Introduction to Machine Learning

Lesson 3
Mathias Müller, Phillip Ströbel

True or false?

A pairplot shows the relationship between all features and the target variable.

K Nearest Neighbour is fast to train, and slow during inference.

The k in K Nearest Neighbour is the number of classes in the training data.

University of

Zurich ${ }^{\text {SH2 }}$
Institute of Computational Linguistics

Linear Regression

Topic of this lesson

- Linear regression
- Evaluation metrics for linear regression
- (Polynomial Features for linear regression)

Regression Problems

- Assumption: data-generating process is a function
- fitting a regression model: approximating this unknown function
- fitting a regression model: 1) decide on a class of functions, 2) set all parameters that fully describe the function

Classes of functions
linear functions

$$
y=2 x+1
$$

polynomial functions

$$
\begin{aligned}
& y=3 x^{2}+2 x
\end{aligned}
$$

exponential functions

$$
y=e^{x}
$$

Parameters that describe functions

$$
\begin{aligned}
& +32 y \text { intercept } \\
& y=-2 x+\overbrace{}^{-2}
\end{aligned}
$$

coefficient y

Linear Regression

- function class: linear
- linear functions describe lines or hyperplanes
- parameters to be learned: 1 weight for each feature in X, optionally 1 intercept

Line or Hyperplane?

Equation of a line

$$
\begin{aligned}
& y=\underline{m} x+b \\
& \text { Steigung }
\end{aligned}
$$

$$
y=13 x
$$

Simple linear regression problem: one feature, one target variable, no intercept

Goodness of fit: sum of squared residuals

How to find best line? Let's analyze sum of squared residuals $\left.\right|_{a-a} ^{a} \quad y=m x$

ordinary least squares

Ordinary least squares (OLS)

- closed form, analytical solution for linear functions

Summary

- Regression approximates functions that generated the data
- functions are defined by their parameters
- linear regression approximates linear functions
- linear functions are lines or hyperplanes
- model fitting means finding parameters that minimize sum of squared residuals, with OLS
- Polynomial features to fit non-linear data
- metrics for regression problems:

