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Cross-lingual Projection of Text Zoning
Labels for Job Advertisements

(with Minor Revisions for Publication)

Verfasser: Wenyuan Wu

Matrikel-Nr: 18-746-867

Referent: Dr. Simon Clematide

Betreuerin: Ann-Sophie Gnehm, Chantal Amrhein

Institut für Computerlinguistik

Abgabedatum: 01.12.2022



Abstract

The study of text zoning for job advertisements from the Swiss Job Market Monitor

(SJMM) aims to partially substitute manual annotation by automatic data pro-

cessing with supervised machine learning to lower data collection costs and extend

the research span. Previous work has built and evaluated approaches based on

sequence-labeling machine learning approaches like BiLSTM-CRF and BERT lan-

guage models with success based on the data collected and labeled by SJMM during

the past decades. However, the large majority of the training data from SJMM is

only available in German, and much less in French, English, and especially Italian,

which leads to the labeled data acquisition bottleneck. As a result, the performance

of machine learning approaches on the text zoning tasks in non-German languages

is relatively reduced. Hence, it is necessary to expand the scope of research to mul-

tilingual scenarios, which reflects the actual language use of job advertisement in

Switzerland of Switzerland.

The goal of this thesis is to address this problem by testing several approaches for

the cross-lingual projection of text zoning labels from job advertisements in German

to other languages. The implementation of these approaches is realized by automat-

ically translated and labeled job advertisements, this results in a “Silver Standard”

dataset that has comparable training and test splits across languages. Creating silver

standard data leverages the injection of original data with XML tags, as well as the

API from the DeepL translator. Based on labeled data in non-German languages,

the straightforward approach is to project the text zoning labels with the help of

statistical and neural word aligners, while the other is to train multi-lingual sequence

labeling machine learning models in the same way as the previous work, which is

the training process based on multilingual BERT, RoBERTa, domain-adapted vari-

ants. The segmentation differs for the training data: sentence-level zone-tagging

with and without context, and job-ad-level zone-tagging. Evaluating results on the

silver standard data show that approaches involving word aligners have a strong

performance, and the neural word aligners improve the label projection accuracy

compared to statistical word aligners. It has been observed that sequence labeling

models trained on silver standard data produce results that are competitive, with

only slight variations in performance. Experiments yielded an average accuracy score

of 91% or greater, demonstrating the efficacy and utility of the proposed methods,

while providing insight into alleviating the labeled data acquisition bottleneck.



Zusammenfassung

Die Studie zur Text Zoning von Stellenanzeigen aus dem Swiss Job Market Monitor

(SJMM) zielt darauf ab, die manuelle Annotation teilweise durch eine automati-

sche Datenverarbeitung mit überwachtem maschinellem Lernen zu ersetzen, um die

Kosten für die Datenerfassung zu senken und die Forschungsspanne zu erweitern.

In früheren Arbeiten wurden auf der Grundlage der vom SJMM in den letzten

Jahrzehnten gesammelten und etikettierten Daten erfolgreich Ansätze des maschi-

nellen Lernens auf der Basis von Sequenz-Labeling wie BiLSTM-CRF und BERT-

Sprachmodelle entwickelt und evaluiert. Der Großteil der Trainingsdaten von SJMM

ist jedoch nur in deutscher Sprache verfügbar und viel weniger in Französisch, Eng-

lisch und vor allem Italienisch, was zu einem Engpass bei der Beschriftung von

Daten führt. Infolgedessen ist die Leistung von Ansätzen des maschinellen Lernens

bei Text-Zoning-Aufgaben in nicht-deutschen Sprachen relativ gering. Daher ist es

notwendig, den Forschungsbereich auf mehrsprachige Szenarien auszuweiten, die den

tatsächlichen Sprachgebrauch von Stellenanzeigen in der Schweiz widerspiegeln.

Das Ziel dieser Arbeit ist es, dieses Problem zu adressieren, indem verschiede-

ne Ansätze für die sprachübergreifende Projektion von Text-Zoning-Etiketten aus

Stellenanzeigen in Deutsch auf andere Sprachen getestet werden. Die Implemen-

tierung dieser Ansätze wird durch automatisch übersetzte und etikettierte Stellen-

anzeigen realisiert, was zu einem “Silberstandard”-Datensatz führt, der vergleich-

bare Trainings- und Test-Splits über alle Sprachen hinweg aufweist. Die Erstel-

lung von Silver Standard Daten nutzt die Injektion von Originaldaten mit XML-

Tags, sowie die API des DeepL Übersetzers. Auf der Grundlage von beschrifteten

Daten in nicht-deutschen Sprachen besteht der einfache Ansatz darin, die Text-

Zonenbeschriftungen mit Hilfe von statistischen und neuronalen Wort-Alignern zu

projizieren, während der andere Ansatz darin besteht, mehrsprachige Sequenz-Labeling

Modelle für maschinelles Lernen auf die gleiche Weise zu trainieren wie die vorheri-

ge Arbeit, d.h. der Trainingsprozess basiert auf mehrsprachigen BERT-, RoBERTa-

und domänenangepassten Varianten. Die Segmentierung unterscheidet sich für die

Trainingsdaten: Zonentagging auf Satzebene mit und ohne Kontext und Zonentag-

ging auf Stellenanzeigenebene. Die Auswertungsergebnisse auf den Silberstandard-

daten zeigen, dass Ansätze, die Wortaligner einbeziehen, eine starke Leistung haben,

und die neuronalen Wortaligner verbessern die Genauigkeit der Etikettenprojektion

im Vergleich zu statistischen Wortalignern. Es wurde festgestellt, dass SSequenz-

Labeling Modelle, die auf Silberstandarddaten trainiert wurden, konkurrenzfähige

Ergebnisse mit nur geringen Leistungsschwankungen liefern. Die Experimente er-

brachten eine durchschnittliche Genauigkeit von 91% oder mehr, was die Wirksam-
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keit und den Nutzen der vorgeschlagenen Methoden belegt und gleichzeitig einen

Einblick in die Beseitigung des Engpasses bei der Beschriftungsdatenerfassung bie-

tet.
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1 Introduction

The objective of this master’s thesis is to address the issue of labeled data acquisi-

tion limitation from the viewpoint of cross-lingual annotation projection. The data

for the case study was obtained from the Swiss Job Market Monitor, and consists of

job advertisements with text zoning segmentation annotations in the German lan-

guage. Experimental methods employed include neural machine translation, word

alignment, multi-lingual language models, and sequence labeling machine learning

models. Experiments are conducted by producing silver standard data derived from

the original gold standard data and assessing various methods for transferring text

zoning labels between different language pairs. This thesis begins by providing an

introduction to the pertinent background information, as well as outlining the mo-

tivation, research questions, and structure of the thesis.

1.1 Motivation

Switzerland is a multilingual country, and languages beyond official ones are of the

same great importance for academic research. Unfortunately, the text zoning corpus

collected and annotated by SJMM is mainly available in German and much less in

French, English, and especially Italian, which brings various restrictions in extending

the research span and leads to a reduced performance of text zoning in non-German

languages. The performance of a machine learning system previously depends heav-

ily on a large amount of labeled training data. Newer machine-learning techniques

have proposed advanced approaches. For instance, extremely large language mod-

els can perform competitively on downstream tasks with far less task-specific data

than would be required by smaller models (Brown et al., 2020), and zero-shot trans-

fer learning in modern NLP shows promising results in classification tasks as well

(Weber and Steedman, 2021).

However, language models in large sizes remain impractical for real-world scenarios

due to limited GPU memory, and they are also not available in the same quality as

for English. Besides, zero-shot transfer learning is less researched for cross-lingual
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settings. This project instead tries to address the challenge of cross-lingual an-

notation projection by projecting labels between languages via word aligners and

automatically generating labeling data via trained multi-lingual zone taggers, both

base on automatically created silver standard data. The experiment results could

shed light on further research of text zone labeling and benefit the text mining work

of SJMM. Additionally, the specific case study about cross-lingual text zoning label

projection could be generalized to other information extraction or text mining tasks

in NLP in multilingual settings and hopefully contributes to solving the problem of

labeled data acquisition bottleneck.

1.2 Cross-lingual Annotation Projection

Cross-lingual transfer is the underlying concept of annotation projection across lan-

guages. It can be argued that, by utilizing alignment or other techniques, annota-

tions sourced from a text in one language can be projected onto a corresponding

text in another language, thereby creating a newly annotated corpus for the latter

language. In recent years, due to advances in machine translation quality and range

of applications, cross-lingual annotation projection has been garnering increasing

academic interest. Translation systems are restricted to accepting only plain text as

input. Still, the annotation should be correctly projected because either markups

or annotations exist by default in some machine translation tasks like the webpage

translation in HTML format or computer-assisted translation, where much extra

information is annotated alongside the text. Projection of named entity recognition

(NER) annotations across languages is widely researched (Ehrmann et al., 2011;

Weber and Steedman, 2021; Sluyter-Gäthje et al., 2020). In addition, there have

been proposed strategies for the transfer of markup in the field of translation and

localization services, involving word alignment and projection algorithms (Galassi

et al., 2020; Zenkel et al., 2021). An abundance of research has been conducted to

explore the efficacy of cross-lingual datasets translated from English to solve tasks

that have English datasets in other languages (Conneau et al., 2018).

The generation of silver standard data is attained by the reformatting of the source

data with XML tags, as well as the utilization of the Application Programming In-

terface (API) from a machine translation engine. The Extensible Markup Language

(XML) is a text-based language utilized for a variety of purposes in computational

linguistics and other scientific fields (Bray et al., 2008). XML tags are instrumental

in delineating the boundaries of an element within an XML document, which serves

as the basis for XML. More specifically, XML tags identify the data and are used
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to store and organize the data, which can be utilized to exchange information be-

tween systems, i.e., in this case, between languages. The suitability of XML tags

for encoding the text span annotation information into plain text and transferring

it to a machine translation engine is a key factor for the successful completion of

this thesis project. The XML tag injection pipeline facilitates the accurate and ef-

fortless recovery of text span annotations from translation output, regardless of the

language pairs or translation engine used.

1.3 Machine Translation

Since its initial conception in the 1960s, machine translation has evolved consid-

erably, with current state-of-the-art performances being achieved through neural

machine translation (NMT) approaches (Tan et al., 2020). The utilization of trans-

former architectures and attention mechanisms, in combination with the availability

of large-scale training corpora, has enabled the development of machine translation

models for specific language pairs that are suitable for both academic and industrial

applications. Consequently, this project takes advantage of the NMT-based DeepL

translation engine1, which is sufficiently effective to overlook the remaining trans-

lation issues to a certain degree and concentrate on exploring the transmission of

cross-language annotations. DeepL provides an API that can be easily utilized in

Python and offers industry-leading machine translation capabilities. Of particular

note, it is able to process XML tags in both the input and output text, thereby

facilitating the creation of silver standard data.

1.4 Word Alignment

Word alignment is the task of finding the correspondence between source and target

words in a pair of sentences that are translations of each other. Word alignment

has been shown to be a beneficial outcome of advancements in machine translation,

often serving as an ancillary product of the machine translation process. Moreover,

word alignment plays an essential role in translation quality and fine-grained NLP

tasks downstream. This study incorporates two popular statistical and neural word

alignment algorithms and evaluates their efficacy in terms of text zone label projec-

tion. This methodology is denoted as the align and project technique, and Chapter

4.1 provides a summary of the implementation along with associated specifics.

1https://www.deepl.com/en/docs-api
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1.5 Text Zoning

Text zoning is the process of dividing a job advertisement into distinct sections, each

of which can be characterized by a different content domain, such as a description

of the company, the reason for the vacancy, and the job agency description (Gnehm,

2018). The tokens within the job advertisement text will be classified into one of

the eight predefined zones, which is essentially a task of annotating text spans.

The job advertisement text and the corresponding annotation originate from the

continuous work of the Swiss Job Market Monitor, which is the research team from

the University of Zurich. The research team is investigating the use of text mining

to analyze labor market demand and to generate practical insights from job adverts.

In Section 3.1, a comprehensive explanation of the corpus of job advertisements and

text zoning labels is presented.

A vital processing step in the information extraction pipelines is the token-based

segmentation of the text of job ads into domain-specific text zones. Previous re-

search has made great progress in implementing machine learning approaches for

automatic text zone labeling tasks (Gnehm, 2018; Gnehm and Clematide, 2020;

Gnehm et al., 2022). However, due to the small amount of training data in lan-

guages other than German, the trained machine learning models had less satisfactory

performance when labeling data in non-German languages. This thesis project con-

centrates on testing several approaches for the cross-lingual projection of text zoning

labels from job advertisements in German to other languages, which are English,

French, and Italian. The implementation of these approaches is accomplished by

machine-translated and -labeled job advertisements, which is de facto the creation

of a multilingual “silver standard dataset”.

This project leverages the automatically generated silver standard data to train mul-

tilingual sequence labeling models (zone tagger) and evaluates the models’ perfor-

mance on text zone label accuracy. Besides, the align-and-project approach refers

to the cross-lingual annotation projection via word alignment. Both are further

elaborated on in Chapter 4. As for the experiments on machine learning, different

structures, type of training materials, and strategies were also implemented to grab

a wider view in terms of model performance, including the basic model training

with pre-trained word embeddings in the unit of whole job advertisements or sen-

tences, fine-tuning transformer language models and 2-phase training for potential

improvements. The trained multilingual zone taggers show comparable results to

the previous work in terms of the accuracy of text zone labels on German data as

well as on non-German data, which proves the legibility of the approaches applied
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in this project.

1.6 Research Questions

The goal of this work is to test approaches for cross-lingual projection of text zoning

labels from German job advertisements to other languages. Based on the methods,

the research questions are related to four topics:

1. the word alignment approach

2. the zone tagger approach

3. the different types of training data for the zone tagger

4. the benefits brought by the alternation of training techniques

Moreover, this work attempts to analyze the errors in text zoning in terms of lan-

guages or, more specifically, the gold standard data versus the silver standard data.

The following research questions shall be answered in this thesis:

1. In terms of the accuracy of text zoning label projection, to what extent do the

performances of the word alignment approach and the zone tagger approach

differ from each other?

2. For multilingual zone taggers, will the different types of training material play

a role here, i.e., training on the unit of whole job advertisements or sentences?

3. Which foundational models are better, i.e., can the superiority of word em-

beddings from different language models be observed (BERT versus XLM-

RoBERTa)?

4. Will 2-phase training, i.e., to fine-tune multilingual zone taggers with mono-

lingual data, deliver improved results?

5. What are the particular characteristics of the model predictions on the test

set?

1.7 Thesis Structure

The chapters that follow this introduction of the thesis are organized as follows:

Chapter 2 provides an overview of the relevant literature in regards to text zoning,
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machine translation, cross-lingual annotation projection, and the steps involved in

training multilingual zone taggers. In Chapter 3, the characteristics of the data

utilized for this project, the formation of silver standard data and the rationale

behind the data representation are discussed. Furthermore, Chapter 4 provides an

elucidation of the methods applied for this research, which include word alignment

and sequence labeling model training approaches. In Chapter 5, experiments, re-

sults, and discussions are presented in order to provide an in-depth analysis of the

research conducted to address the proposed research questions. In conclusion, the

final chapter of this thesis (Chapter 6) summarises the results obtained from the

experiments and proposes potential directions for future research.
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2 Related Work

This chapter introduces the related work of the research, which is organized into

four topics in a bottom-up fashion, i.e., text zoning, machine translation, cross-

lingual translation projection, and sequence labeling model training. Section 2.1

presents the previous research related to the cross-lingual annotation project, which

is the core idea on which the approaches in this project are based. Section 2.2 gives

an overview of the machine translation technology with a focus on the translation

engine powering the creation of silver standard data for this project as well as the

word alignment work, which also set the foundation of the approaches. Section 2.3

gives a summary of the previous work regarding the model training for text zoning

taggers, especially the improvements brought by recent studies. Lastly, section 2.4

talks about the sequence labeling model training and other machine learning aspects

related to the experiments of this project.

2.1 Cross-lingual Annotation Projection

Annotation projection between languages shares the core idea of cross-lingual trans-

fer. The underlying principle is that annotations available for a text in one language

can be projected, thanks to the alignment or other techniques, to the correspond-

ing text in another, creating hereby a newly annotated corpus for a new language.

With the development of computational linguistics, natural language processing

(NLP), and the border application of language technology driven by annotated cor-

pus, cross-lingual annotation projection is receiving more interest from academics

and practitioners.

2.1.1 Text Span Annotation Projection

The early implementation of projection of annotations across languages dates back

to Yarowsky and Ngai (2001), where the researchers have shown that automati-

cally word-aligned bilingual corpora can be used to induce part-of-speech taggers
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and noun-phrase bracketers successfully. Since then, many studies have reported

progress on transfer cross-lingual tags, especially NER tags. Ehrmann et al. (2011)

automatically annotated the English version of a multi-parallel corpus and projected

the annotations into other language versions. They incrementally applied different

methods for the projection: perfect string matching, perfect consonant signature

matching, and edit distance similarity. Furthermore, Weber and Steedman (2021)

reported more recent experiments on fine-grained entity typing and showed that the

previous method, which involves generating training data without manual annota-

tion (Yarowsky and Ngai, 2001), outperformed by zero-shot cross-lingual transfer

building upon XLM-RoBERTa. The task of fine-grained entity typing (FET) is

to assign a semantic label to a span in a text. In addition, Sluyter-Gäthje et al.

(2020) projected more complex structures when dealing with shallow discourse pars-

ing (SDP), which refers to the identification of coherence relations between text

spans. The aforementioned text span annotation projection shares a similarity with

the text zoning task since text zones also cover a wide range of text spans.

2.1.2 Automatic Markup Transfer in Translation

A recent research deals with the problem of automatic markup transfer in transla-

tion (Zenkel et al., 2021), which involves placing markup tags from a source sentence

into a fixed target translation. The authors improved an algorithm (Hanneman and

Dinu, 2020) for markup transfer via word alignments and proposed a supervised ap-

proach to markup transfer, which benefits from word alignments. In addition, the

study introduced two novel metrics for comparing approaches to bilingual markup

transfer. Similar work has been done, which focuses on the problem of simultaneous

translation and markup for the fully automatic use case by Hashimoto et al. (2019).

The proposed mechanisms for markup transfer shed light on this project since the

text zoning shares similar characteristics to the markups. As a matter of fact, the

way of thinking and design of experiments give inspiration for the primary two types

of approaches carried out in the experiment of this project, which is further discussed

in Chapter 4. To assess the performance of a multilingual transfer approach, some

research engages in building a multilingual corpus for training and evaluation. Con-

neau et al. (2018) developed an evaluation set for cross-lingual language understand-

ing (XLU) by extending the development and test sets of the Multi-Genre Natural

Language Inference Corpus (MultiNLI) to 15 languages, including low-resource lan-

guages. In addition, several baselines for multilingual sentence understanding were

provided, with the best performance resulting from directly translating the test

data. The evaluation suite is considered to be a practical and challenging evalua-
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tion task for natural language processing systems. As for the scope of this project,

the accuracy of text zone labels is the main factor in the assessment of implemented

approaches.

2.2 Machine Translation

Machine translation is the vital workhorse to create the silver standard data for

training zone taggers for non-German language. The quality of translation and

the ability to handle XML tags of the neural machine translation system together

empower the research pipeline of this project. Additionally, the word alignment

benefits from neural architectures such as Transformers, which makes the straight-

forward approach align-and-project possible.

2.2.1 Neural Machine Translation

Neural machine translation, or NMT for short, is the use of neural network models

to learn a statistical model for machine translation. Based on the initial Encoder-

Decoder Model, NMT has been progressing quickly, particularly with the advance-

ment of neural architectures such as Transformers (Vaswani et al., 2017). NMT has

achieved state-of-the-art performance on various language pairs, and in practice,

NMT also becomes the key technology behind many commercial MT systems (Tan

et al., 2020). The Transformer architecture is based on a concept called attention,

and more specifically, the self-attention mechanism, which facilitates the emergence

of large-scale pre-trained models like BERT (Devlin et al., 2019). Transformers have

enabled models with higher capacity, and pre-training has expedited their use in all

types of NLP tasks. Recent transformer-based language models, such as BERT,

and XLM-RoBERTa (Conneau et al., 2020), have shown a powerful ability to learn

universal language representations. As for the production of silver standard data,

the commercial translation service DeepL empowers the creation process. DeepL

uses proprietary algorithms based on neural networks with significant differences in

the topology compared to Transformer architecture, which leads to an overall signif-

icant improvement in translation quality over the public research state-of-the-art1.

With provided off-the-shelf Python API, it is achievable to automatically translate

a large amount of training data into 3 different languages in a reasonable time (79

Million characters). Furthermore, the DeepL translation engine can handle XML

tags properly, which is another key point for this project.

1https://www.deepl.com/en/blog/how-does-deepl-work
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2.2.2 XML Markup Language

XML tags form the foundation of XML, and they define the scope of an element in

XML (Bray et al., 2008). XML tags can also be used to insert comments, declare

settings required for parsing the environment, and, most importantly, encode an-

notation information for text spans. Right after the foundation of XML 1.0, there

was already a proposal to adopt XML for data interchange between databases and

other sources of data in the area of bioinformatics (Achard et al., 2001). However,

to exchange information encoded with XML tags between languages, the machine

translation system should have the ability to correctly transfer project XML tags.

Prior to Hanneman and Dinu (2020), Müller (2017) provided a comprehensive sur-

vey of existing markup handling solutions and reimplementations of existing and

novel solutions in terms of phrase-based, statistical machine translation. As in this

work, DeepL API is equipped with the ability to handle XML tags. However, the

technical details remain unknown2.

2.2.3 Word Alignment

Regarding the technique of the approaches based on the alignment, word align-

ment was exploited to project the English annotations of coherence relations on the

German target text and produced a German corpus with annotation accordingly.

Concerning word alignment, Li et al. (2019) proposed that neural machine transla-

tion (NMT) may fail to capture word alignment through its attention mechanism to

some extent, despite prior research suggesting affirmative (Bahdanau et al., 2015).

They further introduced two better word alignment methods which are general and

agnostic to specific NMT models: alignment by explicit alignment model and align-

ment by prediction difference. Word alignment naturally plays an essential role in

the approaches of cross-lingual transfer. This project utilized two widely used word

aligners to pipelines for comparison. fast align3 is a simple, fast, unsupervised sta-

tistical word aligner, essentially a Reparameterization of IBM Model 2 (Dyer et al.,

2013). The neural aligner awesome-align4 is a tool that can extract word align-

ments from multilingual BERT and allows model fine-tuning on parallel corpora for

better alignment quality (Dou and Neubig, 2021).

2When asked about the technical details behind XML tag handling via Email, the support team
from DeepL replied with “We do appreciate your interest a lot, however, we don’t share any
information publicly as the industry we are in is highly competitive and revealing technical
information how our AI works would undermine our business model”

3https://github.com/clab/fast_align
4https://github.com/neulab/awesome-align
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2.3 Text Zoning

The study of text zoning for job advertisements aims to partially substitute man-

ual annotation by automatic data processing with supervised machine learning to

lower data collection costs and enlarge the research span. Text zoning refers to seg-

menting the job advertisement text into zones (or classes) differing from each other

regarding their content (Gnehm, 2018). Previous studies leverage mainly the off-

the-shelf annotated corpus of job advertisements from the Swiss Job Market Monitor

(SJMM). Purposed approaches regarding texting zoning pipeline include BiLSTM

models for sequence labeling and task-specific word embeddings and ensemble tech-

niques, which are subsequently improved by contextualized in-domain embeddings

with BiLSTM-CRF models and a multi-tasking BERT model (Gnehm, 2018; Gnehm

and Clematide, 2020). Other than the token-level sequence labeling task, multilin-

gual approaches are also required since the data from SJMM are in German, French,

English, and Italian. Gnehm and Clematide (2020) suggests transfer approaches,

which enlightens the objective of this work.

Furthermore, the most recent work experiments with transfer learning and domain

adaptation on the basis of SJMM corpus in German, whose contribution consists in

building language models which are adapted to the domain of job advertisements

and their assessment of a broad range of machine learning problems (Gnehm et al.,

2022). Their findings show the large value of domain adaptation in terms of model

performance, data shifting, and model efficiency. This work is appreciated since it

provides the latest benchmark of zone tagger, which helps to evaluate the model

performance from the experiments not only on German data but also on translated

English, French and Italian data.

2.4 Sequence Labeling Model Training

Essentially, text zoning is a sequence labeling task. Sequence labeling has been

one of the most discussed topics in computational linguistics history. Named entity

recognition (NER) is probably one of the most researched sequence labeling tasks,

which is tagging entities in text with their corresponding type. This project uses

the FLAIR5 python library to train sequence labeling models, a simple but versatile

framework for state-of-the-art NLP (Akbik et al., 2019). Flair allows to use and com-

bine different word embeddings, such as BERT and XLM-RoBERTa embeddings, in

the experiments. Flair also builds directly on PyTorch and is compatible with the

5https://github.com/flairNLP/flair
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HuggingFace6 library to utilize GPU and a wide range of pre-trained models (Wolf

et al., 2020). Additionally, the training pipeline implemented the techniques pro-

posed as FLERT, which is to document-level features for sequence by defining con-

text windows for sentences (Schweter and Akbik, 2020). The training pipeline also

includes 2-phase training, which is to fine-tune multilingual models on monolingual

data for potentially better performance. Similar work has been done for neural ma-

chine translation systems by generating large synthetic parallel data from minimal

monolingual data in a specific domain (Marie and Fujita, 2021). Another contribu-

tion to approaches of model training discusses a technique called domain-adaptive

fine-tuning which adapts contextualized word embeddings to a target domain that

may differ substantially from the pretraining corpus (Han and Eisenstein, 2019).

This approach was tested on two challenging domains, Early Modern English and

Twitter, and it offered substantial improvements over strong BERT baselines, par-

ticularly for out-of-vocabulary words. Therefore, domain-adaptive fine-tuning is a

simple and effective method for adapting sequence labeling to new domains without

the need for labeled data.

6https://huggingface.co/models
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3 Data

This chapter presents the description of the data used in this project, the process

of data format, and the way of thinking behind the chosen data representation.

Section 3.1 gives an introduction to the original source data in German, which is

referred to as the gold standard data for this project. Section 3.2 provides a detailed

view of the creation and processing of the multilingual silver standard data based

on the original data, which is the foundation of trained machine learning models.

Furthermore, section 3.3 presents the creation of a multilingual gold standard test

set.

3.1 Source Data (Gold Standard)

The multilingual corpus from the Swiss Job Market Monitor1 (SJMM) contributes

to this project. SJMM arose from a research project on the long-term development

of job advertisements in the press since 1950, conducted in the framework of the

Swiss National Science Foundation2 research program “Zukunft Schweiz” (”Future

Switzerland”). After continuous expansion since 2002, the project transformed into

a continuous scientific monitor of the job market, incorporating the internet in the

modern days. The purpose of SJMM is to extract information from job adver-

tisements to monitor and analyze trends in the Swiss job market, which benefits

companies, the working population, and policymakers via well-founded information

on the development of the job market.

The multilingual corpus consists of print and online job advertisements in German,

French, English, and Italian. It covers the time span from 1950 up to today. For

all job advertisements, high-quality human annotations of profession, industry, and

management functions are available. The annotated corpus provides a great resource

for training machine learning models in terms of sequence labeling. Other than in

German corpus, the annotations for corpus in other languages are not complete and

1https://www.stellenmarktmonitor.uzh.ch/en.html
2https://www.snf.ch/en

13

https://www.stellenmarktmonitor.uzh.ch/en.html
https://www.snf.ch/en


Chapter 3. Data

Zone Definition

z1 company description

z2 reason of vacancy

z3 administration & residual text

z4 job agency description

z5 material incentives

z6 job description

z7 required hard skills

z8 required personality (soft skills)

Table 1: Text Zones and Definitions

Dataset Number of Job Ads Number of Lines (Token Entries)

training 23,014 2,859,733

development 672 138,960

test 626 131,537

total 24,312 3,130,230

Table 2: Statistics of Source Data

lacking text zoning information. An important processing step in the information

extraction pipelines is the token-based segmentation of the text of job ads into

domain-specific text zones. As mentioned in section 1.5, text zones are defined as

segmenting the job advertisement text into zones (or classes) differing from each

other regarding their content. There are eight zones annotated in the corpus, and

table 1 shows the label of zones and the corresponding definitions.

For the scope of this work, the newly processed gold standard data from the work

of Gnehm and Clematide (2020) are used as source data to create silver standard

data. In this data, text zones are annotated on German job advertisements from

1970 to 2021. This labeled data serves the purpose of supervised machine learning

experiments for the texting zoning and classification tasks. The data is already split

into training, development, and test set. All data sets contain 3.1 million lines of

tokens and 24.3 thousand job advertisements (according to unique job advertisement

IDs). Table 2 shows the statics of the dataset. In addition, there are also a number

of long job advertisements truncated in order to fit into memory when training. The

truncated job advertisement IDs are recorded for further inspection.

The source data represents each token and its corresponding POS tags, relative
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position, text zone label, and Job Advertisement ID in tabulator-separated lines,

and each line is separated by line breaks. The POS tags are generated by spaCy

models from German trained on TIGER corpus3, following the scheme of the STTS

(Stuttgart/Tübinger Tagset)4. The following clipped example shows the original

data format. This format shares great similarities with the BIO format mainly used

for NER tasks; for example, in CoNLL-03 shared task, hence the data can be easily

adapted to the tools and machine learning code libraries for NER tasks. Other

than the aforementioned, the source data are also utilized as the monolingual data

used for domain adaption experiments. The beginning of this master thesis project

involves the pipeline of data representation and the creation of silver standard data,

which is elaborated on in the following sections.

[...]

Baudepartement NN 1 10 12010112120002

, $, 2 10 12010112120002

Umweltdepartement NN 4 10 12010112120002

und KON 6 10 12010112120002

Wirtschaftsdepartement NN 8 10 12010112120002

Ob APPR 10 70 12010112120002

Print NN 12 70 12010112120002

oder KON 14 70 12010112120002

Web NN 16 70 12010112120002

: $. 17 70 12010112120002

[...]

3.2 Silver Standard Data

Obtaining a sufficient quantity of adequately labeled data is becoming an increas-

ingly difficult challenge for machine learning, especially in the case of the zone tagger

trained on SJMM data. The educational materials regarding zoning are offered in

German, with much fewer resources available in French, English, and particularly

3https://spacy.io/models/de
4https://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/germantagsets/
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Italian. This has a disadvantageous effect on the efficacy of text segmentation when

dealing with languages that are not of Germanic origin. Reliable and comprehen-

sive datasets in multiple languages are essential for the successful implementation

and reliable assessment of tag transfer systems. However, the construction of gold

standard data is a huge and time-consuming process, and hence in this work, the

automatically generated silver standard data served the purpose of conducting the

experiments and evaluating the approaches for tag transfer. The process of au-

tomatically generating content is carried out utilizing the application programming

interfaces (APIs) provided by DeepL, which enable the user to quickly and efficiently

generate fresh material. This process involves taking the silver standard data and

translating it into three different languages, namely English, French, and Italian.

The generated silver standard data follows the same format as the original source

data provided by SJMM, only the column which indicates the token’s relative po-

sition is omitted. Naturally, the tokens are in different languages. Due to the

morphological differences of each language, the tokens do not have one-to-one corre-

spondence. The silver standard data also have the same split training, development,

and test set. The Figure 1 shows the overview of the workflow to generate silver

standard data. Furthermore, the following subsections elaborate on the process in

detail.

3.2.1 Sentence Restoration

The previous work from Gnehm and Clematide (2020) regarded the whole job ad-

vertisement as a single input, which is not tailored to this work. Machine translation

works are based mainly on the unit of sentences, and the length of a sentence affects

the translation quality to some extent. Hence the first step of the silver standard

data creation pipeline is to convert BIO-like vertical column format into horizontal

plain text and enable sentence separation from the whole job advertisement. The

early attempt used the sentence splitter (“Sentencizer”)5 from the spaCy library, a

simple pipeline component to allow custom sentence boundary detection logic that

does not require the dependency parse. However, the results were not ideal due to

unexpected splittings, e.g., some company names will be separated from the sen-

tence. In the end, a rule-based strategy that does not require a statistical model to

be loaded was implemented.

The sentence splitting was based on the job advertisement IDs and punctuation

marks which indicate sentence boundaries. The common separators, like full stops,

5https://spacy.io/api/sentencizer
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Figure 1: The Workflow of Creation of Silver Standard Data
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question marks, semicolons, etc., were taken into consideration, as well as some

adaptions specific to several cases, like asterisks and hyphens. This rule-based

workaround has two significant benefits; the first is that the results are under control

to a more considerable extent, which also leads to effective sentence length reduction,

and the other is that this workaround can cooperate with the XML-tags injection

process in the next step, which is essential to for the word alignment approach with

preserved sentence order information. In addition, this workaround also includes

several preprocessing steps for the original data.

Preprocessing of Original Data The original tokenization of the German job ad-

vertisements has split the slash within the nouns when written gender-fairly. This

has led the machine translation to treat these tokens separately and output un-

wanted results. To tackle this problem, these gender suffixes and other gender-fair

expressions such as “(in)” or “m/w” and many other cases are automatically com-

bined with the token before, which in this way will be treated as a single token

for machine translation systems. The following examples illustrate that the gender

suffix in German was mistranslated into English and the alternation of the original

data in the preprocessing.

The translation will keep the gender-fair suffix in German, which is not the case in

English:

Input: Sachbearbeiter / in Customer Care Als führender Schweizer Ver-

sicherer engagiert sich die AXA Winterthur für Ihre finanzielle Sicher-

heit .

Translation: Clerk / in Customer Care As a leading Swiss insurer, AXA

Winterthur is committed to your financial security .

The data before preprocess:

Sachbearbeiter NN 1 60 22011110002082

/ $( 2 60 22011110002082

in APPR 3 60 22011110002082

Customer NE 5 60 22011110002082

Care NE 7 60 22011110002082

The data after preprocess:

Sachbearbeiter/in NN 1 60 22011110002082
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Customer NE 5 60 22011110002082

Care NE 7 60 22011110002082

Moreover, some other “combine and append” preprocess steps were carried out man-

ually in order to finetune translation output and avoid sentences that are too short

(sentences with less than two tokens). These preprocessing steps were performed on

objects such as:

• gender-fair expressions like suffixes or the ones in parentheses

• only one token after the sentence separator, usually the unique token stands

for the phone number or website

• some exceptional cases, like consecutive 3 asterisks

Additionally, the hyphens in the corpus were also adjusted. Hyphens have two

functions in the data: the bullet points starter and the connection of range spans

such as time and numbers. To split sentences for bullet points yet keep the hyphen

inside the sentence in the latter scenario, hyphens and surrounding tokens (usually

cardinal numbers) were also combined as a single token. This alternation leveraged

the token’s POS-tag annotation in the original data.

Sentence Length Control The processing of the original data dealt with the sen-

tences which are too short. However, sentences that are too long also need to be

considered. Unlike the job advertisements in the 21st century, the ones in the early

days tend to have fewer or even no full stops, which leads to very long sentences

after the sentence restoration process, or sometimes the full job ads will not be split.

This problem was mitigated by complementing the patterns of the sentence sepa-

rator, e.g., question marks, semicolons, or asterisks and hyphens as bullet points

starter. The following 2 figures illustrate the comparison from the expansion of the

sentence separator list with the plot of sentence length distribution in the test set.

The x-axis indicates the length of the sentence, and the y-axis indicates the count

in Figure 2 and the density in Figure 3. The left subfigure shows the distribution

of sentence length when only the full stop is counted as the separator (version v1 in

Figure 3) while the right shows the results of the expansion (version v2 in Figure 3).

The kernel density estimate (KDE) plot in Figure 3 presents clearly that the overall

sentence length was drastically reduced, because of the increment of density for the

sentences around the average length. It is evident that a large number of sentences

exhibit lengths of between 100-300 tokens, which is substantially longer than what

is conventionally expected for a sentence. Initial apprehensions of decreased quality
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Figure 2: The Distribution of Sentence Length in Test Set

in machine translation have been refuted by more recent evidence, which suggests

only a slight decrease in its effectiveness.

3.2.2 XML tags encoding

As mentioned before, XML tags are suitable to encode annotation information into

text spans and represent the data in plain text, which is the only acceptable input for

the machine translation system and compatible with approaches for markup transfer.

Algorithm 1 shows the pseudocode developed for the addition of XML tags and the

separation of sentences in parallel. Sentences without XML tags were also generated

for reference, and the sentence order and numbering data were also recorded during

the steps for the later word alignment. The total process of generating split sentences

with XML tags takes around 30 min for the training data.

3.2.3 Translation via DeepL’s API

The generated sentences with XML tags were then automatically translated by the

DeepL machine translation tool, which is realized by the Python API provided by

DeepL. The translation engine does not take tags into account by default unless

the tag handling setting is adjusted to “xml”. Moreover, the API will process XML
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Figure 3: The KDE Plot of Distribution of Sentence Length

Algorithm 1 Sentence Restoration with XML tags

1: read original dataset as whole job dataframe
2: get job dataframe from whole job dataframe
3: create text list
4: create text span
5: define sentence separator list
6: for row in job dataframe do
7: get token, tag from row
8: if tag is different from the tag in previous row then
9: if token is in sentence separator list or token is the last token then

10: append close tag, new tag, token, new close tag to text span
11: append text span to text list
12: else
13: append close tag, new tag, token to text span
14: end if
15: else
16: if token is in sentence separator list or token is the last token then
17: append token, close tag to text span
18: append text span to text list
19: else
20: append token to text span
21: end if
22: end if
23: end for
24: return text list
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Data Set English French Italian

Training Set 3,205,458 3,555,346 3,280,976

Development Set 154,828 173,051 158,444

Test Set 146,911 164,824 151,034

total 3,507,197 3,893,221 3,590,454

Table 3: Statistics of Silver Standard Data (Number of Tokens)

input by extracting the text out of the structure, splitting it into individual sentences

(or text spans in this case), translating them, and placing them back into the XML

structure. By the process of the algorithm, the sentences with XML tags generated

from the SJMM column format will not have nested tags, and each token can be

enclosed by maximally one tag pair since each token has a single text zoning label.

Furthermore, many sentences only contain one tag pair, i.e., the whole sentence is

enclosed by the open tag at the beginning and the closing tag at the end. Overall,

in the test set, 43.5% of total sentences contain more than one tag pair, in the

development set: 42.4%, and in the training set: 53.4%.

For the scope of this master thesis project, the original data was translated into

3 languages: American English (EN), French (FR), and Italian (IT). The average

translation speed via DeepL API is 6 sentences per second. For training sets FR and

EN, they cost 12 hours each, while translating the IT training set took 20 hours.

The price for DeepL API is € 20.00 per 1 million characters. The character usage of

the translation process is 79 Million, which amounts to around € 1580 to generate

the silver standard data.

3.2.4 Column Format Conversion

The translated sentences with XML tags were then further processed to convert

into the column format to match the original data. The tags were removed to get

plain text in order to create parallel text data for word aligners. The conversion

is then carried out with several twerks, e.g. recovering the space before the full

stop at the end of the sentence. This last step generated 3 formats of data in 3

languages, namely the token-based column format and job ads split into sentences

with and without XML tags. These generated data created parallel multilingual and

monolingual data for model training and fine-tuning in the following experiments.

The following table 3 show the generated silver standard data statics in 3 languages.
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3.2.5 Quality control

The creation of silver standard data entails no manual correction and entirely relies

on the quality of the translation engine, i.e., DeepL. Even though DeepL has been

proven to deliver industry-leading results, some quality control measurements were

accomplished to ensure the silver standard data meets the quality requirements.

Before Translation Before the translation process began, 200 randomly selected

sentences from the test and development set were translated via DeepL API in EN,

FR, and IT. The translation was then thoroughly evaluated by the supervisors and

author of this master’s thesis from the perspective of the quality of translation and

quality of tag segmentation (tag transfer). For the tag transfer, there are no is-

sues such as missing tags or incorrect transfer. The segmentation problem is also

minimal; of all languages, there are 1 or 2 cases that the segmentation needs to be

manually adjusted. The problem regarding the quality of translation does exist but

is minimal. Typical issues include the mistranslation of entities like company names

and unique name holders and issues like gender-fair suffixed as mentioned in section

3.2.1. Additionally, the evaluations of the quality of translation in English were car-

ried out by the supervisors and the author simultaneously and independently. The

computed inter-evaluator agreement on the English samples is 0.74, which indicates

that the issues in the translation are consistent. Based on these observations and

the fact that the evaluation of the quality of translation is beyond the scope of this

project, it is safe to conclude that the production of silver standard data meets the

quality requirements for machine learning and is valid for further research. The

evaluation also investigated the translation differences between the sentences with

and without XML tags and the distinctions are not significant.

After Translation The quality control after the translation intends to address the

issues from the translation process and the API. For some sentences (133 cases),

DeepL’s API returns an empty string, especially when translating from German

into French. This bug from its API is possibly triggered by an asterisk or hyphen

at the end of a sentence. Removing the ending punctuation in the source language

and appending it after the translation was a temporal workaround. There were no

other issues with the translation results regarding the API.
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Figure 4: Label Distribution in the German Training Set

3.3 Gold Standard Test Set

We also seek to evaluate the performance of the models when tested on job adver-

tisements that have not gone through translation, as the current silver standard only

comprises of job postings that have been translated, which may result in discrep-

ancies related to the language used and the amount of translationese included. To

gain an exhaustive insight into the projection of tags between languages, a set of job

postings from 2001 to 2022 that were written in English, French, and Italian were

pre-classified using zone taggers that had been trained using a silver standard data

set. The process of compiling the definitive, accurate set of data in three distinct

languages was conducted by a single individual who manually reviewed and verified

each sample. The incorporation of a gold standard evaluation test into the existing

silver standard test suite is a critical component of the assessment methodology,

facilitating the reliable evaluation of the data. This gold standard test set comprises

a total of 23,009 token entries, including 7,357 in English, 7,643 in French, and 8,009

in Italian.
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Figure 5: Label Distribution in the English Training Set

Figure 6: Label Distribution in the French Training Set
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Figure 7: Label Distribution in the Italian Training Set

3.4 Data Imbalance

Unbalanced datasets are a widespread problem in the fields of machine learning and

data science. When there is an imbalance between the number of samples from dif-

ferent classes, resulting in an unequal distribution of data between categories, this

is known as imbalanced data. This disproportion can lead to a lack of precision

in machine learning algorithms as a consequence of the predominance of the most

frequent category. In order to deal with the unequal distribution of data, numer-

ous strategies can be implemented. Such as increasing or decreasing the frequency

of the scarce classes, using different metrics for measuring performance, or utiliz-

ing algorithms specifically designed to handle this type of data. In addition, data

augmentation can be employed to generate more examples of infrequent categories,

thus evening out the distribution of the dataset. The below diagrams demonstrate

the division of text zoning classifications present in the training set for a variety of

languages. Figures 4, 5, 6, and 7 show the distribution of the gold standard Ger-

man training set as well as the silver standard training sets in English, French, and

Italian, respectively. The data collected in the training set reveals that text zones

60, 30, and 10 are the most common, while text zones 50, 40, and 20 are scarcely

represented. The full resolution of the data imbalance issue is not part of the focus

of this project; nevertheless, the effects of the data imbalance are carefully assessed

with the utilization of the confusion matrix plot in Chapter 5.
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4 Methods

This chapter introduces the methods employed in this work for the experiments

presented below. The first type of experiments can be grouped as the align-and-

project approach, which is to align tokens between the source and translated target

language and project the labels of the manually annotated source corpus along the

word alignments. The second type of methods is to train the multilingual zone

taggers on the created silver standard data. The following sections elaborate on

each type of methods in detail.

4.1 Align And Project

The align-and-project approach directly copes with cross-lingual annotation pro-

jection tasks. With available translated parallel corpus in the source and target

language, as well as the annotation information in the source language, word align-

ers can produce the alignment information for the tokens in each sentence. Align-

ment algorithms can leverage this information to project annotation from the source

language into the target language. Figure 8 illustrates the pipeline of the align-and-

project approach with examples in German and English.

Word aligners take tokenized parallel sentence pairs of source and target language

as input, where sentences in source and target languages are separated by a triple

pipe symbol with leading and trailing white space. In this work, sentences in the

target language can either be translated sentences from silver standard data or come

from the gold test set as well. The output is the widely used i-j “Pharaoh format”,

where a pair i-j indicates that the ith word (zero-indexed) of the left language (by

convention, the source language) is aligned to the jth word of the right sentence

(by convention, the target language). Both statistical word aligner fast align and

neural word aligner awesome-align follow this data representation convention.

In this work, a look-up algorithm is employed to project annotations for the align-

ment algorithm; this algorithm retrieves the text zone label from the token in the

source language and assigns the same label to the corresponding token in the target
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Figure 8: The Workflow of Align-and-Project Approach
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language, with reference to the alignment data. The viability of this search algo-

rithm is contingent upon the fact that every token has an unique text zone label,

in addition to there being no nested labels. Occasionally, the word alignment tool

will yield results with tokens that are not in alignment. It is commonly observed

that misalignment of words is due to the lack of accuracy in their prediction. The

post-processing for these unaligned tokens is based on two methods:

1. For each token without alignment data, the label for this token is assigned by

the previous token (the same class as the one before)

2. If the token without alignment data is the first token in this sentence, then

the class for this token is assigned by the first following token with available

alignment data (the same class as this token)

Despite their simplicity, these methods work in uttermost cases, because the text

zones are span annotation, and zone labels tend to be clustering. The following

example briefly illustrates the outcome of the methods. Token spans “in” and “field

of” in sentence A are lacking the alignment information (marked with <unaligned>

tag pair), and the sentence B shows the result of the post-processing.

A <10>[We are a leading manufacturer of corrugated cardboard pack-

aging for industrial , food and non-food sectors and very successful</10>

<unaligned>in</unaligned><10>the</10><unaligned>field of</unaligned>

<10>customized packaging solutions .</10>

B <10>[We are a leading manufacturer of corrugated cardboard packag-

ing for industrial , food and non-food sectors and very successful in the

field of customized packaging solutions .</10>

4.2 Zone Tagger Training on Silver Standard Data

Besides the approach with word alignment, the project’s focal point is to train

multilingual sequence labeling models, also called zone taggers, via the generated

silver standard data in English, French, and Italian, as well as the gold standard train

set in German. The FLAIR Python library1 enables the training pipeline and model

structure with reference to the previous work done by SJMM researchers. Figure

9 shows the abstraction of the training process. The multilingual training set is

fed into the FLAIR framework, to generate Transformer word embeddings and train

sequence labeling models. For this project, the word embeddings from BERT and

1https://github.com/flairNLP/flair
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Figure 9: The Workflow of Zone Tagger Training on Silver Standard Data
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XLM-RoBERTa2 are used. To train the models, FLAIR includes the ModelTrainer

class3, which implements a host of mechanisms that are typically applied during

training. This includes features such as minibatching, model checkpointing, learning

rate annealing schedulers, evaluation methods, and logging.

Furthermore, during the experiments, multilingual zone taggers are either trained

on the unit of whole job advertisements, or on the unit of split sentences as processed

when generating silver standard data. One of the major downsides of attempting to

train models on all job advertisements is that some especially lengthy job postings

may be unable to fit into the allocated GPU memory. Consequently, utilizing a train-

ing model that takes contextual factors into account, such as the one provided by

FLAIR’s FLERT configuration, can be especially useful. Nevertheless, if the whole

job advertisements are used for training the model, it can be more advantageous

due to the additional contextual information it can then access.

In conjunction with the standard training routine, this project also tested methods

of 2-phase training, which is to fine-tune multilingual zone tagger on monolingual

data for another round, to examine if there is an enhancement of performance on the

monolingual test set. This method is also known as unsupervised domain adaptation,

which has gained increasing attention recently due to its potential in improving the

performance of natural language processing tasks (Marie and Fujita, 2021). More

specifically, unsupervised domain adaption is a type of transfer learning that allows

a model trained on one domain to be applied to a different domain. This can help

reduce the amount of data and time needed to train an accurate model on a new task

with limited data. Unsupervised domain adaption works by first training a model

on the source domain, then using that trained model as the basis for a new model in

the target domain. The model is adapted using unsupervised methods, in this case,

fine-tuning on monolinguial data, which allow it to learn how to generalize across

domains without needing labeled data from both domains. The implementation and

evaluation of 2-phase training is further discussed in Chapter 5.

2https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/

TRANSFORMER_EMBEDDINGS.md
3https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_

TRAINING_A_MODEL.md
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5 Experiments & Results

This chapter introduces the experiments conducted and the corresponding results for

this master thesis project, as well as the discussions of the results. The experiments

are grouped by the implemented approaches mentioned in Chapter 4: section 5.1

presents the experiments of the approach align and project, and the results and

discussions of the performance of word aligners, and section 5.2 elaborates on the

training process and results of the trained sequence labeling models. Additionally,

section 5.3 talks about the outcomes in general and possible future improvements

for the experiments.

5.1 Word Alignment

The experiments for the word-alignment-based approaches were realized by the de-

rived parallel corpus from silver standard data in 3 language pairs, i.e., German

to English, French, and Italian. Moreover, the performance of word aligners was

evaluated on the silver test set since no human-translated and projected corpus was

available for this project. The statistical word aligner fast alignn worked in an

unsupervised fashion, therefore it could be directly applied to the silver test set and

output alignment data. Based on this data and transfer algorithm introduced in

Chapter 4.1, the “predictions” of word aligners in English, French and Italian could

be generated and evaluated, corresponding to the test set in German. Neural word

aligners, on the other hand, are mainly based on pre-trained language models, which

are capable of the fine-tuning process to update model parameters.

In this work, the neural word aligner awesome-align was first used in the original

version, which is built on the bert-base-multilingual-cased language model.

Then fine-tuning of the bert-base-multilingual-cased took place on the parallel

data from the silver standard training set in all 3 language pairs. As recommended

by the developers of bert-base-multilingual-cased, the fine-tuning process was

carried out with one epoch for each language to balance between efficiency and

effectiveness. The fine-tuning process of 3 epochs in the model lasted 6.5 hours,
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Recall (macro average) Accuracy

No. Aligner EN FR IT avg. EN FR IT avg.

1 fast align 0.9710 0.9546 0.9498 0.9585 0.9807 0.9699 0.9660 0.9722

2 awesome-
align

0.9874 0.9751 0.9729 0.9785 0.9902 0.9826 0.9800 0.9843

3 awesome-
align
(fine-tuned)

0.9910 0.9749 0.9735 0.9798 0.9929 0.9819 0.9780 0.9842

avg. 0.9832 0.9682 0.9654 0.9722 0.9879 0.9781 0.9747 0.9802

Table 4: Word Aligner Performance on Silver Test Set

resulting in a perplexity of 0.3033, 0.3128, and 0.3498 after each epoch, respectively.

The raising of perplexity values after each epoch indicated that the model was

overfitted to a certain extent and the machine-translated data may not bring benefits

to fine-tuning word aligners in this case, which was also reflected in the model

performance. Overall, the experiments for the word alignment approach were carried

out by these 3 word aligners.

5.1.1 Performance of Word Aligners

Table 4 shows the performance of all 3 word aligners evaluated on the silver test

set, with evaluation metrics of recall in macro average and accuracy, as well as the

average values per column (per language) and row (per word aligner). The best score

in each column is marked in bold. The results demonstrate a correlation between

the performance of word aligners and scores in recall and average. The neural

word aligner awesome-align has evidently reduced alignment error rates (AER) in

German-to-English and French-to-English language pairs compared to the statistical

word aligner fast align. This analysis proves the superiority of awesome-align

with higher recall and accuracy scores in each language, although to a narrow extent,

especially for the test set in English. Other than English, the recall and accuracy

scores have an increase in the range of 0.02 to 0.03 in French and Italian, suggesting

that data in French and Italian could benefit more from neural word aligners.

Additionally, fine-tuning helps neural word aligners achieve better scores in the recall

however at the cost of accuracy. The increased perplexity in the fine-tuning process

implies that the language model was overfitted, hence the reduction of accuracy

scores surfaced. The increment of recall in macro average indicates that the classes
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Figure 10: Confusion Matrix of Predictions of fine-tuned awesome-align
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with fewer presences (small counts in the data set) could gain the same attention

from the model as the classes in large numbers. This class imbalance is one of the

characteristics of the training and testing data for this work. Figure 10 shows the

confusion matrices plotted by the predictions of fine-tuned awesome-align (No.3 in

table 4) in English, French and Italian. For each figure, the subplot on the left shows

the values without normalization (absolute numbers), and the right subplot shows

the values normalized over the true condition (values add up to 1 in each row). The

figures show that all classes have a high recall score (mostly above 0.97) in each

language, regardless of the imbalance in class distribution.

5.1.2 Results Discussion

In general, all three word aligners, regardless of their type of mechanics, deliv-

ered exceptional results. Despite ranking at the bottom of the list, the statistical

word aligner fast align achieved an average accuracy of 0.97, and neural word

aligners improved this score by 0.01. However, the reliability of these data is im-

pacted by the fact that the test set is entirely automatically generated by machine

translation systems. The word aligner may have a substantial advantage on the

machine-translated data due to the fact that they share many essential technical

underpinnings with machine translation systems. The neural machine translation

and neural word alignment are both based on language models, and statistical word

alignment is built on top of statistical machine translation as well. Furthermore,

the translated text tends to have less variety in terms of lexical, which could also

contribute to the performance of word aligners.

Due to the lack of data on actual human-translated and projected gold test sets,

the results cannot confirm that the approaches based on word alignment have a

significant advantage over the other approach, which is the training of sequence

labeling models (zone taggers). One drawback of the word aligners is that they can

only work on parallel data in desired language pairs. The parallel data are not always

readily available and, in many cases, are totally out of reach. The experiments show

the potential of the align-and-project approaches, yet further research is needed

to establish reliable evaluation test methods to fully assess the capability of these

approaches. In addition, the complete statistics and plots of word aligners can be

found in Appendix A.
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5.2 Trained Models

The experiments for the sequence labeling training were realized by the created silver

standard data based on the machine translated text with XML tags in 3 languages,

i.e., English, French, and Italian, as mentioned in Chapter 3. In terms of the training

process, Python library FLAIR is the main power horse, as mentioned in Chapter 4.

In addition, several pretrained language models, from both the generic domain and

the research team of SJMM, were the initialization of word embeddings, and they

also provided a valuable baseline for model evaluation. The following subsection

5.2.1 introduces the training process in detail, while the subsection 5.2.2 elaborated

the results of trained models as well as analysis about them. Furthermore, subsection

5.2.3 provides some error analysis with concrete examples from the model predicted

data.

5.2.1 Training Process

Table 5 gives an overview of the training details from all 9 trained or fine-tuned

sequence labeling models (zone taggers). The first column indicates the numbering

of models, which is for reference, consistent in this chapter, either in main texts or

in tables. The second column indicates the word embedding each that the model

is based on. Decimal numbers mean that the models are fine-tuned in monolingual

training data on the basis of previous trained multilingual models, or in other words,

via the 2-phase training process. Since the 2-phase training was carried out in

4 languages researched in this project, there are 2 model groups with 4 decimal

numbers each. Furthermore, models differ from each other with mainly the type of

training data, which is either based on whole job advertisements or on the splitted

sentences by rule-based pipelines. If models were trained on the sentence-based

data, they can be further distinguished by the application of context, which is a

mechanism proposed by FLERT.

Except for the first model with 20 training epochs, the epochs for other models are

set to 10. Minibatch sizes were adjusted for each model accordingly, and the training

time mainly depended on the batch size and type of GPU. For this work, two GPUs

were utilized, the first is the Nvidia Tesla T4 with 16 GB video memory, and the

second is Nvidia RTX 3090 with 24 GB video memory. The other hyperparameter

for training was set identical with the default FLAIR settings, such as AdamW1 is

1https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
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No. Embedding
model-alias-for-reference

Training
Data

Context 2-
phrase

Language max
epochs

Mini
Batch
Size

Training
Time
(Hours)

1 bert-base-multilingual
bert-base-multilingual-cased

job ads no no Multi 20 32 25

2 bert-base-multilingual
bert-base-multilingual-cased w context

sentences yes no Multi 10 16 42

3.1 bert-base-multilingual
bert-base-multilingual-cased 2 DE

job ads no yes DE 10 32 3

3.2 bert-base-multilingual
bert-base-multilingual-cased 2 EN-US

job ads no yes EN 10 32 3

3.3 bert-base-multilingual
bert-base-multilingual-cased 2 FR

job ads no yes FR 10 32 3

3.4 bert-base-multilingual
bert-base-multilingual-cased 2 IT

job ads no yes IT 10 32 3

4 jobBERT-de
jobad bert finetune multi

job ads no yes Multi 10 32 13

5 xlm-roberta-base
xlm-roberta-base w context

sentences yes no Multi 10 16 44

6 xlm-roberta-base
xlm-roberta-base o context

sentences no no Multi 10 8 62

7.1 xlm-roberta-base
xlm-roberta-base w context 2 DE sents

sentences yes yes DE 10 16 11

7.2 xlm-roberta-base
xlm-roberta-base w context 2 EN-US sents

sentences yes yes EN 10 16 10

7.3 xlm-roberta-base
xlm-roberta-base w context 2 FR sents

sentences yes yes FR 10 16 11

7.4 xlm-roberta-base
xlm-roberta-base w context 2 IT sents

sentences yes yes IT 10 16 10

8 xlm-roberta-base
xlm-roberta-base o context job

job ads no no Multi 10 16 15

9 “jobadBERT-multi”
v2021-10-18 epoch 30
xlm-roberta-base-job

job ads no no Multi 10 16 14

Table 5: Detail of Trained Models

37



Chapter 5. Experiments & Results

Figure 11: Loss Plot of bert-base-multilingual-cased

optimizer, and training rate scheduler OneCycleLR2, and the initial learning rate for

all models is 0.000005 (5.0e-6). In terms of model structure, the hidden size was set

as 256 for all models. All the models were based on the Transformer embeddings,

hence there are other 2 settings for embeddings identical among models. The layer

parameter was set to -1, which means only the last layer is used. Additionally, since

the Transformer-based models use subword tokenization, the subtoken pooling was

set to “first”, which means only the embedding of the first subword is used.

Model 1-3 were based on the bert-base-multilingual-cased, which is by far the

most widely-used language model for multilingual settings. Model 1 was trained on

the basis of whole job advertisements, while model 2 was on the basis of sentences.

It is worth mentioning that the gold test set was based the predictions of model 1,

followed by the human correcting process, cf. Chapter 3.3. Model 3.1 to 3.4 were

based on the model 1, with an extra 2-phase training process. Model 5-8 were based

on the xlm-roberta-base in a similar manner. XLM-RoBERTa is a multilingual

version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data

containing 100 languages. Model 4 and 9, however, were not based on the general

domain language models. Model 4 was the fine-tine product of zone tagger based

on jobBERT-de3. jobBERT-de is based on bert-base-german-cased and adapted

2https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.

html
3https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
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Figure 12: Loss Plot of Models via 2-phase Training

39



Chapter 5. Experiments & Results

to the domain of job advertisements through continued in-domain pretraining on

4 million German-speaking job advertisements from Switzerland in the time span

of 1990-2020 (5.9 GB data). While model 9 was trained as a zone tagger from

the ground up, which was based on the xlm-roberta-base model with continued

masked language model training on English, French, German and Italian job adver-

tisements. The epoch 30 of the pretraining checkpoint was used for further fine-tune

procedures.

As the first model trained, Model 1 not only contributed to the creation of the

gold test set, but also provided a valuable reference for the training settings of the

following models. Figure 11 shows the plot of training loss (blue line) and validation

loss (yellow line) over the training epochs. According to the figure, training loss

had a drastic decrease in the first 2 epochs, and started to fall off gradually. The

validation loss started to rise up after the 4th epochs, implying the model was

moderately overfitted, and the line of validation loss continued to increase until the

intersection with the training loss after the 8th epoch. This gave the idea that the

model had definitely been overfitted with 10 epochs, hence the following models

were all trained with the setting of maximal 10 epochs. Figure Figure 12 shows the

training loss and validation loss plot of model 3.1 to 3.4, which are annotations of

monolingual settings in each language. The validation line in the plots tends to move

up, which supports the findings from the training process of model 1, indicating that

models were already overfitted and 10 epochs of training was sufficient. It was the

same case for the rest of the models, and all the detailed training status and plots

of all 9 trained models can be found in appendix B.

5.2.2 Results Discussion

Since the training data was categorized into two types: the whole job advertisement

based and sentence based, intuitively, the test set could also be categorized into

these two types. This raised the question on which type of test set the models

should be evaluated. To clarify this point, all models were firstly evaluated on both

types of test set. Table 6 presents of the model performance on both types of test

set. The results show that 8 of 9 models achieved better scores on the test set

based on whole job advertisements, compared to the test set based on the sentences,

regardless of the type of training data. For example, xlm-roberta-based model

6 was trained on the sentences data without context information. Yet it achieved

an average accuracy of 0.9213 on the silver test set of whole job advertisements,

compared to 0.9199 on the test set of sentences. The only contradiction is Model

2, which is trained on sentences and had better scores on sentence-based test sets.
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Test Set
Type

Silver Test Set

No. Model Description EN FR IT avg.

1 bert-base-multilingual (job ads,
w/o context)

Job ads 0.9218 0.9244 0.9214 0.9225

1 bert-base-multilingual (job ads,
w/o context)

Sentences 0.8667 0.8645 0.8627 0.8646

2 bert-base-multilingual (sentences,
w/ context)

Job ads 0.9176 0.9243 0.9218 0.9212

2 bert-base-multilingual (sentences,
w/ context)

Sentences 0.9196 0.9252 0.9238 0.9229

3 bert-base-multilingual (job ads, 2-
phase)

Job ads 0.9229 0.9255 0.9235 0.9240

3 bert-base-multilingual (job ads, 2-
phase)

Sentences 0.8625 0.8645 0.8619 0.8630

4 bert-jobad (job ads, w/o context,
2-phase)

Job ads 0.9111 0.9054 0.9049 0.9071

4 bert-jobad (job ads, w/o context,
2-phase)

Sentences 0.8423 0.8093 0.8266 0.8261

5 xlm-roberta-base (sentences, w/
context)

Job ads 0.9235 0.9308 0.9291 0.9278

5 xlm-roberta-base (sentences, w/
context)

Sentences 0.9226 0.9276 0.9278 0.9260

6 xlm-roberta-base (sentences, w/o
context)

Job ads 0.9178 0.9236 0.9225 0.9213

6 xlm-roberta-base (sentences, w/o
context)

Sentences 0.9158 0.9225 0.9215 0.9199

7 xlm-roberta-base (sentences, w/
context, 2-phase)

Job ads 0.9235 0.9308 0.9300 0.9281

7 xlm-roberta-base (sentences, w/
context, 2-phase)

Sentences 0.9212 0.9279 0.9285 0.9259

8 xlm-roberta-base (job ads, w/o
context)

Job ads 0.9251 0.9292 0.9291 0.9278

8 xlm-roberta-base (job ads, w/o
context)

Sentences 0.8801 0.8858 0.8855 0.8838

9 xlm-roberta-jobad (job ads, w/o
context, finetune)

Job ads 0.9243 0.9307 0.9295 0.9282

9 xlm-roberta-jobad (job ads, w/o
context, finetune)

Sentences 0.8911 0.8957 0.8916 0.8928

all average Both 0.9064 0.9076 0.9076 0.9072

Table 6: Model Performance (2 Types of Test Set)
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Silver Test Set Gold Test Set

No. Model Description EN FR IT avg. DE EN FR IT avg.

1 bert-base-multilingual
(job ads, w/o context)

0.9218 0.9244 0.9214 0.9225 0.9132 0.9420 0.9517 0.9311 0.9345

2 bert-base-multilingual
(sentences, w/ context)

0.9176 0.9243 0.9218 0.9212 0.9118 0.8909 0.9220 0.9152 0.9100

3 bert-base-multilingual
(job ads, 2-phase)

0.9229 0.9255 0.9235 0.9240 0.9129 0.9401 0.9500 0.9257 0.9322

4 bert-jobad (job ads, w/o
context, 2-phase)

0.9111 0.9054 0.9049 0.9071 0.9194 0.8962 0.8837 0.8717 0.8928

5 xlm-roberta-base (sen-
tences, w/ context)

0.9235 0.9308 0.9291 0.9278 0.9170 0.9226 0.9319 0.9080 0.9199

6 xlm-roberta-base (sen-
tences, w/o context)

0.9178 0.9236 0.9225 0.9213 0.9089 0.9254 0.9180 0.9034 0.9139

7 xlm-roberta-base (sen-
tences, w/ context, 2-
phase)

0.9235 0.9308 0.9300 0.9281 0.9154 0.9151 0.9303 0.9014 0.9156

8 xlm-roberta-base (job
ads, w/o context)

0.9251 0.9292 0.9291 0.9278 0.9177 0.9294 0.9331 0.9134 0.9234

9 xlm-roberta-jobad
(job ads, w/o context,
finetune)

0.9243 0.9307 0.9295 0.9282 0.9202 0.9323 0.9295 0.9211 0.9258

average 0.9208 0.9250 0.9235 0.9217 0.9152 0.9216 0.9278 0.9101 0.9170

Table 7: Table of Model Performance

The reason behind could be the fact that the whole job advertisement contains more

context information and is more coherent, which helps the models produce better

results. As a matter of fact, the discussion and analysis of model performance were

based on the accuracy scores which were evaluated on the test set with the whole

job advertisement.

Table 7 presents the models performance evaluated on the silver and gold test set

based on the whole job advertisements. The silver test sets stem from the silver

standard data, while the gold test test contains the manually corrected predictions

and the original German gold standard. The differences of size of silver test set

in each language are minor. However, despite being categorized together with the

German test set as the gold test set, the amount of testing samples in English, French

and Italian is noteworthy lower. Models generated by 2-phase fine-tune process are

also grouped together for a better view, which is to say, model 3, 4 and 7 are actually

4 models fine-tunes by monolingual data, and the accuracy score is reported on the
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corresponding test set in the same language. The scores in bold indicate the highest

score in each row (per language).

Overall, the bert-base-mutilingual based Model 1, which was trained on the

whole job advertisements, achieved the best accuracy scores on the gold test set

with an average of 0.9345, leaving a margin by 0.04 compared to the worst model 4.

Also considering the competitive average accuracy on the silver test set, this implies

the versatility and robustness of the bert-base-multilingual language model.

However, on account of the origin of the gold test set, which is prediction from the

model 1, it is hard not to suspect that the gold test set has a bias towards model 1.

Nevertheless, model 9, which was based on the xlm-roberta-base with pre training

via in-domain data, accomplished the best accuracy score on the silver test set by

the average of 0.9282. Model 9 also has the best accuracy score on the gold test set,

if bert-base-multilingual based models were omitted due to potential bias.

Comparing model 1 vs model 2, as well as model 5 vs model 8 should answer the

research question 2. Models based on the same word embedding but on different

types of training data have different performance, and the results suggest that train-

ing on whole job advertisements brings benefits to the models. In terms of research

question 3, XLM-RoBERTa is reported to have 2-20% improvement over BERT, and

the results support this claim. Taking only silver standard data into consideration,

models based on xlm-roberta-base (5-8) have a tendency of higher accuracy scores

than models based on bert-base-multilingual-cased (1-3). Research question 4

regards the effectiveness of 2-phase training in this multilingual set up. The results

could not come to an agreement. Models of 2-phase training tend to have a better

performance on the silver test set (model 3 vs model 1, model 7 vs model 5), while

a worse performance on the gold test set. This suggests that the validity of 2-phase

training is limited in the experiments.

5.2.3 Further Analysis

Since table 7 shows that the differences of accuracy score between each model are not

substantial by any means, it is necessary to dive into the predictions of the models to

get a better understanding of model performance. Due to the fact that the silver test

set was synthesized, and the gold test set in English, French and Italian is short in

size, the German gold test set serves the purpose to perform a fine-grained analysis.

Figure 13 shows the confusion matrix of the predictions from model 9 with highest

accuracy score on a test set in German, which is based on the xlm-roberta-base

with in-domain pretraining. Following the same set up as the plots for word aligners,
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Figure 13: Confusion Matrix of DE gold of xlm-roberta-base-job

the subplot on the left shows the values without normalization (absolute numbers),

and the right subplot shows the values normalized over the true condition (values add

up to 1 in each row). In additonal to this, Figure 14 illustrates the label distribution

in the test set in German. Figure 13 indicates that despite the label imbalance of

data, the model achieved relatively good recall for each text zone. Zone 20 (reason

of vacancy) has the worst average recall score of 0.78, however, zone 20 composes

the least of the text zones, as shown in the figure below. The confusion matrix also

demonstrates a correlation between the number of presence and the average recall

score. Zone 20, 40, 50, which compose a small number of samples in the test set, all

have recall scores below 0.8. On the other hand, zones 10, 30, 60 have the average

recall above 0.9, and they are the zones with the dominantly more samples in the

test set. Additionally, the detailed recall for each text zone and plots of confusion

matrices are included in appendix C.

• Case 1

true <70>5 + years in a management consultancy or in a strategic plan-

ning department of a multinational .</70>

pred <60>5 + years in a management consultancy or in a strategic plan-

ning department of a multinational .</60>

• Case 2
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Figure 14: Label Distribution in the German Test Set

true <30>Wir bieten Ihnen</30><10>die Möglichkeit , in unseren 18

Agenturen sowie an unserem Hauptsitz in Luzern , Ihre Kompetenzen

und Ideen einzubringen .</10>

pred <30>Wir bieten Ihnen die Möglichkeit ,</30><10>in unseren 18

Agenturen sowie an unserem Hauptsitz in Luzern ,</10><70>Ihre Kom-

petenzen</70><60>und Ideen einzubringen .</60>

• Case 3

true <10>With a passion to understand consumers’ preferences and a

relentless drive to innovate , Givaudan is at the forefront of creating

flavours and fragrances that ’ engage your senses ’ .</10>

pred <80>With a passion to</80><60>understand consumers’ prefer-

ences</60><10>and a relentless drive to innovate , Givaudan is at the

forefront of creating flavours and fragrances that ’ engage your senses ’

.</10>

Some further error analysis was also carried out to have a better understanding of

the model predictions. The 3 cases above are selected samples from the predictions

of the gold test set based on sentences in English generated by the model 1. Each

sample contains 1 sentence of the gold test set (true) and predictions (pred) with

XML tags injected for a better view. In case 1, the model has the ability to predict
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Silver Test Set Gold Test Set

No. Model Description EN FR IT avg. DE EN FR IT avg.

4 bert-jobad (job ads, w/o
context, 2-phase)

0.9111 0.9054 0.9049 0.9071 0.9194 0.8962 0.8837 0.8717 0.8928

10 bert-jobad (original, w/o
finetune)

0.6203 0.4144 0.4512 0.4953 0.9152 0.7055 0.4143 0.4660 0.6253

Table 8: Model Performance of Original bert-jobad

all tokens in the sentences with the same text zone labels, showing no issues of

segmentation. Tokens were marked as job description (zone 60) instead of required

hard skills (zone 70). It suggests that the model can not identify the intention of the

sentences. Case 2 shows a sentence with multiple text zone labels. Zone 30 stands

for administration and residual text and zone 10 stands for company description.

The model had different segmentations regarding zone 30 and 10, also it added

zone 70 and 60. The latter seems to be caused by the capitalized German “Ihre”,

making the model treating the second part of the sentence as a new and perform

the predictions upon.

Case 3 presents an interesting example as well. Reading the whole sentence, it is

effortless for humans to identify the subject of the sentence is the company “Givau-

dan”, and the rest of text supports the company description. The model may have

had a hard time identifying the essential subject of the sentence and added zone 80

(required personality, soft skills) and 60, showing the lack of capability to catch the

built-in connections within sentences. The generalizability of the results is limited

by the source of the test set, which is sentence-based. As mentioned in the previous

section, models tend to have better performance on job-advertisements based test

sets, where the latter could provide more valuable context information. As a matter

of fact, case 1 was indeed predicted with correct zone labels in the job-advertisements

based test set. However, inspecting zone errors in whole job advertisements is cum-

bersome due to the large size of text, and sentence-based analysis are much more

intuitive. Further research is needed to establish better error analysis strategies.

Table 8 shows the model 10’s performance, which is the original zone tagger of

model 4. Domain-adapted monolingual language model bert-base-german-cased

is the foundation of Model 10 and model 4 performed a 2-phase fine-tune process on

monolingual data in English, French and Italian. Comparing two models accuracy

scores on test set in non-German languages, it implies that model 4 gained ability to
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conduct sequence labeling on English, French and Italian, even so the original model

is only trained on German data. The results might suggest that even monolingual

Transformer languages models have the capability to learn generalized presentations

across different languages. It is yet beyond the scope of this study to dive into the

extensibility of Transformer language models and avenues for future research could

include this aspect.

5.3 Overall Evaluation and Discussion

Considering the outcomes of the word alignment and zone tagging experiments, the

inquiry posed by research question 1 can be answered. The results of the accu-

racy scores suggest that the word aligners possess better performance than the zone

taggers. The accuracy of fast-align on the silver test set was found to be 0.97, repre-

senting an improvement of 5% over the highest score of 0.92 obtained by zone taggers

(model 9). However, as illustrated in section 5.1, the reliability of the performance

from word aligners is limited and requires further assessment. Given the absence

of accuracy scores on the gold test set, it is difficult to meaningfully compare the

performance of a word alignment approach and a zone tagger approach. Moreover,

the trained zone taggers can conduct predictions directly, while word aligners have

to rely on the parallel translation with text zone labels from source language. The

practical application of word aligners is restricted.

In general, trained models exhibit satisfactory performance on both silver and gold

test sets. Most zone taggers have been demonstrated to offer accuracy scores that

are higher than 0.91, and have proven to have some capacity to address the disparity

in labeling of data. In terms of training process, the time and effort consumption

was also acceptable. Initial training typically demanded 50 hours of labor, whereas

the fine-tuning process necessitated significantly less time. This implies that the

methodology based on model training is suitable for a production environment, and

can be advantageous for the multinational area labeling system. The performance

distinctions among the nine trained models were not notably disparate. Model 1 and

9 achieved the highest scores on the gold and silver test sets, respectively, though

the difference between them and the other models was marginal (1% - 4%). This

experiment demonstrates that the selection of machine learning models may not

significantly influence the accuracy of text zone labeling at this stage. A significant

improvement may be realized through other considerations such as the quality of

the labeled data.
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6 Conclusion

The presented research aimed to test approaches for cross-lingual projection of text

zoning labels from German job advertisements to other languages. For the con-

duction of experiments, i.e., word alignment and model training, a silver standard

dataset was created via the state-of-the-art machine translation engine DeepL. By

conducting several experiments using approaches empowered by word alignment and

sequence labeling model training based on the silver standard data, this work tried

to answer the central questions for the research as follows:

1. In terms of the accuracy of text zoning label projection, to what extent do the

performances of the word alignment approach and the zone tagger approach

differ from each other?

The performance of the word alignment and the zone tagger approaches are

barely comparable based on the experiments. The evaluation metrics cannot

be leveled due to the lack of a proper gold test set. On the other hand, the

higher accuracy score on the silver test set from zone taggers shows the better

usability when the parallel translation data is presented. But this cannot

certify the correlation of higher quality compared to zone taggers in any other

circumstance.

2. For multilingual zone taggers, will the different segmentation of training ma-

terial play a role here, i.e., training on the unit of whole job advertisements or

sentences?

For zone taggers, the different segmentation of training material play a role in

the experiments. Models based on the same word embedding but on different

types of training data have various performances. The results suggest that

training on full job advertisements brings benefits to the models. A possible

reason could be that the valuable context information is preserved, further-

more, linear structure of zones in a job ad are often similar. Header and footers

of job ads, for instance.

3. Which foundational models are better, i.e., can the superiority of word em-
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beddings from different language models be observed (BERT versus XLM-

RoBERTa)?

The superiority of word embeddings from different language models, i.e., BERT

versus XLM-RoBERTa, can be observed in this case. XLM-RoBERTa-based

models tend to have better performance than BERT based. But the level of

distinctness is minimal (less than 5% in terms of accuracy score) and is only

noticeable on the silver standard data, on the other hand, the small size of the

gold standard test set is too limited to draw final conclusions.

4. Will 2-phase training, i.e., to fine-tune multilingual zone taggers with mono-

lingual data, will deliver improved results??

The enhancement of 2-phase training for multilingual zone taggers in the

monolingual scenario is not clearly noticeable, since the results show con-

tradictory results from 2 different model groups. The only improvements can

be observed from the fine-tuning process of zone taggers originally trained on

monolingual data, but this is beyond the scope of this work and needs further

research.

5. What are the particular characteristics of the model predictions on the test

set?

Error analysis has revealed that the model’s inability to detect semantic con-

nections between sentences is a notable limitation of its performance on the test

data set. This resulted in some incorrect attributions and misclassifications

of zone labels. The segmentation issues are not indicative of the compara-

tive results; however, the text zone labels with minimal representation lead to

segmentation mistakes, which is exacerbated by the data imbalance issue.

This research provides new insight into mitigating the problem raised by labeled

data acquisition bottleneck, focusing on the cross-lingual projection of text zoning

labels. The creation process of silver standard data clearly illustrates the effective-

ness of the translation engine DeepL. With the minimal cost of time and funding

compared to human resources, the translation engine produces sufficient data with

good quality that built the base for the word alignment and model training process

in the following experiments. While the proper evaluation data limits the general-

izability of the results produced by the word aligners, this approach provides a new

understanding of the ability of the methods based on word alignment. On the other

hand, trained zone taggers show the versatility and robustness of the machine learn-

ing pipeline regarding sequence labeling as well as the Transformer-based language

models. Furthermore, the implementation of the training data type comparison,
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2-phase training, and fine-tuning on domain-adapted word embeddings shed light

on the impacts of different machine learning techniques for studying computational

linguistics.

This work has several contributions to the study of cross-lingual transfer. First,

it generated a multilingual corpus via the machine translation service, which can

be utilized for further model training, domain adaption, and evaluation. Second,

nine sequence labeling models were trained in the experiments with competitive

performance, which can be further studied and implemented for the text zoning tasks

for SJMM. In addition, the research addressed the knowledge gap of the practicality

of the machine learning models trained on the silver standard data. Finally, the

research findings provided valuable insight into the methods regarding the model

training on synthesized data to address the labeled data acquisition bottleneck.

Future Work Future studies could focus on a better preprocess of the original

data in column format to better understand the implications of these results. The

raw form of the initially collected job advertisements does not contain sentence-

separating information, making it difficult to directly adopt the data into many

mainstream NLP tools since most tools are developed based on sentences. Especially

in terms of encoding sentences with Transformer embeddings, which usually have a

length of 768 or more, a long job advertisement usually cannot easily fit into the

GPU’s memory. On the other hand, many collected job advertisements are organized

in bullet points fashion or lack explicit sentence separators like full stops or question

marks. For this work, a rule-based pipeline was developed to cooperate with the

XML tag injection, which delivered, in most cases, satisfactory results yet still with

some flaws, e.g., too short sentences when splitting bullet points or too long sentences

when the job advertisements do not have full stops. The text zoning task could

definitely benefit from a better preprocessing of the raw job advertisement data in

the future. Additionally, the efficacy of zone taggers is diminished when transitioning

from silver standard test set assessment to original test set assessment, which may be

attributable to the limited size of the gold standard test set. Conducting a proper

gold test could increase confidence in the evaluation and provide a more holistic

overview of the models’ performance.
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A Experiment Results of Word

Aligners

This appendix contains the detailed results and confusion matrices of 3 word aligners.

• English Test Set

Aligner Precision (micro) Recall (macro) Accuracy F1 (micro)
fast align 0.980730 0.971031 0.980730 0.980730
awesome-align 0.990205 0.987415 0.990205 0.990205
awesome-align (fine-tuned) 0.992860 0.991032 0.992860 0.992860

• French Test Set

Aligner Precision (micro) Recall (macro) Accuracy F1 (micro)
fast align 0.969938 0.954592 0.969938 0.969938
awesome-align 0.982563 0.975066 0.982563 0.982563
awesome-align (fine-tuned) 0.981853 0.974853 0.981853 0.981853

• Italian Test Set

Aligner Precision (micro) Recall (macro) Accuracy F1 (micro)
fast align 0.966008 0.949758 0.966008 0.966008
awesome-align 0.979998 0.972885 0.979998 0.979998
awesome-align (fine-tuned) 0.977965 0.973474 0.977965 0.977965
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APPENDIX A. EXPERIMENT RESULTS OF WORD ALIGNERS

Figure 15: Confusion Matrix of Predictions of fast align in English

Figure 16: Confusion Matrix of Predictions of original fast align in French
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APPENDIX A. EXPERIMENT RESULTS OF WORD ALIGNERS

Figure 17: Confusion Matrix of Predictions of original fast align in Italian

Figure 18: Confusion Matrix of Predictions of original awesome-align in English
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APPENDIX A. EXPERIMENT RESULTS OF WORD ALIGNERS

Figure 19: Confusion Matrix of Predictions of original awesome-align in French

Figure 20: Confusion Matrix of Predictions of original awesome-align in Italian
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APPENDIX A. EXPERIMENT RESULTS OF WORD ALIGNERS

Figure 21: Confusion Matrix of Predictions of fine-tuned awesome-align in English

Figure 22: Confusion Matrix of Predictions of fine-tuned awesome-align in French
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APPENDIX A. EXPERIMENT RESULTS OF WORD ALIGNERS

Figure 23: Confusion Matrix of Predictions of fine-tuned awesome-align in Italian
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B Detailed Statistics of Model

Training

This appendix contains the detailed statistics, such as tables and plots of training

loss.
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.579890 0.343805 0.8878 0.8878 0.8878 0.8878

2 0.417876 0.290814 0.9073 0.9073 0.9073 0.9073

3 0.373582 0.281022 0.9122 0.9122 0.9122 0.9122

4 0.346783 0.270932 0.9150 0.9150 0.9150 0.9150

5 0.326311 0.274587 0.9162 0.9162 0.9162 0.9162

6 0.310105 0.276682 0.9173 0.9173 0.9173 0.9173

7 0.296396 0.272922 0.9197 0.9197 0.9197 0.9197

8 0.284912 0.274733 0.9196 0.9196 0.9196 0.9196

9 0.274967 0.281857 0.9207 0.9207 0.9207 0.9207

10 0.266809 0.284385 0.9205 0.9205 0.9205 0.9205

11 0.259306 0.287663 0.9208 0.9208 0.9208 0.9208

12 0.253438 0.290884 0.9206 0.9206 0.9206 0.9206

13 0.248554 0.297159 0.9209 0.9209 0.9209 0.9209

14 0.244680 0.298648 0.9212 0.9212 0.9212 0.9212

15 0.241440 0.301746 0.9215 0.9215 0.9215 0.9215

16 0.239201 0.304747 0.9211 0.9211 0.9211 0.9211

17 0.237516 0.305664 0.9214 0.9214 0.9214 0.9214

18 0.236440 0.305369 0.9215 0.9215 0.9215 0.9215

19 0.235559 0.306476 0.9215 0.9215 0.9215 0.9215

20 0.235364 0.306373 0.9215 0.9215 0.9215 0.9215

Table 9: Training Statistics of bert-base-multilingual-cased

Figure 24: Training Loss of bert-base-multilingual-cased
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.459916 0.322458 0.8991 0.8991 0.8991 0.8991

2 0.366618 0.283818 0.9137 0.9137 0.9137 0.9137

3 0.320049 0.287561 0.9167 0.9167 0.9167 0.9167

4 0.290154 0.299754 0.9173 0.9173 0.9173 0.9173

5 0.266763 0.317601 0.9180 0.9180 0.9180 0.9180

6 0.248796 0.325867 0.9182 0.9182 0.9182 0.9182

7 0.235054 0.340508 0.9187 0.9187 0.9187 0.9187

8 0.225276 0.347198 0.9190 0.9190 0.9190 0.9190

9 0.219524 0.351007 0.9192 0.9192 0.9192 0.9192

10 0.216745 0.352952 0.9191 0.9191 0.9191 0.9191

Table 10: Training Statistics of bert-base-multilingual-cased w context

Figure 25: Training Loss of bert-base-multilingual-cased w context
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.268481 0.322540 0.9089 0.9089 0.9089 0.9089

2 0.263612 0.323366 0.9117 0.9117 0.9117 0.9117

3 0.256620 0.319890 0.9126 0.9126 0.9126 0.9126

4 0.250496 0.325896 0.9107 0.9107 0.9107 0.9107

5 0.245339 0.325698 0.9120 0.9120 0.9120 0.9120

6 0.240652 0.332302 0.9128 0.9128 0.9128 0.9128

7 0.236369 0.335088 0.9117 0.9117 0.9117 0.9117

8 0.233779 0.338095 0.9120 0.9120 0.9120 0.9120

9 0.230854 0.344266 0.9120 0.9120 0.9120 0.9120

10 0.229324 0.341967 0.9121 0.9121 0.9121 0.9121

Table 11: Training Statistics of bert-base-multilingual-cased 2 DE

Figure 26: Training Loss of bert-base-multilingual-cased 2 DE
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.247232 0.301375 0.9192 0.9192 0.9192 0.9192

2 0.244370 0.296231 0.9205 0.9205 0.9205 0.9205

3 0.237111 0.303246 0.9204 0.9204 0.9204 0.9204

4 0.230649 0.309163 0.9217 0.9217 0.9217 0.9217

5 0.225328 0.316513 0.9212 0.9212 0.9212 0.9212

6 0.221057 0.317100 0.9216 0.9216 0.9216 0.9216

7 0.216929 0.315226 0.9226 0.9226 0.9226 0.9226

8 0.214098 0.322788 0.9228 0.9228 0.9228 0.9228

9 0.211294 0.320047 0.9223 0.9223 0.9223 0.9223

10 0.209802 0.321899 0.9222 0.9222 0.9222 0.9222

Table 12: Training Statistics of bert-base-multilingual-cased 2 EN-US

Figure 27: Training Loss of bert-base-multilingual-cased 2 EN-US
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.232948 0.300724 0.9246 0.9246 0.9246 0.9246

2 0.229316 0.304373 0.9251 0.9251 0.9251 0.9251

3 0.223716 0.299805 0.9264 0.9264 0.9264 0.9264

4 0.217222 0.310755 0.9263 0.9263 0.9263 0.9263

5 0.212037 0.313568 0.9261 0.9261 0.9261 0.9261

6 0.208016 0.319212 0.9260 0.9260 0.9260 0.9260

7 0.204619 0.324803 0.9266 0.9266 0.9266 0.9266

8 0.200590 0.321582 0.9268 0.9268 0.9268 0.9268

9 0.198761 0.328388 0.9267 0.9267 0.9267 0.9267

10 0.196976 0.328474 0.9265 0.9265 0.9265 0.9265

Table 13: Training Statistics of bert-base-multilingual-cased 2 FR

Figure 28: Training Loss of bert-base-multilingual-cased 2 FR
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.238958 0.288385 0.9244 0.9244 0.9244 0.9244

2 0.236108 0.290240 0.9236 0.9236 0.9236 0.9236

3 0.228774 0.297473 0.9240 0.9240 0.9240 0.9240

4 0.222315 0.301879 0.9251 0.9251 0.9251 0.9251

5 0.216706 0.300945 0.9252 0.9252 0.9252 0.9252

6 0.212791 0.307052 0.9247 0.9247 0.9247 0.9247

7 0.208393 0.312129 0.9251 0.9251 0.9251 0.9251

8 0.204543 0.311386 0.9253 0.9253 0.9253 0.9253

9 0.202361 0.313855 0.9252 0.9252 0.9252 0.9252

10 0.201422 0.315846 0.9255 0.9255 0.9255 0.9255

Table 14: Training Statistics of bert-base-multilingual-cased 2 IT

Figure 29: Training Loss of bert-base-multilingual-cased 2 IT
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.769109 0.487757 0.8484 0.8484 0.8484 0.8484

2 0.506219 0.339182 0.8932 0.8932 0.8932 0.8932

3 0.434156 0.322104 0.9003 0.9003 0.9003 0.9003

4 0.402715 0.314972 0.9029 0.9029 0.9029 0.9029

5 0.382593 0.308046 0.9053 0.9053 0.9053 0.9053

6 0.367776 0.308234 0.9057 0.9057 0.9057 0.9057

7 0.356873 0.308582 0.9075 0.9075 0.9075 0.9075

8 0.349634 0.307753 0.9079 0.9079 0.9079 0.9079

9 0.342976 0.308946 0.9084 0.9084 0.9084 0.9084

10 0.339593 0.309014 0.9086 0.9086 0.9086 0.9086

Table 15: Training Statistics of jobad bert finetune multi

Figure 30: Training Loss of jobad bert finetune multi
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.626615 0.333337 0.8984 0.8984 0.8984 0.8984

2 0.372538 0.281417 0.9149 0.9149 0.9149 0.9149

3 0.323042 0.280869 0.9196 0.9196 0.9196 0.9196

4 0.294256 0.282612 0.9215 0.9215 0.9215 0.9215

5 0.272238 0.295084 0.9210 0.9210 0.9210 0.9210

6 0.254922 0.300806 0.9233 0.9233 0.9233 0.9233

7 0.241477 0.313945 0.9234 0.9234 0.9234 0.9234

8 0.230648 0.324930 0.9231 0.9231 0.9231 0.9231

9 0.222960 0.329864 0.9230 0.9230 0.9230 0.9230

10 0.217252 0.334335 0.9233 0.9233 0.9233 0.9233

Table 16: Training Statistics of xlm-roberta-base w context

Figure 31: Training Loss of xlm-roberta-base w context
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.620609 0.362943 0.8930 0.8930 0.8930 0.8930

2 0.372899 0.322077 0.9118 0.9118 0.9118 0.9118

3 0.316445 0.327105 0.9148 0.9148 0.9148 0.9148

4 0.282124 0.339592 0.9152 0.9152 0.9152 0.9152

5 0.256676 0.379336 0.9164 0.9164 0.9164 0.9164

6 0.237119 0.389280 0.9168 0.9168 0.9168 0.9168

7 0.221237 0.412443 0.9177 0.9177 0.9177 0.9177

8 0.209032 0.440281 0.9178 0.9178 0.9178 0.9178

9 0.200236 0.461594 0.9172 0.9172 0.9172 0.9172

10 0.193460 0.473301 0.9178 0.9178 0.9178 0.9178

Table 17: Training Statistics of xlm-roberta-base o context

Figure 32: Training Loss of xlm-roberta-base o context
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.244420 0.329268 0.9098 0.9098 0.9098 0.9098

2 0.255996 0.341756 0.9120 0.9120 0.9120 0.9120

3 0.243646 0.343102 0.9120 0.9120 0.9120 0.9120

4 0.233841 0.355693 0.9123 0.9123 0.9123 0.9123

5 0.224557 0.380317 0.9108 0.9108 0.9108 0.9108

6 0.217741 0.377650 0.9118 0.9118 0.9118 0.9118

7 0.210668 0.390299 0.9118 0.9118 0.9118 0.9118

8 0.205027 0.387390 0.9115 0.9115 0.9115 0.9115

9 0.200549 0.396471 0.9113 0.9113 0.9113 0.9113

10 0.196795 0.404745 0.9111 0.9111 0.9111 0.9111

Table 18: Training Statistics of xlm-roberta-base w context 2 DE sents

Figure 33: Training Loss of xlm-roberta-base w context 2 DE sents
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.218628 0.322156 0.9174 0.9174 0.9174 0.9174

2 0.227570 0.338373 0.9204 0.9204 0.9204 0.9204

3 0.217067 0.357133 0.9195 0.9195 0.9195 0.9195

4 0.206302 0.358275 0.9200 0.9200 0.9200 0.9200

5 0.197445 0.373015 0.9207 0.9207 0.9207 0.9207

6 0.189724 0.384272 0.9192 0.9192 0.9192 0.9192

7 0.183825 0.395361 0.9207 0.9207 0.9207 0.9207

8 0.178586 0.399560 0.9199 0.9199 0.9199 0.9199

9 0.173985 0.402610 0.9201 0.9201 0.9201 0.9201

10 0.170116 0.408200 0.9202 0.9202 0.9202 0.9202

Table 19: Training Statistics of xlm-roberta-base w context 2 EN-US sents

Figure 34: Training Loss of xlm-roberta-base w context 2 EN-US sents
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.209790 0.302707 0.9245 0.9245 0.9245 0.9245

2 0.218609 0.310268 0.9288 0.9288 0.9288 0.9288

3 0.207455 0.326701 0.9276 0.9276 0.9276 0.9276

4 0.196017 0.330815 0.9275 0.9275 0.9275 0.9275

5 0.189339 0.343319 0.9301 0.9301 0.9301 0.9301

6 0.181274 0.360828 0.9289 0.9289 0.9289 0.9289

7 0.175659 0.372735 0.9281 0.9281 0.9281 0.9281

8 0.169603 0.379076 0.9287 0.9287 0.9287 0.9287

9 0.165134 0.391918 0.9290 0.9290 0.9290 0.9290

10 0.163075 0.395354 0.9288 0.9288 0.9288 0.9288

Table 20: Training Statistics of xlm-roberta-base w context 2 FR sents

Figure 35: Training Loss of xlm-roberta-base w context 2 FR sents
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.210239 0.312508 0.9245 0.9245 0.9245 0.9245

2 0.217143 0.312460 0.9267 0.9267 0.9267 0.9267

3 0.205199 0.332618 0.9275 0.9275 0.9275 0.9275

4 0.194661 0.346195 0.9291 0.9291 0.9291 0.9291

5 0.186977 0.361952 0.9287 0.9287 0.9287 0.9287

6 0.179208 0.366749 0.9281 0.9281 0.9281 0.9281

7 0.172972 0.373735 0.9282 0.9282 0.9282 0.9282

8 0.167097 0.378889 0.9288 0.9288 0.9288 0.9288

9 0.163712 0.386165 0.9285 0.9285 0.9285 0.9285

10 0.159562 0.389100 0.9286 0.9286 0.9286 0.9286

Table 21: Training Statistics of xlm-roberta-base w context 2 IT sents

Figure 36: Training Loss of xlm-roberta-base w context 2 IT sents
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.731294 0.322967 0.8981 0.8981 0.8981 0.8981

2 0.394313 0.271130 0.9155 0.9155 0.9155 0.9155

3 0.346800 0.260077 0.9193 0.9193 0.9193 0.9193

4 0.321175 0.257347 0.9211 0.9211 0.9211 0.9211

5 0.303478 0.257359 0.9219 0.9219 0.9219 0.9219

6 0.290428 0.260759 0.9227 0.9227 0.9227 0.9227

7 0.279794 0.263402 0.9235 0.9235 0.9235 0.9235

8 0.272484 0.261250 0.9239 0.9239 0.9239 0.9239

9 0.266799 0.265588 0.9239 0.9239 0.9239 0.9239

10 0.263390 0.267697 0.9241 0.9241 0.9241 0.9241

Table 22: Training Statistics of xlm-roberta-base o context job

Figure 37: Training Loss of xlm-roberta-base o context job
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APPENDIX B. DETAILED STATISTICS OF MODEL TRAINING

EPOCH TRAIN
LOSS

DEV
LOSS

DEV PRECI-
SION

DEV RECALL DEV F1 DEV ACCU-
RACY

1 0.737120 0.308531 0.9019 0.9019 0.9019 0.9019

2 0.389067 0.267079 0.9161 0.9161 0.9161 0.9161

3 0.346632 0.256546 0.9197 0.9197 0.9197 0.9197

4 0.322796 0.256541 0.9217 0.9217 0.9217 0.9217

5 0.306024 0.252527 0.9233 0.9233 0.9233 0.9233

6 0.293550 0.251217 0.9242 0.9242 0.9242 0.9242

7 0.284225 0.253111 0.9246 0.9246 0.9246 0.9246

8 0.276510 0.257150 0.9250 0.9250 0.9250 0.9250

9 0.271723 0.257902 0.9251 0.9251 0.9251 0.9251

10 0.269010 0.259727 0.9251 0.9251 0.9251 0.9251

Table 23: Training Statistics of xlm-roberta-base-job

Figure 38: Training Loss of xlm-roberta-base-job
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C Experiment Results of Trained

Models

This appendix contains the evaluation results and confusion matrices of trained

sequence labeling models.

C.1 bert-base-multilingual-cased

Test set: silver

Language: EN-US

- F-score (micro) 0.9218

- F-score (macro) 0.8936

- Accuracy 0.9218

By class:

precision recall f1-score support

60 0.9234 0.9252 0.9243 44085

30 0.9458 0.9267 0.9362 33472

10 0.9044 0.9201 0.9122 23052

70 0.9338 0.9395 0.9366 17932

80 0.8911 0.9028 0.8969 12569

50 0.8682 0.8347 0.8511 2589

40 0.8113 0.8597 0.8348 1005

20 0.8821 0.8325 0.8566 764

accuracy 0.9218 135468

macro avg 0.8950 0.8926 0.8936 135468

weighted avg 0.9220 0.9218 0.9218 135468

Test set: silver

78



APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 39: Confusion Matrix of EN-US silver of bert-base-multilingual-cased

Language: FR

- F-score (micro) 0.9244

- F-score (macro) 0.8825

- Accuracy 0.9244

By class:

precision recall f1-score support

60 0.9272 0.9297 0.9285 51052

30 0.9499 0.9288 0.9392 34599

10 0.9090 0.9261 0.9175 25856

70 0.9403 0.9441 0.9422 20579

80 0.8866 0.9004 0.8934 14964

50 0.8683 0.8558 0.8620 3051

40 0.8032 0.7668 0.7846 1102

20 0.8389 0.7516 0.7929 797

accuracy 0.9244 152000

macro avg 0.8904 0.8754 0.8825 152000

weighted avg 0.9245 0.9244 0.9244 152000
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 40: Confusion Matrix of FR silver of bert-base-multilingual-cased

Test set: silver

Language: IT

- F-score (micro) 0.9214

- F-score (macro) 0.8835

- Accuracy 0.9214

By class:

precision recall f1-score support

60 0.9225 0.9249 0.9237 45968

30 0.9503 0.9321 0.9411 33113

10 0.8978 0.9189 0.9082 24143

70 0.9407 0.9357 0.9382 17926

80 0.8956 0.9029 0.8993 13569

50 0.8477 0.8313 0.8394 2786

40 0.8023 0.8230 0.8126 1085

20 0.8339 0.7789 0.8055 683

accuracy 0.9214 139273

macro avg 0.8863 0.8810 0.8835 139273

weighted avg 0.9217 0.9214 0.9215 139273
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 41: Confusion Matrix of IT silver of bert-base-multilingual-cased

Test set: gold

Language: EN-US

- F-score (micro) 0.942

- F-score (macro) 0.8204

- Accuracy 0.942

By class:

precision recall f1-score support

60 0.9440 0.9800 0.9617 3597

10 0.9582 0.8971 0.9266 1506

30 0.9718 0.8478 0.9056 854

70 0.9366 0.9718 0.9539 745

80 0.8925 0.9213 0.9067 559

50 0.8333 1.0000 0.9091 70

40 0.0000 0.0000 0.0000 4

20 1.0000 1.0000 1.0000 7

accuracy 0.9420 7342

macro avg 0.8171 0.8272 0.8204 7342

weighted avg 0.9440 0.9420 0.9420 7342
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 42: Confusion Matrix of EN-US gold of bert-base-multilingual-cased

Test set: gold

Language: FR

- F-score (micro) 0.9517

- F-score (macro) 0.9067

- Accuracy 0.9517

By class:

precision recall f1-score support

60 0.9455 0.9656 0.9555 2499

30 0.9811 0.9419 0.9611 1653

70 0.9877 0.9223 0.9539 1223

10 0.9125 0.9858 0.9478 1058

80 0.9406 0.9582 0.9493 958

50 0.8212 1.0000 0.9018 124

40 1.0000 0.5172 0.6818 58

20 1.0000 0.8222 0.9024 45

accuracy 0.9517 7618

macro avg 0.9486 0.8892 0.9067 7618

weighted avg 0.9535 0.9517 0.9513 7618
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 43: Confusion Matrix of FR gold of bert-base-multilingual-cased

Test set: gold

Language: IT

- F-score (micro) 0.9311

- F-score (macro) 0.9135

- Accuracy 0.9311

By class:

precision recall f1-score support

30 0.9515 0.9161 0.9334 2442

60 0.9298 0.9312 0.9305 2077

10 0.9596 0.9582 0.9589 1461

70 0.9849 0.9413 0.9626 903

80 0.8579 0.9538 0.9033 715

50 0.7378 0.8400 0.7856 325

40 0.7600 1.0000 0.8636 19

20 1.0000 0.9412 0.9697 17

accuracy 0.9311 7959

macro avg 0.8977 0.9352 0.9135 7959

weighted avg 0.9336 0.9311 0.9318 7959
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 44: Confusion Matrix of IT gold of bert-base-multilingual-cased

Test set: gold

Language: DE

- F-score (micro) 0.9132

- F-score (macro) 0.8706

- Accuracy 0.9132

By class:

precision recall f1-score support

60 0.9193 0.9186 0.9189 38275

30 0.9421 0.9169 0.9294 30976

10 0.9018 0.9284 0.9149 20636

70 0.9157 0.9298 0.9227 15307

80 0.8607 0.8672 0.8640 11003

50 0.8274 0.8299 0.8287 1964

40 0.7949 0.7716 0.7831 924

20 0.8375 0.7714 0.8031 608

accuracy 0.9132 119693

macro avg 0.8749 0.8667 0.8706 119693

weighted avg 0.9135 0.9132 0.9132 119693
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 45: Confusion Matrix of DE gold of bert-base-multilingual-cased

C.2 bert-base-multilingual-cased w context

Test set: silver

Language: EN-US

- F-score (micro) 0.9176

- F-score (macro) 0.8761

- Accuracy 0.9176

By class:

precision recall f1-score support

60 0.9239 0.9226 0.9232 44085

30 0.9448 0.9217 0.9331 33472

10 0.8985 0.9153 0.9068 23052

70 0.9289 0.9377 0.9333 17932

80 0.8739 0.9025 0.8880 12569

50 0.8523 0.8405 0.8464 2589

40 0.7700 0.7662 0.7681 1005

20 0.8672 0.7605 0.8103 764

accuracy 0.9176 135468
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 46: Confusion Matrix of EN-US silver of
bert-base-multilingual-cased w context

macro avg 0.8824 0.8709 0.8761 135468

weighted avg 0.9179 0.9176 0.9177 135468

Test set: silver

Language: FR

- F-score (micro) 0.9243

- F-score (macro) 0.8762

- Accuracy 0.9243

By class:

precision recall f1-score support

60 0.9316 0.9276 0.9296 51052

30 0.9476 0.9307 0.9391 34599

10 0.9019 0.9204 0.9110 25856

70 0.9383 0.9481 0.9431 20579

80 0.8991 0.9061 0.9026 14964

50 0.8519 0.8787 0.8651 3051

40 0.7352 0.7305 0.7328 1102

20 0.8499 0.7315 0.7862 797
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 47: Confusion Matrix of FR silver of bert-base-multilingual-cased w context

accuracy 0.9243 152000

macro avg 0.8819 0.8717 0.8762 152000

weighted avg 0.9244 0.9243 0.9243 152000

Test set: silver

Language: IT

- F-score (micro) 0.9218

- F-score (macro) 0.8727

- Accuracy 0.9218

By class:

precision recall f1-score support

60 0.9283 0.9223 0.9253 45968

30 0.9508 0.9366 0.9437 33113

10 0.8936 0.9202 0.9067 24143

70 0.9380 0.9382 0.9381 17926

80 0.8960 0.9049 0.9005 13569

50 0.8284 0.8453 0.8367 2786

40 0.7752 0.7502 0.7625 1085
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 48: Confusion Matrix of IT silver of bert-base-multilingual-cased w context

20 0.8252 0.7189 0.7684 683

accuracy 0.9218 139273

macro avg 0.8794 0.8671 0.8727 139273

weighted avg 0.9220 0.9218 0.9219 139273

Test set: gold

Language: EN-US

- F-score (micro) 0.8909

- F-score (macro) 0.7812

- Accuracy 0.8909

By class:

precision recall f1-score support

60 0.9403 0.9675 0.9537 3597

10 0.9337 0.7198 0.8129 1506

30 0.9404 0.8314 0.8825 854

70 0.9311 0.9248 0.9279 745

80 0.8776 0.9106 0.8938 559

40 0.0032 0.2500 0.0064 4
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 49: Confusion Matrix of EN-US gold of bert-base-multilingual-cased w context

50 0.6932 0.8714 0.7722 70

20 1.0000 1.0000 1.0000 7

accuracy 0.8909 7342

macro avg 0.7899 0.8094 0.7812 7342

weighted avg 0.9304 0.8909 0.9072 7342

Test set: gold

Language: FR

- F-score (micro) 0.922

- F-score (macro) 0.8784

- Accuracy 0.922

By class:

precision recall f1-score support

60 0.9209 0.9360 0.9284 2499

30 0.9444 0.9250 0.9346 1653

70 0.9730 0.9419 0.9572 1223

10 0.8996 0.8894 0.8945 1058

80 0.8895 0.9071 0.8982 958
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 50: Confusion Matrix of FR gold of bert-base-multilingual-cased w context

50 0.7417 0.9032 0.8145 124

40 0.8868 0.8103 0.8468 58

20 0.7292 0.7778 0.7527 45

accuracy 0.9220 7618

macro avg 0.8731 0.8863 0.8784 7618

weighted avg 0.9231 0.9220 0.9223 7618

Test set: gold

Language: IT

- F-score (micro) 0.9152

- F-score (macro) 0.8748

- Accuracy 0.9152

By class:

precision recall f1-score support

30 0.9465 0.9128 0.9293 2442

60 0.9128 0.9023 0.9075 2077

10 0.9486 0.9343 0.9414 1461

70 0.9622 0.9291 0.9454 903
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 51: Confusion Matrix of IT gold of bert-base-multilingual-cased w context

80 0.8185 0.9273 0.8695 715

50 0.7344 0.8677 0.7955 325

40 0.5357 0.7895 0.6383 19

20 0.9444 1.0000 0.9714 17

accuracy 0.9152 7959

macro avg 0.8504 0.9079 0.8748 7959

weighted avg 0.9187 0.9152 0.9162 7959

Test set: gold

Language: DE

- F-score (micro) 0.9118

- F-score (macro) 0.8682

- Accuracy 0.9118

By class:

precision recall f1-score support

60 0.9185 0.9165 0.9175 38275

30 0.9387 0.9172 0.9278 30976

10 0.8965 0.9195 0.9079 20636
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 52: Confusion Matrix of DE gold of bert-base-multilingual-cased w context

70 0.9159 0.9316 0.9237 15307

80 0.8687 0.8721 0.8704 11003

50 0.8159 0.8595 0.8371 1964

40 0.8070 0.7284 0.7656 924

20 0.8339 0.7599 0.7952 608

accuracy 0.9118 119693

macro avg 0.8744 0.8631 0.8682 119693

weighted avg 0.9121 0.9118 0.9119 119693

C.3 bert-base-multilingual-cased 2 DE

Test set: gold

Language: DE

- F-score (micro) 0.9129

- F-score (macro) 0.8697

- Accuracy 0.9129

By class:
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 53: Confusion Matrix of DE gold of bert-base-multilingual-cased 2 DE

precision recall f1-score support

60 0.9196 0.9162 0.9179 38275

30 0.9408 0.9196 0.9301 30976

10 0.9005 0.9252 0.9127 20636

70 0.9166 0.9288 0.9226 15307

80 0.8650 0.8683 0.8667 11003

50 0.8217 0.8401 0.8308 1964

40 0.7704 0.7879 0.7790 924

20 0.8246 0.7730 0.7980 608

accuracy 0.9129 119693

macro avg 0.8699 0.8699 0.8697 119693

weighted avg 0.9132 0.9129 0.9130 119693

C.4 bert-base-multilingual-cased 2 EN-US

Test set: silver

Language: EN-US
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 54: Confusion Matrix of EN-US silver of
bert-base-multilingual-cased 2 EN-US

- F-score (micro) 0.9229

- F-score (macro) 0.8897

- Accuracy 0.9229

By class:

precision recall f1-score support

60 0.9248 0.9277 0.9263 44085

30 0.9444 0.9286 0.9365 33472

10 0.9071 0.9209 0.9140 23052

70 0.9344 0.9392 0.9368 17932

80 0.8983 0.9040 0.9011 12569

50 0.8591 0.8316 0.8451 2589

40 0.8101 0.8149 0.8125 1005

20 0.8573 0.8338 0.8454 764

accuracy 0.9229 135468

macro avg 0.8920 0.8876 0.8897 135468

weighted avg 0.9230 0.9229 0.9229 135468
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Test set: gold

Language: EN-US

- F-score (micro) 0.9401

- F-score (macro) 0.8215

- Accuracy 0.9401

By class:

precision recall f1-score support

60 0.9430 0.9803 0.9613 3597

10 0.9593 0.8911 0.9239 1506

30 0.9510 0.8642 0.9055 854

70 0.9421 0.9611 0.9515 745

80 0.8811 0.9016 0.8912 559

50 0.8961 0.9857 0.9388 70

40 0.0000 0.0000 0.0000 4

20 1.0000 1.0000 1.0000 7

accuracy 0.9401 7342

macro avg 0.8216 0.8230 0.8215 7342

weighted avg 0.9416 0.9401 0.9401 7342

C.5 bert-base-multilingual-cased 2 FR

Test set: silver

Language: FR

- F-score (micro) 0.9255

- F-score (macro) 0.8842

- Accuracy 0.9255

By class:

precision recall f1-score support

60 0.9289 0.9316 0.9302 51052

30 0.9488 0.9294 0.9390 34599

10 0.9120 0.9247 0.9183 25856

70 0.9390 0.9444 0.9417 20579
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 55: Confusion Matrix of EN-US gold of bert-base-multilingual-cased 2 EN-US

80 0.8908 0.9045 0.8976 14964

50 0.8658 0.8709 0.8683 3051

40 0.8067 0.7423 0.7732 1102

20 0.8506 0.7641 0.8050 797

accuracy 0.9255 152000

macro avg 0.8928 0.8765 0.8842 152000

weighted avg 0.9256 0.9255 0.9255 152000

Test set: gold

Language: FR

- F-score (micro) 0.95

- F-score (macro) 0.9073

- Accuracy 0.95

By class:

precision recall f1-score support

60 0.9478 0.9660 0.9568 2499

30 0.9712 0.9383 0.9545 1653

70 0.9827 0.9305 0.9559 1223
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APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 56: Confusion Matrix of FR silver of bert-base-multilingual-cased 2 FR

10 0.9176 0.9792 0.9474 1058

80 0.9380 0.9468 0.9423 958

50 0.8079 0.9839 0.8873 124

40 1.0000 0.5690 0.7253 58

20 1.0000 0.8000 0.8889 45

accuracy 0.9500 7618

macro avg 0.9457 0.8892 0.9073 7618

weighted avg 0.9515 0.9500 0.9497 7618

C.6 bert-base-multilingual-cased 2 IT

Test set: silver

Language: IT

- F-score (micro) 0.9235

- F-score (macro) 0.8875

- Accuracy 0.9235

By class:

precision recall f1-score support
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Figure 57: Confusion Matrix of FR gold of bert-base-multilingual-cased 2 FR

60 0.9259 0.9283 0.9271 45968

30 0.9497 0.9324 0.9409 33113

10 0.9037 0.9203 0.9119 24143

70 0.9419 0.9341 0.9380 17926

80 0.8948 0.9112 0.9029 13569

50 0.8301 0.8295 0.8298 2786

40 0.8343 0.8304 0.8323 1085

20 0.8497 0.7862 0.8167 683

accuracy 0.9235 139273

macro avg 0.8913 0.8840 0.8875 139273

weighted avg 0.9237 0.9235 0.9236 139273

Test set: gold

Language: IT

- F-score (micro) 0.9257

- F-score (macro) 0.9098

- Accuracy 0.9257

By class:
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Figure 58: Confusion Matrix of IT silver of bert-base-multilingual-cased 2 IT

precision recall f1-score support

30 0.9495 0.9087 0.9286 2442

60 0.9167 0.9331 0.9248 2077

10 0.9589 0.9411 0.9499 1461

70 0.9760 0.9457 0.9606 903

80 0.8606 0.9413 0.8991 715

50 0.7287 0.8431 0.7817 325

40 0.7600 1.0000 0.8636 19

20 1.0000 0.9412 0.9697 17

accuracy 0.9257 7959

macro avg 0.8938 0.9318 0.9098 7959

weighted avg 0.9283 0.9257 0.9265 7959

C.7 jobad bert finetune multi

Test set: silver

Language: EN-US

- F-score (micro) 0.9111
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Figure 59: Confusion Matrix of IT gold of bert-base-multilingual-cased 2 IT

- F-score (macro) 0.8676

- Accuracy 0.9111

By class:

precision recall f1-score support

60 0.9122 0.9211 0.9166 44085

30 0.9358 0.9224 0.9290 33472

10 0.8983 0.9120 0.9051 23052

70 0.9281 0.9252 0.9266 17932

80 0.8619 0.8749 0.8684 12569

50 0.8666 0.7756 0.8186 2589

40 0.8109 0.7423 0.7751 1005

20 0.8492 0.7592 0.8017 764

accuracy 0.9111 135468

macro avg 0.8829 0.8541 0.8676 135468

weighted avg 0.9111 0.9111 0.9110 135468

Test set: silver

Language: FR
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Figure 60: Confusion Matrix of EN-US silver of jobad bert finetune multi

- F-score (micro) 0.9054

- F-score (macro) 0.867

- Accuracy 0.9054

By class:

precision recall f1-score support

60 0.9065 0.9184 0.9124 51052

30 0.9354 0.9178 0.9265 34599

10 0.9054 0.9053 0.9054 25856

70 0.9117 0.9106 0.9112 20579

80 0.8483 0.8595 0.8538 14964

50 0.8343 0.8122 0.8231 3051

40 0.8292 0.8194 0.8243 1102

20 0.8310 0.7340 0.7795 797

accuracy 0.9054 152000

macro avg 0.8752 0.8597 0.8670 152000

weighted avg 0.9055 0.9054 0.9054 152000

Test set: silver
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Figure 61: Confusion Matrix of FR silver of jobad bert finetune multi

Language: IT

- F-score (micro) 0.9049

- F-score (macro) 0.8651

- Accuracy 0.9049

By class:

precision recall f1-score support

60 0.9029 0.9092 0.9060 45968

30 0.9368 0.9254 0.9311 33113

10 0.8990 0.9035 0.9013 24143

70 0.9245 0.9193 0.9219 17926

80 0.8456 0.8673 0.8563 13569

50 0.8317 0.7732 0.8013 2786

40 0.7965 0.7862 0.7913 1085

20 0.8630 0.7657 0.8115 683

accuracy 0.9049 139273

macro avg 0.8750 0.8562 0.8651 139273

weighted avg 0.9050 0.9049 0.9049 139273
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Figure 62: Confusion Matrix of IT silver of jobad bert finetune multi

Test set: gold

Language: EN-US

- F-score (micro) 0.8962

- F-score (macro) 0.6995

- Accuracy 0.8962

By class:

precision recall f1-score support

60 0.9073 0.9711 0.9381 3597

10 0.9440 0.8054 0.8692 1506

30 0.9181 0.8267 0.8700 854

70 0.9241 0.8993 0.9116 745

80 0.8283 0.8372 0.8327 559

50 0.4694 0.3286 0.3866 70

40 0.0316 0.7500 0.0606 4

20 1.0000 0.5714 0.7273 7

accuracy 0.8962 7342

macro avg 0.7528 0.7487 0.6995 7342

weighted avg 0.9072 0.8962 0.8994 7342
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Figure 63: Confusion Matrix of EN-US gold of jobad bert finetune multi

Test set: gold

Language: FR

- F-score (micro) 0.8837

- F-score (macro) 0.8225

- Accuracy 0.8837

By class:

precision recall f1-score support

60 0.8533 0.9240 0.8872 2499

30 0.9555 0.8838 0.9183 1653

70 0.9074 0.8569 0.8814 1223

10 0.8842 0.8875 0.8858 1058

80 0.8709 0.8236 0.8466 958

50 0.7632 0.9355 0.8406 124

40 0.7273 0.6897 0.7080 58

20 0.5660 0.6667 0.6122 45

accuracy 0.8837 7618

macro avg 0.8160 0.8335 0.8225 7618

weighted avg 0.8865 0.8837 0.8840 7618
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Figure 64: Confusion Matrix of FR gold of jobad bert finetune multi

Test set: gold

Language: IT

- F-score (micro) 0.8717

- F-score (macro) 0.8057

- Accuracy 0.8717

By class:

precision recall f1-score support

30 0.9437 0.8780 0.9096 2442

60 0.8244 0.8816 0.8520 2077

10 0.8933 0.9110 0.9021 1461

70 0.9520 0.8793 0.9142 903

80 0.7415 0.7622 0.7517 715

50 0.7275 0.8215 0.7717 325

20 0.5667 1.0000 0.7234 17

40 0.9000 0.4737 0.6207 19

accuracy 0.8717 7959

macro avg 0.8186 0.8259 0.8057 7959

weighted avg 0.8763 0.8717 0.8728 7959
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Figure 65: Confusion Matrix of IT gold of jobad bert finetune multi

Test set: gold

Language: DE

- F-score (micro) 0.9194

- F-score (macro) 0.8778

- Accuracy 0.9194

By class:

precision recall f1-score support

60 0.9223 0.9332 0.9277 38275

30 0.9415 0.9241 0.9327 30976

10 0.9196 0.9190 0.9193 20636

70 0.9286 0.9268 0.9277 15307

80 0.8706 0.8747 0.8726 11003

50 0.8313 0.8457 0.8385 1964

40 0.7696 0.8496 0.8076 924

20 0.8061 0.7862 0.7960 608

accuracy 0.9194 119693

macro avg 0.8737 0.8824 0.8778 119693

weighted avg 0.9196 0.9194 0.9194 119693
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Figure 66: Confusion Matrix of DE gold of jobad bert finetune multi

C.8 xlm-roberta-base w context

Test set: silver

Language: EN-US

- F-score (micro) 0.9235

- F-score (macro) 0.8805

- Accuracy 0.9235

By class:

precision recall f1-score support

60 0.9328 0.9248 0.9287 44085

30 0.9414 0.9332 0.9373 33472

10 0.9050 0.9233 0.9140 23052

70 0.9369 0.9392 0.9380 17932

80 0.8924 0.9062 0.8993 12569

50 0.8588 0.8501 0.8544 2589

40 0.7561 0.8080 0.7811 1005

20 0.8333 0.7526 0.7909 764

accuracy 0.9235 135468
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Figure 67: Confusion Matrix of EN-US silver of xlm-roberta-base w context

macro avg 0.8821 0.8797 0.8805 135468

weighted avg 0.9237 0.9235 0.9235 135468

Test set: silver

Language: FR

- F-score (micro) 0.9308

- F-score (macro) 0.89

- Accuracy 0.9308

By class:

precision recall f1-score support

60 0.9403 0.9326 0.9364 51052

30 0.9430 0.9408 0.9419 34599

10 0.9132 0.9304 0.9217 25856

70 0.9452 0.9445 0.9448 20579

80 0.9061 0.9150 0.9105 14964

50 0.8846 0.8745 0.8795 3051

40 0.7671 0.7623 0.7647 1102

20 0.8639 0.7804 0.8200 797
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Figure 68: Confusion Matrix of FR silver of xlm-roberta-base w context

accuracy 0.9308 152000

macro avg 0.8954 0.8850 0.8900 152000

weighted avg 0.9308 0.9308 0.9308 152000

Test set: silver

Language: IT

- F-score (micro) 0.9291

- F-score (macro) 0.8908

- Accuracy 0.9291

By class:

precision recall f1-score support

60 0.9339 0.9289 0.9314 45968

30 0.9493 0.9430 0.9461 33113

10 0.9051 0.9258 0.9153 24143

70 0.9455 0.9447 0.9451 17926

80 0.9135 0.9142 0.9138 13569

50 0.8582 0.8557 0.8569 2786

40 0.8110 0.8028 0.8069 1085

20 0.8567 0.7701 0.8111 683

109



APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 69: Confusion Matrix of IT silver of xlm-roberta-base w context

accuracy 0.9291 139273

macro avg 0.8966 0.8857 0.8908 139273

weighted avg 0.9292 0.9291 0.9291 139273

Test set: gold

Language: EN-US

- F-score (micro) 0.9226

- F-score (macro) 0.7665

- Accuracy 0.9226

By class:

precision recall f1-score support

60 0.9493 0.9536 0.9515 3597

10 0.9353 0.8738 0.9035 1506

30 0.9399 0.8970 0.9179 854

70 0.9358 0.9584 0.9469 745

80 0.8481 0.8587 0.8533 559

50 0.7619 0.9143 0.8312 70

40 0.0000 0.0000 0.0000 4
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Figure 70: Confusion Matrix of EN-US gold of xlm-roberta-base w context

20 1.0000 0.5714 0.7273 7

accuracy 0.9226 7342

macro avg 0.7963 0.7534 0.7665 7342

weighted avg 0.9340 0.9226 0.9279 7342

Test set: gold

Language: FR

- F-score (micro) 0.9319

- F-score (macro) 0.8664

- Accuracy 0.9319

By class:

precision recall f1-score support

60 0.9326 0.9360 0.9343 2499

30 0.9481 0.9286 0.9383 1653

70 0.9621 0.9550 0.9586 1223

10 0.9110 0.9575 0.9336 1058

80 0.9115 0.9134 0.9124 958

50 0.8254 0.8387 0.8320 124
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Figure 71: Confusion Matrix of FR gold of xlm-roberta-base w context

20 0.8333 0.8889 0.8602 45

40 0.8065 0.4310 0.5618 58

accuracy 0.9319 7618

macro avg 0.8913 0.8561 0.8664 7618

weighted avg 0.9318 0.9319 0.9313 7618

Test set: gold

Language: IT

- F-score (micro) 0.908

- F-score (macro) 0.8579

- Accuracy 0.908

By class:

precision recall f1-score support

30 0.9351 0.9140 0.9244 2442

60 0.9146 0.8767 0.8953 2077

10 0.8904 0.9452 0.9170 1461

70 0.9635 0.9347 0.9488 903

80 0.8044 0.9147 0.8560 715
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Figure 72: Confusion Matrix of IT gold of xlm-roberta-base w context

50 0.8734 0.8277 0.8499 325

20 0.7727 1.0000 0.8718 17

40 0.8182 0.4737 0.6000 19

accuracy 0.9080 7959

macro avg 0.8715 0.8608 0.8579 7959

weighted avg 0.9099 0.9080 0.9081 7959

Test set: gold

Language: DE

- F-score (micro) 0.917

- F-score (macro) 0.8727

- Accuracy 0.917

By class:

precision recall f1-score support

60 0.9261 0.9204 0.9232 38275

30 0.9381 0.9240 0.9310 30976

10 0.9035 0.9229 0.9131 20636

70 0.9198 0.9393 0.9294 15307
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Figure 73: Confusion Matrix of DE gold of xlm-roberta-base w context

80 0.8773 0.8792 0.8783 11003

50 0.8367 0.8427 0.8397 1964

40 0.7906 0.7478 0.7686 924

20 0.8360 0.7632 0.7979 608

accuracy 0.9170 119693

macro avg 0.8785 0.8674 0.8727 119693

weighted avg 0.9171 0.9170 0.9170 119693

C.9 xlm-roberta-base o context

Test set: silver

Language: EN-US

- F-score (micro) 0.9178

- F-score (macro) 0.8724

- Accuracy 0.9178

By class:

precision recall f1-score support

114



APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 74: Confusion Matrix of EN-US silver of xlm-roberta-base o context

60 0.9318 0.9187 0.9252 44085

30 0.9376 0.9225 0.9300 33472

10 0.8934 0.9287 0.9107 23052

70 0.9306 0.9335 0.9320 17932

80 0.8749 0.9002 0.8874 12569

50 0.8494 0.8455 0.8475 2589

40 0.8182 0.7254 0.7690 1005

20 0.8022 0.7539 0.7773 764

accuracy 0.9178 135468

macro avg 0.8798 0.8660 0.8724 135468

weighted avg 0.9181 0.9178 0.9178 135468

Test set: silver

Language: FR

- F-score (micro) 0.9236

- F-score (macro) 0.8779

- Accuracy 0.9236

By class:

precision recall f1-score support
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Figure 75: Confusion Matrix of FR silver of xlm-roberta-base o context

60 0.9367 0.9231 0.9299 51052

30 0.9449 0.9286 0.9367 34599

10 0.8953 0.9302 0.9124 25856

70 0.9373 0.9423 0.9398 20579

80 0.8961 0.9107 0.9033 14964

50 0.8449 0.8728 0.8586 3051

40 0.7556 0.7042 0.7290 1102

20 0.8416 0.7867 0.8132 797

accuracy 0.9236 152000

macro avg 0.8815 0.8748 0.8779 152000

weighted avg 0.9239 0.9236 0.9237 152000

Test set: silver

Language: IT

- F-score (micro) 0.9225

- F-score (macro) 0.8771

- Accuracy 0.9225

By class:
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Figure 76: Confusion Matrix of IT silver of xlm-roberta-base o context

precision recall f1-score support

60 0.9279 0.9211 0.9245 45968

30 0.9502 0.9332 0.9416 33113

10 0.8906 0.9256 0.9078 24143

70 0.9419 0.9389 0.9404 17926

80 0.8961 0.9136 0.9048 13569

50 0.8575 0.8553 0.8564 2786

40 0.8313 0.7041 0.7625 1085

20 0.8147 0.7467 0.7792 683

accuracy 0.9225 139273

macro avg 0.8888 0.8673 0.8771 139273

weighted avg 0.9227 0.9225 0.9224 139273

Test set: gold

Language: EN-US

- F-score (micro) 0.9254

- F-score (macro) 0.764

- Accuracy 0.9254
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Figure 77: Confusion Matrix of EN-US gold of xlm-roberta-base o context

By class:

precision recall f1-score support

60 0.9639 0.9502 0.9570 3597

10 0.9318 0.8977 0.9144 1506

30 0.9409 0.9133 0.9269 854

70 0.9361 0.9235 0.9297 745

80 0.8325 0.8623 0.8471 559

50 0.6796 1.0000 0.8092 70

40 0.0000 0.0000 0.0000 4

20 1.0000 0.5714 0.7273 7

accuracy 0.9254 7342

macro avg 0.7856 0.7648 0.7640 7342

weighted avg 0.9386 0.9254 0.9315 7342

Test set: gold

Language: FR

- F-score (micro) 0.918

- F-score (macro) 0.862

- Accuracy 0.918
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Figure 78: Confusion Matrix of FR gold of xlm-roberta-base o context

By class:

precision recall f1-score support

60 0.9213 0.9232 0.9222 2499

30 0.9304 0.9141 0.9222 1653

70 0.9459 0.9428 0.9443 1223

10 0.9019 0.9386 0.9199 1058

80 0.8998 0.8904 0.8951 958

50 0.7879 0.8387 0.8125 124

40 0.7627 0.7759 0.7692 58

20 0.8710 0.6000 0.7105 45

accuracy 0.9180 7618

macro avg 0.8776 0.8529 0.8620 7618

weighted avg 0.9182 0.9180 0.9178 7618

Test set: gold

Language: IT

- F-score (micro) 0.9034

- F-score (macro) 0.848
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Figure 79: Confusion Matrix of IT gold of xlm-roberta-base o context

- Accuracy 0.9034

By class:

precision recall f1-score support

30 0.9334 0.9120 0.9225 2442

60 0.8961 0.8758 0.8858 2077

10 0.8972 0.9377 0.9170 1461

70 0.9652 0.9225 0.9434 903

80 0.8067 0.8811 0.8422 715

50 0.8416 0.8831 0.8619 325

20 0.7500 0.8824 0.8108 17

40 0.8182 0.4737 0.6000 19

accuracy 0.9034 7959

macro avg 0.8635 0.8460 0.8480 7959

weighted avg 0.9048 0.9034 0.9036 7959

Test set: gold

Language: DE

- F-score (micro) 0.9089
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Figure 80: Confusion Matrix of DE gold of xlm-roberta-base o context

- F-score (macro) 0.8631

- Accuracy 0.9089

By class:

precision recall f1-score support

60 0.9204 0.9129 0.9166 38275

30 0.9347 0.9140 0.9243 30976

10 0.8891 0.9219 0.9052 20636

70 0.9147 0.9229 0.9188 15307

80 0.8595 0.8734 0.8664 11003

50 0.8220 0.8299 0.8259 1964

40 0.7961 0.7435 0.7689 924

20 0.8028 0.7566 0.7790 608

accuracy 0.9089 119693

macro avg 0.8674 0.8594 0.8631 119693

weighted avg 0.9092 0.9089 0.9090 119693
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C.10 xlm-roberta-base w context 2 DE sents

Test set: gold

Language: DE

- F-score (micro) 0.9154

- F-score (macro) 0.8729

- Accuracy 0.9154

By class:

precision recall f1-score support

60 0.9262 0.9153 0.9207 38275

30 0.9371 0.9234 0.9302 30976

10 0.8978 0.9243 0.9108 20636

70 0.9201 0.9371 0.9285 15307

80 0.8740 0.8803 0.8771 11003

50 0.8242 0.8473 0.8356 1964

40 0.8141 0.7348 0.7725 924

20 0.8287 0.7878 0.8078 608

accuracy 0.9154 119693

macro avg 0.8778 0.8688 0.8729 119693

weighted avg 0.9155 0.9154 0.9153 119693

C.11 xlm-roberta-base w context 2 EN-US sents

Test set: silver

Language: EN-US

- F-score (micro) 0.9235

- F-score (macro) 0.8853

- Accuracy 0.9235

By class:

precision recall f1-score support

60 0.9345 0.9226 0.9285 44085

30 0.9372 0.9365 0.9368 33472
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Figure 81: Confusion Matrix of DE gold of xlm-roberta-base w context 2 DE sents

10 0.9008 0.9272 0.9138 23052

70 0.9386 0.9373 0.9379 17932

80 0.8956 0.9002 0.8979 12569

50 0.8751 0.8443 0.8594 2589

40 0.8036 0.7980 0.8008 1005

20 0.8281 0.7880 0.8075 764

accuracy 0.9235 135468

macro avg 0.8892 0.8818 0.8853 135468

weighted avg 0.9236 0.9235 0.9235 135468

Test set: gold

Language: EN-US

- F-score (micro) 0.9151

- F-score (macro) 0.7568

- Accuracy 0.9151

By class:

precision recall f1-score support

60 0.9474 0.9569 0.9521 3597
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Figure 82: Confusion Matrix of EN-US silver of
xlm-roberta-base w context 2 EN-US sents

10 0.9309 0.8493 0.8882 1506

30 0.9423 0.8993 0.9203 854

70 0.9182 0.9490 0.9333 745

80 0.8606 0.8283 0.8441 559

50 0.7361 0.7571 0.7465 70

40 0.0221 0.7500 0.0429 4

20 1.0000 0.5714 0.7273 7

accuracy 0.9151 7342

macro avg 0.7947 0.8202 0.7568 7342

weighted avg 0.9314 0.9151 0.9225 7342

C.12 xlm-roberta-base w context 2 FR sents

Test set: silver

Language: FR

- F-score (micro) 0.9308

- F-score (macro) 0.8892

- Accuracy 0.9308
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Figure 83: Confusion Matrix of EN-US gold of xlm-roberta-base w context 2 EN-US sents

By class:

precision recall f1-score support

60 0.9440 0.9310 0.9375 51052

30 0.9411 0.9424 0.9417 34599

10 0.9061 0.9358 0.9207 25856

70 0.9466 0.9399 0.9433 20579

80 0.9057 0.9175 0.9116 14964

50 0.8883 0.8732 0.8807 3051

40 0.7847 0.7241 0.7532 1102

20 0.8908 0.7679 0.8248 797

accuracy 0.9308 152000

macro avg 0.9009 0.8790 0.8892 152000

weighted avg 0.9309 0.9308 0.9308 152000

Test set: gold

Language: FR

- F-score (micro) 0.9303

- F-score (macro) 0.8601
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Figure 84: Confusion Matrix of FR silver of xlm-roberta-base w context 2 FR sents

- Accuracy 0.9303

By class:

precision recall f1-score support

60 0.9323 0.9372 0.9347 2499

30 0.9510 0.9280 0.9394 1653

70 0.9704 0.9379 0.9538 1223

10 0.8983 0.9603 0.9283 1058

80 0.9064 0.9196 0.9130 958

50 0.7761 0.8387 0.8062 124

20 0.8163 0.8889 0.8511 45

40 0.9200 0.3966 0.5542 58

accuracy 0.9303 7618

macro avg 0.8964 0.8509 0.8601 7618

weighted avg 0.9312 0.9303 0.9297 7618
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Figure 85: Confusion Matrix of FR gold of xlm-roberta-base w context 2 FR sents

C.13 xlm-roberta-base w context 2 IT sents

Test set: silver

Language: IT

- F-score (micro) 0.93

- F-score (macro) 0.89

- Accuracy 0.93

By class:

precision recall f1-score support

60 0.9354 0.9280 0.9317 45968

30 0.9495 0.9444 0.9469 33113

10 0.9056 0.9249 0.9152 24143

70 0.9465 0.9463 0.9464 17926

80 0.9144 0.9217 0.9180 13569

50 0.8683 0.8661 0.8672 2786

40 0.8093 0.7825 0.7957 1085

20 0.8220 0.7775 0.7991 683

accuracy 0.9300 139273
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Figure 86: Confusion Matrix of IT silver of xlm-roberta-base w context 2 IT sents

macro avg 0.8939 0.8864 0.8900 139273

weighted avg 0.9301 0.9300 0.9300 139273

Test set: gold

Language: IT

- F-score (micro) 0.9014

- F-score (macro) 0.8489

- Accuracy 0.9014

By class:

precision recall f1-score support

30 0.9235 0.9095 0.9164 2442

60 0.9005 0.8758 0.8880 2077

10 0.8946 0.9411 0.9173 1461

70 0.9511 0.9258 0.9383 903

80 0.8170 0.8867 0.8504 715

50 0.8539 0.8092 0.8310 325

20 0.7391 1.0000 0.8500 17

40 0.8182 0.4737 0.6000 19
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Figure 87: Confusion Matrix of IT gold of xlm-roberta-base w context 2 IT sents

accuracy 0.9014 7959

macro avg 0.8622 0.8527 0.8489 7959

weighted avg 0.9023 0.9014 0.9013 7959

C.14 xlm-roberta-base o context job

Test set: silver

Language: EN-US

- F-score (micro) 0.9251

- F-score (macro) 0.8908

- Accuracy 0.9251

By class:

precision recall f1-score support

60 0.9298 0.9322 0.9310 44085

30 0.9438 0.9284 0.9360 33472

10 0.9097 0.9266 0.9180 23052

70 0.9394 0.9384 0.9389 17932
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Figure 88: Confusion Matrix of EN-US silver of xlm-roberta-base o context job

80 0.8963 0.8984 0.8974 12569

50 0.8553 0.8513 0.8533 2589

40 0.7985 0.8478 0.8224 1005

20 0.8606 0.7997 0.8290 764

accuracy 0.9251 135468

macro avg 0.8917 0.8903 0.8908 135468

weighted avg 0.9252 0.9251 0.9251 135468

Test set: silver

Language: FR

- F-score (micro) 0.9292

- F-score (macro) 0.8945

- Accuracy 0.9292

By class:

precision recall f1-score support

60 0.9359 0.9322 0.9341 51052

30 0.9465 0.9333 0.9398 34599

10 0.9155 0.9306 0.9230 25856
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Figure 89: Confusion Matrix of FR silver of xlm-roberta-base o context job

70 0.9436 0.9466 0.9451 20579

80 0.8988 0.9072 0.9030 14964

50 0.8599 0.8768 0.8682 3051

40 0.8144 0.8639 0.8384 1102

20 0.8432 0.7691 0.8045 797

accuracy 0.9292 152000

macro avg 0.8947 0.8950 0.8945 152000

weighted avg 0.9294 0.9292 0.9292 152000

Test set: silver

Language: IT

- F-score (micro) 0.9291

- F-score (macro) 0.8968

- Accuracy 0.9291

By class:

precision recall f1-score support

60 0.9299 0.9330 0.9314 45968

30 0.9505 0.9362 0.9433 33113
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Figure 90: Confusion Matrix of IT silver of xlm-roberta-base o context job

10 0.9148 0.9287 0.9217 24143

70 0.9424 0.9424 0.9424 17926

80 0.9075 0.9080 0.9078 13569

50 0.8621 0.8640 0.8630 2786

40 0.8383 0.8507 0.8445 1085

20 0.8517 0.7906 0.8200 683

accuracy 0.9291 139273

macro avg 0.8997 0.8942 0.8968 139273

weighted avg 0.9292 0.9291 0.9291 139273

Test set: gold

Language: EN-US

- F-score (micro) 0.9294

- F-score (macro) 0.7994

- Accuracy 0.9294

By class:

precision recall f1-score support

60 0.9357 0.9753 0.9551 3597
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Figure 91: Confusion Matrix of EN-US gold of xlm-roberta-base o context job

10 0.9665 0.9017 0.9330 1506

30 0.9637 0.8384 0.8967 854

70 0.9451 0.9248 0.9349 745

80 0.8168 0.8694 0.8423 559

50 0.8108 0.8571 0.8333 70

40 0.0000 0.0000 0.0000 4

20 1.0000 1.0000 1.0000 7

accuracy 0.9294 7342

macro avg 0.8048 0.7958 0.7994 7342

weighted avg 0.9356 0.9294 0.9315 7342

Test set: gold

Language: FR

- F-score (micro) 0.9331

- F-score (macro) 0.907

- Accuracy 0.9331

By class:

precision recall f1-score support
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Figure 92: Confusion Matrix of FR gold of xlm-roberta-base o context job

60 0.9275 0.9260 0.9267 2499

30 0.9426 0.9335 0.9380 1653

70 0.9651 0.9493 0.9571 1223

10 0.9409 0.9622 0.9514 1058

80 0.8994 0.9144 0.9068 958

50 0.8843 0.8629 0.8735 124

40 0.8889 0.8276 0.8571 58

20 0.7885 0.9111 0.8454 45

accuracy 0.9331 7618

macro avg 0.9046 0.9109 0.9070 7618

weighted avg 0.9333 0.9331 0.9331 7618

Test set: gold

Language: IT

- F-score (micro) 0.9134

- F-score (macro) 0.8995

- Accuracy 0.9134

By class:

precision recall f1-score support

134



APPENDIX C. EXPERIMENT RESULTS OF TRAINED MODELS

Figure 93: Confusion Matrix of IT gold of xlm-roberta-base o context job

30 0.9360 0.9161 0.9259 2442

60 0.8996 0.9100 0.9047 2077

10 0.9430 0.9165 0.9295 1461

70 0.9766 0.9225 0.9487 903

80 0.8024 0.9483 0.8692 715

50 0.8399 0.7908 0.8146 325

20 0.7083 1.0000 0.8293 17

40 0.9500 1.0000 0.9744 19

accuracy 0.9134 7959

macro avg 0.8820 0.9255 0.8995 7959

weighted avg 0.9160 0.9134 0.9139 7959

Test set: gold

Language: DE

- F-score (micro) 0.9177

- F-score (macro) 0.8802

- Accuracy 0.9177

By class:
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Figure 94: Confusion Matrix of DE gold of xlm-roberta-base o context job

precision recall f1-score support

60 0.9215 0.9239 0.9227 38275

30 0.9421 0.9207 0.9313 30976

10 0.9077 0.9307 0.9191 20636

70 0.9252 0.9296 0.9274 15307

80 0.8715 0.8759 0.8737 11003

50 0.8474 0.8315 0.8394 1964

40 0.8360 0.8387 0.8374 924

20 0.7997 0.7812 0.7903 608

accuracy 0.9177 119693

macro avg 0.8814 0.8790 0.8802 119693

weighted avg 0.9178 0.9177 0.9177 119693

C.15 xlm-roberta-base-job

Test set: silver

Language: EN-US

- F-score (micro) 0.9243
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Figure 95: Confusion Matrix of EN-US silver of xlm-roberta-base-job

- F-score (macro) 0.8888

- Accuracy 0.9243

By class:

precision recall f1-score support

60 0.9313 0.9299 0.9306 44085

30 0.9402 0.9323 0.9362 33472

10 0.9100 0.9194 0.9147 23052

70 0.9376 0.9392 0.9384 17932

80 0.8931 0.9004 0.8967 12569

50 0.8600 0.8590 0.8595 2589

40 0.7841 0.8239 0.8035 1005

20 0.8730 0.7919 0.8305 764

accuracy 0.9243 135468

macro avg 0.8912 0.8870 0.8888 135468

weighted avg 0.9244 0.9243 0.9243 135468

Test set: silver

Language: FR
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Figure 96: Confusion Matrix of FR silver of xlm-roberta-base-job

- F-score (micro) 0.9307

- F-score (macro) 0.9009

- Accuracy 0.9307

By class:

precision recall f1-score support

60 0.9384 0.9339 0.9362 51052

30 0.9466 0.9360 0.9413 34599

10 0.9192 0.9280 0.9236 25856

70 0.9416 0.9480 0.9448 20579

80 0.8997 0.9115 0.9056 14964

50 0.8566 0.8774 0.8669 3051

40 0.8227 0.8421 0.8323 1102

20 0.8850 0.8306 0.8570 797

accuracy 0.9307 152000

macro avg 0.9012 0.9009 0.9009 152000

weighted avg 0.9309 0.9307 0.9308 152000

Test set: silver
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Figure 97: Confusion Matrix of IT silver of xlm-roberta-base-job

Language: IT

- F-score (micro) 0.9295

- F-score (macro) 0.8953

- Accuracy 0.9295

By class:

precision recall f1-score support

60 0.9335 0.9328 0.9331 45968

30 0.9495 0.9375 0.9435 33113

10 0.9160 0.9283 0.9221 24143

70 0.9453 0.9423 0.9438 17926

80 0.9011 0.9099 0.9055 13569

50 0.8658 0.8615 0.8636 2786

40 0.7960 0.8341 0.8146 1085

20 0.8288 0.8433 0.8360 683

accuracy 0.9295 139273

macro avg 0.8920 0.8987 0.8953 139273

weighted avg 0.9297 0.9295 0.9296 139273
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Test set: gold

Language: EN-US

- F-score (micro) 0.9323

- F-score (macro) 0.7724

- Accuracy 0.9323

By class:

precision recall f1-score support

60 0.9447 0.9689 0.9566 3597

10 0.9526 0.8805 0.9151 1506

30 0.9497 0.8630 0.9043 854

70 0.9493 0.9544 0.9518 745

80 0.8614 0.9338 0.8961 559

50 0.8000 0.8571 0.8276 70

40 0.0000 0.0000 0.0000 4

20 1.0000 0.5714 0.7273 7

accuracy 0.9323 7342

macro avg 0.8072 0.7536 0.7724 7342

weighted avg 0.9392 0.9323 0.9350 7342

Test set: gold

Language: FR

- F-score (micro) 0.9295

- F-score (macro) 0.9014

- Accuracy 0.9295

By class:

precision recall f1-score support

60 0.9427 0.9280 0.9353 2499

30 0.9415 0.9341 0.9377 1653

70 0.9497 0.9109 0.9299 1223

10 0.9433 0.9442 0.9438 1058

80 0.8657 0.9489 0.9054 958

50 0.8088 0.8871 0.8462 124

40 0.7931 0.7931 0.7931 58
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Figure 98: Confusion Matrix of EN-US gold of xlm-roberta-base-job

20 0.9524 0.8889 0.9195 45

accuracy 0.9295 7618

macro avg 0.8997 0.9044 0.9014 7618

weighted avg 0.9307 0.9295 0.9297 7618

Test set: gold

Language: IT

- F-score (micro) 0.9211

- F-score (macro) 0.9129

- Accuracy 0.9211

By class:

precision recall f1-score support

30 0.9479 0.9312 0.9395 2442

60 0.9084 0.9023 0.9053 2077

10 0.9160 0.9254 0.9207 1461

70 0.9803 0.9358 0.9575 903

80 0.8273 0.9315 0.8763 715

50 0.9161 0.8738 0.8945 325
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Figure 99: Confusion Matrix of FR gold of xlm-roberta-base-job

20 0.6800 1.0000 0.8095 17

40 1.0000 1.0000 1.0000 19

accuracy 0.9211 7959

macro avg 0.8970 0.9375 0.9129 7959

weighted avg 0.9228 0.9211 0.9215 7959

Test set: gold

Language: DE

- F-score (micro) 0.9202

- F-score (macro) 0.8847

- Accuracy 0.9202

By class:

precision recall f1-score support

60 0.9265 0.9256 0.9261 38275

30 0.9422 0.9218 0.9319 30976

10 0.9139 0.9318 0.9228 20636

70 0.9227 0.9347 0.9287 15307

80 0.8716 0.8819 0.8767 11003
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Figure 100: Confusion Matrix of IT gold of xlm-roberta-base-job

50 0.8515 0.8498 0.8507 1964

40 0.8270 0.8431 0.8349 924

20 0.8345 0.7796 0.8061 608

accuracy 0.9202 119693

macro avg 0.8862 0.8835 0.8847 119693

weighted avg 0.9204 0.9202 0.9202 119693
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Figure 101: Confusion Matrix of DE gold of xlm-roberta-base-job
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