
Institute of Computational Linguistics

Machine Translation

11 Attention
Bi-directional Encoding
Byte-pair Encoding

Mathias Müller

 



Last time



Topics of Today

• Bi-directional encoding: read source 
sequences in two directions

• Attention models: circumvent the 
problem of having to cram a %$! 
sentence into one %$! vector

• Byte-pair encoding: solve the problem 
of vocabulary size and unknown words
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Bi-directional encoding

• Bi-directional encoding is a change to the 
encoder:
• one RNN reads the source sentence 

left-to-right
• another RNN reads right-to-left

• Early research found that reversing the 
input sequence improves translation 
quality



Why bi-directional encoding?

Early research found that reversing the 
input sequence improves translation quality

Sutskever et al 2014



Bi-directional encoding
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Attention networks

• Address the problem of long sentences

• Change to the decoder architecture

• Intuitively: instead of computing a 
“summary” of the source sentence once 
(last encoder state), compute it again at 
each decoding step



Long sentences lead to low translation quality



Reason for this problem: bottleneck between 
encoder and decoder



Visual attention in image captioning
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Visual attention in image captioning

Xv et al 2015



Textual attention

Eine Frau wirft einen Frisbee in einem Park

A woman is throwing a frisbee in a park.



Attention

• Instead of only seeing the final encoder 
state, the decoder is allowed to see all 
encoder states

• At every time step, the decoder is fed an 
additional input that is a weighted sum 
of all encoder states
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Weighted sum of all encoder states
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Weighted sum of all encoder states
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How attention weights are computed

If he is out of his mind
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How attention weights are computed

weights predicted n.int 0.2 0.2 0.01 0.01
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Visualization of attention weights
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Attention weights are not word alignments!



Impact of attention on NMT translation quality
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Summary Attention

• Change to decoder to address bad 
translations for long sentences

• Intuitively: decoder is able to look at all 
encoder states, instead of just the last one

• Technically: at each decoding step, an 
attention network computes weights that are 
used to compute a weighted sum of all 
encoder states
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Byte-pair encoding (BPE)

• Addresses the problem of vocabulary 
size and unknown words

• BPE is a segmentation algorithm: it 
segments words into smaller pieces

sunk



BPE Algorithm

Initial vocabulary: all individual characters 
are symbols in the vocabulary

Until vocabulary has size N:
• Look for most frequent symbols bigram 

(s1, s2) in the training data

• Add the concatenation of s1 and s2 as 
new symbol to the vocabulary

For training
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BPE Example

Training data:

The methane lane is sane.
Sane is the methane lane.

Represent data as characters:

T h e </w> m e t h a n e </w> l a n e </w> i s 
</w> s a n e .

S a n e </w> I s </w> t h e </w> m e t h a n e 
</w> l a n e.



BPE Example

T h e </w> m e t h a n e </w> l a n e </w> i s 
</w> s a n e .

S a n e </w> I s </w> t h e </w> m e t h a n e 
</w> l a n e.

Initial vocabulary: all characters

T h e 4w7 Mia h L
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Adding a symbol

T h e </w> m e t h a n e </w> l a n e </w> i s 
</w> s a n e .

S a n e </w> I s </w> t h e </w> m e t h a n e 
</w> l a n e.

Which symbol bigram is most frequent?

Add this bigram as new symbol to the vocab:
a n an

V Tinie alway aighti S S an



Update representation:

T h e </w> m e t h an e </w> l an e </w> i s </w> 
s an e .

S an e </w> I s </w> t h e </w> m e t h an e 
</w> l an e.

Until vocabulary has desired size:
• Which symbol bigram is most frequent?
• Add this bigram as new symbol to the vocab

Lei stung



After adding 5 extra symbols

T h e </w> me thane </w> l ane </w> i s </w> s 
an e .

S ane </w> i s </w> th e </w> me thane </w> l 
an e .

Merged symbols: Vocabulary size =

a n 
an e</w>
t h
th ane</w>
m e



BPE Encoding

• BPE as a pre-processing step used in all 
current NMT systems, essential!

• Common vocabulary sizes: 10k - 50k, 
depending on data set



Tentative timeline
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NMT state-of-the-art since ~ 2016



Summary Overall

• Bi-directional encoding: read source 
sequence from both sides, with two separate 
encoder RNNs

• Attention networks: at each decoding step, 
use attention weights to generate a new 
summary of the input sentence

• BPE: segment words into subwords to control 
vocabulary size and avoid unknown words



Further Reading / links

• Ilustrations by Jay Alammar:
http://jalammar.github.io/visualizing-neural-machine-translation-
mechanics-of-seq2seq-models-with-attention/

• Influential paper 1:
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). 
“Neural machine translation by jointly learning to align and translate.”

• Influential paper 2:
Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). "Sequence to 
sequence learning with neural networks.”

• BPE Implementation Repo:
https://github.com/rsennrich/subword-nmt

• BPE Paper by Rico and Barry Haddow:
Rico Sennrich, Barry Haddow and Alexandra Birch (2016): “Neural 
Machine Translation of Rare Words with Subword Units.”

• Good tutorial that shows an implementation in TF:
https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/
eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb



Next time



Advance notice: exam questions

• On May 28, we will have an exam Q&A

• Until May 28, please post on OLAT:

Exam question that would be fair in 
your opinion

• We will discuss exactly those questions 
that day. 


