContrastive outperforms both GCOMET and GBLEURT underpins the beneficial

impact of multilinguality on system-level correlation with human judgements.

However, this effect disappears when outlier systems are excluded from the evaluation. As

shown in the right part of Table 10, the strongest monolingual model, GBLEURTWWM

outperforms COMETContrastive. In addition, the performance gap between the monolingual

GBLEURT and GCOMET models and the strong multilingual models BLEURTExtended,

mBERT-L2 and COMET-20 shrinks. Moreover, four of the five models trained for this

thesis are not significantly outperformed by any other metric when outliers are removed

from the analysis. This points towards the ability of the metrics to distinguish between

similarly performing MT models. Hence, the results indicate that the five metric models

show a very good performance and can be used for further experiments described in the

subsequent chapters.

Furthermore, the results clearly indicate that WWM in pre-training is beneficial to the

performance of the metric model. The WWM-metrics outperform their SWM-equivalents

in both settings, with and without the outlier systems. Hence, pre-training metric models

with WWM seems to be a promising approach that might improve the quality of outputs

when deployed in MBR decoding.

Finally, the strong results of the lexical metric ChrF and the embedding-based metric

11github.com/WMT-Metrics-task/wmt20-metrics
12The Table corresponds to Table 6 in Mathur et al. (2020).
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en→de

all -out

14 11

L
ex
ic
a
l

BLEU 0.928 0.825

sentBLEU 0.934 0.823

ChrF 0.962 0.862

ChrF++ 0.958 0.850

YiSi-1 0.971 0.887

PRISM 0.958 0.851

N
eu

ra
l

ESIM 0.979 0.894

BLEURTExtended 0.969 0.870

mBERT-L2 0.970 0.861

COMET-20 0.972 0.863

Q
E COMET-QE 0.903 0.831

OpenKiwi-XLMR 0.968 0.814

N
ew

N
eu

ra
l

GBLEURTWWM 0.951 0.855

GBLEURTSWM 0.932 0.833

GCOMETWWM 0.942 0.842

GCOMETSWM 0.933 0.840

COMETContrastive 0.955 0.844

Human 0.984 0.932

The table shows the system-level Pearson correlation for en→de on
the test set of the WMT 2020 Metrics Shared Task. In the column
all, the output of 14 MT systems was included in the analysis. In the
column -out, the outliers were removed leaving only 11 MT systems
in the analysis. Metrics that were not significantly outperformed by
another metric for a given language pair are highlighted in bold.

Table 10: System-level Pearson correlation on the WMT 2020 test set for en→de

YiSi-1 are remarkable. Both outperform all five neural metrics trained for this thesis in

both evaluation settings. Despite the often claimed superiority of neural metrics (Kocmi

et al., 2021; Freitag et al., 2022a; Fernandes et al., 2022), other metric types might still

achieve strong correlations with human judgements.

4.3 MBR Decoding with GBLEURT and GCOMET

In the following sections, a series of experiments based on MBR decoding is run. Thereby,

the newly trained metric models are deployed as utility function. The experiments follow

the approach proposed by Amrhein and Sennrich (2022) that uses MBR decoding as an

instrument to identify blind spots in an evaluation metric.
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The main focus of the experiments is the question whether the translation of German

compounds improves when the metric model is pre-trained with Whole Word Masking

compared to pre-training with Sub-Word Masking. To this end, the same semi-automated

analysis of compound translation is conducted as in 3.3. While this method provides a

first overview of the frequency of mistranslated compounds as well as insights into different

error types, it has certain drawbacks (cf. 3.3.3). To obtain more reliable results regard-

ing the sensitivity of a metric towards mistakes in German compounds, an MBR-based

sensitivity analysis is run as suggested by Amrhein and Sennrich (2022). Additionally,

the MBR-based experiments are run with COMETContrastive as utility function. The com-

parison between GCOMETSWM and COMETContrastive allows to investigate the effect of

monolinguality versus multilinguality on the translation of compounds.

When preparing the experiments, various questions raised regarding the implementation

of MBR decoding and the reliability of automatic evaluation metrics. Inspired by these

questions, additional experiments were designed to answer them. They are described in

the following sections, before the major experiments related to the compound sensitivity

of the different metrics are outlined.

4.3.1 Implementation of MBR Decoding

The implementation of the MBR decoding follows the procedure by Amrhein and Sennrich

(2022) described in 3.1.4. For each of the 1002 sentences in the en→de test set of the WMT

2021 New Shared Task (cf. 3.1.2), Amrhein and Sennrich (2022) generated 100 unique,

unbiased samples as both candidate and support pool. All subsequent experiments are

based on these samples to ensure that the results are comparable to theirs. For COMET-

20, the MBR implementation of Amrhein and Sennrich (2022) is used as formulated in

Equation 3.1.

In contrast to COMET-20, GCOMET, COMETContrastive and GBLEURT are source-free

metrics that compare a reference to a hypothesis. Hence, MBR decoding is implemented13

very similarly as in Amrhein and Sennrich (2022), but excluding the source:

y∗ = argmax
hi∈C

1

|S|
∑
hj∈S

u(hi, hj) (4.9)

where hi denotes the ith candidate of the candidate set C, hj refers to the jth sample in

the support set S and y∗ is the candidate that maximises the expected utility.

For the purpose of this thesis, the candidate and support sets are identical. However, the

MBR implementation would allow them to be different. For the COMET-based models,

the embeddings of the hypotheses and pseudo-references are cached and the scores are

computed in parallel. For GBLEURT, the embeddings cannot be cached, as the models

13See referenceless.py
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encode sentence pairs rather than individual segments. Hence, the MBR implementation

is less efficient than for COMET-based models.

As the candidate and support sets are identical, each candidate is included in the support

set. When implementing the MBR decoding for GBLEURT, the question arose whether

the candidate should be compared to itself, i.e. to all 100 samples in the support set, or

only to the other 99 samples in the support set excluding itself.

As long as MBR decoding focused on lexical overlap-based metrics, this question was not

relevant. When comparing two identical segments, lexical metrics assign a perfect score of

1 to them. As each candidate reliably obtains exactly one perfect score, this comparison

does not affect the final outcome of the decoding.

However, when using a neural metric as utility function, including or excluding the com-

parison of the candidate to itself possibly affects the final average scores. The behavior of

neural metrics is often unpredictable as they are black box metrics. They do not neces-

sarily assign the same perfect score every time they evaluate two identical segments. In

consequence, the average scores could be affected differently for each candidate. As a re-

sult, two different candidates could reach the highest average score depending on whether

the comparison of the candidate to itself is included or excluded.

To the best of my knowledge, this effect has not yet been investigated. Previous MBR

implementations with COMET and BLEURT (Fernandes et al., 2022; Amrhein and Sen-

nrich, 2022; Freitag et al., 2022a) include the comparison of the candidate to itself. To shed

light on this question, the MBR decoding for GBLEURT is implemented in two different

variants. The first, called MBR100, assesses each candidate against the full support set of

100 pseudo-references following Equation 4.9. The second variant (MBR99) excludes the

comparison of the candidate to itself. The MBR problem is reformulated as:

y∗ = argmax
hi∈C

1

|S| − 1

∑
hj∈S\{hi}

u(hi, hj) (4.10)

The results of this experiment are reported in Section 5.1.

4.3.2 Automatic Evaluation of MBR Translation Quality

To ensure that the MBR implementations described in the previous section work properly,

an automatic evaluation is run on their output sentences. The same evaluation metrics

were chosen as in 3.4. Originally run as a sanity check, the automatic evaluation in 3.4

revealed a phenomenon known as “metric overfitting” (cf. 2.3, Fernandes et al. (2022)).

The effect was particularly strong for COMET-20, which assigned overly optimistic scores

to MBR outputs produced with itself as utility function. To scrutinize whether this effect

is especially strong for COMET-20 or occurs with a similar strength for other neural

metrics, GCOMETWWM is included in this experiment as additional output evaluation
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metric. The results of the automatic evaluation are shown in Section 5.1.

4.3.3 Combining Metrics in MBR Decoding

The observed metric overfitting inspired an additional experiment. As the findings by

Amrhein and Sennrich (2022) and Chapter 3 of this work illustrate, neural metrics have

blind spots. Sometimes, they unpredictably assign high scores to bad translations. How-

ever, as they fail unpredictably, it is reasonable to assume that different metrics will have

difficulties with different segments.

Hence, combining two metrics in MBR decoding is expected to improve the quality of the

output on the one hand. On the other hand, it might also alleviate the problem of metric

overfitting. As the resulting outputs are only partially optimised towards a given metric,

this metric is expected to rate their quality more adequately.

To investigate these hypotheses, COMET-20 and GCOMETWWM are combined in MBR

decoding. Both metrics exhibit a strong overfitting effect and both are COMET-based

models. However, they rely on different masking strategies and encoder models, one being

multilingual, the other monolingual. Hence, they are sufficiently different to most likely

exhibit distinct pathologies. When combined in MBR decoding, their weaknesses are

expected to cancel each other out.

During MBR decoding, each candidate is rated by both metrics and the average score is

calculated. If one metric assigns a high score to a bad candidate, that candidate should

still receive a low score from the other metric. On average, it probably does not achieve

the highest score. Rather, a candidate will be selected that obtains high scores from both

metrics. The results of this experiment are reported in 5.1.

4.3.4 Semi-Automated Analysis of Compound Translations in MBR-Decoded
Outputs

To gain a first overview over the sensitivity of the different metrics towards German com-

pounds, the MBR output of the newly trained neural metrics is analysed semi-automatically

as outlined in 3.3. Hence, unknown words are automatically extracted from the MBR-

decoded outputs. Then, the compounds are identified, inspected manually and classified

into correct and incorrect translations.

The hypothesis here is that translations obtained with a metric model that relies on

WWM contain fewer incorrect compounds than translations generated with a SWM-based

utility function, as WWM is expected to render the model more sensitive to incorrect

compositions of several sub-words.

As explained in 4.3.1, the MBR decoding with the two GBLEURT models as utility

function was implemented in two different flavours: MBR99 and MBR100. As the resulting
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MBR-decoded outputs differ only minimally between the two variants (cf. 5.1 and 6.1),

only the output of MBR99 was analysed regarding the translation quality of German

compounds.

The reason for this decision is that it is methodologically more correct not to compare a

candidate to itself if this comparison does not result in a perfect score of 1 and hence might

influence the outcome of MBR decoding. However, this approach stands in contrast to the

decision made by Amrhein and Sennrich (2022), who opted for including the comparison of

a candidate to itself in their MBR implementation. As I use their implementation for MBR

decoding with COMET-based models, it should be kept in mind when interpreting the

results that the outputs generated with a COMET-based metric as utility function were

obtained with a slightly different approach than those generated with a GBLEURT model.

However, in practice, the difference between the two approaches is minimal. Compared

to MBR100, MBR99 produces only one additional incorrect German compound when used

with GBLEURTWWM as utility function, and one fewer incorrect compound when used

with GBLEURTSWM.

4.3.5 MBR-Based Sensitivity Analysis

The semi-automated analysis of compound translations in MBR outputs gives us a first

glimpse into the sensitivity of the various metrics towards German compounds. However,

as mentioned in 3.3.3, this approach has certain limitations. Consequently, the results are

not entirely reliable.

In order to establish a more reliable basis for the insights presented in this thesis, an

MBR-based sensitivity analysis was conducted, following the approach by Amrhein and

Sennrich (2022). Keeping the support set constant, they apply targeted changes to a

candidate translation. During MBR decoding, the metric used as utility function scores

both the original, correct candidate as well as its perturbed versions. By comparing the

assigned scores, one can gain insights about the model’s sensitivity towards the linguistic

phenomenon under study. If the correct candidate does not obtain a higher score or if

the score differences are very small, the model is not sensitive enough towards the studied

phenomenon.

To scrutinise the sensitivity of the different neural metrics towards German compounds,

a challenge set with 25 examples is composed. The examples are chosen from the test

set of the WMT 2021 News Shared Task that was used for MBR decoding with COMET

in Amrhein and Sennrich (2022) as well as in this thesis. The 25 examples were selected

according to the following criteria that apply cumulatively:

1. The reference translation contains (at least) one German compound, that either

corresponds to an English compound in the source segment or to another linguistic

construction.
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2. MBR with COMET-20 failed to generate the correct German compound. Instead,

it chose a candidate with a wrong translation of the compound.

3. Beam search generated a correct German translation of the compound.

4. The correct German compound is found in at least one of the 100 samples in the

candidate set.

Cases where all four criteria are fulfilled are of particular interest, as the wrong compound

translation can clearly be attributed to COMET-20. The translation model generating the

candidates as well as beam search decoding succeeded in producing the correct translation,

whereas COMET-20 was unable to recognise it.

To compose the challenge set, the 1-best beam search output containing an accurate

translation of the German compound is used as the correct candidate. It is then perturbed

replacing the correct compound with an incorrect alternative found in the candidate pool.

The perturbations are grouped into two types.

• Most frequent: The three incorrect alternatives that occur most frequently in the

100 samples of the candidate pool are chosen. If several alternatives occur equally

often, one of them is selected randomly as the most frequent.

• Most similar: The three incorrect alternatives from the candidate pool are cho-

sen that are most similar to the correct compound either in terms of string-based

similarity, e.g. Hundepark (dog park) and Hundenpark, or in terms of semantics,

e.g. Obstbäume (fruit trees) and Apfelbäume (apple trees). The choice of the most

similar alternatives is not always well-defined and to some degree subjective.

This results in six different perturbations that are applied to each example in the challenge

set. In five examples, the most similar alternatives are also among the most frequent ones.

In these cases, only five different perturbations are applied. The perturbations can either

be compounds or another linguistic construction, e.g. a normal noun, adjective and noun

constructions or genitive constructions. Some examples from the challenge set are shown

in Table 11.

Target Werkzeugkasten Waldbrand Feuerwerke Pfefferspray

Freq 1 Werkzeuge Wildlandbrand Schussfeuerwerke Pfeffersprühen

Freq 2 Toolboxen Wildwasser Fireworks Pfeffersprüh

Freq 3 Werkzeugköpfe freie Wildbahn Schussfeuerwerk Pfeffersprühmittel

Sim 1 Werkzeugkarten Waldfeuer Feuerenwerk Pfefferspritzen

Sim 2 Werkzeugketten Wildbrand Feuerwerkszeuge Pfeffersperay

Sim 3 Werkzeugkorbse wilden Waldbrand Feuerstellen Pfeffersperre

The table shows four examples of correct target compounds that were perturbed in six different ways. The
target was replaced with the three most frequent (Freq) incorrect alternatives and the three most similar
(Sim) incorrect alternatives.

Table 11: Examples of perturbations applied to the target compound
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The correct candidate and the six perturbed variants are then used as candidate set in

MBR decoding. In addition, the candidate set contains a copy of the source segment that

serves as a reference point to gain an idea of how large the sensitivity scores are if the

metric assesses a candidate that is very different from the support set. The support set

contains the two German reference translations of the respective segment. Amrhein and

Sennrich (2022) found that COMET-20 is more sensitive towards errors in a candidate

when used with a high-quality support set. In contrast, when the 100 MT generated

samples are used as support, other discrepancies between the candidate and the support

than the targeted changes may come into play and affect the results. Thus, the sensitivity

scores are more reliable when the references are used as support.

In the course of MBR decoding, the metric under study compares each candidate to the

support set and assigns a score to it. The scores of each perturbed candidate is subtracted

from the score of the 1-best beam search output. This difference in scores represents the

sensitivity of the utility function towards the targeted change. The higher the score, the

more sensitive the metric is towards a change. The score differences are then averaged

across the different perturbation types. Additionally, they are also averaged across both

types of compound perturbation to obtain the general sensitivity to errors in compounds.

In this thesis, the difference between the score of the 1-best beam search output and the

perturbed candidates is used as sensitivity score. This stands in contrast to Amrhein

and Sennrich (2022), who use the absolute score difference as sensitivity scores. However,

the absolute difference dilutes the distinction between correct score differences, i.e. the

beam search output obtained a higher score than the perturbed candidate, and incorrect

ones, i.e. the perturbed candidate was scored higher. To punish wrong assessments, the

non-absolute score difference is used as sensitivity score in this thesis.

The sensitivity analysis is run with COMET-20 as well as with the newly trained metrics

as utility function. The hypothesis is that metrics relying on a language model pre-trained

with WWM are more sensitive towards errors in compounds.

In addition, the sensitivity analysis is also run on the challenge set composed by Amrhein

and Sennrich (2022), that includes perturbations of common nouns, named entities and

numbers as well as a copy of the source segment and a hallucinated segment. The challenge

set includes different types of perturbations. On the one hand, entire nouns, named entities

and numbers are substituted. On the other hand, minor changes are applied to the target

word by inserting, deleting and substituting single characters.

The sensitivity of the metric models towards targeted changes in common nouns is of

particular interest as compounds are a special type of nouns. The comparison with simple

nouns sheds light on the question to what extent compounds are blind spots of a neural

metric. The hypothesis is that a WWM-based metric reacts more sensitive towards mis-

takes in common nouns than an SWM-based metric. However, the sensitivity difference is

expected to be less pronounced as for compounds. Since simple nouns are typically shorter

and more frequent, they are likely to be split up into fewer sub-words or even consist of
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only one sub-word. In these cases, a SWM-based metric is expected to show a similar

sensitivity as a WWM-based metric.

Named entities and numbers are expected to be identical to the entity or number in the

reference translation. As each sub-word of the entity or number in the candidate should

correspond to the respective sub-word in the reference, it is expected that SWM-based

and WWM-based metrics exhibit a similar sensitivity.

Regarding the question of multilinguality, I expect that a monolingual model is better at

handling nouns and compounds, as it can dedicate more capacity to the target language

than a multilingual model. In contrast, multilinguality is expected to increase the sen-

sitivity towards named entities as these are often transferred unchanged from the source

to the target language. Since a multilingual model was also pre-trained on the source

language, I assume that it has a better notion of words in that language and reacts more

sensitive to changes in named entities. Regarding changes in numbers, I expect that mul-

tilinguality does not have a major impact on the model’s sensitivity as numbers are the

same in English and in German.
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5 Results

Having outlined the experimental setup along with the used materials and methods, the

results of the various experiments described in Chapter 4 are presented in the subsequent

sections.

5.1 Automatic Evaluation of MBR Translation Quality

To ensure that MBR decoding is implemented correctly and that the newly trained metric

models are suited as utility function, the MBR-decoded translations are evaluated in terms

of various automatic metrics. To enable a meaningful interpretation of the quality scores,

they are compared to the scores assigned to beam search translations on the one hand

and to MBR-decoded outputs with ChrF and ChrF++ as utility functions on the other

hand. The results of this analysis are presented in Table 12. Originally intended as a

sanity check, this evaluation revealed several interesting phenomena.

BLEU ChrF++ BLEURT-20 COMET-20 GCOMETWWM

Beam Search 26.220 52.961 62.841 0.2601 -1.5052

MBR ChrF++ 20.941 48.330 52.114 -0.1084 -1.6887

MBR ChrF 20.390 48.156 51.825 -0.1225 -1.6966

MBR COMET-20 16.980 44.580 57.281 0.2440 -1.5599

MBR COMETContrastive 15.897 42.604 53.790 0.0007 -1.5729

MBR GCOMETWWM 17.294 44.162 56.607 0.0591 -1.3982

MBR GCOMETSWM 16.655 43.606 55.852 0.0387 -1.4847

MBR100 GBLEURTWWM 17.454 44.868 57.308 0.0549 -1.4768

MBR99 GBLEURTWWM 17.468 44.867 57.307 0.0544 -1.4774

MBR100 GBLEURTSWM 17.151 44.039 56.305 0.0074 -1.5233

MBR99 GBLEURTSWM 17.130 44.033 56.314 0.0070 -1.5235

MBR Metric Combination 17.249 44.665 58.351 0.2027 -1.4312

Table 12: Evaluation of the translation quality in terms of automatic metrics

It stands out from the results that according to all metrics except GCOMETWWM the

beam search translations are of superior quality. The metrics clearly favour beam search

translations over MBR-decoded outputs regardless of the used utility function.

Among the tested neural metrics, GBLEURTWWM performs best as utility function in
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MBR decoding receiving the highest scores from three evaluation metrics (BLEU, ChrF++

and BLEURT-20). In contrast, COMET-20 and GCOMETWWM prefer themselves as

utility function which points to an overfitting effect (see below).

Regarding the question of whether the masking strategy in the pre-training affects the

performance of a metric, the results indicate that WWM-based utility functions generate

better translations than SWM-based utility functions. All five metrics used to evaluate the

MBR-decoded outputs agree that the translations of GBLEURTWWM and GCOMETWWM

are of higher quality than the translations of their SWM-based equivalents.

One of the defined goals of the automatic evaluation is to investigate the question of

whether comparing a candidate to itself (MBR100) or not (MBR99) during MBR decoding

affects the final output. The analysis shows that it does make a difference, even though not

a big one. From the 1002 segments of the test set, only six were translated differently when

GBLEURTWWM was used with MBR100 and MBR99 respectively. With GBLEURTSWM

as utility function, the two MBR approaches led to a different outcome in only four

cases. The results of the automatic evaluation indicate that including the comparison of

a candidate to itself leads to slightly better translations.

Moreover, a phenomenon known as “metric overfitting” (Fernandes et al., 2022) can be

observed. The two lexical overlap-based metrics BLEU and ChrF++ show a preference for

MBR-decoded translations obtained with a utility function of the same type (ChrF and

ChrF++), whereas the neural metrics favour translations generated with a neural metric

as utility function. BLEURT-20 prefers GBLEURT as utility function. GCOMETWWM

favours itself along with GBLEURTWWM and GCOMETSWM. COMET-20 shows an ex-

tremely strong preference for outputs obtained with itself as utility function, rating all

other utility functions as clearly inferior.

To further investigate the phenomenon of metric overfitting, GCOMETWWM and COMET-

20 were combined in MBR decoding by averaging their scores. The last line of Table 12

presents the results of this novel approach. They indicate that combining two utility func-

tions tends to improve the quality of the resulting translations. Especially BLEURT-20

clearly favours the outputs of the metric combination over all other MBR-decoded out-

puts. COMET-20, that exhibits a strong overfitting effect, assigns a surprisingly high

score to the outputs obtained with the metric combination. Nonetheless, it still favours

the translations obtained with itself as utility function. The same behaviour is observed

for GCOMETWWM. Even though its overfitting effect is less pronounced than that of

COMET-20, it still prefers itself as utility function, but assigns the second highest score

to MBR translations obtained with a metric combination.

Focusing on the original goal of the automatic evaluation, the results demonstrate that

except for COMET-20 the metrics agree that MBR decoding with the new metrics as utility

functions generates outputs that are of reasonable quality. Their quality is comparable

to that of MBRCOMET-20-decoded translations and somewhat inferior to beam search.

Overall both the MBR implementation and the new metrics passed the sanity check.
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5.2 Semi-Automated Analysis of Compound Translations in

MBR-Decoded Outputs

Table 13 presents the results of the semi-automated analysis of the quality of compound

translations in the 1002 test sentences. Thereby, the neural utility functions are compared

to the lexical metrics ChrF and ChrF++. Additionally, a comparison is made between

the MBR-decoded outputs and beam search translations.

Unknown Words New Compounds Mistranslated
Compounds

Beam Search 461 374 241

MBR ChrF++ 790 476 386

MBR ChrF 844 511 415

MBR COMET-20 855 553 447

MBR COMETContrastive 904 550 454

MBR GCOMETWWM 752 494 369

MBR GCOMETSWM 738 476 379

MBR GBLEURTWWM 729 464 352

MBR GBLEURTSWM 686 438 335

Table 13: Unknown words, newly formed compounds and mistranslated compounds found
in the output sentences of different decoding strategies

As already noticed in 3.4, MBR decoding with COMET-20 results in a higher number of

unknown words and hence of incorrect compounds in the output than MBR decoding with

ChrF and ChrF++. This effect is even amplified when its smaller, source-free variant,

COMETContrastive is used as utility function.

In contrast, the monolingual GCOMET and GBLEURT metrics show improvements over

COMET. They reduce the amount of unknown words in the outputs considerably. Con-

sequently, their translations also contain fewer incorrect compounds. They reduce the

number of ill-formed compounds by 16.5 % to 26.2 % compared to COMETContrastive.

Moreover, GCOMET and GBLEURT outperform ChrF and ChrF++ in terms of unknown

words and mistranslated compounds. Overall, GBLEURT performs better as utility func-

tion in MBR than GCOMET producing less unknown words and incorrect compounds.

When comparing the WWM-based metrics to the SWM-based metrics, no clear conclu-

sion can be drawn. For both GCOMET and GBLEURT, the SWM variant generates

less unknown words in the outputs than the respective WWM equivalent. However, the

picture is different when looking at the incorrectly formed compounds. Translations de-

coded with GCOMETWWM contain less mistranslated compounds than those obtained

with GCOMETSWM. The opposite is the case for GBLEURT. Translations decoded with

GBLEURTWWM exhibit considerably more mistranslated compounds than those obtained
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with GBLEURTSWM.

Finally, the results highlight that beam search generates by far less unknown words and

consequently fewer incorrect compounds than all variants of MBR decoding underpinning

the findings from 3.4. The novel GCOMET and GBLEURT metrics alleviate the problem

of unknown words and ill-formed compounds in translation outputs, but they do not reach

the performance of beam search.

5.3 MBR-Based Sensitivity Analysis

Finally, a targeted sensitivity analysis using sampling-based MBR decoding was conducted

to analyse and quantify the sensitivity of the various metrics towards errors in German

compounds more reliably. The results are presented in Table 14.

COMET-
20

COMET-
Contrastive

GCOMET-
WWM

GCOMET-
SWM

GBLEURT-
WWM

GBLEURT-
SWM

most frequent 0.132 0.098 0.167 0.139 0.143 0.132

most similar 0.086 0.091 0.159 0.135 0.152 0.121

compounds total 0.109 0.095 0.163 0.137 0.148 0.126

copy 1.429 1.148 2.614 2.387 2.608 1.871

The sensitivity scores are calculated as the average difference between the MBR score of the 1-best beam search
output and the perturbed candidates.

Table 14: Sensitivity scores of different metrics towards errors in compounds

The results consistently indicate that metrics based on a language model that was pre-

trained with WWM are clearly more sensitively to errors in compounds that SWM-based

metrics. This finding points to the value of using WWM in pre-training.

As expected, COMETContrastive is generally less sensitive to mistakes in compounds than

its larger sibling COMET-20. However, it reacts more sensitive to substitutions of a

compound with similar alternatives than COMET-20.

The sensitivity gains of GCOMET over COMETContrastive are substantial. Both monolin-

gual GCOMET models even outperform the much larger multilingual COMET-20 model

in terms of compound sensitivity. The sensitivity scores of the GBLEURT models can-

not be directly compared to the scores of the COMET-based models as they belong to a

different metric family.

Regarding the two types of perturbations, the results reveal that all metrics except for

GBLEURTWWM react more sensitive, if the compound is replaced with a frequent variant

than if it is substituted with a similar variant.

The sensitivity analysis performed with regard to common nouns, named entities (NEs)
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and numbers sheds more light on the strengths and weaknesses of the different metric

models. The analysis on the challenge set by Amrhein and Sennrich (2022) is of particular

interest as not only entire words are replaced but also minor changes are applied to the

target word or number. The results are summarised in Table 15.

COMET-20 COMET-
Contrastive

GCOMET-
WWM

GCOMET-
SWM

GBLEURT-
WWM

GBLEURT-
SWM

nounadd 0.257 0.172 0.385 0.453 0.380 0.331

noundel 0.215 0.126 0.304 0.342 0.291 0.265

nounsub 0.295 0.181 0.392 0.456 0.388 0.338

nounwhole 0.509 0.376 0.471 0.429 0.528 0.366

NEadd 0.108 0.071 0.148 0.173 0.203 0.227

NEdel 0.078 0.050 0.093 0.097 0.140 0.151

NEsub 0.113 0.059 0.139 0.157 0.192 0.211

NEwhole 0.173 0.133 0.192 0.164 0.354 0.317

numadd 0.057 0.038 0.120 0.117 0.117 0.120

numdel 0.063 0.030 0.067 0.049 0.084 0.091

numsub 0.019 0.016 0.051 0.048 0.053 0.067

numwhole 0.079 0.048 0.128 0.126 0.123 0.126

hallucination 2.055 2.620 2.192 1.840 2.097 1.606

copy 1.350 1.024 2.578 2.458 2.466 1.696

The sensitivity scores are calculated as the average difference between the MBR score of the 1-best beam search
output and the perturbed candidates.

Table 15: Sensitivity scores of different metrics towards errors in common nouns, named
entities and numbers

Most results from the sensitivity analysis of compounds are confirmed. Throughout all

analysed cases, COMETContrastive is less sensitive to mistakes than the larger COMET-20.

Both models are clearly outperformed by GCOMET with two exceptions. COMET-20 is

surprisingly sensitive to substitutions of entire nouns and COMETContrastive reacts very

sensitively to hallucinations.

The contrastive examples by Amrhein and Sennrich (2022) allow for some interesting in-

sights into the effects of WWM and SWM on the performance of metric models. While

GCOMETWWM is more sensitive to the replacement of entire nouns and NEs, GCOMETSWM

exhibits an increased sensitivity towards minor changes in nouns and NEs. Interestingly,

this effect cannot be observed for numbers where GCOMETWWM consistently shows a

higher sensitivity.

It is noteworthy that GBLEURT behaves differently. For NEs, the same effect can be

observed as for GCOMET: GBLEURTWWM is more sensitive to replacements of an en-

tire NE, while GBLEURTSWM reacts more sensitively to minor changes. However, with

regard to nouns, GBLEURTWWM consistently exhibits a higher sensitivity to all types of

changes than GBLEURTSWM. In contrast, regarding numbers, it is GBLEURTSWM that
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is consistently more sensitive to mistakes.

Moreover, the results show that all metrics except for GCOMETSWM are more sensitive

to the replacement of an entire word or number than to adding, deleting or substituting

a single character.

Further, the analysis reveals that multilingual models are clearly more sensitive to hallu-

cinations than to copied segments, whereas monolingual models react stronger to copies

than to hallucinations.

When comparing the sensitivities of a given metric towards different linguistic phenomena,

various conclusions can be drawn. Firstly, all metrics are consistently more sensitive to

errors in common nouns than to mistakes in compounds, named entities or numbers.

However, for the GBLEURT models, the sensitivity gap betweeen common nouns, named

enitites and compounds are not as pronounced as for the GCOMET models.

Secondly, when comparing the sensitivities towards compounds and NEs, two opposing

tendencies are observed. COMET-20, COMETContrastive and GCOMETWWM generally re-

act more sensitive to errors in compounds than to minor changes in NEs. However, replac-

ing an entire NE causes a stronger response. In contrast, GCOMETSWM, GBLEURTWWM

and GBLEURTSWM show a greater sensitivity towards changes in NEs than in compounds.

Thirdly, the sensitivity of all metrics towards changes in numbers is very low. The metrics

are by far less sensitive to errors in numbers than to mistakes in NEs or compounds.
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6 Discussion

In this chapter, the most relevant insights from the conducted experiments will be dis-

cussed, analysed and interpreted. Moreover, the formulated hypotheses are reflected upon,

analysing to what extent they have proven to be accurate or inaccurate.

6.1 Automatic Evaluation of MBR Translation Quality

The quality evaluation in terms of established automatic metrics served to analyse the

effect of MBR100 compared to MBR99, when a neural metric is used as utility function.

The analysis revealed that including or excluding a copy of the candidate in the support

set indeed influences the outcome of MBR decoding. This finding underlines that neu-

ral metrics sometimes behave unpredictably. They do not always assign the same score

when assessing two identical segments. Rather, the assigned score varies from segment to

segment.

In practice, this effect might be negligible as the cases where different candidates are chosen

as best translation are relatively rare and might not be relevant when MBR decoding

is applied to a large set of segments. The differences in the final translation quality

are only minimal as the results in Table 12 show. Nonetheless, it is important to keep

the uncontrollable behaviour of neural metrics in mind as they become more and more

widespread in evaluation and MBR decoding.

In addition, the results indicate that MBR100 leads to slightly better translations. This

is somewhat surprising as MBR99 is methodologically more correct. One might even

expect that comparing a given segment to itself and assigning a score that depends on the

segment might distort the results. Why including this comparison nevertheless improves

the outcome, remains unclear.

Moreover, the results demonstrate the WWM in the pre-training of the language model

underlying a certain metric has a positive impact on the metrics performance. The ben-

eficial effect of WWM goes beyond compound translation and seems to be of a general

nature. This finding is further supported by the results in Table 10 which demonstrate

that WWM-based metrics reach a higher Pearson correlation in system-level rankings than

their SWM-based counterparts.

Further, the results of the automatic evaluation suggest that GBLEURTWWM is best
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suited as utility function in MBR decoding as it overall generates translations of the

highest quality. According to four of the five applied evaluation metrics, GBLEURTWWM

even outperforms COMET-20 as utility function. This finding is surprising as COMET-

20 is considered to be state-of-the-art (Kocmi et al., 2021). It might be an indication

that COMET-20 does not only have difficulties with compounds, but also with other

peculiarities of the German language. However, this supposition requires further analysis

(cf. 6.3).

The good performance of GBLEURTWWM regarding translation quality is in line with its

high Pearson correlation in system-level rankings (cf. Table 10). Nonetheless, as discussed

in Chapter 2, quality assessments obtained with automatic metrics are not always reliable

and should be taken with a grain of salt. Hence, further analysis is needed to confirm

that GBLEURTWWM is indeed the best neural metric model scrutinised in this thesis.

Its seemingly good overall performance does not guarantee that it performs similarly well

regarding the handling of specific linguistic phenomena. This question is further discussed

in 6.2 and 6.3.

Furthermore, four of the five evaluation metrics favour beam search translations over

any MBR-decoded outputs. The reasons for this clear preference might be two-fold. On

the one hand, a manual, though not systematic, inspection of the translations arrives

at the conclusion that the beam search outputs are generally of a higher quality than

the MBR-decoded translations. On the other hand, the observed preference of neural

evaluation metrics might be amplified by a bias in the training procedure, as they are

typically trained on beam search translations. The fact that beam search seeks to match

the surface form of the reference (Freitag et al., 2022a), might even enhance this effect,

since neural metrics still rely on surface overlap (Amrhein et al., 2022). Especially in

the case of COMET-20 such a bias is well possible, as it exhibits a strong preference for

beam search, while clearly disliking MBR-decoded translations generated with any utility

function other than itself. In contrast to the other neural metrics, GCOMETWWM does

not favour beam search, even though it was trained on the same data sets. Rather, other

factors seem to control its behaviour (see below).

Finally, the results of the automatic evaluation corroborate the problem of “metric over-

fitting”. Fernandes et al. (2022) observed that when a fine-tuned metric is used as utility

function and hence optimised for in MBR decoding, this metric does no longer reliably

evaluate the resulting translations. Rather, it favours translations generated with itself as

utility function regardless of their actual quality.

Interestingly, the overfitting effect can also be observed with non-neural, lexical metrics.

When excluding beam search outputs from the analysis, ChrF++ assigns the highest

scores to translations obtained with itself as utility function and the second highest scores

to those generated with the closely related utility function ChrF. The overfitting effect even

exists across different metrics belonging to the same group. BLEU prefers MBR outputs

obtained with the lexical metrics ChrF++ and ChrF that pursue the same objective of
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maximising the surface overlap between the translations and the reference. BLEURT-

20, on the other hand, considers translations produced with GBLEURTWWM as best.

Even though the two metrics are completely independent, they share certain similarities:

1) They both rely on a BERT model and 2) their regression layer was trained in the

same way. Possibly, these similarities are already enough for BLEURT-20 to show a

slight bias towards translations obtained with GBLEURTWWM. On the other hand, it

is possible that the GBLEURTWWM translations are indeed the best. As BLEURT-20 is

the evaluation metric that is most dissimilar from and most independent of the metrics

used as utility functions, it produces the most reliable scores that coincide best with the

manual inspection: Beam search clearly produced the best translations while the quality

of the MBR-decoded outputs with different utility functions is very similar. Generally,

WWM-based utility functions generate slightly better translations, while the outputs of

the lexical utility functions ChrF and ChrF++ are of slightly lower quality.

The overfitting effect is most pronounced for COMET-20 that strongly favours beam

search outputs and translations obtained with itself as utility function, while considering

the outputs with all other utility functions as poor translations. However, a manual

inspection of the translations identifies only minor quality differences between the outputs

of the various utility functions. Hence, the low scores assigned by COMET-20 are not

justified. The observed overfitting by far exceeds the one reported by Fernandes et al.

(2022). This extreme discrepancy between the assigned scores and the actual translation

quality is concerning as COMET-20 is currently considered the state-of-the-art evaluation

metric and is recommended as default metric (Kocmi et al., 2021). To better understand

its behaviour and to investigate whether other models of the COMET family behave

similarly, the automatic evaluation is additionally run with GCOMETWWM. As expected,

GCOMETWWM shows a relatively strong overfitting effect as well. However, this effect is

less pronounced as for COMET-20.

The quality scores assigned by GCOMETWWM shed light on further noteworthy issues.

Surprisingly, in contrast to all other metrics, GCOMETWWM does not assign the high-

est score to beam search translations. Instead, it prefers MBR-decoded translations ob-

tained with a utility function with which it shares common features. Apart from itself,

GCOMETWWM considers GBLEURTWWM as the best utility function. This metric is built

upon exactly the same language model, GBERTWWM. In the ranking, GCOMETSWM

follows that relies on a different, yet similar language model, GBERTSWM, and whose

regression layer is trained in the same fashion as that of GCOMETWWM.

Hence, it can be concluded that it is mainly the underlying language model that drives the

metric’s decisions and preferences. Apparently, the embeddings provided by the language

model contain crucial information on which the metric bases its decisions. How the regres-

sion layer is trained and what features are extracted influences the model’s preferences as

well. A similar effect is observed for COMET-20: It prefers the GCOMET models, whose

regression layer is trained in a different, yet similar way, over their GBLEURT equivalents.
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Finally, COMETContrastive is deemed to produce the poorest translations. Surprisingly,

also COMET-20 arrives at this conclusion, even though COMETContrastive is the metric

that is most similar to it. It seems that MBR translations of COMETContrastive are of

lower quality than that of other utility functions. It is clearly outperformed by GCOMET

and GBLEURT that are very comparable to it in size and training procedure. Further,

GBLEURTWWM even outperforms the much larger COMET-20 model according to four

evaluation metrics, while GCOMETWWM shows a similar performance as COMET-20.

These results suggest that monolingual utility functions are superior to multilingual ones,

especially when based on WWM. The question of monolinguality versus multilinguality is

further discussed in 6.2 and 6.3.

All these findings highlight the difficulty and simultaneously the importance of finding a

reliable automatic evaluation method. The analysis uncovered that the effects of metric

overfitting are more subtle and severe than assumed, as overfitting does not only happen

for a given metric, but was rather observed across metrics that share certain similarities,

such as building on the same or a similar language model, having a similar architecture

or relying on surface similarities to calculate a score.

This raises the question of how to reliably assess the translation quality of MBR-decoded

outputs. Certainly, it is crucial that future research is aware of the interplay between

building blocks of related metrics. To circumvent or at least reduce distorting effects in

the evaluation of MBR outputs, it is best to choose a metric that is as distinct as possible

from the deployed utility function. That is, a metric that builds on a language model that

uses a different architecture and different training corpora than the underlying language

model of the utility function. Further, the regression layer of the evaluation metric should

be trained in a different fashion, extracting other features, than that of the utility function.

Ideally, the evaluation metric and the utility function are trained on different data set.

Today, this is usually not the case as human assessment data is scarce. Therefore, most

neural metrics are trained on the WMT Metrics Shared Task data. However, using only

a handful of data sets to train various metric models might introduce biases and further

distorting effects in the evaluation procedure.

One possibility to alleviate the overfitting and its distorting effects might be to combine

different metrics in MBR decoding. In addition, this strategy might also overcome the

unpredictable choices of neural metrics, as a candidate is only chosen as best option if it

receives high scores from both metrics. The results in Table 12 indicate that combining the

scores of two metrics in MBR decoding indeed improves the translation quality. Especially

BLEURT-20 identifies a clear quality improvement. A manual inspection confirms that

the translations chosen by the combination of two metrics are generally more adequate

than those selected by a single metric.

Moreover, this novel approach seems to alleviate the overfitting effect. COMET-20 assigns

a surprisingly high score to the translations obtained with the metric combination. This

score is much more appropriate than the very low scores assigned to all other MBR outputs.
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Similarly, GCOMETWWM considers the translations of the metric combination as the

second best after those obtained with itself as utility function. Hence, the two metrics

captured the actual translation quality much more accurately than before. However, one

should keep in mind that the MBR decoding optimised towards the two metrics that were

later used for evaluation. Hence, the relatively high scores are probably still owed to an

overfitting effect, even though an alleviated one. Nonetheless, the combination of two

metrics in MBR decoding, and possibly also in the evaluation of translation quality, is a

promising approach for future work as it improves translation quality and alleviates the

problem of metric overfitting at least to some degree.

6.2 Semi-Automated Analysis of Compound Translations in

MBR-Decoded Outputs

The semi-automated analysis of translation outputs revealed that COMET-20 and its

smaller variant COMETContrastive perform especially poor regarding German compounds.

They select candidate translations with particularly many unknown words and incorrectly

formed compounds. The two COMET metrics are not only outperformed by GCOMET

and GBLEURT, but also by the lexical metrics ChrF and ChrF++ that are generally

deemed to be less accurate than fine-tuned neural metrics (Kocmi et al., 2021; Fernandes

et al., 2022; Freitag et al., 2021a,b). This is a strong indication that German compounds

are indeed a blind spot of COMET.

The clear superiority of GCOMET and GBLEURT points to an advantage of monolingual

models over multilingual ones regarding the translation of German compounds. How-

ever, as the semi-automated analysis suffers from some limitations (cf. 3.3.3), the results

presented here are not entirely reliable. Therefore, the role of multilinguality is further

investigated in the sensitivity analysis in 6.3.

Regarding the effect of the masking strategy, the expectation was that metrics based

on WWM are more sensitive to incorrect compositions of word parts leading to a re-

duced number of mistranslated compounds in their MBR translations. However, this is

only partially the case. Surprisingly, the translations obtained with GCOMETSWM and

GBLEURTSWM as utility functions contain clearly fewer unknown words and hence fewer

new compounds than those of their WWM-based counterparts. Regarding the correctness

of these compounds, the results are ambiguous. In the case of GCOMET, the WWM-based

variant generates fewer incorrect compounds, while for GBLEURT, the SWM-based model

performs better.

This outcome is unexpected. Nevertheless, it does not necessarily mean that WWM-based

metrics are unable to improve compound translation. Rather,the limitations of the chosen

approach may have influenced the results. Hence, it is possible that GBLEURTSWM prefers

translation candidates where only one constituent of a compound was translated. Such a

65



Chapter 6. Discussion

translation consists only of a common, probably known noun instead of a compound and

does not appear in the statistics. It is also possible that GBLEURTSWM favours other

linguistic constructions over composition, e.g. genitive constructions, adjective + noun

etc. In these cases the words in the translation are typically known, not appearing in the

statistics presented in Table 13. Thus, further analysis is required to draw an informed

conclusion on the effect of WWM versus SWM (cf. 6.3).

Furthermore, the results suggest that GBLEURT-decoded translations generally contain

fewer unknown words and hence fewer incorrect compounds than GCOMET-decoded

translations. This is in line with the results from the automatic evaluation that con-

cedes an advantage to GBLEURT over GCOMET. However, due to the limitations of

the semi-automated analysis one should not jump to conclusions about the superiority

of GBLEURT. Rather, one should only conclude that the architecture of a metric model

might influence its sensitivity towards specific linguistic phenomena.

6.3 MBR-Based Sensitivity Analysis

The sensitivity analysis sheds light on various intriguing issues. Firstly, the results regard-

ing the sensitivity of the different metrics towards German compounds will be discussed.

The second part of this section addresses the metrics’ sensitivity towards common nouns,

named entities and numbers.

The sensitivity analysis allows insights into the core question of this thesis. The two

models that are built on top of a language model pretrained with Whole Word Masking

are substantially more sensitive to both analysed error types in compounds than their

SWM-based counterparts. Hence, the hypothesis is confirmed. WWM in the pre-training

enforces the model’s ability to attend to an entire word and fosters its understanding of the

relations between sub-words. Thus, its sensitivity towards wrong compositions of different

word parts is increased. In conclusion, Whole Word Masking in pre-training can indeed

alleviate certain blind spots of a fine-tuned metric.

Moreover, the results in Table 14 illustrate that both COMET-20 and its smaller sib-

ling COMETContrastive exhibit a very low sensitivity to German compounds. They are

substantially outperformed by GCOMETWWM and GCOMETSWM. As GCOMETSWM is

pre-trained with Sub-Word Masking, one expects that the much larger COMET-20 would

outperform it. That this is not the case demonstrates that German compounds are indeed

a blind spot of COMET-20.

This finding further suggests that the low compound sensitivity of COMET-20 is not

only a matter of the masking strategy, but rather an issue of the underlying language

model. In contrast to GBERT, that forms the basis of GCOMET, the underlying language

model of COMET-20, XLM-RoBERTaLarge, is multilingual. The results indicate that the

multilinguality has a negative impact on the sensitivity towards nominal composition
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in German. Regarding language specific linguistic phenomena, a monolingual language

model might have an advantage over a multilingual one, as it can devote more capacity

to idiosyncratic peculiarities of a given language, whereas a multilingual model has to

generalize well across various languages.

Moreover, the results demonstrate that monolingual models are more sensitive to copies

of the source sentence. This is not surprising, as they expect exclusively German input,

while the multilingual models are accustomed to different languages. Nonetheless, the

multilingual metrics clearly distinguish between different languages and discard candidate

translations that are copies of the source. Interestingly, the WWM-based models are

even more sensitive towards copies than their SWM-based equivalents. The increased

awareness of the relation between various sub-words might be beneficial to distinguish

between different languages. However, this is only a supposition that requires further

research.

Finally, the perturbation type affects the sensitivity of a given model. Except for GBLEURTWWM,

the metrics are more sensitive to replacements of a compound with a frequent alternative

than with a similar alternative. This is the expected outcome, as it is more difficult to

differentiate between similar strings or meanings than between frequent alternatives. Why

GBLEURTWWM behaves differently remains unclear. However, it should be noted that

the distinction between the most frequent and the most similar alternatives is not always

clear-cut. It is to some degree a matter of subjectivity which alternatives are regarded as

the most similar ones. In addition, in some cases, the most similar alternatives are also

among the most frequent ones. Hence, the distinct behavior of GBLEURTWWM does not

necessarily hint at a meaningful difference and might rather occur haphazardly.

Further insights are gained from the sensitivity analysis of nouns, named entities and

numbers. It stands out from the results in Table 15 that COMETContrastive as well as

the much larger COMET-20 are clearly outperformed by the two GCOMET models in

most of the tested settings. This further supports the supposition that multilinguality

has a detrimental impact on the metric’s sensitivity towards specific linguistic phenom-

ena. Interestingly, monolingual models are not only superior in handling language-specific

phenomena, such as compounds, but also in regard to language-independent phenomena,

such as numbers that can be copied from the English source to the German translation.

Many named entities can be copied from the source as well (e.g. names of persons), while

others need to be translated (e.g. certain names of cities or countries). That multilingual

metrics are little sensitive to discrepancies between the hypothesis, the reference and the

source is surprising, especially in the case of COMET-20. In contrast to the other metrics,

COMET-20 additionally receives the source segment as input. Hence, it can assess each

hypothesis twice comparing the numbers and NEs against the reference and the source.

That it nonetheless fails to detect such discrepancies reliably, is astonishing and underpins

that it suffers from unexpected blind spots.

When investigating the effect of WWM, the results are inconsistent. In the case of
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GCOMET, the SWM-based model reacts more sensitive to minor changes in nouns and

NEs, while the WWM-based model is more sensitive to replacements of entire words. This

behaviour coincides with the observations made by Dai et al. (2022). In their experiments

on grammatical error correction in Chinese, they found that SWM-based models perform

better when a single character had to be corrected, whereas WWM-based models showed

the stronger performance when two or more characters had to be replaced. However,

this effect is not observed for the other metrics that are all more sensitive to replace-

ments of entire words than to perturbations of single characters. Hence, the behaviour

of GCOMET is probably a coincidence rather than a systematic characteristic of WWM-

versus SWM-based metrics.

Overall, no clear winner can be identified. Both masking strategies perform similarly,

one having the edge on the other in some cases, the other being superior in other cases

depending on the architecture of the metric and the phenomenon under study.

As discussed above, multilingual models are less sensitive to copies of the source than

monolingual models. However, they react strongly to hallucinations, with COMETContrastive

showing the greatest sensitivity. For GCOMET and GBLEURT, the WWM-based models

show a stronger reaction than the SWM-based ones. Hence, both multilinguality as well

as WWM seem to foster the detection of hallucinations.

The comparison of the metrics’ sensitivity towards different linguistic phenomena reveals

that compounds as well as NEs and numbers are very clearly blind spots of all neural

metrics studied in this thesis. Their sensitivity towards said phenomena is substantially

lower than their sensitivity towards common nouns. Monolingual models that were pre-

trained with WWM can alleviate this problem to some degree, but they do not solve

it. Nonetheless, the sensitivity gains may already lead to important improvements in the

metric’s performance.

That the sensitivity gap between nouns on the one hand and NEs and compounds on

the other hand is so pronounced, is to some extent surprising as compounds and NEs are

special kinds of nouns. However, their morphological peculiarities seem to be sufficient

to trigger certain failures in the metrics. Said sensitivity gap is larger for the GCOMET

models than for GBLEURT. This is an indication that not only the masking strategy, but

also the architecture of the regression layer has an impact on the sensitivity.

Finally, numbers are the most pronounced blind spots of all analysed metrics. The metrics

are particularly insensitive to deletions and substitutions of single digits, even though these

operations modify the meaning of a number significantly. The effect of these operations

is unambiguously more severe for numbers than for words. Why fine-tuned metrics have

such great difficulties in handling numbers remains unclear. Perhaps, the training data of

the metrics or the underlying language models contain samples with mismatching numbers

leading to a blind spot in the metric. Future research is needed to identify the reasons of

the blind spots.

68



Chapter 6. Discussion

6.4 Synthesis

Having discussed the results of the individual experiments, the most important findings

are synthesised across the various examinations. This section focuses on the major insights

that are discussed form a more holistic point of view.

6.4.1 Whole Word Masking versus Sub-Word Masking

Regarding the core question of this thesis, several insights were gained across the various

experiments. First of all, the hypothesis that WWM increases the metric’s sensitivity

towards mistakes in compounds was confirmed. However, it should be noted that an even

larger sensitivity gain is achieved when using a monolingual language model instead of a

multilingual one (cf. 6.4.2). Nonetheless, WWM further boosts the sensitivity towards

compounds.

With respect to other linguistic phenomena, such as common nouns, named entities and

numbers, both masking strategies perform similarly. However, the results demonstrate

that metrics relying on WWM are generally more sensitive to replacements of entire words

or numbers than metrics based on SWM. Further, WWM enhances the sensitivity towards

copied segments and hallucinations.

When used as utility function in MBR decoding, WWM does not reduce the amount of

unknown words in the generated translations. On the contrary, SWM is more beneficial in

decreasing the number of unknown output words. Regardless of this effect, the automatic

evaluation arrives at the conclusion that translations obtained with WWM-based metrics

are overall of higher quality. Especially the three neural evaluation metrics detect a quality

difference between translations of WWM-based and SWM-based utility functions.

Taken together, these findings suggest that WWM-based models might not produce fewer

errors, but less severe errors. They react more sensitively to major mistakes, like wrong

words, copies and hallucinations, that affect the meaning of a sentence strongly and

severely hinder the understandability of a translation. In contrast, they punish minor

errors, like replacements of single characters, less, as these types of errors have less severe

consequences for the intelligibility of a sentence. Hence, they treat mistakes with more

human-like priorities than SWM-based metrics.

In conclusion, the results indicate that WWM has a positive impact on the overall perfor-

mance of a given metric, making it behave more expectedly. Therefore, I recommend to

base future metrics on language models that were pre-trained with WWM.
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6.4.2 Monolinguality versus Multilinguality

The experiments revealed that not only the masking strategy influences the sensitivity

of a metric, but also the nature of the underlying language model. The monolingual

German metrics consistently outperformed the multilingual metrics across all conducted

experiments. They are not only more sensitive towards mistakes in nouns and compounds,

but also to errors in named entities and numbers, where multilinguality is expected to be

an advantage. Particularly in the case of COMET-20, the low sensitivity is surprising, as

it has access to additional information from the source segment. That it nevertheless fails

at identifying wrong numbers and NEs, underpins that COMET-20 has blind spots that

cannot be easily explained.

In addition, monolingual metrics also output fewer unknown words when used as util-

ity function and their MBR-decoded translations are generally of a higher quality than

those of multilingual utility functions. GBLEURT and GCOMET clearly outperform

COMETContrastive in terms of translation quality. GBLEURTWWM even outperforms

COMET-20, that is much larger and hence expected to show a superior performance,

while GLBUERTSWM and the two GCOMET models achieve a very similar quality as

COMET-20, when deployed as utility function.

An explanation for the superiority of monolingual metrics is the often cited curse of

multilinguality (Conneau and Lample, 2019; Conneau et al., 2020; Pu et al., 2021). In

multilingual models, various languages share the capacity of the model. While multilingual

models with only few languages usually outperform monolingual models, adding too many

languages is detrimental to the performance. After a certain point, a capacity bottleneck

is reached, where the available capacity per language is no longer large enough. As a

result, the performance decreases. As XLM-RoBERTa, that underlies COMET-20 and

COMETContrastive, is a massively multilingual model with 100 languages, this bottleneck

seems to be reached.

Moreover, multilingual models typically improve the performance on low-resource lan-

guages, while deteriorating the performance on high-resource languages (Conneau et al.,

2020). As German is a high-resource language, the multilinguality of XLM-RoBERTa is

a disadvantage with harmful effects on the model’s performance. This is in line with the

finding by Amrhein et al. (2022) that multilingual embeddings can have a negative impact

on the performance of the metric when evaluating MT output.

The findings highlight the value of monolingual models, especially for high-resource lan-

guages. In contrast to multilingual models, monolingual models can fully concentrate on

a certain language. As a result, they are more familiar with its peculiarities, capture more

subtle nuances and thus are more sensitive to idiosyncratic phenomena.
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6.4.3 Blind Spots of Fine-Tuned Neural Metrics

The present thesis demonstrated that fine-tuned neural metrics have various concerning

blind spots, including named entities, numbers and compounds. The findings illustrate

that for a high-resource language like German, monolingual models that are pre-trained

with Whole Word Masking can alleviate the problem, but they cannot entirely solve it. The

blind spots still persist. This behaviour of the metrics underpins the insight of Amrhein

and Sennrich (2022): The unexpected blind spots are inherent to the metric model and

cannot be easily removed.

However, it is still unclear where these biases stem from. For future work, it might be

worth the effort to investigate the training data for possible biases, as language models

are known to catch up such biases in their embeddings which affects the outcome of down-

stream tasks (Chan et al., 2020). The underlying language models of the studied metrics,

XLM-RoBERTa and GBERT, were both trained on portions of the Common Crawl corpus.

Hence, it is well possible that the blind spots are a consequence of noisy training data.

However, whether this is the case or not has to be elucidated in future research.

The biases may also stem from the training data used to fine-tune the regression layer, i.e.

the Direct Assessment data from the WMT Metrics Shared Tasks 2017 - 2019. However,

the experiments conducted in this thesis revealed that the underlying language model has

a much greater impact on the behaviour of a fine-tuned metric than the regression layer.

Therefore, it is more likely that the problematic biases stem from the embeddings.

6.4.4 Evaluation of Fine-Tuned Neural Metrics

The experiments conducted in this thesis underpinned that GCOMET and GBLEURT

show a superior performance to COMET-20 and COMETConstrastive, both in terms of

sensitivity and regarding the quality of their MBR-decoded translations.

In sharp contrast to these results, COMETContrastive outperformed GCOMET and GBLEURT

in the official WMT 2020 Metrics evaluation task of ranking MT systems according to their

translation quality (cf. Table 10). When outlier MT systems were removed from the anal-

ysis, COMETContrastive was only outperformed by GBLEURTWWM and the much larger

COMET-20 model that reached the highest Pearson correlation with human judgements

in both settings.

These results are in line with the observations by Sellam et al. (2020b) that multilin-

gual models were more accurate than monolingual ones in the official evaluation of the

WMT 2020 Metrics Shared Task. They attribute the superior performance of multilingual

models to the larger amount of fine-tuning data that they saw during training. However,

the experiments conducted for this thesis demonstrate that the MBR-decoded transla-

tions with COMETContrastive are of lower quality than those obtained with GCOMET or

GBLEURT. Further, both COMETContrastive and COMET-20 are particularly insensitive
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to various linguistic phenomena. These findings highlight that system-level ranking of

MT systems is not a good indicator of the quality and performance of a metric, as it only

measures a very general ability of a metric ignoring its capability to handle particular

linguistic phenomena.

Hence, the results of the WMT 2020 Metrics evaluation task are misleading and can result

in catastrophic outcomes of experiments with winning metrics. For example, Freitag et al.

(2022a) investigated an MBR-like re-ranking of a candidate list with COMET-QE. Ac-

cording to the WMT Metrics Shared Tasks, COMET-QE was among the winning systems

achieving a high Pearson correlation in the system-level ranking task. However, the can-

didate re-ranking with COMET-QE resulted in low quality translations. In a similar vein,

Amrhein and Sennrich (2022) as well as this thesis uncovered that winning metrics of the

WMT Metrics evaluation suffer from certain blind spots and do not necessarily produce

high quality translations when used in MBR decoding.

A good and accurate metric evaluation should uncover blind spots and measure more subtle

capabilities than simple system-level ranking. It would be desirable that the WMT Metrics

Shared Task would conduct a more fine-grained evaluation to reveal weaknesses of neural

metrics as soon as possible. Such an evaluation should address the linguistic competence

of metrics more directly. One way to achieve this would be to evaluate the metrics on

a challenge set containing particular linguistic phenomena and targeted perturbations of

candidates as proposed by Amrhein et al. (2022).

6.4.5 Metric Overfitting

The experiments shed light on the issue of metric overfitting. While both neural and

non-neural metrics prefer translations that were decoded with the utility function that

is most similar to themselves, the effect is considerably more pronounced for fine-tuned

neural metrics than for lexical metrics.

The analysis revealed that it is above all the underlying language model that deter-

mines the preferences of a given neural metric. Using GCOMETWWM in the evalu-

ation, illustrated that it is biased towards MBR-decoded translations generated with

GBLEURTWWM that is built on the same underlying language model. Further, the ar-

chitecture of the regression layer also plays a role. The bias of GCOMETWWM towards

translations produced with GCOMETSWM as utility function is almost as strong as the

one towards GBLEURTWWM. However, it should be noted that the underlying language

model of GCOMETSWM is very similar to that of GCOMETWWM differing only in the

masking strategy used in pre-training. Nonetheless, the evaluation scores obtained with

COMET-20 show that the architecture of the regression layer has an impact on the pref-

erences of a neural metric. COMET-20 favours MBR-decoded translations generated with

GCOMET over those decoded with GBLEURT.

These observations underscore that the evaluation of MBR-decoded translations in terms
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of automatic metrics is intricate and often leads to unreliable results. In the future, it

will be crucial to choose evaluation metrics that are as distinct as possible from the utility

function used in MBR decoding. The evaluation metric should rely on a language model

that has a dissimilar architecture and is trained on different data sets than the language

model of the utility function. Further, the regression layers of the evaluation metric and

the utility function should differ as much as possible. Only then reliable evaluation results

can be obtained.

6.4.6 Combining Metrics in MBR Decoding

This thesis experimented with a new approach of combining two utility functions during

MBR decoding. A major downside of neural metrics are their occasional unpredictable

failures in quality assessment. As the failures are unpredictable, different metrics are likely

to fail on different segments. Hence, by combining two metrics in MBR decoding, each

segment is checked twice before a decision is made as to which candidate is best.

The experiments demonstrated that this double check indeed leads to better and more

accurate decisions. The translations obtained with a metric combination as utility function

are of higher quality both in terms of a manual inspection as well as of BLEURT-20

and ChrF++ scores. Moreover, the results showed that the combination of two metrics

alleviates the metric overfitting problem, even though it does not entirely solve it.

Nonetheless, the combination of two (or more) metrics in MBR decoding is a very promis-

ing approach for future work. The results indicate that the different strengths and weak-

nesses of distinct metrics cancel each other out, leading to more stable outcomes. Reliable

quality scores are not only essential in MBR decoding, but also in the evaluation of MT

outputs. Hence, combining metrics with different characteristics, architectures, strengths

and weaknesses might also be beneficial to that field of research and application.

6.4.7 GCOMET versus GBLEURT

When comparing GCOMET and GBLEURT, the experiments revealed some differences

between the two model types. For example, GBLEURT is clearly more sensitive to mis-

takes in NEs than to errors in compounds, whereas GCOMET exhibits a similar sensitivity

to the two phenomena. GBLEURT reacts considerably more sensitive to replacements of

entire nouns and NEs than to modifications of single characters. For GCOMET, the

sensitivity gap between minor and major changes is less pronounced.

When considering all experiments conclusively, GBLEURTWWM seems to be the best of

the four German metrics. MBR-decoded translations with GBLEURTWWM as utility

function receive higher evaluation scores and contain fewer unknown words than those

with GCOMETWWM. However, the gains of GLBEURTWWM over GCOMETWWM are

only minor. It cannot be definitely awarded as the best metric.
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The important takeaway here is that the architecture of the regression layer affects the

general performance of a metric and influences its behavior towards certain linguistic

phenomena. However, the influence of the regression layer architecture is relatively small

compared to the impact of the language model. It is above all the underlying language

model that controls the behaviour of a neural metric.

6.4.8 MBR100 versus MBR99

This thesis also examined, if and to what extent including or excluding the comparison

of a given candidate to itself as support segment during MBR decoding influences the

outcome, i.e. whether other candidates are chosen as best translations in the two settings.

The analysis revealed that MBR100 and MBR99 can indeed lead to different translations.

However, less than 1 % of the translated segments are affected. Hence, the question of

whether to use MBR100 or MBR99 can be neglected in practice. Nonetheless, it is an

important insight that fine-tuned neural metrics do not always assign the same score to

two identical segments. Rather, the score depends on the segment itself.
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This thesis was dedicated to the weaknesses of trained neural MT metrics. In particular,

it elucidated the sensitivity of neural metrics towards German compounds. To identify

blind spots and to gain insights about the sensitivity of different metrics, sampling-based

MBR decoding with various utility functions was used, following the approach by Amrhein

and Sennrich (2022). In sampling-based MBR decoding, the candidate translations are

typically of a lower quality than beam search translations, on which most MT metrics are

trained. The unusual errors in the MBR samples challenge the neural metrics and cause

them to reveal their weaknesses.

The first part of the thesis concentrated on a case study on COMET-20. The MBR

translations obtained with COMET-20 as utility function were analysed for mistranslated

compounds and compared against beam search translations and MBR-decoded outputs

generated with ChrF and ChrF++. The analysis revealed that the large amount of nonsen-

sical compounds in MBRCOMET-20 outputs are not just an artifact of the MBR candidate

pool, since the translations obtained with MBRChrF and MBRChrF++ contained consider-

ably fewer incorrect compounds. Rather, the results highlight that German compounds

are a particular weakness of COMET-20.

Having identified this blind spot of COMET-20, the second part of the thesis was devoted

to the question whether a language model, that was pre-trained with Whole Word Masking

instead of Sub-Word Masking, could enhance the sensitivity of a neural metric towards

German compounds.

For that purpose, two new types of metrics were trained, GCOMET and GBLEURT.

Both are built on the monolingual German GBERT model, but they differ in their archi-

tectures of the regression layer. Both metric types are trained in two flavours: one builds

on GBERT pre-trained with Sub-Word Masking, the other one on GBERT pre-trained

with Whole Word Masking. In addition, to assess the effect of a multilingual language

model compared to a monolingual one, COMETContrastive was trained, that is based on

the multilingual XLM-RoBERTaBase.

To shed light on the research questions, a series of experiments was run, in which the five

new metrics were deployed as utility functions in MBR decoding. In the first experiment,

the MBR translations were evaluated in terms of various automatic MT metrics. The

second experiment analysed the amount of nonsensical compounds in the MBR outputs

of the different utility functions. Finally, an MBR-based sensitivity analysis, as proposed
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by Amrhein and Sennrich (2022), was conducted, measuring the reaction of the metrics

towards targeted changes in nouns, compounds, named entities and numbers.

The results of all these experiments confirmed the hypothesis that Whole Word Masking

in the pre-training of the underlying language model renders the metric more sensitive

to compounds. However, the increased sensitivity towards mistakes in compounds does

not lead to a reduction of unknown words in the MBR translations of WWM-based util-

ity functions. On the contrary, SWM-based utility functions perform better. Moreover,

WWM does not consistently enhance the sensitivity of a metric to other linguistic phenom-

ena like nouns, named entities and numbers. Hence, the blind spots still persist. WWM

alleviates the weaknesses, but it does not fully remove them.

Despite these inconsistent effects of WWM, various automatic MT evaluation metrics

agree that WWM-based utility functions generate better translations than SWM-based

ones. Hence, the results indicate that WWM-based metrics do not make fewer mistakes,

but less severe mistakes. They are more sensitive to errors that seriously hinder the

comprehensibility of a translation, while punishing smaller mistakes, like perturbations of

single characters, less. Thus, they assess errors with more human-like priorities. Given

the overall positive impact of WWM on the performance of a neural metric, I recommend

to base future metrics on language models that were pre-trained with WWM.

Further, the experiments illustrated that for a high-resource language like German, mono-

lingual metrics overall tend to generate translations of higher quality and clearly outper-

form multilingual metrics at handling specific linguistic phenomena. Massively multilin-

gual models seem to be detrimental to the performance of a metric and exacerbate its

weaknesses, at least in the high-resource scenario. As the capacity is divided between a

large amount of languages, a multilingual model is incapable of capturing idiosyncratic

nuances. Hence, for future work on high-resource languages, it is advisable to rely on

monolingual metrics for both MT evaluation as well as MBR decoding.

Further, the experiments demonstrated that the system-level ranking of MT systems is not

an appropriate measure to assess the quality of an MT metric. The multilingual metrics

that achieved the highest Pearson correlation with human judgements in this task, showed

a poor performance when used as utility function in MBR decoding and are particularly

insensitive to language-specific phenomena. This finding is concerning as the system-

level ranking of MT systems is currently the official evaluation task of the WMT Metrics

Shared Task. To avoid that the NLP community optimises towards metrics with severe

blind spots, better evaluation methods are needed as soon as possible.

Moreover, this thesis investigated the effect of different MBR implementations. Specifi-

cally, it elucidated whether including or excluding the comparison of a candidate segment

to itself as support segment influences the final outcome. The experiment demonstrated

that neural metrics do not always assign the same score when comparing two identical

segments. Rather, the scores vary from segment to segment. Hence, including or ex-

cluding the comparison of identical segments affects the outcome of MBR decoding in an
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unforeseeable way.

Finally, the thesis addressed the issue of metric overfitting that was observed in the au-

tomatic evaluation of MBR-decoded translations. The effect was especially strong for

neural metrics and even occurred across metrics of the same family. Thereby, it is mainly

the underlying language model that determines the preferences of neural metrics. Neural

metrics clearly favour other metrics that build on the same language model. Additionally,

they show a slight preference for metrics with a similar regression layer.

To alleviate this problem, I experimented with combining two different utility functions

during MBR decoding. This combination turned out to be beneficial to the overall per-

formance, improving translation quality and alleviating the overfitting effect. The two

metrics seem to compensate for each other’s weaknesses leading to more reliable results

with fewer unpredictable failures.

7.1 Future Work

The various insights gained in this thesis also raised new questions. First of all, the

experiments illustrated that the weaknesses and blind spots are inherent to a neural metric.

Replacing the underlying language model of a metric with a monolingual model pre-trained

with WWM enhances the sensitivity of the metric to certain linguistic phenomena and

alleviates its weaknesses. However, it does not fully erase the metric’s blind spots. The

same holds true for retraining the metric on synthetic data (cf. Amrhein and Sennrich,

2022). Hence, it remains unclear where these blind spots stem from and how they can

be removed. Future work should be dedicated to identify the reasons for the observed

weaknesses. One possibility is that the blind spots are owed to biases in the training data.

Both XLM-RoBERTa as well as GBERT are trained on portions of the Common Crawl

corpus. Hence, it might be worth the effort to scrutinise this data set for possible biases.

While working on this thesis, I encountered evidence for additional weaknesses of COMET-

20 that were already mentioned in Amrhein and Sennrich (2022). In particular, COMET-

20 seems to be insensitive towards gender and polarity errors. Both error types can

drastically change the meaning of a sentence. Hence, future research should elucidate

these problems.

Further, the combination of two metrics yielded promising results. Hence, this approach

should be studied more extensively, as it could be beneficial to various fields of application.

On the one hand, it has the potential to improve the quality of MBR-decoded outputs.

On the other hand, it might also be used in the evaluation of MT translations. The com-

bination of different metrics might provide more reliable scores and alleviate the problem

of metric overfitting.

Moreover, the experiments demonstrated that the evaluation of MBR translations is an

intricate issue, since distorting overfitting effects can even occur across metrics that share
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certain similarities. As MBR decoding becomes more prominent and widespread, it is

of essential importance to find methods to evaluate the translation quality reliably. One

approach might be the above mentioned combination of different metrics. Another solution

might be to use metrics that are as distinct as possible from the utility function in terms of

the underlying language model, the masking strategy, the regression layer and the training

data.

Finally, the results of this thesis indicate that system-level ranking of MT systems, the

current evaluation method of the WMT Metrics Shared Task, does not produce reliable

estimates of a metric’s quality. As the NLP community heavily relies on the winning

metrics of this shared task to guide its decisions, it is of crucial importance to find more

reliable evaluation methods. A good evaluation procedure should take into account the

ability of a metric to deal with specific linguistic phenomena. One possibility would be to

conduct the evaluation on different challenge sets as proposed by Amrhein et al. (2022).
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Proceedings of the 28th International Conference on Computational Linguistics, pages

6788–6796. International Committee on Computational Linguistics, 2020. URL

https://aclanthology.org/2020.coling-main.598.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen.

Enhanced LSTM for natural language inference. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics, pages 1657–1668.

Association for Computational Linguistics, 2017. URL

https://aclanthology.org/P17-1152.

Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin Johnson, and Sebastian Ruder.

Rethinking embedding coupling in pre-trained language models. In Ninth

International Conference on Learning Representations. OpenReview.net, 2021. URL

https://openreview.net/forum?id=xpFFI_NtgpW.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning.

ELECTRA: Pre-training text encoders as discriminators rather than generators. In

Eighth International Conference on Learning Representations. OpenReview.net, 2020.

URL https://openreview.net/forum?id=r1xMH1BtvB.

Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining.

Advances in Neural Information Processing Systems, 32:7059–7069, 2019. URL

https://papers.nips.cc/paper_files/paper/2019/hash/

c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume

Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin

Stoyanov. Unsupervised cross-lingual representation learning at scale. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages

8440–8451. Association for Computational Linguistics, 2020. URL

https://aclanthology.org/2020.acl-main.747.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and Ziqing Yang. Pre-training with

whole word masking for Chinese BERT. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 29:3504–3514, 2021. URL

https://ieeexplore.ieee.org/document/9599397.

80

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.science.org/doi/10.1126/science.aal4230
https://aclanthology.org/2020.coling-main.598
https://aclanthology.org/P17-1152
https://openreview.net/forum?id=xpFFI_NtgpW
https://openreview.net/forum?id=r1xMH1BtvB
https://papers.nips.cc/paper_files/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://aclanthology.org/2020.acl-main.747
https://ieeexplore.ieee.org/document/9599397


Yong Dai, Linyang Li, Cong Zhou, Zhangyin Feng, Enbo Zhao, Xipeng Qiu, Piji Li, and

Duyu Tang. “Is whole word masking always better for Chinese BERT?”: Probing on

Chinese grammatical error correction. In Findings of the Association for

Computational Linguistics: ACL 2022, pages 1–8. Association for Computational

Linguistics, 2022. URL https://aclanthology.org/2022.findings-acl.1.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 4171–4186.

Association for Computational Linguistics, 2019. URL

https://aclanthology.org/N19-1423.

Bryan Eikema and Wilker Aziz. Is MAP decoding all you need? The inadequacy of the

mode in neural machine translation. In Proceedings of the 28th International

Conference on Computational Linguistics, pages 4506–4520. International Committee

on Computational Linguistics, 2020. URL

https://aclanthology.org/2020.coling-main.398.

Bryan Eikema and Wilker Aziz. Sampling-based approximations to minimum Bayes risk

decoding for neural machine translation. In Proceedings of the 2022 Conference on

Empirical Methods in Natural Language Processing, pages 10978–10993. Association

for Computational Linguistics, 2022. URL

https://aclanthology.org/2022.emnlp-main.754.

Patrick Fernandes, António Farinhas, Ricardo Rei, José G. C. de Souza, Perez Ogayo,
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A Tables

A.1 Hyperparamters of GBLEURT

Table 16 shows the hyperparameters that were used to train GBLEURT. For hyperpa-

rameters that are not specified in the table, the default values were used (cf. Sellam et al.,

2020a).

Hyperparameter GBLEURTSWM GBLEURTWWM

Encoder GBERTSWM GBERTWWM

Optimizer AdamW AdamW

Batch Size 8 8

Gradient Accum. Steps 4 4

Learning Rate 1e-5 1e-5

Training Steps 20 000 20 000

Evaluation Steps 500 500

Logging Steps 500 500

Max. Length 512 Tokens 512 Tokens

Padding Max. Length Max. Length

Truncation False False

Early Stopping True True

Best Checkpoint After 1 000 training steps After 3 500 training steps

Table 16: Hyperparameters of the GBLEURT models

A.2 Hyperparameters of GCOMET and COMETContrastive

Table 17 summarizes the most important hyperparameters that were used to train GCOMET

and COMETContrastive. For hyperparameters that are not specified in the table, the default

values were used (cf. Rei et al., 2021).
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Hyperparameter GCOMETSWM GCOMETWWM COMETContrastive

Encoder GBERTSWM GBERTWWM XLM-RBase

Optimizer AdamW AdamW AdamW

Batch Size 4 4 4

Gradient Accum. Steps 4 4 4

Encoder Learning Rate 1e-5 1e-5 1e-5

Learning Rate 3.1e-5 3.1e-5 3.1e-5

Layerwise Decay 0.95 0.95 0.95

Nr. Frozen Epochs 0.3 0.3 0.3

Keep Embeddings Frozen True True True

Pooling Average Average Average

Layer Mix Mix Mix

Dropout 0.15 0.15 0.15

Hidden Sizes [2048, 1024] [2048, 1024] [2048, 1024]

Epochs 1 1 1

Max. Length 512 Tokens 512 Tokens 512 Tokens

Padding Longest Longest Longest

Truncation True True True

Early Stopping True True True

Best Checkpoint After 11 130 training
steps

After 11 130 training
steps

After 18 550 training
steps

Table 17: Hyperparameters of the GCOMET models
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B Errors in Compounds

The manual exploration of MBRCOMET-20-decoded outputs (cf. 3.2) revealed that COMET-

20 is not sensitive enough to different kinds of errors in German compounds. Even though

the correct translation is often among the hypotheses in the candidate pool, COMET-20

often fails to identify it and instead chooses a candidate with an incorrect translation of

the compound.

Several error types appear frequently in the MBR-decoded translations chosen by COMET-

20. These types of errors are described in more detail in the following sections and illus-

trated with a few examples from the data. The list serves to shed light on the most

frequently observed error types and to exemplify the various kinds of difficulties that

COMET-20 exhibits when dealing with German compounds. However, the list is not ex-

haustive and more kinds of mistakes can be found in the MBRCOMET-20-decoded outputs.

B.1 Mistranslation of the Second Compound Component

Nonsensical compounds in which the first constituent is translated accurately, while sub-

sequent components are not, are frequently encountered in the MBRCOMET-20-decoded

output. Thus, COMET-20 seems to be insensitive to the semantic relationship between

the two (or more) parts of a compound. If the first part is translated adequately, COMET-

20 seems to consider the compound as sufficiently similar to the source and the support

sentences. The examples in Table 18 illustrate this type of error. The ID in the table

corresponds to the number of the sentence in the test set that contains the compound,

whereby the first sentence is assigned the ID 0.

In some cases, the translation of the second component is entirely unrelated to the source

sentence, e.g., in Geburts-antrags-weise that corresponds to birth-proposal-manner instead

of birth-day-present, or Garten-lichter, meaning garden-lights instead of garden-gimmick.

Sometimes, the second part is not even an existing German word, such as in Schraub-

schwendern or Magen-rewellen.

However, the second part often exhibits a certain surface similarity to the reference trans-

lation, whereby it shares several characters with the correct translation, e.g., Hunde-

markt and Hunde-park, Werkzeug-köpfe and Werkzeug-kästen, Garten-gebäcken and

Garten-Gimmicks, Dorf-besitzer and Dorf-bewohner, or Straßen-bündnisse and Straßen-

bahnen. In rare cases, this surface similarity can be found between the translation and
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ID MBR COMET-20 Reference Source

3 Hundemarkt Hundepark dog park

7 Video-Fotografie Videoaufnahme video footage

31 Elitembolleute Elitesoldaten elite soldiers

71 Schraubschwendern Schraubenziehern screwdrivers

75 Werkzeugköpfe Werkzeugkästen toolboxes

244 Gartengebäcken Garten-Gimmicks gardening gimmicks

245 Gartenlichter Garten-Gimmicks garden gimmick

471 Dorfbesitzer Dorfbewohner villagers

501 Herzverlust Herzstillstand cardiac arrest

504 Presseansprache Pressemitteilung press release

511 Magenrewellen Bauchkrämpfe stomach cramps

559 Geburtsantragsweise Geburtstagsgeschenk birthday present

816 Straßenbündnisse Straßenbahnen trams

Table 18: Examples of German compounds in which the first component is adequate, while
subsequent components are wrong

the source, as in Video-Fotografie and viedo-footage.

It is important to note that this kind of similarity exists purely on the superficial string-

level, not on the semantic level. Semantic similarities between the inadequately translated

second component of the compound and the reference or source word are rarely observed

in this error type. An example might be Presse-ansprache and Presse-mitteilung where a

certain semantic similarity between Ansprache (speech, address) and Mitteilung (message,

notice, announcement) is given.

B.2 Mistranslation of the First Compound Component

The inverse error type, where the first constituent is incorrect, while the subsequent com-

ponents are correct, is observed as well, even though with lower frequency. A few examples

are shown in Table 19.

As mentioned in the previous section, the incorrectly translated compound part might

exhibit a similar surface form as the correct translation, such as Mittag-nacht and Mitter-

nacht or Lösch-wagen and Liefer-wägen that share at least the same onset. In rare cases,

the mistranslation is triggered by a word in the source sentence that appears outside

the compound. An example is sentence 256 where the adjective sky blue occurs a few

words before fruit trees. The word sky has probably caused the inadequate translation

Himmel-bäume.
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ID MBR COMET-20 Reference Source

33 Wachstumskampf Nahkampf close-quarter fighting

74 Löschwagen Lieferwägen vans

118 Schlauchmitteln Arzneimitteln drugs

256 Himmelbäume Obstbäumen fruit trees

564 Mittagnacht Mitternacht midnight

663 Götterhühnern Brathähnchen roast chicken

Table 19: Examples of German compounds in which the first component is incorrect, while
subsequent components are adequate

However, in most cases the incorrect first part of the compound is unrelated to any other

words in the source sentence and does not show any surface similarity to the correct target

compound as can be seen in various examples in Table 19

Related to the two error types discussed so far, a third, albeit rare type of error appears

in the data. On seldom occasion, the parts of a compounds are swapped, whereby one

part might be translated inadequately. One such example is given in Table 20.

ID MBR COMET-20 Reference Source

69 Schneeschrauben Schraubenziehern screwdrivers

Table 20: Examples of German compounds in which the two parts are swapped

B.3 Polysemous Words

Another challenge which the translation model and the metric used as utility function

face are polysemous words that form part of a compound. These words possess multiple

senses that are often associated with distinct domains. Sometimes, the MT model and

the metric fail to recognize the correct domain and, as a result, select an inappropriate

meaning for the word in question. Examples for polysemous compound components for

which the wrong meaning was chosen are listed in Table 21.

Interestingly, the domain of sports seems to be especially challenging for the COMET-

20 metric. The last two examples, goal difference and warm-up session, illustrate that

COMET-20 seems prefers the more general meaning of polysemous words. The English

word goal can be a synonym of aim, target, objective. In this general sense of the word, Ziel

is a valid German translation. However, in the specialized domain of sports, in which goal

refers to a physical structure or target as well as to a score or point, it must be translated

as Tor. COMET-20 fails to select the domain-specific meaning, even though the correct

translation is present in the candidate set. The same applies for warm-up session, where
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ID MBR COMET Reference Source

135 Pflegeleiterin Interimstrainer caretaker manager

242 Broadway-Sterne Broadway-Stars Broadway stars

408 Zieldifferenz Tordifferenz goal difference

802 Aufwärmungssitzungen Aufwärmübung warm-up session

Table 21: Examples of German compounds in which an inadequate meaning for a polyse-
mous component was chosen

session, in a general sense of the word, similar to meeting, conference, can be translated

as Sitzung. However, in the sports domain, the correct translation would be Übung or

Training.

An interesting examples is caretaker manager. The compound part caretaker is associated

with the health domain, in which it certainly occurs most often. It is noteworthy that

it is the MT model that is ignorant of the sports term caretaker manager and fails to

translate it correctly. Nonetheless, the MT model produces several candidates that are

more adequate and that agree in gender to the denoted person, such as Betreuungsleiter.

However, COMET-20 does not select one of these slightly more accurate translations.

Finally, the example of Broadway stars illustrates that COMET-20 does not only struggle

with the sports domain, but also with other domains. It prefers the general meaning of

stars, that refers to the astronomical object and corresponds to the German word Sterne.

However, in the context of Broadway, the word stars clearly refers to a celebrities and

should be translated as Stars. Again, the correct translation is present in the candidate

pool, but not chosen by COMET-20.

B.4 Gender Mistakes

In German, compounds that refer to a person, such as job titles or family relationships,

agree in gender with that person. Occasionally, the MBRCOMET-20 output contains exam-

ples where this is not the case as shown in Table 22.

ID MBR COMET Reference Source

51 Alkoholschwester alkoholischen Bruder alcoholic brother

135 Pflegeleiterin Interimstrainer caretaker manager

352 Pressekreisekretär Pressesprecherin press secretary

353 Untersuchungssekretär Pressesprecherin press secretary

Table 22: Examples of German compounds that do not agree in gender with the person
they refer to
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Correctly translating the gender of English job titles into German is a challenge for the

MT model and the utility function, as most English job titles are gender-neutral, whereas

in German they agree in gender with the person they denote. Hence, the MT model and

the metric have to identify the referent in the context and adjust the gender of the job

title accordingly. It is therefore understandable that the metric sometimes fails to select

a hypothesis with the correct gender from the candidate pool.

Nonetheless, the example from sentence 353 is very interesting. COMET-20 selected a

hypothesis in which the gender of the referent was identified correctly. The word Frau

(Ms.) is added before the referent’s name, even though this title is not present in the

source as illustrated below:

src: The Associated Press has accused White House press secretary Kayleigh McE-

nany [...]

ref: Associated Press hat der Pressesprecherin des Weißen Hauses Kayleigh McEnany

vorgeworfen, [...]

hyp: Die Associate Press hat dem Untersuchungssekretär für das Weiße Haus, Frau

Kayleigh McEnany, vorgeworfen,[...]

Although the referent’s gender is known, COMET-20 selects a hypothesis where the gender

of job title does not agree with that of the referent. Hence, it is not sensitive enough to

gender mistakes in compounds.

A striking example for COMET’s insensitivity towards gender mistakes in compounds is

the translation of alcoholic brother with Alkoholschwester (alcoholic sister). Even though

the English word brother clearly denotes a masculine person and was translated correctly

as Bruder in the vast majority of candidates, COMET-20 chooses its female counterpart.

While COMET-20 is not sensitive enough towards gender in compounds, gender stereo-

types may also come into play. Pflegeleiterin might be an example for such a gender

bias. As outlined above, the MT model as well as COMET-20 do attribute the term care-

taker manager to the health domain instead of the sports domain. In our health systems,

caretakers are typically women. Various studies have demonstrated that language models

learn such gender biases from the training data (Bolukbasi et al., 2016; Caliskan et al.,

2017; Sun et al., 2019). Hence, it is possible that it was the learned gender stereotype that

triggered COMET-20 to choose a hypothesis where the gender in the compound does not

correspond to the gender of the referent.

Apart from gender mistakes in compounds, the MBRCOMET-20 output contains various

examples where the grammatical gender of German nouns is incorrect. In these cases, the

gender of the article and adjectives does not agree with the gender of the noun. Hence,

grammatical gender might be another weakness of COMET-20. However, this assumption

is based on a preliminary manual exploration of the data. To draw an informed conclusion,

a systematic investigation is needed. I leave this question to future work.
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B.5 Erroneous Analysis of Concept Boundaries

In several examples in the MBRCOMET-20 decoded output, the boundaries of concepts were

misanalyzed. In these cases, two neighbouring words are mistakenly analyzed as a single

concept and translated to German with a compound. Errors of this kind mostly concern

two linguistic structures: 1) adjective + noun, 2) present participle + noun. The to words

are merged into a single concept and translated with a compound. The examples in Table

23 illustrate this phenomenon.

ID MBR COMET Reference Source

320 Eishöhen eisigen Höhen icy heights

654 Frühstücksanfrage [und sie] ihr Frühstück einfordern demanding breakfast

807 Großabfall starken Rückgänge large declines

843 Strahlzentrum strahlendes Zentrum beaming center

Table 23: Examples of German compounds with an erroneous analysis of concept bound-
aries

It is important to note that COMET-20 is only partially to blame for this misinterpretation

of concept boundaries. In three out of the four listed cases, the majority of candidates

contained a wrong translation of the phrase in question. The phrase beaming center

was correctly translated in only one candidate. Hence, it is not only COMET-20 that

occasionally struggles with analyzing the word and concept boundaries correctly, but also

the MT model. Nonetheless, COMET-20 seems to have greater difficulties with handling

the mentioned linguistic constructions than the MT model. In the case of large declines,

most candidates contain an adequate translation, but COMET-20 chooses a wrong one.

Similarly, while many candidates use the incorrect compound Eishöhen for icy heights,

there are many other candidates offering a correct translation, but COMET-20 is unable

to select one of them.

B.6 English Loanwords and False Friends

German incorporated certain English words as loanwords. If these words form part of

a compound, COMET-20 tends to prefer candidates which try to translate the English

word instead of just copying it into German as a loanword. However, in many cases, the

attempt to avoid loanwords results in wrong or at least not very idiosyncratic translations

as shown in Table 24. The observed preference of COMET-20 for replacing loanwords

with inadequate German terms might be caused to some degree by the MT model which

produces many candidates that try to find a translation for the English loanword.

In a few instances, COMET-20 is susceptible to false friends. An example is shown in

Table 25. The word stab exists in English as well as in German. However, the meaning of
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ID MBR COMET Reference Source

242 Broadway-Sterne Broadway-Stars Broadway stars

244 Gartengebäcken Garten-Gimmicks gardening gimmicks

245 Gartenlichter Garten-Gimmicks garden gimmick

676 Twitter-Posten Twitter-Post Twitter post

865 Pfeffersprühmittel Pfefferspray pepper spray

987 Sozialmedienunternehmen Social-Media-Unternehmen Social media companies

1000 Gesellschaftsmedienkonten Konten in den sozialen Medien social media accounts

Table 24: Examples of German compounds avoiding loanword components

the two words is completely different. The German word Stab translates to English as bar,

stick. COMET-20 does not recognize this false friend and selects a candidate that copies

the English compound component into the German compound producing a nonsensical

translation.

ID MBR COMET Reference Source

55 Stabanzeichen Stichwunden stab marks

Table 25: Example of the mistranslation of a false friend

B.6.1 Repeated Compound Parts and Perturbation of Single Characters

Finally, the MBRCOMET-20-decoded output contains compounds in which a component

was repeated several times as shown in the upper part of Table 26. In other compounds, a

single character was replaced, deleted or added as illustrated in the lower part of Table 26.

These error types are not exclusively related to compounds and are frequently encountered

in MT output. However, as the examples below demonstrate, they also occur within

compounds.

ID MBR COMET Reference Source

289 Festlandsland Festland mainland

666 Geburtstagestag Geburtstag birthday

0 Hundpark Hundepark dog park

21 Pfeifferspray Pfefferspray pepper spray

Table 26: Examples of repeated compound parts and perturbations of single characters
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B.7 Other Error Types

In the previous sections, the most frequently observed error types were analysed and

exemplified in detail. This list is not exhaustive and serves to provide the reader with an

overview of common errors associated with compounds. Many more error types related

to compounds are encountered in the MBR-decoded output. However, they occur less

frequently than the aforementioned types and it is beyond the scope of this work to

analyze each of them in detail. In the present section, only the most interesting ones are

briefly discussed.

In a some instances, COMET-20 selects a candidate that produces a compound where

none is needed. In these cases, neither the English source word nor the adequate German

translations are compounds. These compounds are usually nonsensical and mostly do

not share any component or semantic content with the correct translation. Examples are

given in the upper part of Table 27. An exception is the compound Spiegelstellen which

incorporates the target word as component.

ID MBR COMET Reference Source

70 Fließzone Gehege enclosure

72 Spiegelstellen Spiegel mirrors

686 Siegerschlag Schießerei shooting

72 Windburn-Witten Scheibenwischer windscreen wipers

Table 27: Other examples of nonsensical German compounds

In some instances, certain constituents of the compound do not exist as lexemes in the

German language. Two examples were already listed in Table 18: Schraub-schwendern

and Magen-rewellen. An example where the MT output has nothing in common with

the reference translation is shown in Table 27. Windburn-Witten shares a substring with

the source, but not with the reference. Nonetheless, it can be considered as a compound,

given the hyphen between the components on the one hand and the fact that the source

contains a compound with a similar surface form on the other.

Finally, compounds also appear in hallucinations, i.e. in translations that have nothing in

common with the source. Compounds generated in hallucinations can be correctly formed

or nonsensical, but in either case they are entirely unrelated to the meaning of the source

sentence.
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