Machine Translation

5 Math Fundamentals

Math ${ }_{\text {ias Müller }}$

TensorFlow > API r1.13 > Python
tf.linalg.matmul

Aliases:

- tf.linalg.matmul
- tf.matmul
tf.linalg.matmul(
a,
b,
transpose_a=False, transpose_b=False,

Last time
Statistical poetry!
Moses

Translation: rank hypotheses by Input: "Fallout 76 is a crap

- for new sentences:
"Fallat 76 ist ein tolles

Wie Moses sich ganz leis und schnell, von reinem Text ernährt, am besten viel und parallel, wird hier im Gedicht erklärt.

Nimm den Text und gib ihn schlicht, in einen Satz-Aligner, der sagt was sich entspricht, und schon ist die Struktur viel feiner.

Jetzt ist klar, was Sätze sind, doch Wörter sind noch ganz verloren, aber nur bis G: a ganz geschwind, hat Alignment-Punkte auserkoren.

IBM Model 1, 2, 3 draus Phrasen extrahiert, ist keine Hexerei, mit grow-diag-final navigiert.

So kriegt man auf die schnelle, eine schöne Phrasentabelle!

Ein Sprachmodell dazu, trainiert, auf Zielsprachtext, ne ganze Menge, das bewertet Sätze ungeniert, treibt die Übersetzung in die Enge.

Neue Sätze schliesslich gibt man, dem Decoder, der aus Kandidaten, den besten finden kann, mit log-linearem Raten.

Automatisch evaluieren immer, mit BLEU und METEOR und TER, nicht schwieriger oder schlimmer, als Kochen mit Jamie Oliver.

Das ist dir zu banal?
Dann werd neuronal.

A language model, trained, To target language, a whole lot, Which evaluates sentences uninhibited, Drives the translation into the narrowness.

- we now know the TM score and LM score

TM score: 0.0071 LM score: 0.00001

- and can combine them:

$$
\begin{array}{r}
\text { score }=\operatorname{TM} \text { score }{ }^{\lambda_{T M}} * \text { LM score } \\
\lambda_{\tau \mu}=0.7 \quad \lambda_{\mathrm{TM}} \\
\lambda_{\mathrm{L}}=0.3
\end{array}
$$

Topics of Today

- linear algebra concepts, such as vectors, or dot products
- Python library numpy, most important functions
- differential calculus concepts, such as slope, rate of change, derivative

Why math topics

- linear algebra because most computation in NMT sytems is tensor manipulation
- differential calculus because learning in neural networks is guided by the derivatives of functions

University of

Zurich ${ }^{\text {SH2 }}$
Institute of Computational Linguistics

Linear Algebra

Linear Algebra

Concepts we will cover:

- objects: scalars, vectors, matrices, tensors
- operations defined on objects: elementwise, dot product, sum, (norm, ...)
C) addition

Row vectors vs. column vectors

$$
\left.\vec{a}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \right\rvert\, \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Objects

- all objects are a kind of tensor
- all operations operate on tensors
- defined only for vectors

Tensor Operations

- important operations are
- element-wise operations

$$
10 *\left[\begin{array}{lll}
1 & 2 & 3 \\
45 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
10 & 20 & 30 \\
40 & 50 & 60
\end{array}\right]
$$

- aggregate operations

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
45 & 6
\end{array}\right] \longrightarrow 21
$$

Element-wise addition and multiplication

$$
\begin{aligned}
& M=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 1
\end{array}\right] \quad \vec{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad S=2 \\
& S * M \\
& =\left[\begin{array}{ccc}
1 * 2 & 2 * 2 & 3 * 2 \\
0 * 2 & -1 * 2 & 1 * 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 4 & 6 \\
0 & -2 & 2
\end{array}\right]
\end{aligned}
$$

Sum of tensor elements

$$
\begin{aligned}
& M=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 1
\end{array}\right] \quad \vec{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& \operatorname{sum}(M) \\
& =1+2+3+\alpha+(-1)+1 \\
& =G
\end{aligned}
$$

Vector-vector multiplication: dot product

$$
\vec{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\frac{1 \times 4}{4}+\frac{2 \times 5}{10}+\frac{3 \times 6}{18} \\
& =32
\end{aligned}
$$

Matrix -Vector multiplication
right multiplication

$$
\begin{aligned}
& \mu=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 1
\end{array}\right] \\
& \vec{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

$$
M \vec{a}
$$

left multiplication

$$
\begin{aligned}
& N=\left[\begin{array}{cc}
1 & c \\
2 & -1 \\
3 & 1
\end{array}\right] \\
& \vec{b}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

\vec{b}

Matrix-vector multiplication: right

$$
m_{1}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

$$
\begin{aligned}
\mu & =\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 1
\end{array}\right]_{m_{2}}^{m_{1}} \\
2 \times 3 & \vec{a}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
M \vec{a} & =\left[\begin{array}{l}
\left(m_{1}\right)^{\top} \cdot \vec{a} \\
\left(m_{2}\right)^{\top} \cdot \vec{a}
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
{\left[\begin{array}{l}
\frac{1 \times 1}{1}+\frac{2 \times 2}{4}+\frac{3 \times 3}{3} \\
\frac{0 \times 1}{c}+(-1)^{2}+1 \times 3
\end{array}\right]} \\
\\
\\
=\left[\begin{array}{c}
3 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
{\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}
\end{array}\right]\right.
\end{aligned}
$$

Matrix-vector multiplication: left $\vec{n}_{1} \vec{n}_{2} \quad \vec{n}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

$$
\begin{aligned}
& \underset{1 \times 3}{\vec{b}}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] \quad \underset{3 \times 2}{N}=\left[\begin{array}{cc}
1 & c \\
2 & -1 \\
3 & 1
\end{array}\right] \\
& \vec{b} N=\left[\vec{b} \cdot \vec{n}_{1} \quad \vec{b} \cdot \vec{n}_{2}\right] \\
& =\left[\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right] \\
& =\left[\frac{3 \times 1}{3}+\frac{2 \times 2}{4}+\frac{1 \times 3}{3} \quad 3 \times 0+2(-1)+1 \times 1\right]
\end{aligned}
$$

Matrix-matrix multiplication
$\vec{b}_{1} \vec{b}_{2}$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & 1
\end{array}\right] \\
& B=\left[\begin{array}{cc}
1 & c \\
2 & -1 \\
3 & 1
\end{array}\right] \\
& 2 \times 3 \\
& 3 \times 2 \\
& \begin{array}{l}
\left.A B=\left[\begin{array}{ll}
A \vec{b}_{1} & A \vec{b}_{2}
\end{array}\right] .\right] \text { }
\end{array} \\
& \begin{array}{ll}
\frac{1}{3 A} \\
2 \times 2
\end{array}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad\left[\begin{array}{c}
1 \\
2 \\
3 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
2 \\
3
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{l}
\text { 2 }
\end{array}\right]
\end{aligned}
$$

Summary tensor-tensor-multiplication

| | $M \vec{a}$ | $\vec{b} N$ |
| :--- | :---: | :--- |$\quad A B$

result type	column vector	row vector	matrix
result	rows in	columns	in N

- Linalg
- Jumpy \longleftarrow
- derivatives

numpy

- library for scientific computing
pip inotall numpy
- knows tensors, but calls them arrays
- implements plenty of array operations

In numpy, tensors are arrays
\gg import numpy as up

- how to construct an array

$$
\begin{aligned}
& \operatorname{arraq}(C[1,2],[3,4)] \\
& (, 2,3])
\end{aligned}
$$

- array has a shape
> a.shape

$$
(3,)
$$

- elements in array have a data type
\gg a.dtype

$$
n p . i n+32
$$

Important functionality in numpy

Research the following topics: 2×3
a) how to generate an array with random numbers, with a specific shape and dyype-
b) how to add two arrays element-wise
c) how to compute a matrix-vector right multiplication

$$
\text { -b) }\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]
$$

Important functionality in numpy
a) $\gg r=$ up. random. sample $((2,3))$

$$
\operatorname{array}([[0.199956, \ldots], \quad 6 \rightarrow(2,3)
$$

b) $\gg c=a+b$
add
c) $\gg n p \cdot \operatorname{dot}(a, v)$

$$
1 \times 3 \quad 3 \times 1
$$

Summary Numpy

- numpy can represent arbitrary tensors as arrays
- efficient implementations of very many tensor operations

University of
Zurich ${ }^{\text {UnH }}$
Institute of Computational Linguistics

Calculus: Intuitions about Derivatives

A single-input, single-output function

$$
f(10)=20
$$

How functions change as the input changes

Derivative of a function
(=instantaneous)

- For a very small change in x, how does y change?

$$
f(10) \quad f(10.0000))
$$

Derivative at a point as slope of the tangent line

Derivative at a point versus function that returns the derivative of another function

Intuition for how derivatives relate to machine learning

Error Function

Estimator E

$$
E: x \longmapsto y
$$

$$
\hat{y}=E(x)
$$

$$
e \cdot g \cdot E(x)=w \cdot x
$$

Intuition for how derivatives relate to machine learning

Overall Summary

- linear algebra defines important tensor objects and operations
- numpy implements all those objects and operations
- derivatives are about instantaneous rate of change and its direction

Recommendations for further reading / learning

- Khan Academy videos on linear algebra and singlevariable differential calculus are superb: https://www.khanacademy.org/
- Matrix multiplication visualized by Eli Bendersky: https://eli.thegreenplace.net/2015/visualizing-matrix-multiplication-as-a-linear-combination/
- Introduction to Linear Algebra, Gilbert Strang.
- Numpy Tutorial by Justin Johnson for cs231n: http://cs231n.github.io/python-numpy-tutorial/\#numpy

Next time

Termin	Thema
19.02.	Einführung; regelbasierte vs. datengetriebene Modelle
26.02.	Evaluation
05.03.	Trainingsdaten, Vor- und Nachverarbeitung
12.03.	N -Gramm-Sprachmodelle, statistische Maschinelle Öbersetzung
19.03.	Grundlagen Lineare Algebra und Analysis, Numpy
26.03.	Lineare Modelle: lineare Regression, logistische Regression
02.04.	Neuronale Netzwerke: MLPs, Backpropagation, Gradient Descent
09.04.	Word Embeddings, Recurrent neural networks
16.04.	Tensorflow und Google Cloud Platform
30.04.	Encoder-Decoder-Modell
07.05.	Decoding-Strategien
14.05.	Attention-Mechanismus, bidirektionales Encoding, Byte Pair Encoding
21.05.	Maschinelle Übersetzung in der Praxis (Anwendungen)
28.05.	Zusammenfassung, Q\&A Prüfung
Eventuell: Gastvortrag Prof. Artem Sokolov	
04.06., Raum TBA, 16:15 bis 18:00 Uhr	
Prüfung (schriftlich)	
18.06., AND-2-48, 16.15 bis 18:00 Uhr	

