
Institute of Computational Linguistics

#### **Machine Translation**

#### 11 Attention Bi-directional Encoding Byte-pair Encoding

Mathias Müller

#### Last time



#### **Topics of Today**

• **Bi-directional encoding**: read source sequences in two directions

• Attention models: circumvent the problem of having to cram a %\$! sentence into one %\$! vector

• **Byte-pair encoding**: solve the problem of vocabulary size and unknown words

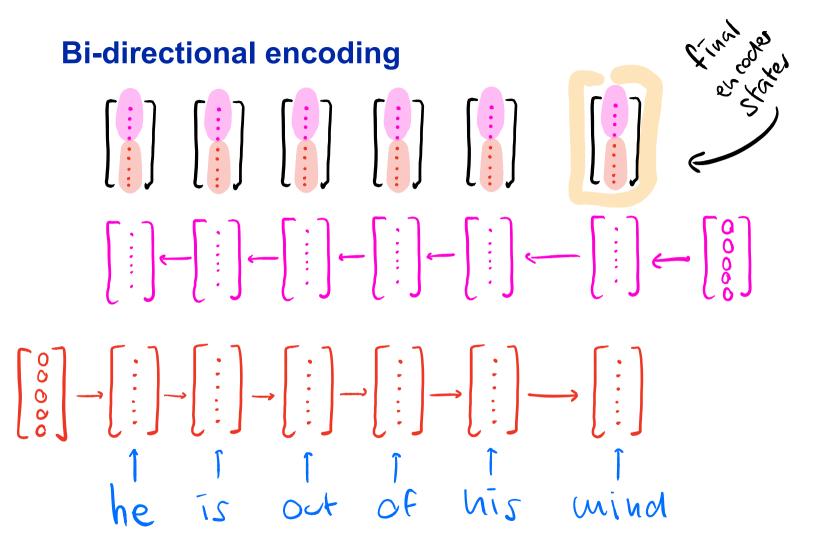


Institute of Computational Linguistics

## **Bi-directional Encoding**

#### **Bi-directional encoding**

- Bi-directional encoding is a change to the **encoder:** 
  - one RNN reads the source sentence left-to-right
  - another RNN reads right-to-left


 Early research found that reversing the input sequence improves translation quality

#### Why bi-directional encoding?

#### Early research found that **reversing the input sequence** improves translation quality

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other researchers with related architectures [26]. We were able to do well on long sentences because we reversed the order of words in the source sentence but not the target sentences in the training and test set. By doing so, we introduced many short term dependencies that made the optimization problem much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with long sentences. The simple trick of reversing the words in the source sentence is one of the key technical contributions of this work.

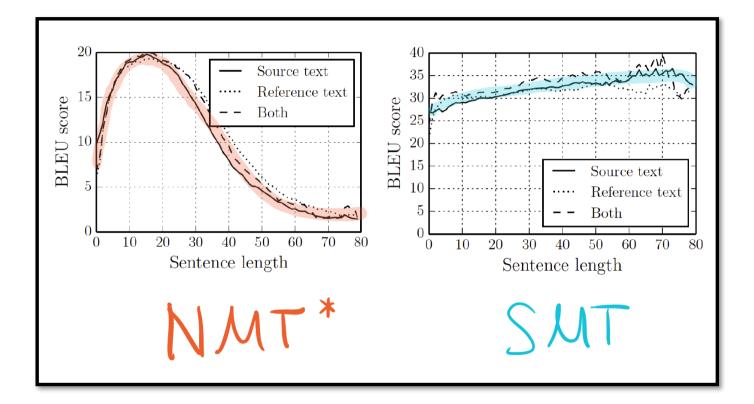
Sutskever et al (2014)



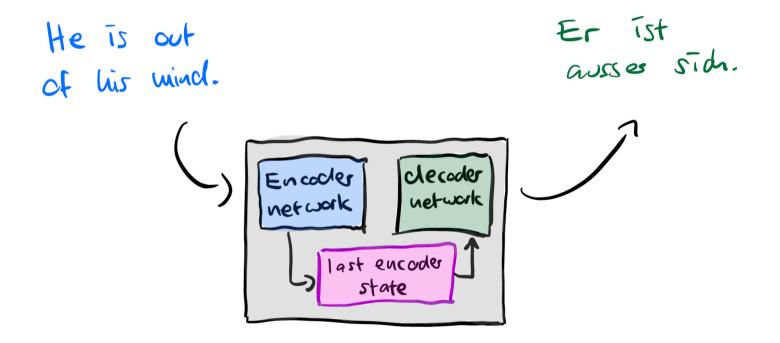


Institute of Computational Linguistics

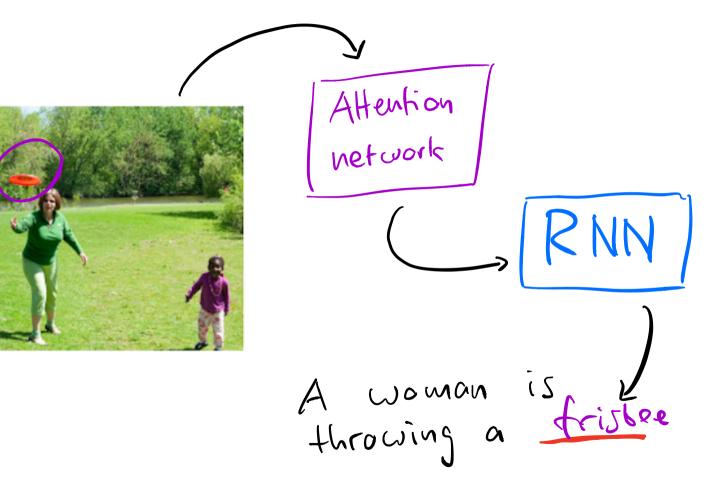
### **Attention Networks**


#### **Attention networks**

• Address the problem of long sentences


• Change to the decoder architecture

 Intuitively: instead of computing a "summary" of the source sentence once (last encoder state), compute it again at each decoding step


#### Long sentences lead to low translation quality



## Reason for this problem: bottleneck between encoder and decoder



#### Visual attention in image captioning



#### Visual attention in image captioning



A woman is throwing a <u>frisbee</u> in a park.

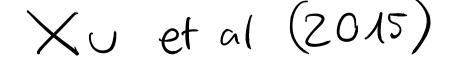


A dog is standing on a hardwood floor.



A <u>stop</u> sign is on a road with a mountain in the background.




A little <u>girl</u> sitting on a bed with a teddy bear.



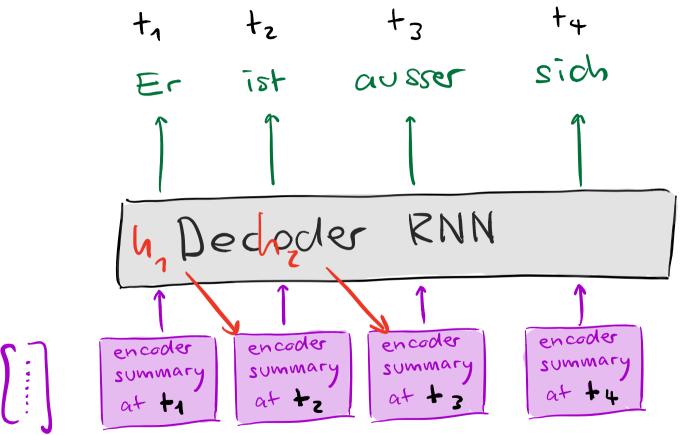
A group of <u>people</u> sitting on a boat in the water.

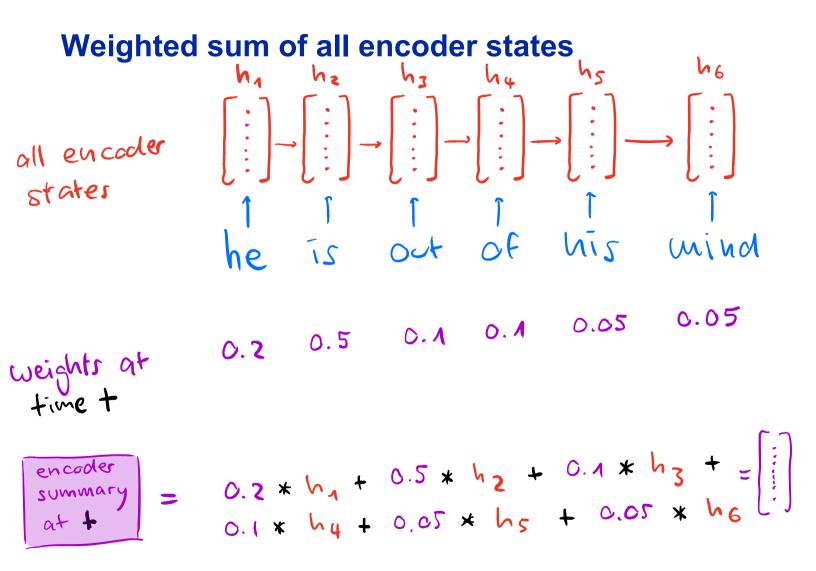


A giraffe standing in a forest with trees in the background.

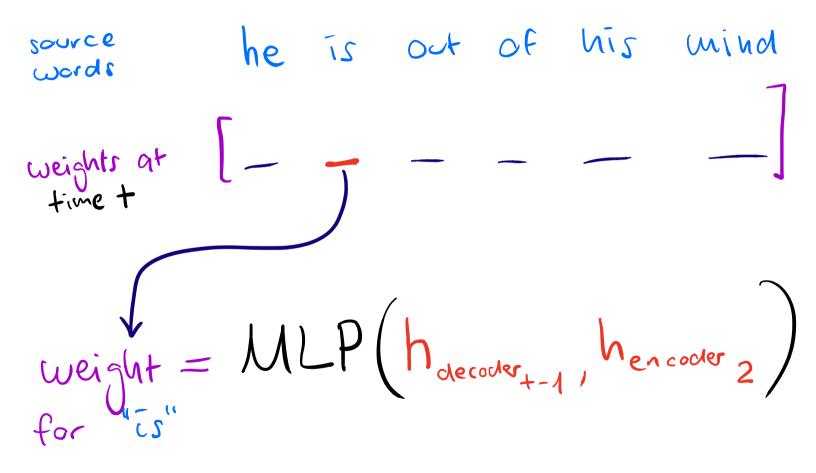





#### Eine Frau wirft einen Frisbee in einem Park


#### A woman is throwing a **frisbee** in a park.

#### Attention


- Instead of only seeing the final encoder state, the decoder is allowed to see all encoder states
   ())
- At every time step, the decoder is fed an additional input that is a weighted sum of all encoder states

Weighted sum of all encoder states





#### How attention weights are computed



#### How attention weights are computed

weights predicted 
$$\begin{bmatrix} 1.1 & 1.7 & -0.2 & -0.2 & -0.01 & -0.01 \end{bmatrix}$$
  
by MLP  
+ softmax  $\begin{bmatrix} 0.2 & 0.5 & 0.1 & 0.1 & 0.05 & 0.05 \end{bmatrix}$ 

$$new \, decoder = RNN \left( h_{t-1}, Y_{t-1}, a_{t+1} \right)$$
state  $h_{t}$ 

## Visualization of attention weights



210

#### Attention weights are not word alignments!

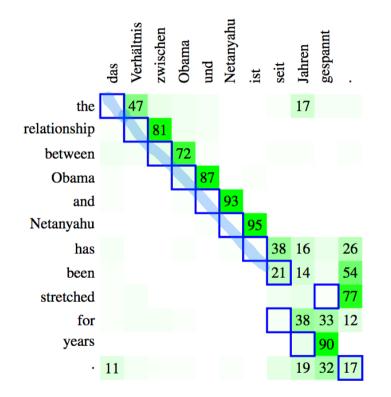



Figure 9: Mismatch between attention states and desired word alignments (German–English).

#### Impact of attention on NMT translation quality

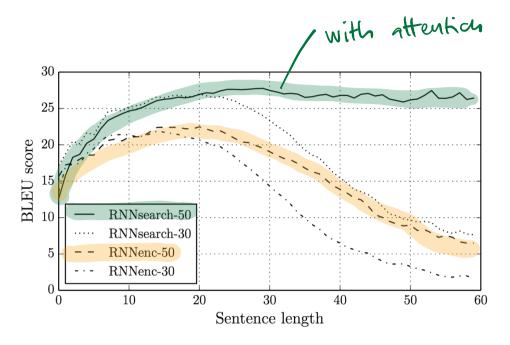



Figure 2: The BLEU scores of the generated translations on the test set with respect to the lengths of the sentences. The results are on the full test set which includes sentences having unknown words to the models.

After a usual tokenization<sup>7</sup>, we use a shortlist of 30,000 most frequent words in each language to train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

#### **Summary Attention**

 Change to decoder to address bad translations for long sentences

• Intuitively: decoder is able to look at all encoder states, instead of just the last one

 Technically: at each decoding step, an attention network computes weights that are used to compute a weighted sum of all encoder states



Institute of Computational Linguistics

## **Byte-pair Encoding (BPE)**

#### **Byte-pair encoding (BPE)**

- Addresses the problem of vocabulary size and unknown words
   < unk >
- BPE is a **segmentation algorithm**: it **segments words** into smaller pieces



Initial vocabulary: all individual characters are **symbols** in the vocabulary

Until vocabulary has size N:

- Look for most frequent symbols bigram
   (s1, s2) in the training data
   C 'a'', 'e'')
- Add the concatenation of s1 and s2 as new symbol to the vocabulary

V = V + "de"

#### **BPE Example**

#### **Training data:**

The methane lane is sane. Sane is the methane lane.

#### **Represent data as characters:**

The</w>methane</w>lane</w>is</w>sane.

Sane </w>ls </w>the </w> methane </w>lane.

#### **BPE Example**

The </w> methane </w> lane </w> is </w> sane.

Sane</w>ls</w>the</w>methane</w>lane.

Initial vocabulary: all characters

$$V = \begin{cases} T, h, e, , m, a, n, l, \\ i, s, S, ..., J |V| = 13 \\ + \end{cases}$$

#### Adding a symbol

The </w> methane </w> lane </w> is </w> sane.

Sane </w>ls </w>the </w> methane </w>lane.

Which symbol bigram is most frequent?  $(`a`,``n`) \longrightarrow ``an``$ 

Add this bigram as new symbol to the vocab:

$$V = \{ T, h, e, , m, a, n, l, i, s, S, ..., t, an \}$$

**Update representation:** 



- The </w> meth ane </w> I ane </w> is </w> s ane.
- S an e </w> I s </w> th e </w> m e th an e </w> | an e.

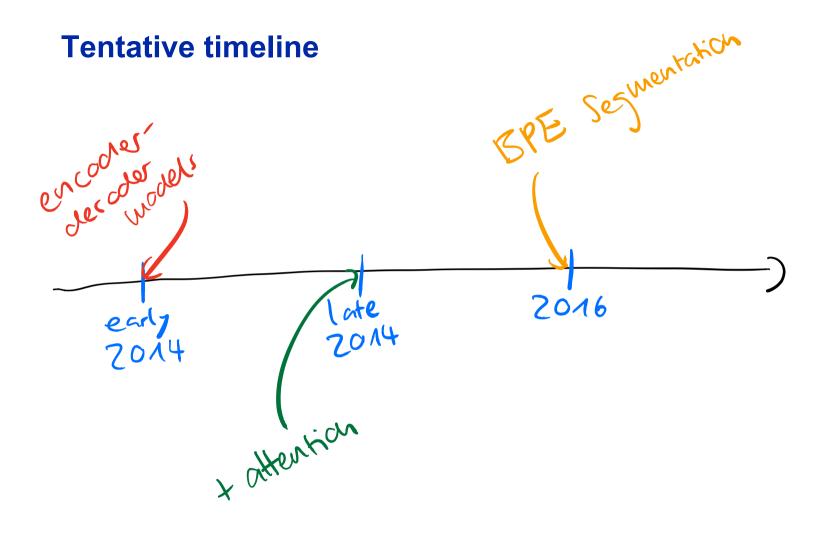
#### Until vocabulary has desired size:

- Which symbol bigram is most frequent?
- Add this bigram as new symbol to the vocab

#### After adding 5 extra symbols

T h e </w> me thane </w> I ane </w> i s </w> s an e .

S ane </w> i s </w> th e </w> me thane </w> I an e .


Merged symbols:

Vocabulary size =

a n an e</w> t h th ane</w> m e

#### **BPE Encoding**

- BPE as a pre-processing step used in all current NMT systems, essential!
- Common vocabulary sizes: 10k 50k, depending on data set



#### **NMT state-of-the-art since ~ 2016**

| system        | BLEU | official rank |
|---------------|------|---------------|
| uedin-nmt     | 34.2 | 1             |
| metamind      | 32.3 | 2             |
| uedin-syntax  | 30.6 | 3             |
| NYU-UMontreal | 30.8 | 4             |
| online-B      | 29.4 | 5-10          |
| KIT/LIMSI     | 29.1 | 5-10          |
| cambridge     | 30.6 | 5-10          |
| online-A      | 29.9 | 5-10          |
| promt-rule    | 23.4 | 5-10          |
| KIT           | 29.0 | 6-10          |
| jhu-syntax    | 26.6 | 11-12         |
| jhu-pbmt      | 28.3 | 11-12         |
| uedin-pbmt    | 28.4 | 13-14         |
| online-F      | 19.3 | 13-15         |
| online-G      | 23.8 | 14-15         |

| system       | BLEU | official rank |  |
|--------------|------|---------------|--|
| uedin-nmt    | 38.6 | 1             |  |
| online-B     | 35.0 | 2-5           |  |
| online-A     | 32.8 | 2-5           |  |
| uedin-syntax | 34.4 | 2-5           |  |
| KIT          | 33.9 | 2-6           |  |
| uedin-pbmt   | 35.1 | 5-7           |  |
| jhu-pbmt     | 34.5 | 6-7           |  |
| online-G     | 30.1 | 8             |  |
| jhu-syntax   | 31.0 | 9             |  |
| online-F     | 20.2 | 10            |  |

WMT16 DE $\rightarrow$ EN

WMT16 EN $\rightarrow$ DE

• pure NMT

#### **Summary Overall**

 Bi-directional encoding: read source sequence from both sides, with two separate encoder RNNs

• Attention networks: at each decoding step, use attention weights to generate a new summary of the input sentence

• **BPE:** segment words into subwords to control vocabulary size and avoid unknown words

#### **Further Reading / links**

• Ilustrations by Jay Alammar:

http://jalammar.github.io/visualizing-neural-machine-translationmechanics-of-seq2seq-models-with-attention/

- Influential paper 1: Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014).
   "Neural machine translation by jointly learning to align and translate."
- Influential paper 2: Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). "Sequence to sequence learning with neural networks."
- BPE Implementation Repo: <u>https://github.com/rsennrich/subword-nmt</u>
- BPE Paper by Rico and Barry Haddow: Rico Sennrich, Barry Haddow and Alexandra Birch (2016): "Neural Machine Translation of Rare Words with Subword Units."
- Good tutorial that shows an implementation in TF: <u>https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/</u> <u>eager/python/examples/nmt\_with\_attention/nmt\_with\_attention.ipynb</u>



|                                                         | Cloud Platform                                   |                 |         |  |  |
|---------------------------------------------------------|--------------------------------------------------|-----------------|---------|--|--|
| 30.04.                                                  | Encoder-Decoder-Modell                           | NMT Kapitel 5   | Übung 5 |  |  |
| 07.05.                                                  | Attention-Mechanismus, bidirektionales Encoding, | NMT Kapitel 5-6 |         |  |  |
|                                                         | Byte Pair Encoding                               |                 |         |  |  |
| 14.05.                                                  | Decoding-Strategien                              | NMT Kapitel 5.4 | Übung 6 |  |  |
| 21.05.                                                  | Maschinelle Übersetzung in der Praxis            |                 |         |  |  |
|                                                         | (Anwendungen)                                    |                 |         |  |  |
| 28.05.                                                  | Zusammenfassung, Q&A Prüfung                     |                 |         |  |  |
| Eventuell: Gastvortrag Prof. Artem Sokolov              |                                                  |                 |         |  |  |
| Cancelled! Prof. Sokolov had to decline the invitation. |                                                  |                 |         |  |  |
| Prüfung (schriftlich)                                   |                                                  |                 |         |  |  |
| 18.06., AND-2-48, 16.15 bis 18:00 Uhr                   |                                                  |                 |         |  |  |

#### Advance notice: exam questions

- On May 28, we will have an exam Q&A
- Until May 28, please post on OLAT:

# Exam question that would be fair in your opinion

• We will discuss exactly those questions that day.