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Abstract

Part-of-speech (POS) tagging is a fundamental aspect of natural language processing

(NLP) and its capability extends beyond basic linguistic tasks. However, existing

taggers trained primarily on Classical Latin have limitations when applied to texts

from different eras due to the historical evolution of the language. This thesis ex-

amines the performance evaluation of pretrained taggers and explores the potential

of large language models (LLMs), exemplified by GPT, in conducting POS tag-

ging. The investigation encompasses 16th century epistolary Latin sourced from the

Bullinger Digital project and data extracted from five Latin treebanks. Employ-

ing a self-created gold standard, I compare tagger accuracy on the Bullinger data

and employ fine-tuning on GPT models with the aim of enhancing accuracy. The

findings illustrate the viability of LLMs as taggers, which demonstrate competitive

performance compared with pretrained models. Further accuracy improvements are

discernible through fine-tuning, with the method of prompting emerging as a piv-

otal factor exerting a substantial influence on results. This research contributes to

the advancement of POS taggers, fostering their adaptability across various epochs

for comprehensive content analysis. Additionally, it establishes a foundation for

leveraging LLMs in specific NLP tasks.



Zusammenfassung

Part-of-Speech (POS) Tagging ist ein grundlegender Aspekt der natürlichen Sprach-

verarbeitung (NLP) und geht weit über grundlegende linguistische Aufgaben hinaus.

Bestehende Tagger, die hauptsächlich auf klassischem Latein trainiert sind, haben

jedoch aufgrund der historischen Entwicklung der Sprache Einbussen bei der Ge-

nauigkeit, wenn sie auf Texte aus verschiedenen Epochen angewendet werden. Diese

Arbeit untersucht die Leistung von bestehenden Taggern und erforscht das Potenzial

grosser Sprachmodelle (LLMs), wie beispielsweise GPT, bei der Durchführung von

POS Tagging. Die Arbeit umfasst Latein aus dem 16. Jahrhundert, das aus dem

Bullinger Digital Projekt stammt, sowie Daten aus fünf lateinischen Treebanks. Ich

vergleiche die Tagger-Genauigkeit anhand der Bullinger-Daten unter Verwendung ei-

nes selbst erstellten Goldstandards und wende Fine-Tuning auf GPT-Modellen an,

um die Genauigkeit zu verbessern. Die Ergebnisse zeigen die Nutzbarkeit von LLMs

als Tagger, die im Vergleich zu bestehenden POS Taggern eine wettbewerbsfähige

Leistung aufweisen. Weitere Genauigkeitsverbesserungen sind durch Fine-Tuning er-

kennbar, wobei sich die Prompting-Strategie als entscheidender Faktor erweist, der

einen erheblichen Einfluss auf die Ergebnisse ausübt. Diese Forschung trägt zur Wei-

terentwicklung von POS Taggern bei und fördert deren Anpassungsfähigkeit über

verschiedene Epochen hinweg für eine umfassende Inhaltsanalyse. Darüber hinaus

legt sie einen Grundstein für die Nutzung von LLMs in spezifischen NLP-Aufgaben.
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1 Introduction

1.1 Motivation

Understanding the essence of parts-of-speech (POSs) is vital in linguistic analysis

[Jurafsky and Martin, 2019]. POS tagging, which discerns whether a word functions

for example as a noun or a verb, contributes significantly to parsing, establishing its

fundamental role in language analysis.

Among historical languages within the Universal Dependencies treebanks1, Latin

boasts the most extensive dataset, particularly in Classical Latin. However, signifi-

cant portions of Latin literature lack syntactic analysis [Nehrdich and Hellwig, 2022].

POS tagging in historical texts presents unique hurdles due to spelling variations

and the absence of extensive datasets, particularly evident in 16th century Latin

compared to modern or resource-rich languages like English [Schmid, 2019].

Despite its historical importance in scientific, religious, and communication domains,

Latin is classified as a low-resource language due to the lack of digitized texts and

annotations, stemming from its status as an extinct language [Hedderich et al.,

2021]. Projects like Bullinger Digital2 have contributed 16th century Latin texts for

analysis, such as the correspondence of Heinrich Bullinger [Fischer et al., 2022].

Most POS taggers for Latin rely on Classical Latin texts, yet nuances in 16th cen-

tury epistolary Latin pose challenges for these systems. To exemplify these nuances,

consider the tagging of a sentence from the Bullinger corpus in Figure 1, using dif-

ferent taggers. The Bullinger corpus is a subset of the Bullinger letters and will

be introduced later in Section 3.2.1. The English translation for this example is

presented in cursive beneath the Latin sentence. The first line represents the es-

tablished gold standard (GS), the second is tagged by LatinCy (LC), the third by

RDRPOSTagger (RDR), and the last row by GPT-4.

The example sentence already shows disparities in tagging among the various tag-

gers. The RDRPOSTagger erroneously classified punctuation and the name “Eras-

1https://universaldependencies.org
2https://www.bullinger-digital.ch

1
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Chapter 1. Introduction

Figure 1: A Sentence from the Bullinger corpus tagged with different taggers

mus” as verbs. Additionally, LatinCy labeled “adscribere” as a noun, whereas the

RDRPOSTagger and GPT-4 identified it correctly as a verb. Connecting the tagging

similarities identified between GPT-4 and the GS for this sentence, it underscores the

potential of large language models (LLMs). These models offer a promising avenue

to mitigate the inaccuracies exemplified here, showcasing their capacity to enhance

accuracy in language processing tasks. Emphasizing the prowess of Large Language

Models (LLMs) in natural language processing (NLP) due to their capacity to learn

from extensive datasets [Radford et al., 2019], the primary goal of this thesis is to

assess their effectiveness in the specific context of POS tagging. Additionally, I plan

to fine-tune a LLM for this purpose, with the explicit aim of investigating potential

accuracy improvements.

Resolving the detected issue with POS tagging holds great potential in various fields.

Enhanced accuracy in POS tagging for historical languages stands to profoundly

impact linguistic analysis, aiding historians, linguists, and researchers in analyzing

ancient texts.

The technological advances resulting from these efforts go beyond the field of histor-

ical linguistics. Enhancing POS tagging algorithms can spur the creation of sophis-

ticated language processing instruments. These developments promise increased

accuracy and effectiveness in NLP applications, particularly for low-resource lan-

guages and historical documents.

1.2 Research Questions

This thesis investigates the effectiveness of different POS taggers in handling 16th

century Latin texts and explores the potential use of generative pretrained trans-

former (GPT) models in POS tagging tasks within the above mentioned historical

linguistic context.

One focus lies on comparing various pretrained POS taggers in order to determine

2



Chapter 1. Introduction

which ones are best suited for processing data pertaining to the 16th century Latin.

Hence, the first research question is formulated as follows:

1. How accurately do pretrained POS taggers perform on the 16th century Bullinger

data?

This inquiry aims to evaluate their accuracy, adaptability to historical linguistic

nuances, and overall robustness when applied to texts from this time period. An

essential question pertains to the viability and limitations of employing LLMs, exem-

plified by GPT models, as effective tools for POS tagging in the context of historical

Latin texts. The second research question is defined as follows:

2. Can language models such as GPT models be effectively used as POS taggers?

Furthermore, the investigation examines the impact of fine-tuning LLMs, particu-

larly GPT models, to enhance their performance in POS tagging for historical Latin

data. Thus, the third research question is proposed:

3. Can fine-tuning significantly increase the accuracy of GPT models in POS

tagging tasks?

This inquiry aims to determine whether fine-tuning these models can substantially

increase accuracy and resolve challenges encountered in historical language analysis.

Lastly, I endeavor to assess the generalizability of POS taggers and LLMs across

diverse genres, authors, and linguistic variations within the Latin corpora. For this

purpose, the final research question is formulated:

4. Is there a notable discrepancy in the performance of POS taggers when applied

to Classical Latin data?

By addressing these four questions, I aim to ascertain the adaptability of the POS

taggers to various text eras within the Latin corpus.

1.3 Thesis Structure

The structure of the thesis is as follows: Chapter 2 examines both the theoretical

underpinnings and linguistic background and presents an overview of relevant prior

studies that form the foundation of my research. In Chapter 3, I present the data,

methodologies, and tools employed in my experiments, along with a comprehensive

exposition of the experimental setup. The outcomes of these experiments are then

stated in Chapter 4. Chapter 5 gives an analysis of the results obtained and brings

them in the context of the research questions. It includes a discussion, a comparative

3
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analysis, and an acknowledgment of potential limitations encountered during the

study. Finally, Chapter 6 unifies the disparate components of my work to give a

summary of my findings. It encapsulates final conclusions drawn from this thesis

while highlighting avenues for future research.

4



2 Background

In this chapter, I aim to provide an understanding of the theoretical and technical

foundations pertinent to my research questions. Section 2.1.1 briefly traces the

evolution of the Latin language, Section 2.1.2 defines the term “low resource” in the

context of languages, and Section 2.1.3 elucidates the concept of POS ambiguity, a

key factor reducing the accuracy in POS tagging. Next, Section 2.2 examines the

technical aspects such as POS tagging and LLMs. Finally, I introduce various works

aligned with my research questions in Section 2.3.

2.1 Linguistic Background

I will provide an introduction of the linguistic background relevant to my thesis in

this section. In particular, this covers the evolution of the Latin language and is con-

sistent with the thesis’s analysis of discrepancies in performance between Classical

Latin and Latin of the 16th century. The section will also discuss Latin’s designation

as a low-resource language and explain POS ambiguity, which has a big impact on

the accuracy in the context of the experiments.

2.1.1 Evolution of the Latin language

The Latin language has experienced significant changes over the course of its long

historical evolution, creating a challenging environment for scholars. Changes in

case endings and lexical transformations are part of this linguistic journey. This

is most evident in the transition from Old Latin to Classical Latin, where endings

like -om and -os became -um and -us, respectively [Bennett, 1907]. An example

of this transformation is the Old Latin word Romanom (meaning “Roman” in En-

glish), which evolved into Romanum in Classical Latin. These modifications involve

more than just word replacements; they also involve adjustments to meanings and

structures. Due to these modifications, scholars are faced with a range of linguistic

variances, from regional to global forms, the contrast between extinct and extant

5



Chapter 2. Background

Latin variants, and the differences between Vulgar Latin and its literary equivalent

[Poccetti et al., 1999].

Latin, despite its decline since 1800, has persisted in certain domains like the

Catholic Church and classical studies. Over 99.99% of extant Latin texts originate

from later periods, particularly the Renaissance and Neo-Latin eras [Leonhardt,

2009]. Humanists have made significant efforts to purify written Latin from me-

dieval orthographic alterations, advocating for a return to Classical Latin spellings

and distinguishing between “t” and “c,” and thus distinguishing between “eciam”

(meaning “and also” in English) and “etiam”, which were interchangeable for me-

dieval scribes [Leonhardt, 2009].

Understanding the linguistic evolution in Latin is crucial, especially contextualizing

the Bullinger letters, composed in 16th century epistolary Latin. The disparity in

Latin utilized within this corpus compared to other corpora poses a challenge for

language processing systems. Given that these systems are predominantly trained

on datasets from distinct temporal periods, their performance in analyzing texts

within this corpus may exhibit considerable divergence from those texts derived

from alternate epochs.

2.1.2 Low-resource languages

A low-resource language is a language with little or no labeled data. The delineation

of “low resource” depends on the specific NLP task and the associated threshold,

as elaborated by Hedderich et al. [2021], who explore the multifaceted nature of the

definition of “low-resource”. Creating task-specific labels often demands manual

annotation, a process hindered by feasibility constraints due to its time and cost-

intensive nature [Hedderich et al., 2021].

Despite the existence of texts, Latin is regarded as a low-resource language. One ma-

jor hurdle in the analysis of Latin stems from the absence of native speakers, render-

ing interactions and learning from them impossible. This absence poses significant

difficulties in creating a gold standard (GS), a process notably more labor-intensive

and error prone than that for modern languages. Nonetheless, Latin benefits from

a wealth of linguistic expertise derived from its extensive historical legacy, offering

substantial aid in overcoming these obstacles [McGillivray, 2015].

The challenges associated with Latin as a low-resource language significantly impact

this thesis. Specifically, these hurdles influenced the decision to create a task-specific

GS due to the scarcity of labeled data.

6



Chapter 2. Background

2.1.3 POS ambiguity

During POS tagging, accurately assigning tags to wordforms can be an intricate

process, particularly for Latin. Its linguistic subtleties, such as the presence of

participles, namely verbs that often take on the role of an adjective in English

translation, pose significant challenges. Participles are a distinctive category of ver-

bal adjectives, blending characteristics of both verbs and adjectives. Consequently,

determining which POS tag to assign, specifically verb or adjective in Latin, relies

heavily on contextual cues, necessitating a consensus on their classification [Embick,

2000].

Moreover, discerning whether a (modal) verb operates as an auxiliary verb can be

challenging, with a definitive consensus on their treatment lacking1. These com-

plexities directly impact the accuracy and reliability of POS tagging systems when

applied to Latin texts. In the context of this research, where the evaluation and

utilization of pretrained taggers and LLMs in handling 16th century Latin texts are

central, addressing these intricacies becomes crucial.

The decisions made regarding the treatment and tagging of complex linguistic in-

stances significantly influence the accuracy of the taggers applied to historical Latin

texts. And thus, establishing conventions and guidelines, as presented in Appendix

A, is essential for consistency and accuracy in creating a GS for this thesis.

2.2 Technical Background

In this section, I will provide an introductory overview of the technical framework

that underpins my thesis. This includes delving into the concept of POS tagging

and the various existing approaches, and elucidating the terminology and concept

of LLMs.

2.2.1 Part-of-speech tagging

POS tagging, which involves assigning specific tags such as noun or verb to each

word in a text, informs word roles, aiding in sentence comprehension, syntactic

analysis for parsing, entity labeling, and coreference resolution [Jurafsky and Mar-

tin, 2019]. Disambiguating words with multiple potential tags relies on context and

inherent word characteristics [Jurafsky and Martin, 2019], a concept tracing back

to Dionysius Thrax’s work around 100 B.C., which laid the groundwork for POS

1See https://universaldependencies.org/u/feat/VerbType.html
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tagging by delineating eight enduring POS concepts [Jurafsky and Martin, 2019].

Various languages utilize different POS tag sets tailored to their specific features.

For highly inflected languages like Greek and Latin, these tag sets tend to be more

complex [Petrov et al., 2011]. In this thesis, I used the universal POS tags (UPOS

tags) for consistency2.

Automation of POS tagging has been a focal point due to the tedium associated with

manual assignment. Different NLP methods, including rule-based [Borin, 2000],

stochastic, transformation-based, and machine learning (ML) approaches [Chiche

and Yitagesu, 2022], have been explored for POS tagging.

Rule-based methods offer simplicity but lack adaptability to new expressions or

language changes [Chiche and Yitagesu, 2022] due to their reliance on predefined

linguistic rules and patterns. Conversely, stochastic models calculate word POS

probabilities based on context, effectively managing ambiguities but demanding sub-

stantial training data. Transformation-based tagging, such as the Brill tagger, itera-

tively refines tags based on identified errors and proves to be efficient and language-

independent. ML approaches, using decision trees and neural networks, leverage

annotated data for robust performance [Chiche and Yitagesu, 2022].

Despite advancements, POS tagging remains challenging, necessitating high accu-

racy, minimal false positives, and adept handling of contextual ambiguities. Current

strategies, empowered by increased GPU capabilities, lean towards deep learning

(DL) and ML methods. ML utilizes feature engineering from corpora, while DL

captures intricate features directly from data [Chiche and Yitagesu, 2022].

2.2.2 Large language models

LLMs excel in comprehending and generating language due to their extensive train-

ing on massive datasets, learning billions of parameters through significant compu-

tational resources [Hadi et al., 2023].

Primarily built on transformer architectures, LLMs function as autoregressive mod-

els predicting subsequent tokens from input text[Liu et al., 2024]. While fine-tuning

was conventional for task-specific adaptation, newer large-scale models like GPT-3

show comparable performance with engineered prompts. These models are believed

to grasp syntax, semantics, and the fundamental structure of human language from

corpora. However, they may inherit biases and inaccuracies embedded in these

datasets [Liu et al., 2024].

2https://universaldependencies.org/u/pos/

8
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Chapter 2. Background

2.3 Related Work

Having discussed the key concepts underlying this thesis, I finally outline some re-

lated work that will be helpful in understanding its broader context.

Despite Latin not being extensively studied in NLP, existing literature offers vari-

ous methodologies that enhance its efficient processing. Initiatives such as the in-

augural Workshop on Language Technologies for Historical and Ancient Languages

(LT4HALA) in 2020 marked a significant step in this direction. This workshop fo-

cused on uniting scholars who invested in developing and employing language tech-

nologies tailored for historically documented languages, including Latin [Sprungoli

and Passarotti, 2020]. The EvaLatin3 campaign within LT4HALA was instrumental,

being the first dedicated effort to assess NLP tools specifically designed for Latin.

Given the great diversity across Latin texts spanning two millennia, EvaLatin exam-

ined lemmatization and POS tagging, assessing how genre and diachronic variations

influenced tool performance [Sprungoli and Passarotti, 2020]. Understanding the

methodologies and challenges outlined in EvaLatin aligns with the goals of this the-

sis, offering nuanced insights into evaluating NLP tools on historical language data

across diverse temporal contexts.

Submissions within EvaLatin, such as LSTMVoter proposed by Stoeckel et al. [2020]

and the UDPipe2-based system by Straka and Straková [2020], showcased advance-

ments in lemmatization and POS tagging techniques tailored for historical Latin

texts, expanding the methodological breadth available for analysis. Achieving no-

table success, Straka and Straková [2020] attained an accuracy of 91.01% on the

cross-time lemmatization task, and an even more impressive accuracy of 96.19% on

the classical lemmatization task. In the classical POS tagging task, an accuracy of

96.74% was attained, while on the cross-time task, they achieved an accuracy of

87.69% [Straka and Straková, 2020].

Additionally, the Linking Latin (LiLa) Knowledge Base of Linguistic Resources

project, introduced by Passarotti et al. [2019], established a robust lexical founda-

tion for Latin using the Resource Description Framework (RDF), fostering synergy

between textual and lexical resources [Pellegrini et al., 2023; Fantoli et al., 2022].

LiLa’s Text Linker tool offers POS tagging capabilities and interconnected lexical

information in RDF format, facilitating comprehensive linguistic analysis. Figure 2

illustrates an example entry in the Text Linker for the Latin verb “dabo” (meaning

“I will give” in English).

Further advancements in this domain include Latin BERT Bamman and Burns

[2020], a Latin-tailored version of BERT Devlin et al. [2019] trained across Classi-

3https://circse.github.io/LT4HALA/2020/EvaLatin
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Chapter 2. Background

Figure 2: Example of an entry of the Text Linker

cal to contemporary sources. Latin BERT demonstrates exceptional POS tagging

accuracy without task-specific training, achieving high accuracy on various Latin

datasets [Bamman and Burns, 2020].

Additionally, while studies such as the investigation into low-resource languages like

Hongkonese highlight the nuanced strengths of GPT models, showcasing their supe-

rior performance over existing POS taggers, there remains a notable gap in research

specifically examining LLMs as POS taggers4. Drawing from these insights, the

methodologies applied in this thesis to assess language models and POS taggers

within the domain of historical Latin texts are shaped by these previous studies.

4See “GPT-4 is a very good Hongkongese POS Tagger” https://medium.com/@kyubi_fox/

gpt-4-is-a-very-good-hongkongese-pos-tagger-feeae1b44868
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3 Methods

This thesis builds upon the foundational knowledge established in the background

and related work sections, emphasizing the challenges of POS tagging in historical

texts and the limitations of traditional taggers. Notably, there’s a gap highlighted

in leveraging contemporary language models, like GPT, for POS tagging histori-

cal texts. Addressing this gap, this thesis focuses on assessing the effectiveness of

such models, both pretrained and fine-tuned, on Bullinger’s 16th century writings.

The methods chapter outlines the experimental design, data collection, and evalu-

ation metrics, aiming to explore the capabilities and limitations of these models in

handling language structures in historical linguistic studies. It covers the acquisi-

tion, curation, and tools used alongside the data sources, focusing on POS tagging,

datasets, POS tagging models, and the experimental setup outlined in Sections 3.1,

3.2, 3.3, and 3.4 respectively. All code utilized in these experiments is accessible

through my GitHub repository1.

3.1 Part-of-speech Tagging

This thesis centers on POS tagging, utilizing the UPOS tags from the Universal

Dependencies Project2. The UPOS system offers a standardized set of tags for POS

tagging in NLP. These 17 UPOS tags, given in Table 1 along with their meanings,

aim for cross-linguistic applicability, enabling comparative linguistic analyses across

various languages and tagging systems. However, I excluded the UPOS tag PUNCT

from the GS in this thesis due to errors produced by RDRPOSTagger when pro-

cessing punctuation symbols in the used data. However, since this is only a single

tag, taggers should be able to learn this tag very quickly and be able to tag the

punctuation correctly. Not all tags appear in all the taggers used, as discussed in

more depth in Section 4.4.

1https://github.com/Eljuanina/BA
2See https://universaldependencies.org/u/pos/
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ADJ Adjective PART Particle

ADP Adposition PRON Pronoun

ADV Adverb PROPN Proper noun

AUX Auxiliary PUNCT Punctuation

CCONJ Coordinating conjunction SCONJ Subordinating conjunction

DET Determiner SYM Symbol

INTJ Interjection VERB Verb

NOUN Noun X Other

NUM Numeral

Table 1: UPOS tags and their meanings

3.2 Corpus and Training Data

In this subsection, I discuss the data and treebanks used in the experiments per-

formed in this thesis. I used samples from the Bullinger Digital corpus as well

as texts from five treebanks, namely ITTB [Cecchini et al., 2018] [Passarotti and

Dell’Orletta, 2010], LLCT [Korkiakangas, 2021a], UDante [Cecchini et al., 2020b],

PROIEL [Eckhoff et al., 2018], and Perseus [Bamman and Crane, 2006]. An overview

of the different datasets used in this thesis is displayed in Table 2.

Dataset time # of sentences # of token-tag pairs

Bullinger c. 16 200 3664

ITTB c. 13 24,876 420,672

LLCT c. 8 – c. 10 8,173 218,223

PROIEL c. 1 BCE – c. 4 11,851 110,774

UDante c. 13 – c. 14 1,157 38,086

Perseus c. 1 BCE – c. 4 4,236 68,283

Total 50,493 859,702

Table 2: Overview of different datasets (c. = century).

3.2.1 Bullinger corpus

The Bullinger data, a subset of 200 sample sentences from the Bullinger Digital

project3 dataset, forms the basis of this research, referred to as the “Bullinger cor-

3https://www.bullinger-digital.ch
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pus” in this thesis. It stems from the extensive correspondence of Heinrich Bullinger,

a Swiss reformer living from 1504 to 1575, encompassing around 12,000 preserved

letters from the 16th century [Fischer et al., 2022]. These letters, spanning over

50 years and involving communication with more than 1,000 correspondents across

diverse social strata and geographical regions. They offer insights into the politi-

cal, theological, economic, and societal aspects of the early modern period. While

multilingual, this thesis specifically focuses on the Latin sections within this corpus

[Bullinger Digital, 2023]. The Bullinger corpus consists of both edited and unedited

text editions, incorporating 100 samples from the Heinrich Bullinger Briefwechsel

(HBBW) edition and another 100 samples from unedited transcriptions.

The digitization process involved scanning the original letters followed by optical

character recognition (OCR) software to convert them into digital text [Ströbel et al.,

2023]. These digitized letters were then structured into a standardized XML format,

with individual XML files representing each letter. These files contain metadata such

as sender, recipient, date, and a German summary, maintaining a sentence-per-line

structure with language attribute tags [Bullinger Digital, 2023].

3.2.2 Treebanks

This section describes the five utilized treebanks, which served as training material

for the POS tagging models used in this work and as data to fine-tune the GPT

models. I further elaborate on the taggers in Section 3.3, and in Section 3.4.3 I

explain the process of fine-tuning the models.

3.2.2.1 ITTB

The Index Thomisticus project, widely regarded as a pioneering endeavor in the

field of computational linguistics, was spearheaded by Father Roberto Busa SJ in

the second half of the 1940s. Its aim was to compile the complete Latin works of

Thomas Aquinas, encompassing 118 texts by Aquinas himself and an additional 61

texts by related authors. This corpus totals approximately 11 million words, metic-

ulously annotated with morphological tagging and lemmatization.

An offshoot of this project, the Index Thomisticus treebank (ITTB), initiated plan-

ning in the early 1970s under Father Busa’s guidance. Its purpose was to incorporate

morphosyntactic disambiguation and sentence-level syntactic annotation into the In-

dex Thomisticus corpus. Beyond these primary goals, the ITTB project also aims

to create diverse and sophisticated language resources specifically tailored for Latin

[Passarotti, 2019].

13
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In this thesis I used test and training sets retrieved in CoNLL-U format from a

GitHub repository4 comprising 24,876 tagged sentences and totaling 420,627 token-

tag pairs.

3.2.2.2 LLCT

I utilized the Universal Dependencies (UD) version of the Late Latin Charter tree-

bank (LLCT), which is an automated conversion of the LLCT2 treebank from the

Latin Dependency treebank format to UD format[Korkiakangas, 2021b]. LLCT2,

developed from 2016 to 2018, encompasses 521 Early Medieval Latin records (char-

ters) written in Tuscany during the period from A.D. 774 to 897 [Korkiakangas,

2021b]. These charters belong to the legal (documentary) genre, utilizing a non-

standard Latin variety that differs from Classical and Medieval Latin in spelling,

morphology, and syntax [Korkiakangas, 2021b].

Charters offer rich non-literary content, contain extensive metadata such as scribe

names, places and dates, and represent original documents. However, they also pose

a challenge because they are formulaic, have a complicated relationship with spoken

language (manifesting as a mixture of archaic, misunderstood, and spoken language

features), and repeat or lack certain linguistic phenomena5.

The data used in this thesis was retrieved from a GitHub repository6. The dataset

encompasses 8,173 tagged sentences, which correspond to 218,223 token-tag pairs in

total.

3.2.2.3 UDante

The UDante treebank encompasses all Latin texts authored by Dante Alighieri, a

prominent figure in Italian literature and politics during the 13th and 14th centuries,

notably known for his Divina Commedia [Cecchini et al., 2020a]. This treebank

project arose from the absence of syntactic annotations in Dante’s texts despite

their significance in Italian literature. To commemorate the 700th anniversary of

Dante’s death, UDante aimed to syntactically annotate all his Latin works according

to UD standards [Cecchini et al., 2020b].

UDante focuses on literary Medieval Latin (14th century) and includes works such

as “De vulgari eloquentia,” which discusses the identification of the best vernacular

language in Italy; Monarchia, a political treatise on the Empire–Church relation-

4https://github.com/UniversalDependencies/UD_Latin-ITTB/tree/master
5See https://lila-erc.eu/wp-content/uploads/2019/06/korkiakangas.pdf
6https://github.com/UniversalDependencies/UD_Latin-LLCT
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ship; and a collection of Dante’s mostly politically themed letters [Cecchini et al.,

2020a].

The UPOS tagging in UDante was obtained through an automatic conversion from

the original DanteSearch7 corpus tagset, with manual and partial automatic adjust-

ments to align it with UD annotation guidelines [Cecchini et al., 2020a].

The UDante data included in my experiments, obtained from GitHub8, includes

1,157 tagged sentences, comprising 38,086 token-tag pairs.

3.2.2.4 PROIEL

The Pragmatic Resources in Old Indo-European Languages (PROIEL) project, af-

filiated with the University of Oslo’s Department of Philosophy, Classics, History

of Art, and Ideas, focuses on exploring morphological and syntactic structures in

ancient Indo-European languages by creating an annotated corpus. This corpus

includes the Koine Greek original of the New Testament and its translations into

Latin (Jerome’s Vulgata), Gothic (Wulfila’s translation), and Slavic (from Codex

Marianus) [Eckhoff et al., 2009].

The New Testament was chosen as a primary source for comparative research due

to its status as a naturally occurring parallel corpus and its inclusion of some of the

oldest and most substantial texts in Germanic, Slavic, and Armenian. Alongside

religious texts, the corpus incorporates Latin works including Julius Caesar’s Com-

mentarii de bello Gallico, Cicero’s “Epistulae ad Atticum,” and “De officiis,” as well

as Palladius’ “Opus agriculturae” [Eckhoff et al., 2009].

The PROIEL treebank’s creation underwent various linguistic annotation stages,

including sentence boundary verification and correction, followed by manual as-

signment of morphological data, often guided by system-generated suggestions and

predefined rules [Eckhoff et al., 2009].

The PROIEL dataset used in this thesis, obtained from GitHub8, comprises 11,851

tagged sentences, totaling 110,774 token-tag pairs.

3.2.2.5 Perseus

The Perseus dataset, specifically version 2.1, contains semi-automatically annotated

texts. Each word in this dataset is detailed with several attributes, including a 9-

character POS attribute. The positional significance of each character within this

7https://dantesearch.dantenetwork.it
8https://github.com/UniversalDependencies/UD_Latin-UDante/blob/master
8https://github.com/proiel/proiel-treebank/
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string determines the word’s POS [Babeu, 2019].

However, the dataset did not initially use UPOS tags, necessitating a mapping pro-

cess to align the tags used in Perseus with the UPOS tagset before proceeding with

the analysis. The version 2.1 dataset includes works such as Cicero’s In Catilinam,

Ovid’s “Metamorphoses,” and Augustus’ “Res Gestae.”9

I retrieved this dataset from the GitHub repository10. All files were utilized except

those containing Caesar’s Commentarii de Bello Gallico and Jerome’s Vulgata, as

these were already present in the PROIEL dataset (see Section 3.2.2.4). The short-

ened Perseus dataset employed in this thesis encompasses 4,236 tagged sentences,

totaling 68,283 token-tag pairs.

3.3 POS Tagging Models

In this thesis, I evaluated the performance of various POS tagging models on 16th

century epistolary Latin sourced from the Bullinger letters. Additionally, I assessed

their effectiveness on the training data used for these models. My comparative

analysis involved five established POS tagging models: LatinCy, CLTK, UDPipe,

RDRPOSTagger, and TreeTagger. Attempts to include RNNTagger were discontin-

ued due to challenges in aligning its output tags with the UPOS tagset. Moreover, I

examined the capabilities of LLMs for POS tagging, employing the GPT-3.5-Turbo

and GPT-4 models. Additionally, I fine-tuned eight models based on GPT-3.5-Turbo

with different volumes of training examples. Detailed descriptions of each utilized

tagger are presented in the following subsections.

3.3.1 LatinCy

LatinCy, a spaCy-based toolkit for Latin NLP, emerged in 2023 as a set of trained

general purpose “core” pipelines [Burns, 2023]. The LatinCy toolkit includes three

main models: “la core web sm,” “la core web md,” and “la core web lg.” The “la”

prefix signifies Latin, while “core” denotes a comprehensive pipeline encompassing

various NLP components and the “web” label indicates their training data origin.

The larger “md” and “lg” models utilize subword vectors [Burns, 2023], enabling

them to grasp extensive vocabularies and generalize beyond their training data [Ács

et al., 2021].

9A complete list of the works is provided here https://universaldependencies.org/

treebanks/la_perseus/index.html
10https://github.com/PerseusDL/treebank_data/tree/master/v2.1/Latin/texts
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The LatinCy models underwent training using diverse sources such as Latin Uni-

versal Dependencies treebanks [Celano, 2019], Wikipedia, the cc100-latin corpus

[Ströbel, 2023], and NER datasets from the Herodotos project [Erdmann et al.,

2019]. The top-performing LatinCy model achieves an impressive 97.41% accuracy

for POS tagging [Burns, 2023]. In this thesis, the focus was specifically on evaluating

the largest model, namely the “la core web lg” model.

3.3.2 CLTK

The Classical Language Toolkit (CLTK), introduced in 2014 by Johnson et al. [2021],

stands as an open-source Python library designed for NLP tasks concerning ancient

and premodern languages, focusing on historically under-resourced languages like

Latin and Greek. It offers functionalities for tokenization, lemmatization, POS

tagging, and morphological analysis [Burns, 2019]. With preconfigured modular

pipelines for 19 languages, including Classical Chinese, Old Norse, Middle High

German, Sanskrit, Greek, and Latin11, CLTK’s architecture caters to the unique

requirements of premodern languages [Johnson et al., 2021]. In the realm of Latin

morphological parsing, CLTK integrates Stanza, a Python package leveraging neu-

ral networks for morphological analysis. Stanza utilizes advanced neural network

components and PyTorch-based modules, employing a bidirectional LSTM network

for its POS tagging [Qi et al., 2020]. CLTK showcases average accuracies of 68% for

unigrams, 10% for bigrams, and 75% for trigrams on the Perseus test data. With

the 1, 2, 3-gram backoff tagger iterated over 10 times, it reaches an accuracy of 82%,

employing a cascading approach to tagging resolution when the primary tagger lacks

adequate information12.

3.3.3 UDPipe

UDPipe2 functions as a comprehensive pipeline for sentence segmentation, tokeniza-

tion, dependency parsing, lemmatization, and POS tagging [Straka, 2018], employ-

ing CoNLL-U format data and pretrained word embeddings for training. With over

50 language models, including Latin and non-Indo-European languages like Arabic,

UDPipe builds its models based on Universal Dependencies treebanks, featuring spe-

cific ones for Latin: “Latin-ITTB,” “Latin-Perseus,” and “Latin-PROIEL” [Straka,

2018].

11See https://github.com/cltk/cltk
12See http://cltk.org/blog/2015/08/02/updated-accuracies-pos-taggers.html
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The system utilizes an artificial neural network for POS tagging, lemmatization, and

dependency parsing, employing shared trained word embeddings to evade treebank-

specific hyperparameter tuning. For POS tagging, it processes embedded words

through a multilayer bidirectional LSTM and a softmax classifier to generate tags.

Advanced features encompass residual connections and a dense layer with tanh non-

linearity for intricate nonlinear processing [Straka, 2018].

UDPipe2 excelled in the CoNLL 2018 UD Shared Task, achieving top rankings across

various evaluations [Straka, 2018]. UDPipe is available for download as a program

compatible with all operating systems and can also be imported as a library into

programming languages such as Python, Perl, and R. In this thesis, UDPipe2 was

utilized as a library within the R programming environment, employing the Latin-

PROIEL model. Table 3 presents UDPipe’s results for different UPOS tags as

documented in Straka [2018].

Model % accuracy

Latin-ITTB 98.28

Latin-PROIEL 96.75

Latin-Perseus 87.64

Table 3: Accuracies of UDPipe for Latin models

3.3.4 RDRPOSTagger

RDRPOSTagger specializes in POS and morphological tagging, employing a Sin-

gle Classification Ripple Down Rules (SCRDR) tree, generated via an error-driven

method [Nguyen et al., 2014]. Covering approximately 80 languages, it provides

pretrained models for UPOS, XPOS, and morphological tagging13. Unlike Brill’s

approach Brill [1995], RDRPOSTagger automatically organizes transformation rules

into a structured SCRDR tree, allowing controlled interactions between rules and

incorporating new exception rules to rectify errors [Richards, 2009; Nguyen et al.,

2014].

The SCRDR tree structure integrates edges labeled as “except” and “if-not,” hous-

ing rules in a conditional form “if α then β,” with α as the condition and β as the

conclusion [Richards, 2009]. During evaluation, the case traverses the tree path,

culminating at the last node whose rule aligns with the case, resulting in a definitive

determination [Nguyen et al., 2014].

Proven successful for English and Vietnamese, RDRPOSTagger’s language indepen-

13See https://rdrpostagger.sourceforge.net/
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dence allows adaptation to other languages by providing word lexicons with their

most frequent associated tags [Nguyen et al., 2014]. For Latin, three available models

showcase slightly varying accuracies14, outlined in Table 4. In this thesis, I utilized

RDRPOSTagger within the R environment, employing the UD Latin-ITTB model.

Model % accuracy

UD Latin-ITTB 96.85

UD Latin-PROIEL 93.98

UD Latin-Perseus 84.44

Table 4: Accuracies of RDRPOSTagger for Latin models

3.3.5 TreeTagger

TreeTagger, emerging from the University of Stuttgart’s textual corpora (TC) project,

excels in annotating text with POS and lemma information across various languages,

including German, English, Chinese, Russian, Greek, and Latin. Adaptable to new

languages given a lexicon and a tagged training corpus, it remains versatile15.

There are different parameter files available for download for each supported lan-

guage in TreeTagger. For Latin, there are two files: one by Gabriele Brandolini

and another trained on the ITTB by Marco Passarotti. Initially using the latter, I

encountered issues mapping the output tags to the UPOS tagset, prompting a shift

to Brandolini’s parameter file for TreeTagger evaluation.

Functionally akin to conventional n-gram taggers outlined by Church [1988] and

Kempe [1993], TreeTagger models the probability of tagged word sequences. While

n-gram taggers rely on maximum likelihood estimation and encounter difficulties

with zero frequencies, TreeTagger estimates transition probabilities by utilizing a

binary decision tree [Schmid, 1994].

TreeTagger’s performance was assessed using data from the English Penn Treebank

corpus by employing approximately 2 million training words and 100,000 testing

words from a distinct part of the treebank. Two versions, bigram, and trigram,

achieved accuracies of around 95.8% and 96%, respectively [Schmid, 1994]. The

output of TreeTagger does not use UPOS tags, making it necessary to map the tags

into UPOS tags. Below is an example of the unmapped TreeTagger output:

14See https://github.com/datquocnguyen/RDRPOSTagger/tree/master/Models
15See https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
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Augustinum N:acc Augustinus

vero ADV vero|verus

suam POSS suus

probasse V:INF probo

3.3.6 RNNTagger

RNNTagger, a tool for POS tagging and lemmatization, supports 49 languages, en-

compassing both modern and ancient languages like English, German, Latin, and

Old Greek. Implemented in Python3 using PyTorch, it was developed by Helmut

Schmid, known for implementing TreeTagger (refer to Section 3.3.5). Unlike Tree-

Tagger, RNNTagger aims for higher tagging accuracy and ensures lemmatization for

all tokens. However, it tends to be slower, especially without a GPU, and requires

larger Python and PyTorch parameter files. In the case of Latin, its training relied

on the Index Thomisticus corpus (see Section 3.2.2.1). The POS tagger utilizes

bidirectional LSTM networks to process character sequences of words and generate

word representations, followed by fully connected layers and softmax operations to

predict POS tags on tokenized text using its own tokenizer [Schmid, 2019].

However, in this thesis, RNNTagger, while producing output, did not format tags

into UPOS, making it challenging to map them as no manual for mapping was avail-

able. Consequently, this tagger was excluded from further evaluation. Below is an

example of its unmapped output.

Augustinum 11B---D1---augustinus

vero 11B---G---1 verus

suam 11A---D2---suus

probasse 3-JH4------probo

3.3.7 GPT

In this thesis, I evaluated two OpenAI-developed LLMs: GPT-3.5-Turbo and GPT-

4. GPT-3.5, an advanced version of GPT-3 launched in 2022, utilizes 175 billion

parameters and was trained on a vast 570GB text corpus, ranking among the largest

language models [OpenAI, 2023]. Operating on a transformer neural network archi-

tecture, it excels in tasks like translation, text completion, and question-answering

due to its deep comprehension of complex language patterns and nuances [Topal

et al., 2021].

GPT-4, a newer model, shares some limitations with previous versions, such as oc-
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casional unreliability, potential “hallucinations,” and constraints within its context

window. Trained on diverse datasets including publicly available internet data and

third-party licensed data, GPT-4 was fine-tuned by reinforcement learning based on

human feedback [OpenAI, 2023].

While GPT-4 demonstrates superior performance across various tasks and can pro-

cess visual input data, as of this thesis, only GPT-3.5-Turbo supports fine-tuning

with custom training data. Fine-tuning involves updating pretrained weights with

task-specific supervised datasets. Although this method yields strong performance

on benchmarks, it requires substantial datasets for each task and may lead to over-

fitting or reliance on irrelevant features in the training data, potentially impacting

comparisons with human performance [Brown et al., 2020]. Section 3.4.3 covers the

fine-tuning process, while Section 4 details the model evaluations.

3.4 Experimental Setup

In this section, I delve into the setup of various experiments, detailing the estab-

lishment of the GS is discussed in Section 3.4.1, the methodology behind the POS

tagging process described in Section 3.4.2, and the intricate fine-tuning procedure

outlined in Section 3.4.3. These steps were crucial in aligning with my research

goals, facilitating the evaluation of pretrained POS taggers and language models

on 16th century Latin texts, particularly within the context of Heinrich Bullinger’s

correspondence.

3.4.1 Gold Standard

The process began by extracting 200 sample sentences from the Bullinger corre-

spondence, forming a smaller Bullinger corpus. I collected 100 sentences from both

the editions/hbbw and unedited/transcribed directories within the project’s GitHub

repository 16. These samples contained Latin segments from letters, accompanied by

metadata like source file, author, year, and sentence number, stored in an XML file.

This structure ensured representation across different editions, authors, and years.

After confirming diverse representation, I saved the sentences in txt files, tokenized

them using the spaCy tokenizer with the “la core web lg” model, and cleaned the

text by removing punctuation, including internal parentheses within words.

Subsequently, I employed the UDPipe tagger to assign reference tags to each token

in the file. Creating the GS involved meticulously reviewing each token-tag pairing,

16https://github.com/bullinger-digital/bullinger-korpus
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resolving discrepancies between assigned tags and my interpretation of the correct

classifications. To ensure reliability, I collaborated with my former Latin teacher,

Urs Schwarz, to establish a GS based on agreed tagging principles (Appendix A).

Seeking validation, I consulted Dr. Philipp Roelli from the Fachstelle Latein at

the University of Zurich, ensuring the sensibility and reliability of our interpreta-

tion process. Finally, we measured inter-annotator agreement (IAA) using Cohen’s

Kappa. We achieved an IAA of 0.97, indicating a high level of agreement between

our annotations.

3.4.2 POS tagging

I used various POS tagging models presented in Section 3.3 on the tokenized sam-

ple senteces as well as the treebank data. Different methods were employed for

each tagger, generating separate output txt files. Python scripts handled LatinCy

and CLTK, command line commands managed TreeTagger and RNNTagger, and R

scripts were used for UDPipe and RDRPOSTagger. The scripts used for this process

are accessible in my GitHub repository17. I standardized token placement across all

files to ensure consistency, enabling accurate POS tag analysis. In cases where tag-

gers failed to assign a tag or presented formatting issues, hindering tag assignments,

I replaced the tags in these areas with “X.” Accuracy served as the primary metric

for evaluation after correcting the output. I also experimented with both GPT-3.5-

Turbo and GPT-4 models using the GPT API. Initially, providing only a sentence

from the Bullinger corpus in the prompt led to tokenization issues. To fix this, I ad-

justed the input prompt, including the example sentence and a tokenized version of

the sentence that matches the tokenization in the GS to ensure proper tokenization

matching. The prompt in Figure 3 included system role definition and output for-

matting instructions. Additionally, I tested a token-only approach for the Bullinger

corpus, submitting only tokens without a reference sentence in the prompt.

To use GPT models for POS tagging on the treebank data, I devised an alternative

approach due to missing sentence boundaries in some datasets. Instead of providing

full sentences, I used sets of 65 tokens in the prompts. This approach substituted the

need for punctuation to delineate sentences. However, the output required extensive

manual adjustments due to formatting errors. The method’s time-consuming nature

was particularly challenging, especially with larger treebank datasets. As a result, I

could only conduct a single run for each model and dataset, limiting the assessment

to a singular evaluation without averaging accuracy across multiple runs.

17https://github.com/Eljuanina/BA
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Figure 3: Prompt employed for POS tagging using the GPT API

3.4.3 Fine-tuning of GPT-3.5-Turbo

I fine-tuned the GPT-3.5-Turbo model using training and test data gathered from

the treebanks specified in Section 3.2.2. To maintain a 20/80 split between test

and training data, I adjusted dataset sizes accordingly. When the predefined test

sets were absent, such as for PROIEL and Perseus, or when the test set exceeded

20%, such as for UDante, I randomly selected sample sentences to maintain a 20%

ratio. However, for treebanks such as ITTB and LLCT, with test sets of only 10%,

I utilized the existing predefined test and training sets. This resulted in an overall

adjustment, resulting in approximately 16.2% of the data used for the test set and

83.8% used for training18.

I divided the training data into subsets comprising 50, 100, 200, 500, 1,000, 2,000,

5,000, and 10,000 sentences. According to OpenAI, a minimum of 10 examples is re-

quired for effective fine-tuning, while substantial improvements typically demand 50

to 100 examples19. I maintained consistent proportions of each treebank in the test

set across subsets by precisely calculating the number of sample sentences needed

for each treebank in every training subset.

Fine-tuning necessitated transforming the examples into a specific format specified

by OpenAI. An illustration of this transformed data is available in Appendix D.1.

Subsequently, I uploaded these files to OpenAI and initiated the fine-tuning process,

following the steps outlined in a Jupyter notebook accessible on my GitHub. Note

that I did not write this code myself, as the code was already accessible online.

18More details about the exact splits can be found in my Jupyter notebook named
“all training data.ipynb” on GitHub.

19See https://platform.openai.com/docs/guides/fine-tuning/when-to-use-fine-tuning
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4 Results

In this section, I discuss the outcomes obtained from applying different POS taggers

on the Bullinger corpus as well as on the treebank test corpora. This analysis

is crucial for evaluating how well pretrained taggers work on 16th century Latin

texts. I am primarily looking at their accuracy and adaptability across different

types of language data. By comparing the results and evaluating how effective the

taggers are, this research aims to contribute to the field of NLP, especially concerning

historical Latin analysis and the use of LLMs for POS tagging.

4.1 Output of GPT models

The evaluation of the GPT models revealed several discrepancies between the antici-

pated and generated outputs. These deviations encompassed repetition and omission

of tokens or entire segments, and alterations in token-tag separators, such as the use

of a tilde instead of the designated tab. Despite the requests for UPOS tags in the

prompts, instances of erroneous tags, including the presence of lowercase variations,

were detected. Despite these inconsistencies, I accepted the scenario of lowercase

tags and compared the tags in their lowercase version to assess the ability of the

GPT models to assign correct tags. For example, in the output “et UNK lato UNK

taget UNK,” erroneous tags were assigned, highlighting the model’s shortcomings.

Additionally, there were occasions where the models unexpectedly inserted trans-

lations or incorporated text from different languages, such as French prompts or

Cyrillic-script text. These anomalies are showcased in the provided examples in

Appendix D.2 or in the Jupyter notebook named “clean output.ipynb” on GitHub.

Furthermore, peculiarities were observed in the outcomes, notably in an instance

where the generated output displayed unexpected text:

Vuido PROPN

Nopqrstuvwxyz

gratia NOUN
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The occurrence of missing or incorrect data varied among the models. Generally,

models trained with larger datasets of 5,000 or 10,000 examples displayed more

issues compared to those trained with fewer examples. Nevertheless, a consistency in

encountering errors in specific passages across different models was noted, indicating

persistent issues in certain areas despite variations in the size of the training sets.

4.2 POS tagging on Bullinger corpus

The creation of a reference GS involved collaboration to ensure accuracy. This

validation underscored the similarity between my GS and that of my former Latin

teacher. Given the near-identical outcomes, I solely evaluated the taggers against

my self-generated GS. The taggers’ performance, assessed by accuracy, is detailed

in Table 5. LatinCy demonstrated the highest accuracy from the pretrained models

at 79.8%, slightly surpassing CLTK by 2.7%. However, RDRPOSTagger displayed

the lowest accuracy at 64.5%, indicating limitations in processing Bullinger’s 16th

century data (research question 1).

LatinCy CLTK UDPipe RDRPOSTagger TreeTagger

79.8 77.1 72.8 64.5 74.3

Table 5: Accuracy of the taggers on the Bullinger corpus in %

In Section 3.4.2, I delineated two evaluation approaches for the GPT models. The

results for both the token-only and sentence-included approaches are outlined in

Table 6. Here, the fine-tuned models are abbreviated using the prefix “train” fol-

lowed by the number of training examples. For instance, the GPT-3.5-Turbo model

fine-tuned with 50 training examples is labeled as “train50.”

prompt GPT-3.5-Turbo train50 train100 train200 train500

tokens 62.2 70.3 69.4 68.2 58.8

sentence 80.2 84.8 85.5 84.0 77.2

prompt train1000 train2000 train5000 train10000 GPT-4

tokens 65.8 78.2 71.9 74.4 74.3

sentence 82.5 78.3 76.6 76.4 83.5

Table 6: Accuracy of the GPT models on the Bullinger corpus in %

The observed accuracies significantly varied between the two tagging methods. Uti-
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lizing complete sentences in the prompt consistently yielded higher accuracy com-

pared to the token-only method across all models. The token-only method averaged

69.35% accuracy, while the sentence-inclusive method achieved 80.9%, indicating an

over 11% difference.

In the token-only method, the model trained on 2,000 sentences exhibited the high-

est accuracy at 78.2%. This model demonstrated 1.6% lower accuracy compared

to LatinCy but surpassed the remaining models. In contrast, the train500 model

showed the weakest performance, achieving only 58.8% accuracy, which was 5.7%

lower than RDRPOSTagger—the least accurate tagger from Table 5.

However, the sentence-inclusive method consistently yielded higher accuracy than

TreeTagger. The train100 model attained the highest accuracy at 85.5%, surpassing

even the non-fine-tuned GPT-4 model. Notably, the train500 model showcased the

most significant disparity between the two approaches, with an 18.4% difference,

while the train2000 model showed a marginal difference of 0.1%.

The tagging process was time-consuming, particularly for GPT-4, hence each model

was tested only once. Pretrained models were faster, yet the GPT models sometimes

took several hours, contingent upon the global GPT demand. Testing the models

during off-peak hours expedited processing times, whereas usage during evening

hours substantially prolonged them.

4.3 POS Tagging on the test data

Among the tested taggers and pretrained models, LatinCy emerged with the highest

average accuracy, achieving 83.22% on the treebank test data (see Table 7 in Ap-

pendix B). Figure 4 depicts the average accuracy of the taggers, indicating effective

performance of the LLMs as POS taggers, addressing research question 2.

Among the evaluated models, the fine-tuned train1000 model showcased the most

effective performance, boasting an average accuracy of 88.99%. Conversely, RDR-

POSTagger exhibited the lowest performance, recording an average accuracy of

72.36%, marking a 16.63% difference between the highest and lowest performers.

Regarding performance across various test sets, the taggers displayed superior accu-

racy on the ITTB test set, averaging 84.95%. Conversely, the taggers achieved the

lowest average accuracy on the UDante test set at 78.4%. On the LLCT test set,

the taggers demonstrated an accuracy of 84.09%, while the taggers achieved on the

Perseus and PROIEL datasets accuracies of 79.63% and 84.07%, respectively. The

collective average accuracy across taggers and test sets stood at 81.26%.
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Figure 4: Average accuracy on the treebank test data

4.4 Tag distribution

The models’ performance differed depending on the POS tag, showing both accurate

and inaccurate assignments. In Figure 5, the confusion matrices for LatinCy and

GPT-4 on the Bullinger corpus are displayed. In the Appendix C, the confusion

matrices for all of the taggers evaluated in this thesis, along with their respective

tags for the Bullinger corpus, are presented in Figures 12 and 13. These matri-

ces highlight the tags assigned by the taggers along the x-axis, representing their

predictions, and the tags from the GS along the y-axis, offering insights into their

performance.

As can be seen in Figure 5a, LatinCy showcases a nearly diagonal line, suggesting

overall accurate predictions. However, it correctly predicts the subordinating con-

junctions (SCONJ) tag only 38% of the time, incorrectly predicting ADV 47% of

the time and PRON 13% of the time. Conversely, GPT-4 (see Figure 5b) displays a

more uniform and darker diagonal line, implying higher accuracy in tag assignments.

These matrices reveal variations in the usage of UPOS tags among different taggers.

For instance, some tags like SYM are absent in the GS and are not assigned by most

taggers, resulting in an empty row. In Figure 12, RDRPOSTagger also omits the

use of tags like PART, X, and INTJ. The presence of misalignment between predic-

tions in RDRPOSTagger’s results is evident, particularly in the upper left quadrant.

This suggests varied and less consistent predictions, a characteristic that becomes

apparent due to the scattering of colored fields.

27



CHAPTER 4. RESULTS

(a) Confusion matrix for LatinCy (b) Confusion matrix for GPT-4

Figure 5: Confusion matrix of two taggers on the Bullinger sample

A striking observation lies in the inverse relationship between the model perfor-

mance and the quantity of training data, as depicted in Figure 13. For instance, the

assignment of the AUX tag remains consistently imperfect across various models.

The train50 model assigned it as VERB (34%), AUX (63%), and X (3%). In con-

trast, train5000, with 100 times more training examples, eliminated the assignment

of X entirely, assigning VERB in 94% of cases and AUX in only 6% of cases. Only

train200 utilized the INTJ tag, albeit with a 50% correct assignment rate.

In Figures 7 and 8, illustrating the tag distribution of pretrained models across the

Bullinger corpus and treebank data, NOUN and VERB emerge as the most preva-

lent tags, aligning well with the GS for the Bullinger corpus. Notably, UDPipe

sparsely assigns the SCONJ tag, while PRON occurrences by UDPipe and LatinCy

are relatively fewer compared to other pretrained models or the GS. Conversely,

ADV is frequently assigned by these two taggers.

Turning to Figures 9 and 10, showcasing tag distribution among GPT models, a

balanced distribution is observed across different models. The train2000 model

has many X tags in the treebank data, but it also had relatively many Xs in the

Bullinger corpus. However, a peculiar observation surfaces concerning the PUNCT

tag. Smaller GPT models exhibit occurrences of this tag in the Bullinger corpus,

although theoretically, there should be none due to the absence of punctuation.
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5 Discussion

The study analyzed the performance of different models in POS tagging tasks,

finding that LatinCy had the highest accuracy of pretrained POS taggers, while

train1000 outperformed as the best tagger on treebank test data. The study also

revealed significant differences in the effectiveness of different prompting strategies

on Bullinger data, emphasizing the importance of context in POS tagging. The con-

trasting successes of various models highlight the potential effectiveness of language

models like GPT models in POS tagging tasks. The study also examined the impact

of fine-tuning on GPT models’ accuracy in POS tagging tasks.

5.1 Accuracy on Bullinger Corpus

This section compares taggers’ performance to the GS to assess how accurate they

are tagging the Bullinger corpus. Among the pretrained models, LatinCy was par-

ticularly accurate, though the baseline GPT models outperformed it. Remarkably,

some fine-tuned GPT models even performed better than the baseline models.

5.1.1 Comparison of accuracy of pretrained taggers’

The assessment of pretrained POS taggers revealed distinct discrepancies in accu-

racy when confronted with the 16th century Bullinger corpus. LatinCy showcased

the highest accuracy at 79.8% against the GS, a significant difference from its 97.41%

performance on test data as stated in Burns [2023]. Also the other pretrained mod-

els contrasting deviations in accuracy from their performances on other datasets.

The divergence in accuracy among the taggers when applied to the Bullinger corpus

hints at potential challenges stemming from unique data characteristics or variations

in tag assignments. While the discrepancies observed could partially be attributed

to tagging errors, the high IAA suggests broader issues beyond individual tagging

inconsistencies.

These findings emphasize the substantial hurdles pretrained taggers face when han-
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dling historical corpora like Bullinger’s 16th century data. Notably, the EvaLatin

shared task evaluated tagger performance across different eras, signifying the inher-

ent difficulty in applying these models to diverse historical periods. The notable

discrepancies observed among taggers when compared to both the GS and their

performances on other datasets underscore the complexity and distinct nature of

historical text analysis.

The evaluation of pretrained POS taggers on the 16th century Bullinger corpus

revealed significant discrepancies in word usage or tagging standards among the

Bullinger corpus, the gold standard, and the training data. This divergence appears

to have notably contributed to reduced performance across all taggers when applied

to the Bullinger dataset. In response to the first research question, “How accurately

do pretrained POS taggers perform on the 16th century Bullinger data?,” these

findings underscore the considerable hurdles these taggers face when dealing with

this specific historical corpus and indicate that the pretrained taggers only show a

moderate performance on 16th century data.

5.1.2 Comparison of accuracy of GPT models

Within the tokens-only approach, the train2000 model showcased superior accuracy

at 78.2%, outperforming all pretrained models on the 16th century GS dataset ex-

cept for LatinCy. Notably, models trained on more examples exhibited decreased

accuracy, possibly indicating potential overfitting issues.

The sentence-included approach significantly improved results compared to the tokens-

only method, with most models surpassing pretrained counterparts or achieving high

performance levels. Enhanced accuracy was attributed to the model’s ability to con-

textualize words within sentences, facilitating more precise tagging based on varied

word usages.

The most notable performance leap occurred with the train500 model, which initially

had the poorest accuracy in the tokens-only approach. The unexplained difference

between the performance of train200 (84.0%) and train500 (77.2%) (refer to Table 6)

persists, despite the latter including all the data from train200 along with additional

examples. It is plausible that conflicting examples in train500 caused confusion that

could be resolved by providing more examples, as implemented in train1000. Sur-

prisingly, the train100 model with limited training examples achieved the highest

accuracy at 85.5%, though reproducibility remains uncertain due to limited testing

epochs.
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The study’s comparison with Chu1 highlights performance similarities and differ-

ences between GPT models’ POS tagging outcomes. However, direct comparisons

were hindered by differences in experimental methodologies, such as the absence of

fine-tuning in Chu’s study. Unexpected behaviors, like punctuation dropping and

the usage of incorrect tags, were encountered, echoing findings from Chu’s work.

The analysis underscores the pivotal role of prompting in LLMs and its influence

on POS tagging. Solely providing tokens resulted in significantly lower accuracy,

underscoring the limitations of disambiguating POS tags without contextual cues.

This analysis aligns with the notion that LLMs excel in NLP tasks and highlights

the substantial impact of prompting methodologies on LLM performance, surpassing

the influence of training data quantity.

5.1.3 Comparison of accuracy on the treebank data

All taggers encountered difficulties with the Bullinger corpus, resulting in none

achieving outstanding results. Even the best model did not achieve comparable

accuracy with taggers such as Latin BERT, which is referred to in Section 2.3. This

raises uncertainty regarding whether the issue stems from my tagging choices or if

the Bullinger corpus dataset was an unfortunate selection. Although the dataset

was randomly selected, the limited sample size of 200 samples may have contributed

to the poor performance, as it may include certain edge cases. To gain a clearer

perspective on tagger performance, I tested the taggers on test data sourced from

the treebanks they were originally trained on, for which one would expect better

performance than with the Bullinger corpus.

Although minimal deviation in average accuracy was observed across different mod-

els (Figure 4), the GPT models showcased superior performance. Specifically, the

train1000 model outperformed LatinCy by a relative improvement of over 5% (Table

7), excelling particularly on the ITTB and LLCT data. Upon reviewing the out-

comes of the experiments, it can be asserted that language models such as GPT can

effectively serve as POS taggers, thus providing an affirmative response to the second

research question.The illustration of tagger accuracy on treebanks through boxplots

(Figure 6) reveals fluctuations among datasets. While UDPipe demonstrated mini-

mal fluctuation but consistent mediocre performance, models like train500 and Lat-

inCy showed significant variability among datasets, performing well on certain data

but lower on others. The train1000 model showcased the highest median accuracy,

denoted by orange lines in Figure 6, with a more focused range of scores, suggesting

1See “GPT-4 is a very good Hongkongese POS Tagger” https://medium.com/@kyubi_fox/

gpt-4-is-a-very-good-hongkongese-pos-tagger-feeae1b44868
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better balance between higher accuracy and reduced variability. Conversely, the

train2000 model demonstrated consistency across sets with good average accuracy.

Addressing the fourth research question, “Is there a notable discrepancy in the per-

formance of POS taggers when applied to Classical Latin data?” points to a consid-

erable difference in tagger performance between treebank data, largely representing

Classical Latin, and the Bullinger 16th century dataset. However, limitations in

sample size and potential edge cases in the dataset may have influenced these find-

ings.

Figure 6: Boxplots illustrating the average accuracy on the treebank test data

5.1.4 Fine-tuning of GPT

The fine-tuned models showed significant improvements over their base counterparts.

For instance, the train1000 variant displayed a remarkable increase of 13.81 percent-

age points in average accuracy compared to the foundational GPT-3.5-Turbo model,

even surpassing the more robust GPT-4 by 8.89% in average accuracy. However,

while GPT-4 demonstrated higher accuracy than GPT3.5-Turbo, its operational

speed was comparatively lower than that of the fine-tuned models. Notably, the

expenses associated with utilizing GPT-4 during prompting were higher, whereas

fine-tuning incurred costs during the training phase. The decision to engage in

fine-tuning depends on individual assessment, weighing whether the resultant accu-

racy increase justifies the associated costs. For applications involving extensive data

usage, fine-tuning appears more justifiable. Conversely, for singular or infrequent
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model usage, the necessity of fine-tuning might be debatable, especially considering

that comparable accuracy increments could potentially be achieved through alter-

native prompting strategies. This emphasizes the pivotal role of precise prompts in

maximizing the efficacy of fine-tuned models, as varying prompting strategies could

also yield accuracy enhancements besides additional training examples. My assess-

ment of the models’ cost and speed is based solely on their current status during

this thesis, acknowledging the potential for future versions to alter these aspects.

Regarding performance on known datasets versus the unseen Bullinger corpus, the

fine-tuned models, along with GPT-3.5-Turbo and GPT-4, showed good results.

This supports the rationale for using LLMs in POS tagging and aligns with prior

insights presented by Chu, suggesting a positive response to my second and third re-

search questions. However, exploring alternative prompting strategies, such as using

complete sentences instead of multiple tokens per prompt, or making adjustments

in parameters like temperature, remains an area requiring further investigation.

Regarding the impact of fine-tuning on GPT model accuracy in POS tagging tasks,

it was observed that while fine-tuning enhances performance, the extent of improve-

ment might not be as substantial as anticipated. Additionally, the choice of prompt-

ing strategy appeared to have a greater influence on GPT model performance than

fine-tuning itself. However, limitations in experimentation, including single-epoch

testing and formatting complexities, restricted a comprehensive assessment of fine-

tuning’s true potential.

The study’s limitations, such as the restriction to one epoch of assigning POS tags

and the inability to retag incorrectly formatted passages, constrained the exploration

of fine-tuning’s full impact.

5.2 Comparison of the tag distributions

Comparing tag distributions across Figures 8, 10, and 11 highlights potential fac-

tors influencing model accuracy. Notably, the train2000 model’s frequent use of

the X tag correlates well with its prevalence in the Perseus treebank, suggesting a

strong correlation and might be a factor for its good performance. Surprisingly, the

train1000 model’s high accuracy on ITTB and LLCT datasets, despite the absence

of distinct peculiarities in tag distribution patterns, underscores the intricate rela-

tionship between distribution characteristics and model accuracy on specific data.

LatinCy’s alignment with tagging distributions, frequently assigning PROPN and

PUNCT tags in line with their prevalence in the LLCT dataset, may contribute to

its high accuracy. However, discrepancies, like LatinCy’s frequent tagging of ADV
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and ADJ not prevalent in the LLCT data, exist. For a comprehensive overview,

refer to the tag distribution figures in Appendix C and Table 7 in Appendix B

for tagger accuracies on treebanks. These findings suggest that a model’s perfor-

mance is shaped by the dataset’s characteristics, and mismatches between a tagger’s

assignments and the dataset’s tag usage may impact accuracy.
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6 Conclusion

6.1 Summary

This research aimed to evaluate pretrained POS taggers as well as LLMs, exemplified

by GPT, on 16th century Latin texts, particularly Heinrich Bullinger’s correspon-

dence. The central questions for this research were as follows:

1. How accurately do pretrained POS taggers perform on the 16th century Bullinger

data?

2. Can language models such as GPT models be effectively used as POS taggers?

3. Can fine-tuning significantly increase the accuracy of GPT models in POS

tagging tasks?

4. Is there a notable discrepancy in the performance of POS taggers when applied

to Classical Latin data?

The evaluation of pretrained POS taggers on 16th century Latin texts unveiled a

moderate level of competence among the tested models, with LatinCy demonstrat-

ing the highest performance at 79.8% accuracy.

Exploring the potential of LLMs such as GPT models revealed promising results.

GPT exhibited competitive performance when tagging both the 16th century data

and the treebank data, primarily from Classical Latin. The results highlighted

their effectiveness, notably influenced by prompt engineering. Contextual prompts

significantly enhanced tagging accuracy, showcasing the pivotal role of context in

disambiguating POS tagging. Additionally, fine-tuning GPT models using Latin

treebank data notably improved performance, with the train1000 model achieving

an average accuracy of 88.99%. This emphasized the efficacy of fine-tuning in bol-

stering tagging accuracy compared to base GPT models and highlighted the critical

role of prompt selection, significantly influencing output quality. However, it is es-

sential to note that the accuracy assessment could not determine the final output as

the tagging was conducted only once, and manual corrections were applied to un-

clear model outputs. This manual intervention potentially diminished the accuracy
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recorded.

However, despite improved performance on Classical Latin data, the effectiveness of

taggers diminished when applied to 16th century Latin texts. This opens up pos-

sibilities for further refinement in the context of 16th-century Latin POS tagging,

considering the time-consuming nature and cost implications associated with GPT

models. Nonetheless, for Classical Latin, fine-tuning models appear to be a viable

strategy.

In conclusion, this study illuminated both the challenges and potential inherent

in employing pretrained taggers and LLMs for POS tagging historical Latin texts.

Addressing the main research question, it provided insights into the proficiency of

taggers and LLMs in handling historical Latin texts. Reflecting on the research pro-

cess, the study showcased the nuanced impact of prompt selection and fine-tuning

on tagging accuracy, revealing the critical nature of these factors. Additionally, it

raised pertinent questions regarding the adaptability of language models to different

historical Latin eras, suggesting potential avenues for future investigations.

6.2 Future Work

Expanding research in this area holds significant promise for enhancing our under-

standing and application of language models for Latin historical texts. Challenges

persist in creating high-quality parsers adaptable across different Latin treebanks

(see Passarotti and Dell’Orletta [2010] and McGillivray and Passarotti [2009]) due

to insufficient annotations in Latin datasets. The varied compositions of corpora

and shifts in language within Christian and Medieval Latin have a notable influence

on the effectiveness of parsers across different versions and periods of Latin (see

Dinkova-Bruun [2011]). Creating annotated datasets tailored to specific historical

periods, such as 16th century Latin or spanning various eras, could mitigate these

difficulties. These datasets need to encompass the linguistic variations inherent in

Christian and Medieval Latin to improve parser performance across diverse linguis-

tic versions.

The correlation between tag distribution and model accuracy poses an intriguing

area for further exploration. Analyzing this relationship across various treebanks

and models could elucidate deeper insights into the performance dynamics of lan-

guage models on historical texts. This avenue holds substantial promise in enhancing

our comprehension and utilization of language models, particularly for Latin histor-

ical texts.

Although current limitations do not allow fine-tuning of GPT-4 models, the future
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availability of this capability could improve such experiments, as GPT-4 has supe-

rior performance to GPT-3.5-Turbo. Clear variations in accuracy, as observed in

Table 6, suggest the importance of exploring different approaches in prompt design

and fine-tuning models tailored to 16th century data. Exploring varied prompt de-

signs and implementing targeted fine-tuning strategies holds promising potential for

enhancing model performance. Furthermore, conducting multiple test runs using

identical models and data could yield more comprehensive insights into model ac-

curacy, despite the potential challenge of increased processing times.

The pursuit of improved prompts, thorough exploration of 16th century data, and

the prospect of training GPT models on multiple low-resource languages for POS

tagging not only pave the way for future research avenues but also mark crucial

strides toward a more refined and resilient application of LLMs in analyzing histor-

ical Latin texts.
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Glossary

accuracy A fundamental metric used to assess the performance of automatic

annotation tools like parsers or POS taggers. It calculates the proportion

of tokens accurately tagged among the total number of tokens.

clitic A piece of language that has word syntactic properties but is phonologically

and lexically connected to another word. The most common Latin enclitics

are -que and -ne. When POS tagging, they are often treated separately from

the words they are attached to.

confusion matrix A visual representation in grid form that demonstrates the

classification model’s performance. It illustrates the comparison between

predicted and actual classes within a dataset.

gold standard An either manually or automatically annotated dataset. Gold

standards serve as benchmark datasets used to assess and test the perfor-

mance of automatic NLP tools.

GPT API Enables developers to use natural language processing features like text

generation, summarization, question answering, and more within their appli-

cations or systems by allowing them to integrate and access the capabilities

of GPT models.

hallucinations A form of model failure, where the models produce content

that is implausible, unrelated, or factually incorrect in relation to the

given context. These mistakes arise from the models’ propensity to produce

text based on patterns discovered from training data, which can occasionally

produce absurd or deceptive results.

IAA The IAA is a metric that measures consensus among annotators, ensuring

consistency and quality of annotations. It is crucial for evaluating datasets

with multiple annotators, facilitating quality control and reliable NLP

model training.
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J. Ács, Á. Kádár, and A. Kornai. Subword pooling makes a difference. pages

2284–2295, 2021. URL https://aclanthology.org/2021.eacl-main.194.

A. Babeu. The perseus catalog: of frbr, finding aids, linked data, and open greek

and latin. Digital Classical Philology, pages 53–72, 2019.

D. Bamman and P. J. Burns. Latin BERT: A contextual language model for

classical philology, 2020. URL https://arxiv.org/abs/2009.10053.

D. Bamman and G. R. Crane. The design and use of a latin dependency treebank.

In Proceedings of The Third Workshop on Treebanks and Linguistic Theories

(TLT 2006), 2006. URL

https://api.semanticscholar.org/CorpusID:16351887.

C. E. Bennett. The Latin Language: A Historical Outline of Its Sounds,

Inflections, and Syntax. Allyn, 1907.

L. Borin. Something borrowed, something blue: Rule-based combination of pos

taggers. In LREC, 2000.

E. Brill. Transformation-based error-driven learning and natural language

processing: A case study in part-of-speech tagging. 21(4):543–565, 1995. URL

https://aclanthology.org/J95-4004.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,

G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,

C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language

models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

Bullinger Digital. Bullinger digital, 2023. URL

https://www.bullinger-digital.ch.

39

https://aclanthology.org/2021.eacl-main.194
https://arxiv.org/abs/2009.10053
https://api.semanticscholar.org/CorpusID:16351887
https://aclanthology.org/J95-4004
https://arxiv.org/abs/2005.14165
https://www.bullinger-digital.ch


Glossary

P. J. Burns. Building a text analysis pipeline for classical languages, 2019. URL

https://www.researchgate.net/publication/335036188_Building_a_Text_

Analysis_Pipeline_for_Classical_Languages.

P. J. Burns. Latincy: Synthetic trained pipelines for latin NLP, 2023. URL

https://arxiv.org/pdf/2305.04365.pdf.

F. Cecchini, R. Sprugnoli, G. Moretti, M. Passarotti, et al. Udante: First steps

towards the universal dependencies treebank of dante’s latin works. In

Proceedings of the Seventh Italian Conference on Computational Linguistics,

pages 99–105. Accademia University Press, 2020a.

F. M. Cecchini, M. Passarotti, P. Marongiu, and D. Zeman. Challenges in

converting the index Thomisticus treebank into Universal Dependencies. In

M.-C. de Marneffe, T. Lynn, and S. Schuster, editors, Proceedings of the Second

Workshop on Universal Dependencies (UDW 2018), pages 27–36, 2018. URL

https://aclanthology.org/W18-6004.

F. M. Cecchini et al. UDante: First steps towards the universal dependencies

treebank of dante’s latin works. In Proceedings of the Seventh Italian Conference

on Computational Linguistics CLiC-it 2020. Accademia University Press, 2020b.

URL http://books.openedition.org/aaccademia/8653.

G. G. Celano. The dependency treebanks for ancient greek and latin, 2019. URL

https:

//www.degruyter.com/document/doi/10.1515/9783110599572-016/html.

A. Chiche and B. Yitagesu. Part of speech tagging: a systematic review of deep

learning and machine learning approaches. Journal of Big Data, 9(1):1–25, 2022.

K. W. Church. A stochastic parts program and noun phrase parser for unrestricted

text. In Second Conference on Applied Natural Language Processing, pages

136–143, 1988. URL https://aclanthology.org/A88-1019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding, 2019.

G. Dinkova-Bruun. Medieval latin. In J. Clackson, editor, A Companion to the

Latin Language, pages 284–302. Blackwell Publishing, 2011. URL

https://onlinelibrary.wiley.com/doi/book/10.1002/9781444343397.

H. Eckhoff, M. Majer, E. Welo, and D. Haug. Breaking down and putting back

together: Analysis and synthesis of new testament greek. Journal of Greek

40

https://www.researchgate.net/publication/335036188_Building_a_Text_Analysis_Pipeline_for_Classical_Languages
https://www.researchgate.net/publication/335036188_Building_a_Text_Analysis_Pipeline_for_Classical_Languages
https://arxiv.org/pdf/2305.04365.pdf
https://aclanthology.org/W18-6004
http://books.openedition.org/aaccademia/8653
https://www.degruyter.com/document/doi/10.1515/9783110599572-016/html
https://www.degruyter.com/document/doi/10.1515/9783110599572-016/html
https://aclanthology.org/A88-1019
https://onlinelibrary.wiley.com/doi/book/10.1002/9781444343397


Glossary

Linguistics, 9(1):56–92, 2009. URL https://www.researchgate.net/

publication/233601585_Breaking_down_and_putting_back_together_

analysis_and_synthesis_of_New_Testament_Greek.

H. Eckhoff, K. Bech, G. Bouma, K. Eide, D. Haug, O. E. Haugen, and M. Jøhndal.

The proiel treebank family: a standard for early attestations of indo-european

languages. Language resources and evaluation, 52:29–65, 2018.

D. Embick. Features, syntax, and categories in the latin perfect. Linguistic

Inquiry, 31(2):185–230, 2000.

A. Erdmann, D. J. Wrisley, B. Allen, C. Brown, S. Cohen-Bodénès, M. Elsner,

Y. Feng, B. Joseph, B. Joyeux-Prunel, and M.-C. de Marneffe. Practical,

efficient, and customizable active learning for named entity recognition in the

digital humanities. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 2223–2234, 2019. URL

https://aclanthology.org/N19-1231.

M. Fantoli, M. Passarotti, F. Mambrini, G. Moretti, and P. Ruffolo. Linking the

LASLA corpus in the lila knowledge base of interoperable linguistic resources for

latin. In Proceedings of the 8th Workshop on Linked Data in Linguistics Within

the 13th Language Resources and Evaluation Conference, pages 26–34, 2022.

URL https://doi.org/10.5281/zenodo.6659314.

L. Fischer, P. Scheurer, R. Schwitter, and M. Volk. Machine translation of 16th

century letters from latin to german. In Fischer, Lukas; Scheurer, Patricia;

Schwitter, Raphael; Volk, Martin (2022). Machine Translation of 16th Century

Letters from Latin to German. In: Second Workshop on Language Technologies

for Historical and Ancient Languages (LT4HALA 2022), Marseille, 25 Juni

2022. LREC, 43-50., page 43–50. LREC, 2022. URL

http://www.lrec-conf.org/proceedings/lrec2022/workshops/LT4HALA/

pdf/2022.lt4hala2022-1.7.pdf.

M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh, N. Akhtar,

J. Wu, S. Mirjalili, et al. Large language models: a comprehensive survey of its

applications, challenges, limitations, and future prospects. Authorea Preprints,

2023.

M. A. Hedderich, L. Lange, H. Adel, J. Strötgen, and D. Klakow. A survey on

recent approaches for natural language processing in low-resource scenarios. In

41

https://www.researchgate.net/publication/233601585_Breaking_down_and_putting_back_together_analysis_and_synthesis_of_New_Testament_Greek
https://www.researchgate.net/publication/233601585_Breaking_down_and_putting_back_together_analysis_and_synthesis_of_New_Testament_Greek
https://www.researchgate.net/publication/233601585_Breaking_down_and_putting_back_together_analysis_and_synthesis_of_New_Testament_Greek
https://aclanthology.org/N19-1231
https://doi.org/10.5281/zenodo.6659314
http://www.lrec-conf.org/proceedings/lrec2022/workshops/LT4HALA/pdf/2022.lt4hala2022-1.7.pdf
http://www.lrec-conf.org/proceedings/lrec2022/workshops/LT4HALA/pdf/2022.lt4hala2022-1.7.pdf


Glossary

K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy,

S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, editors, Proceedings of

the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 2545–2568,

2021. URL https://aclanthology.org/2021.naacl-main.201.

K. P. Johnson, P. J. Burns, J. Stewart, T. Cook, C. Besnier, and W. J. B.

Mattingly. The Classical Language Toolkit: An NLP framework for pre-modern

languages. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on

Natural Language Processing: System Demonstrations, pages 20–29, 2021. URL

https://aclanthology.org/2021.acl-demo.3.

D. Jurafsky and J. H. Martin. Jurafsky martin chapter 8, 2019. URL

https://web.stanford.edu/~jurafsky/slp3/old_oct19/8.pdf.

A. Kempe. A probabilistic tagger and an analysis of tagging errors. Kempe, 1993.

URL http://a.kempe.free.fr/reports/kempe93a/kempe93a.pdf.

T. Korkiakangas. Late latin charter treebank: Contents and annotation. Corpora,

16:191–203, 2021a. URL https://www.academia.edu/76636757/Late_Latin_

Charter_Treebank_contents_and_annotation.

T. Korkiakangas. Late latin charter treebank: contents and annotation. Corpora,

16(2):191–203, 2021b.

J. Leonhardt. Latin: Story of a World Language. Harvard, 2009.

Y. Liu, H. He, T. Han, X. Zhang, M. Liu, J. Tian, Y. Zhang, J. Wang, X. Gao,

T. Zhong, et al. Understanding llms: A comprehensive overview from training to

inference. arXiv preprint arXiv:2401.02038, 2024.

B. McGillivray. Methods in latin computational linguistics, 2015. URL

https://www.degruyter.com/document/doi/10.1515/joll-2015-0007/html.

B. McGillivray and M. Passarotti. The development of the index thomisticus

treebank valency lexicon. In Workshop on Language Technology and Resources

for Cultural Heritage, Social Sciences, Humanities, and Education

(LaTeCH-SHELT&R 2009), 2009. URL https://aclanthology.org/W09-0306.

S. Nehrdich and O. Hellwig. Accurate dependency parsing and tagging of Latin. In

R. Sprugnoli and M. Passarotti, editors, Proceedings of the Second Workshop on

Language Technologies for Historical and Ancient Languages, pages 20–25.

42

https://aclanthology.org/2021.naacl-main.201
https://aclanthology.org/2021.acl-demo.3
https://web.stanford.edu/~jurafsky/slp3/old_oct19/8.pdf
http://a.kempe.free.fr/reports/kempe93a/kempe93a.pdf
https://www.academia.edu/76636757/Late_Latin_Charter_Treebank_contents_and_annotation
https://www.academia.edu/76636757/Late_Latin_Charter_Treebank_contents_and_annotation
https://www.degruyter.com/document/doi/10.1515/joll-2015-0007/html
https://aclanthology.org/W09-0306


Glossary

European Language Resources Association, 2022. URL

https://aclanthology.org/2022.lt4hala-1.3.

D. Q. Nguyen, D. Q. Nguyen, D. D. Pham, and S. B. Pham. RDRPOSTagger: A

ripple down rules-based part-of-speech tagger. In Proceedings of the

Demonstrations at the 14th Conference of the European Chapter of the

Association for Computational Linguistics, page 17–20, 2014. URL

https://aclanthology.org/E14-2005.

OpenAI. GPT-4 technical report, 2023. URL

https://arxiv.org/pdf/2303.08774.pdf.

M. Passarotti and F. Dell’Orletta. Improvements in parsing the index thomisticus

treebank. revision, combination and a feature model for medieval latin. 2010.

URL

http://www.lrec-conf.org/proceedings/lrec2010/pdf/178_Paper.pdf.

M. C. Passarotti. The project of the index thomisticus treebank. In M. Berti,

editor, Digital Classical Philology. Ancient Greek and Latin in the Digital

Revolution, pages 299–319. De Gruyter, 2019. URL

http://hdl.handle.net/10807/141133.

M. C. Passarotti, F. M. Cecchini, G. Franzini, E. Litta, F. Mambrini, and

P. Ruffolo. The lila knowledge base of linguistic resources and nlp tools for latin.

In International Conference on Language, Data, and Knowledge, 2019. URL

https://api.semanticscholar.org/CorpusID:196810553.

M. Pellegrini, E. Litta, M. Passarotti, R. Sprugnoli, F. Mambrini, and G. Moretti.

Lila linking latin tutorial. LiLa, 2023. URL

https://ceur-ws.org/Vol-3064/LDK2021_Tutorial_Paper.pdf.

S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset, 2011.

P. Poccetti, D. Poli, and C. Santini. Una Storia Della Lingua Latina. Carocci,

1999.

P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning. Stanza: A Python

natural language processing toolkit for many human languages. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics:

System Demonstrations, 2020. URL

https://nlp.stanford.edu/pubs/qi2020stanza.pdf.

43

https://aclanthology.org/2022.lt4hala-1.3
https://aclanthology.org/E14-2005
https://arxiv.org/pdf/2303.08774.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/178_Paper.pdf
http://hdl.handle.net/10807/141133
https://api.semanticscholar.org/CorpusID:196810553
https://ceur-ws.org/Vol-3064/LDK2021_Tutorial_Paper.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf


Glossary

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language

models are unsupervised multitask learners. 2019. URL

https://d4mucfpksywv.cloudfront.net/better-language-models/

language_models_are_unsupervised_multitask_learners.pdf.

D. Richards. Two decades of ripple down rules research. Knowledge Eng. Review,

24:159–184, 2009. URL https://www.researchgate.net/publication/

220254277_Two_decades_of_Ripple_Down_Rules_research.

H. Schmid. Probabilistic Part-of-Speech Tagging Using Decision Trees. Institut für

maschinelle Sprachverarbeitung, 1994. URL https:

//www.cis.lmu.de/~schmid/tools/TreeTagger/data/tree-tagger1.pdf.

H. Schmid. Deep learning-based morphological taggers and lemmatizers for

annotating historical texts. In Proceedings of the 3rd International Conference

on Digital Access to Textual Cultural Heritage, DATeCH2019, page 133–137.

Association for Computing Machinery, 2019. URL

https://doi.org/10.1145/3322905.3322915.

R. Sprungoli and M. Passarotti. 1st Workshop on Language Technologies for

Historical and Ancient Languages, (LT4HALA 2020) Proceedings. European

Language Resources Association (ELRA), 2020. URL https://lrec2020.

lrec-conf.org/media/proceedings/Workshops/Books/LT4HALAbook.pdf.

M. Stoeckel, A. Henlein, W. Hemati, and A. Mehler. Voting for POS tagging of

Latin texts: Using the flair of FLAIR to better ensemble classifiers by example

of Latin. In R. Sprugnoli and M. Passarotti, editors, Proceedings of LT4HALA

2020 - 1st Workshop on Language Technologies for Historical and Ancient

Languages, pages 130–135. European Language Resources Association (ELRA),

2020. URL https://aclanthology.org/2020.lt4hala-1.21.

M. Straka. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In D. Zeman
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A Tagging Agreements

As the distinctions between different tags are sometimes difficult to make, we have

limited ourselves to these agreements for the creation of the GS:

• “(ali)quis”, “(ali)quid”, “quisquam”, “quidquam”: PRON, because the adjec-

tival (DET-) forms are “(ali)qui” and “(ali)quod”. Other forms of indefinite

pronouns are always DET.

• All demonstrative pronouns are always DET.

• However, relative pronouns can mostly be clearly classified as PRON (DET

only when followed by a noun to which it belongs).

• “non” and “imo/immo”: PART.

• For quantifiers, we followed the examples from universaldependencies.org,

so we categorize “all, no, any” as DET. However, “multi, plures, plus,” etc.,

we treat as ADJ (UD does not mention “many”). Always the same, regardless

of their use in the sentence.

• For “alius, aliud”, we have chosen ADJ, also consistently and uniformly.
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B Tables

Tagger ITTB LLCT UDante Perseus PROIEL Average

LatinCy 87.93 92.01 80.94 72.38 82.84 83.22

CLTK 88.45 79.32 77.36 72.44 80.63 79.64

UDPipe 71.59 71.45 70.51 69.2 84.49 73.45

RDRPOSTagger 82.67 67.41 71.72 64.79 75.22 72.36

TreeTagger 70.18 70.25 69.86 82.51 89.39 76.44

GPT-3.5-Turbo 74.82 78.82 74.33 68.81 79.22 75.2

GPT-4 79.73 84.89 77.62 73.9 84.38 80.1

train50 89.59 89.2 83.55 73.2 79.37 82.98

train100 89.73 91.03 85.26 74.19 82.19 84.63

train200 91.57 90.93 85.8 73.46 83.5 85.05

train500 93.2 93.85 82.71 72.09 86.72 85.71

train1000 94.88 94.5 84.94 81.39 89.25 88.99

train2000 87.95 87.43 81.31 84.31 87.83 85.77

train5000 88.11 84.85 74.62 81.99 90.0 83.91

train10000 83.84 85.39 75.36 76.34 86.01 81.39

Average 84.95 84.09 78.4 79.63 84.07 81.26

Table 7: Tagger performance across different datasets. Bold numbers indicate the
highest accuracy within each test set’s column. The taggers starting with
“train” are our fine-tuned GPT-3-5-Turbo models.
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C Figures

Figure 7: Tag distribution of the pretrained models on Bullinger data
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Figure 8: Tag distribution of the pretrained models on treebank data

Figure 9: Tag distribution of the GPT models on Bullinger data
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Figure 10: Tag distribution of the GPT models on treebank data

Figure 11: Tag distribution of the treebanks
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Figure 12: Confusion matrices of the POS tagging models
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Figure 13: Confusion matrices of the GPT models
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D GPT

D.1 GPT fine-tuning

{

"messages": [

{"role": "system", "content": "You are a Latin linguist and

part-of-speech tagging expert. You are using UPOS (universal

part of speech tags). UPOS tags are ADJ, ADP, ADV, AUX, CCONJ, DET,

INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB and X.

X stands for other."},

{"role": "user", "content": "Return the UPOS tag for the tokens of

the sentence: ’ diuina igitur potentia non est aliud ab ipso esse

eius . . ’Return the tags in the format TOKEN\tTag\n. Only output

the token and the tag (no explanations, no translations, no

additional text)."},

{"role":"assistant","content":"diuina\tADJ\n igitur\tADV\n

potentia\tNOUN\n non\tPART\n est\tAUX\n aliud\tDET\n ab\tADP\n

ipso\tDET\n esse\tNOUN\n eius\tPRON\n .\tPUNCT\n .\tPUNCT\n"}

]

}
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D.2 GPT Output

1. AUX PRONOMBRES DE L’AN 2000 À APPLIQUER À LA CARTE DE L’AN 2000.

À Paris, une intelligente école salle des cours haute en couleur

au-dessus de la Seine écriera : "Dan ub cub lors lonclim cub

loucourcèn surcèt."

XPath : //NOUN[@norm="couleurs"]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ";

// Splitting the input on each newline character

let questionList = inputString.split("

");

// Looping through each question

for(let i=0; i<questionList.length; i++) {

// Possibility of question not being complete

if(i<questionList.length-1) {

// If condition to answer the questions

if(questionList[i+1].startsWith("// ")) {

let answerPosintion = (i+1);

// While loop to not miss the answer

while(!questionList[answerPosintion+1].startsWith("// ")) {

// Check pos of = coz expressions are segregated by =

if(questionList[answerPosintion+1].includes("=")) {

// console.log(questionList[answerPosintion+1]);

console.log(questionList[answerPosintion+1]);

}

answerPosintion++;

}

}

}

}
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2. int frac{mbox{sinc}^2(pi f_{res}(t+t_{ij}),X)}{|f_M(X)|^2} g(X) dX.

end{align}

Next, we choose a distribution for X. There is not enough information

to determine X variables for any specific problem. However, we can

assume a Gaussian random variable Xsim N(0,1), for the purposes

of this example.

Now, rescaling f_{res} using the proposed mapping between ilde{x}

and the quantization mapping from E to ilde{E}, we could rewrite

the above expression as

begin{align}

int frac{mbox{sinc}^2(pi f_{res}(t+t_{ij}),X)}{|f_M(X)|^2} g(X) dX &=

int frac{mbox{sinc}^2(pi f_{res}(t+t_{ij})e^{-ilde{x}})}{|f_M(X)|^2}

g(X) dX

end{align}

3. n-dfpnod\ omnibus\ DET

a-pl---fb-\ rebus\ NOUN

n-pl---fb-\ .\ PUNCT

PUNCT

\ adhuc\ ADV

p---mn-\ .\ PUNCT

PUNCT

\ quicumque\ DET

p-s---mn-\ scit\ VERB

v-di3sas-\ naturam\ NOUN

n-s---fa-\ aliquam\ DET

p-s---fa-\ ,\ CCONJ

\c--------\ scit\ VERB

v-di3sas-\ an\ SCONJ

4. daemonium demon NOUN

et and CCONJ

curatus healed VERB

est was AUX

puer boy NOUN
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