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Abstract

In this master’s thesis I tackle the task of multilingual grapheme-to-phoneme (G2P)
conversion. In a first part, I familiarized myself with the current data situation.
Most G2P data is available as word lists that contain mappings from graphemes
to phonemes. There exists a dataset containing full text transcriptions of a well-
known short story called The North Wind and the Sun (NWS), which I used to
test my G2P models. I created models for 22 different languages using an existing
transformer model. As an additional contribution I incorporated phonetic features
into the input to the models by extending the input phonemes with encoded phonetic
features. The models I trained could keep up with state-of-the-art G2P models and
outperformed existing models for some languages. I tested the models on different
datasets and the results of the models diverged greatly on the different datasets.
This lead me to the conclusion that phonetic transcriptions are not as standardized
as writing systems used for written language. Removing tones from the datasets in
the preprocessing step lead to a great improvement of the results for some languages
while other preprocessing steps for other languages did not improve the results at
all. The models I created that received additional phonetic features as input did not
outperform the state-of-the-art models. However, this is most likely due to the way I
encoded the features and other strategies to encode the features could be employed
in future research. As for many of my languages there is no result available, my
models can serve as a baseline for future research.

All scripts and files produced along with this thesis are found in my GitHub repos-
itory: https://github.com/theDebbister/masterThesis.

https://github.com/theDebbister/masterThesis


Zusammenfassung

In dieser Masterarbeit beschäftige ich mich mit der Aufgabe der mehrsprachigen
grapheme-to-phoneme (G2P) Konvertierung. In einem ersten Teil habe ich mich mit
der aktuellen Datenlage vertraut gemacht. Die meisten G2P-Daten sind als Wort-
listen verfügbar, die Zuordnungen von Graphemen zu Phonemen enthalten. Es gibt
einen Datensatz mit Volltexttranskriptionen einer bekannten Kurzgeschichte namens
Der Nordwind und die Sonne NWS, den ich zum Testen meiner G2P-Modelle ver-
wendet habe. Ich habe Modelle für 22 verschiedene Sprachen erstellt, wofür ich ein
bestehendes Transformer-Modell verwendet habe. Als zusätzlichen Beitrag habe ich
phonetische Merkmale in die Inputs der Modelle integriert, indem ich die Input-
Phoneme um kodierte phonetische Merkmale erweitert habe. Die von mir trainier-
ten Modelle konnten mit den modernsten G2P-Modellen mithalten und übertrafen
die bestehenden Modelle für einige Sprachen. Ich testete die Modelle auf verschie-
denen Datensätzen und die Ergebnisse der Modelle wichen auf den verschiedenen
Datensätzen stark voneinander ab. Dies führte mich zu der Schlussfolgerung, dass
phonetische Transkriptionen nicht so standardisiert sind wie Schriftsysteme, die für
geschriebene Sprache verwendet werden. Das Entfernen von lexikalischen Tönen
aus den Datensätzen führte bei einigen Sprachen zu einer großen Verbesserung der
Ergebnisse, während andere Schritte zur Aufbereitung der Daten bei anderen Spra-
chen die Ergebnisse überhaupt nicht verbesserten. Die von mir erstellten Modelle,
die zusätzliche phonetische Merkmale als Input erhielten, übertrafen die state-of-
the-art-Modelle nicht. Dies ist jedoch höchstwahrscheinlich auf die Art und Weise
zurückzuführen, wie ich die Merkmale kodiert habe. Andere Strategien zur Kodie-
rung der Merkmale könnten in zukünftigen Forschungsarbeiten eingesetzt werden.
Da für viele meiner Sprachen noch keine Ergebnisse vorliegen, können meine Modelle
als Grundlage für künftige Forschungen dienen.

Alle Scripts und Dokumente, die ich im Zusammenhang mit dieser Arbeit erarbei-
tete, sind auf meinem GitHub zu finden: https://github.com/theDebbister/ma
sterThesis.

https://github.com/theDebbister/masterThesis
https://github.com/theDebbister/masterThesis
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1 Introduction

With the advent of technologies that process huge amounts of data, many linguistic
tasks that were originally very tiresome and expensive to do, can now be accom-
plished much faster. Well known examples for this branch called natural language
processing (NLP) are machine translation or search engines. A lot of available tools
and consequently research done in this area is concerned with written text. For
many scenarios like machine translation, large corpora of written text in many lan-
guages are collected that are used to train computational models that solve those
tasks. Following, there is an ever-growing set of models that are trained on written
text. Often the goal is to reach or outperform human solutions to those various
tasks. The corpora that are collected for tasks like machine translation serve as an
example for how the outcome of the task in question should look like. For example,
a corpus for machine translation contains a text in one language with its correspond-
ing translation in another language. It is therefore necessary that this training data
represents the language and the task well enough for a machine to reach the required
performance. From a linguistic point of view, the question comes up if focusing on
written language only can ever represent human language adequately. Most of hu-
man communication and daily language use happens through speaking. This points
to a first potential limitation of many (written) language technologies. It is not clear
whether written language represents the same characteristics of a language that spo-
ken language does. It is possible that both written and spoken language represent
different aspects of a language. This would mean that computational models trained
on written language only cannot fully represent a language. Although many NLP
tasks use written language corpora exclusively, there are technologies like automatic
speech recognition (ASR) or text-to-speech (TTS) that use corpora of spoken lan-
guage as training data. Spoken language is either represented as raw audio files
or as phonetic transcriptions. As phonetic transcriptions are strings of characters
they are much easier to process for a machine than raw audio files. In order to
represent spoken language as phonetic transcriptions, we need to know a lot about
how spoken and written language relate. Research on ASR or TTS contributes to a
better understanding of the relation between spoken and written language as both
of the tasks involve mapping of spoken to written language. But still, research on

1



Chapter 1. Introduction

how to transform a spoken text to a written text or vice versa does not answer
the question of how well written language represents language in general. One step
towards answering this question is to compare written and spoken versions of the
same text. This is where this current thesis connects to cutting-edge research. I
am going to present my attempt of studying a multilingual spoken language corpus
with the long-term goal to compare it to the written language version of the same
corpus.

1.1 Research questions & goals

I will try to answer the following question as the result of my thesis: Is it essential
for the study of multilingual corpora to perform analyses on phonetic text
(i.e. speech representations) rather than only written text? This question
addresses many different topics from the field of linguistics but also more technical
aspects. None of these topics is trivial and the question cannot be answered easily.
While in this thesis I cannot possibly discuss everything from the use of phonetic
transcriptions to the nature of human language use, the aim is to make a step into
the direction of answering the question how written language represents language
in general when compared to how spoken language represents language. The goal is
now to collect a corpus of phonetic transcriptions in various languages based on an
already existing written corpus. Once I have the phonetic corpus, it is then possible
to perform analyses on the phonetic corpus which can then be compared to the same
analyses on the written corpus. In order to add a phonetic corpus to an already
existing one, various steps need to be performed which are outlined below:

1. Data collection: The given written language corpus contains no phonetic
transcriptions of the languages in the corpus. The first step is to find already
existing phonetic data of as many languages as possible.

2. Computational models to create phonetic transcriptions: As existing
data will not be available in sufficient amounts to perform meaningful analyses,
the next step is to actually create phonetic transcriptions of as many languages
as possible of the corpus. This will require to create and train computational
models.

3. Tests and analyses: Once the transcriptions have been obtained, the newly
created phonetic corpus can be analysed and tests can be performed on the
phonetic data.

By performing the steps above I will have to tackle different challenges. Some of

2



Chapter 1. Introduction

them are already known now, but there will be many more that will only become
apparent while working on the tasks. Examples of such challenges are:

1. What types of phonetic data is available and how can it be used?

2. Which computational models can be used to create phonetic transcriptions
automatically?

3. How can we use phonetic features to create phonetic transcriptions?

All of these challenges above are interesting and important, but the third challenge is
of particular importance as it is a new approach to creating phonetic transcriptions.

1.2 Thesis structure

The thesis is subdivided into six chapters of which the first chapter is this intro-
duction. Chapter 2 covers the linguistic basics that are necessary to understand
the topic. It presents the linguistic foundation of phonetics and phonology and an
introduction to corpus linguistics or rather corpus phonetics. Chapter 3 sets the
boundaries of the technical background. I will present an overview of the possibili-
ties for automated creation of phonetic transcriptions. In chapter 4, I document my
first practical experiments which are concerned with data collection. It contains a
descriptions of the data I will later use to create models for phonetic transcriptions.
In chapter 5 I will present one of my experiments where I compare the word length
of phonetic and written text. Chapter 6 presents my own experiments to create pho-
netic transcriptions of the corpus. I will present all models that I created and their
results. Chapter 7 summarizes my findings and presents ideas for future research.

3



2 Representations of Written and

Spoken Language

From a linguistic point of view there are two high-level concepts that are important
for this thesis. The first and most significant one is that of the relation of written
and spoken language. In this chapter, I would like to find out what traditional
linguistics states about the relation of written and spoken language. Both written
and spoken language are valid representations of the same language. As we will see
later in this chapter, mapping a spoken language to its written representation is far
from easy and never perfect. In the earlier stages of language evolution, written
language was simpler and more trivial when compared to spoken language that was
the principle way of communication. Written representations were close to spoken
language as the idea was to mimic speech in a written format. Elaborated writing
systems like we are used to today came only much later compared to language in
general1 [Hock and Joseph, 2019].

The second key concept is that of multilingual analysis. Comparing languages
and studying their similarities and differences is part of a well-established branch of
traditional linguistics called comparative linguistics. However, comparative linguis-
tics is traditionally not applied to large corpora. The corpus underlying this thesis
is multilingual. I will introduce this corpus later in section 4.2. While a multilin-
gual corpus in itself is not uncommon, the specific goal of the team maintaining the
corpus is to compare the languages and study their similarities and thus extend tra-
ditional comparative linguistics by applying analyses to a large multilingual corpus.
For example, Gutierrez-Vasques et al. [2021] performed a study on a multilingual
corpus comparing different subword tokenizations. They compared 47 languages to
find out how languages can be tokenized such that it leads to similar distributions
among those languages. This analysis was performed on written language and is an
example for what could be done on spoken language samples as well.

Due to recent technological advancement it has become possible to store large digital

1https://www.youtube.com/watch?v=-sUUWyo4RZQ&list=PL8dPuuaLjXtP5mp25nStsuDzk2bln
cJDW&index=18
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Chapter 2. Representations of Written and Spoken Language

collections of speech recordings and their aligned transcriptions and study those
digital collections. Whenever we study language we look at samples of that language.
It is simply impossible to study an entire language as we would need all texts that
were ever produced in that language. Consequently, we need to ask ourselves how
much and what material of a language is enough to study it properly. In order
to collect language samples and study them we can make use of techniques and
methods from corpus linguistics. In linguistics and also in computational linguistics
we typically talk about a corpus when we talk about a huge dataset that is used to
represent a language. It does not matter if the corpus contains written or spoken
samples of a language although it is mostly written [McEnery and Hardie, 2011].
Corpus linguistics allows for both qualitative and quantitative analysis of text. All
of the above mentioned possibilities gave rise to a wider acknowledgement of corpus
phonetics.

Corpus phonetics deals with an abundance of linguistic variation. In addition to
language, style or vocabulary variation in written language, there are also differences
in dialect and idiolect, physiological state of the speakers and their attitude in
spoken language [Liberman, 2019; Chodroff, 2019]. In section 4.3.2, I will present
an interesting study on corpus phonetics [Baird et al., 2021]. The authors of the
study aim to answer how much phonetic data is needed to cover all sounds of a
language.

While there is a lot that could be said about any of these topics, I am not going into
more detail about these. The point I would like to make is that the task of creating
phonetic transcriptions of a multilingual corpus with the long-term objective of
comparing written and spoken language is deeply rooted in linguistics and not at all
trivial. In the following sections I will mostly write about phonetics and phonology
in general and writing systems.

2.1 Phonetics and phonology

Given that phonetics and phonology is a sub-area of traditional linguistics and often
only touched on superficially in computational linguistics, I will summarise the most
important assumptions and terms that are necessary to understand what phonetic
transcriptions are. A very important terminological distinction is between phonet-
ics and phonology. While phonetics refers to the study of actual sounds, phonology
refers to the study of sound systems. In phonetics, it is not so much important what
the different sounds mean, but how they are produced and perceived and what dif-
ferent sounds a human being can produce and perceive at all. When it comes to
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Chapter 2. Representations of Written and Spoken Language

human communication using spoken language, many sounds that can be produced
are not actually meaningful. A human being is perfectly capable of producing many
different sounds but some just do not mean anything to other people. The study
of sound systems, phonology, is used to describe the set of sounds that make up a
language. The sounds within a sound system of a language can be used to construct
meaningful utterances.

I will now use example 2.1 to illustrate the difference between three linguistic con-
cepts within the fields of phonetics and phonology: phoneme, phone, and allo-
phone. Example 2.1 shows how the word ‘request’ can be pronounced in English.
The pronunciation is written in the International Phonetic Alphabet (IPAlpha)
which I will explain in more depth in section 2.3. For now it is important to note
that each character represents a specific sound.

(2.1) Different pronunciations of the English word ‘request’ (except for the last
example which is a pronunciation of the word ‘bequest’). The spaces
indicate how the letters can be mapped to the phonetic symbols on the
right side. The pronunciation is on the right hand side of the arrow while
the orthographic representation of the word is on the left hand side.

(a) r e qu e s t → [ô I kw E s t]

(b) r e qu e s t → [R I kw E s t]

(c) r e qu e s t → [r I kw E s t]

(d) r e qu e s t ̸→ [b I kw E s t]

Example 2.1 a shows how the word ‘request’ is pronounced in British English. Even
someone that does not know the IPAlpha can see that the letter ‘r’ can be mapped to
the pronunciation symbol [ô]. Another English speaker might pronounce the letter
‘r’ a bit different as in example 2.1 b. We can see that the pronunciation symbol
[R] for the letter ‘r’ differs from the one in the first example. However, an English
speaker would still understand the word ‘request’ in example 2.1 b as the different
pronunciation does not change the meaning of the word. In phonetic terms we would
say that in the British English sound system there exists an abstract sound /ô/ which
is called the phoneme /ô/. Note that we write a phoneme between slashes. Also, in
our case there exist two phones [ô] and [R] which are specific sounds that can be used
to pronounce the phoneme /ô/. No matter which phone I use, it does not change
the meaning of the word. Note that we write a phone between square brackets.

The two phones [ô] and [R] are considered allophones of the phoneme /ô/. Allo-
phones are specific phones that are concrete realizations of the same phoneme. Re-

6



Chapter 2. Representations of Written and Spoken Language

alization in this case just means that it is a sound in an actual utterance. Although
one of the two phones might be more frequently used in a word like ‘request’, the key
fact about allophones of the same phoneme is that they can be used interchangeably
without changing the meaning of the utterance. Very importantly, allophones are
language specific. In other languages I cannot use the same phones to pronounce a
phoneme. In example 2.1 c, the ‘r’ is mapped to the phone [r] which is part of the
Spanish sound system. [r] is not an allophone of /ô/ in British English as typically
British English speakers do not pronounce the letter ‘r’ like in Spanish. The phone
[r] does not exist in the British English sound system which is why it cannot be an
allophone of the phoneme /ô/ in the British English sound system. In this case, a
British English speaker would understand the word ‘request’ uttered with the Span-
ish [r]. However, this is due to the inherent similarity of the Spanish [r] and the
British [ô] and must not be the case for other sounds used in other languages.

If we replaced the [ô] by another phone that is not an allophone of /ô/ but of a
different phoneme in the British English sound system (see example 2.1 d) we can
see that the meaning of the utterance changes. This change in meaning is because in
examples 2.1 a and 2.1 b the phones were realizations of the same phoneme, while in
example 2.1 d I introduced a new phone that is a realization of a different phoneme
than the phoneme /ô/. Unlike allophones, phonemes in a language’s sound system
can be used to change the meaning of an utterance. Each language has a phoneme
inventory of abstract sounds that exist in the language’s sound system that can
be used to construct meaningful utterances. Apart from the phoneme inventory of
a language, there is a set of phones and a set of allophones for each phoneme in a
language as we just have seen.

When it comes to phonetic transcriptions, the difference between phoneme, phone
and allophone is very important. It is important to note at this point that the terms
phone and phoneme are sometimes used interchangeably. Their linguistic definition
as given above is relatively clear while the definition on the computational side is
often less strict. In section 2.3, I will elaborate more on this problem.

In the following, I will outline different terms and concepts that appear a lot in
research and literature concerned with phonetics and phonetic transcriptions.

Vowels and consonants In order to categorize the sounds in the sound systems
of different languages, sounds are typically split into vowels and consonants. The
terms to describe both vowels and consonants are inspired by the physical position
of the tongue and the mouth when the sound is produced. To describe vowels, we
use the position of the tongue in the mouth and if the lips are rounded or not. Using
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those two categories enables us to distinguish every possible vowel. The position of
the tongue in the mouth is described along two axes: The first axis is the back-front
axis. The tongue can be moved from the back of the mouth cavity to the front.
The second axis is that the tongue can be moved up and down in the mouth. In
phonetics, up and down is referred to as close and open. This second axis is the
open-close axis. In addition to those two axes a vowel can be either rounded or
not rounded. A vowel can then, for example, be described as closed (on the second
axis), back (on the first axis) and rounded. This means that in order to produce the
sound, a person needs to move the tongue up and back in the mouth and round the
lips. Figure 1 shows the vowel chart how it is usually represented in the IPAlpha.
More on this special alphabet follows in section 2.3.

Consonants are defined by the place and the manner of their physical production.
The place, again, refers to the position of the tongue in the mouth and the overall
form of the vocal tract. While for vowels we used the open-close and back-front
schema to describe the position of the tongue, the consonant tongue positions are
categorized differently. The consonant tongue position is referred to as the place
of articulation of a consonant. Table 1 shows all consonant place categories. For
example, a dental consonant means that the tip of the tongue is pressed against the
upper front teeth. For palatal consonants, the body of the tongue is pressed against
the hard palate in the back of the mouth cavity. All places of articulation refer to
a specific physical location in the mouth.

bilabial labiodental dental alveolar

postalveolar retroflex palatal velar

uvular pharyngeal glottal

Table 1: This table displays all tongue positions and shapes of the vocal tract that
are used to produce consonants.

The manner of articulation of consonant production describes very precisely how
the air is lead through the mouth to produce a sound2. Examples for the manner of
a consonant are plosive or trill. For a trill the tongue needs to move in a vibrating
way which consequently makes the air vibrate. Note that the place of articulation
is not changed by this vibration. The tip of the tongue can still be pressed against
the teeth or be in the back of the mouth while vibrating. For a plosive sound we
first completely block the air such that no air can leave the mouth and then the
air is pushed out of the mouth in a fast manner, a bit like an explosion, therefore

2https://www.youtube.com/watch?v=vyea8Ph9BOM
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the name. The complete consonant chart is depicted in figure 1 as well and table 2
shows all consonant manner categories.

plosive nasal trill tap or flap

fricative lateral fricative approximant lateral approximant

Table 2: This table displays manner categories of consonants.

Once I have introduced the IPAlpha in section 2.3, I will give examples of how the
IPAlpha helps us to write sounds with respect to the above introduced categories of
vowels and consonants and how it differs from orthographic representations.

Syllables Letters can be grouped into larger units called syllables. Syllables can
be an entire word or a part of a word. A syllable can be subdivided into different
parts called onset, nucleus and coda. For every syllable in every language it is true
that the nucleus cannot be empty. The onset and the coda can be empty. Example
2.2 shows English words with syllable boundaries.

(2.2) English syllables: the hyphen denotes a syllable boundary.

(a) the-sis

(b) o-ver

In English, the onset is typically a sequence of consonants. The nucleus is a sequence
of vowels or just one vowel. The coda is another sequence of consonants. The second
syllable in example 2.2 a follows this structure exactly: ‘s’ is a consonant followed
by a vowel ‘i’ followed by another consonant ‘s’. The first syllable in example 2.2 b
on the other hand, consists only of the nucleus, in this case the vowel ‘o’. Other
than this three-part structure, syllables are organized very differently in different
languages [Kracht, 2007]. For computational analysis it is important that syllables
are a way of segmenting written or spoken language. They are larger than individual
letters or phonemes but often still smaller than individual morphemes or words.

Diphthongs A diphthong is a sequence of vowels that is considered as just one
phoneme if it is within one syllable. If a syllable ends with a vowel and the next one
starts with a vowel, this vowel sequence is not called a diphthong. An example is the
German word ‘Chaos’. The two vowels in the middle are not a diphthong as there
is a syllable boundary right in their middle: ‘Cha-os’. A word like ‘aus’ contains a
diphthong as it exists of only one syllable [Kracht, 2007].
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Suprasegmentals Apart from individual sounds, there are features of spoken
language like stress or intonation. Those are referred to as suprasegmentals. They
are often related to syllables. For example, we can put stress on a different syllable or
raise the pitch. Semantically, some suprasegmentals in some languages distinguish
meanings, some do not. A special case are tones. Tones are a special way of
intonation. In some languages like Chinese or many African languages tones are
used to distinguish meaning while in most European languages, the concept of tones
does not exist [Kracht, 2007].

2.2 Mappings of written and spoken language

Unlike spoken language that was a part of human interaction all the time, writing
systems only developed over time. There are different writing systems that developed
in different places at different times. The structure of the spoken language, the
cultural context or the tools that were at hand to write are a few of many factors
that influenced the emergence of a specific writing system. In general, we can
think of writing systems as mappings from sounds to written symbols. The systems
used to represent sounds in different languages do not uniquely map a symbol to
one specific phoneme. Most of the time, there is a standard pronunciation of each
symbol in every language. However, as we have seen above, there is the notion of
allophones which means that every sound can be replaced by other sounds which are
also understood in this language. These explanations make clear that the mapping
of written symbols to spoken sounds in various languages is complex.3

When taking a step back, we can see that a single symbol can represent either
a single phoneme, a syllable or a word or even something in between. Different
writing systems developed in parallel which means that today, we have an abundance
of different strategies to put sounds into writing. Not all writing systems, which
are typically called scripts, can be treated the same and this most certainly has
implications on models to create phonetic transcriptions. Each major script that
is used today will be presented below4. In the following I will use the terms letter
or sign when referring to an individual symbol that is part of a writing system.
In section 3.1, I will introduce a more fine-grained terminology when referring to
symbols in writing systems and their computational representation.

ALPHABET When a letter maps roughly to one phoneme, we call the writing sys-

3https://www.youtube.com/watch?v=-sUUWyo4RZQ&list=PL8dPuuaLjXtP5mp25nStsuDzk2bln
cJDW&index=18

4ibid.
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tem an alphabet. In German, for example, the writing system is the Latin
alphabet. The Latin alphabet is used for many different languages in Western
Europe and those languages that were influenced by colonisation. There are
other alphabets like the Cyrillic or the Greek alphabet. If a language uses an
alphabet this does not mean that each letter maps to exactly one phoneme.
In fact, one letter can have many different realizations as example 2.3 shows.

(2.3) The examples show the different realizations of the English letter
sequence ‘ough’5. The first part is the letter sequence and the second
part the phonetic transcription. The parts marked in red can be
mapped onto each other.

(a) tough [t2f]

(b) cough [k6f]

(c) though [D@U]

(d) through [Tru:]

(e) bough [baU]

(f) brought [brO:t]

The above examples show that it is not always clear how to pronounce a certain
letter sequence. There is no simple one-to-one mapping from one letter or a
sequence of letters to one phone or a sequence of phones within the English
language. Let alone within all languages that use the Latin alphabet. In
addition, alphabets typically have diacritic marks that can be used to extend
the main letters. As it is the case with the German ‘ä’ which is a slightly
changed version of the letter ‘a’ and pronounced differently. Just as with
single letters, also diacritic marks cannot simply be mapped to a phone.

ABJAD A special variant of an alphabet is abjad. Abjad represents only consonants
and no vowels. This means that vowels need to be added while reading. Again,
this means that there is a lot of ambiguity as it is not always clear which vowel
should be added if there is no context. Semitic languages like Hebrew or Arabic
make use of abjad.

(2.4) The example shows Hebrew words that are first mapped to the Latin
alphabet, then to the Latin alphabet including vowels and in the end
to the English translation.

5https://www.youtube.com/watch?v=vyea8Ph9BOM
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(a) Mבצל bzlm bzelem name of an association

(b) Mבצל bzlm bzalam ‘their onion’

Example 2.4 shows that in both cases each letter maps to the same consonant
but it can be completed with different vowels. The words presented above
do not have the same meaning depending on the vowels added although their
letter sequence looks exactly the same.

SYLLABARY In syllabaries, a letter, or rather a sign in this case, represents a syl-
lable instead of a single sound. An example is the Korean script. Syllabaries
typically do not have any internal ambiguities in their pronunciation as one
sign maps to exactly one phoneme.

LOGOGRAPHIC SYSTEMS Logographic systems represent entire words or morphemes
as signs. Chinese is an example for a logographic system. We cannot break
down Chinese signs into single morphemes or letters. One sign, which is called
a logogram, is often pronounced in the same way regardless of the context
of the sign. This means that the pronunciation of one sign is less ambiguous
than, for example, the pronunciation of one letter in an alphabet which can
be mapped to different phonemes in different contexts. Logographic systems
often have thousands of signs, while alphabets typically have less than one
hundred letters. For each logogram, one must learn how to pronounce it.

As the examples above show, it is very difficult to have a clear mapping from sounds
to written symbols. For most languages it is not possible to derive the exact pro-
nunciation from the written symbols. Even for languages that use the same writing
system. Many of the pronunciation rules of a language are based on convention.
Speakers of a language just know how to pronounce a word. Still, there can arise
heated debates about the correct pronunciation of certain words within a language.
An example are Swiss German dialects. In Switzerland, dialects are considered very
important by many people. Often, every town has their own dialect which people
are proud of. This leads to an abundance of different pronunciations for one word.
People are perfectly capable of understanding other dialects but just use their own
pronunciation when it comes to speaking. As the personal way of speaking is often
considered ‘normal’, there are a lot of playful but also more serious discussions about
correct pronunciations.

Apart from different conventions, spoken and written languages change differently
over time. Spoken languages are typically more flexible and ready to change while
their written representation often stays the same [Moran and Cysouw, 2018]. This
can lead to official governmental interventions like the German orthography reform
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of 1996 that intended to adapt the German spelling to represent the German pro-
nunciation more adequately. Also, major inventions like printing machines gave rise
to standardization of writing systems as reading and writing became more common6.

2.3 The International Phonetic Alphabet (IPA)

The IPAlpha is a special alphabet where each letter is intended to represent exactly
one phoneme7 [Kracht, 2007]. Figure 1 shows the full IPAlpha chart including all
characters that the International Phonetic Association (IPA) decided to use. As
usual, reality is more complex than what we wish it to be. Even with the IPAlpha
there are inconsistencies. Although the IPAlpha seems very complete, there are still
sounds that cannot be represented using the IPAlpha. This becomes clear when, for
example, looking at the vowel chart (see figure 1). The tongue does not ‘click into
place’ for the vowels on the chart. Vowel characterisation happens on a continuum.
This means that it is always possible to characterize a vowel as in between two
vowels on the chart. But for such a vowel there does not exist an official symbol.

When sounds are mapped to written symbols, we refer to this process as creating
a transcription. When creating such transcriptions using the IPAlpha, there are
different levels of detail. Not all transcriptions represent the sounds in equal detail.
Generally, there is the distinction of broad and narrow transcriptions. These two
transcription types go back to the linguistic distinction of phone and phoneme as
I have explained in section 2.1. Also, as I have pointed out, there is the notion of
allophones that can all be used to represent a specific phoneme without changing the
meaning of an utterance. When we speak about a broad transcription, also called
phonemic transcription, we do not care about the exact sounds. If a person uses
an allophone to pronounce the word, we still write down the respective phoneme. If
we want a narrow transcription, also called phonetic transcription, we care about
every detail of the pronunciation. If a person uses an allophone, we note down that
allophone and not the respective phoneme. Strictly speaking, broad transcriptions
are not allowed to contain allophones but should write the respective phoneme of
that language.

Not using any allophones in broad transcriptions will not always be the case when
it comes to data used in language technology [Lee et al., 2020]. Example 2.5 a shows
a German broad transcription of the word ‘Anrede’. Example 2.5 b shows a broad

6https://www.youtube.com/watch?v=-sUUWyo4RZQ&list=PL8dPuuaLjXtP5mp25nStsuDzk2bln
cJDW&index=18

7ibid.
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transcription of the German word ‘Anredefall’ which should be pronounced the same
except for the last additional part. However, as we can see in the example, the first
part marked in red looks different. In the German sound system, the [r] is actually
an allophone of / R/. Correctly speaking, the second example is wrong as in broad
transcriptions, we are not allowed to use allophones. The correct broad transcription
of ‘Anredefall’ would be as shown in example 2.5 c. The example is from the actual
datasets I will be using later (see section 4.3).

(2.5) (a) Anrede → /a n R e: d @/

(b) Anredefall → /a n r e: d @ f a l/

(c) Anredefall → /a n R e: d @ f a l/

Broad transcriptions are less complex and usually easier to create and understand as
they contain fewer details. Narrow transcriptions present every speaker individual or
dialectal sound as exactly as possible and are consequently more difficult to create.
Narrow and broad transcriptions can diverge greatly. It is important to treat broad
and narrow transcriptions as two different kinds of transcriptions.

(2.6) /pI"kU k9"ü9f/

(2.7) [pI"khU kh9"ü9f]

Example 2.7 is a narrow (phonetic) transcription of the beginning of the Mapudun-
gun version of the short story The North Wind and the Sun. The same text is
transcribed broadly (phonemic) in example 2.6. As becomes clear in this example,
the narrow transcription is longer as it contains more different characters. In this
case it is only the [h] that is different. The problem, with especially the narrow
transcriptions, is that the transcriber still needs to define what narrow means in a
specific case. One could argue that there are as many narrow transcriptions of a
language as there are speakers of that language. This becomes tricky when given a
task to automatically transcribe text. The training data might employ one definition
of narrow, while there are texts in the test set that might follow another definition.
This is mostly important when talking about data preprocessing and cleaning.

In the example 2.5, we can also observe some differences between the IPAlpha ver-
sion and the orthographic example. In subexample 2.5 c, I marked different letters
in orange. On the orthographic side, both letters look exactly the same. On the
phonetic side, there are two different symbols used to represent the same letter.
This again shows how ambiguous pronunciation is. The IPAlpha provides a way to
dissolve some of these ambiguities as the example shows. In addition to resolving
ambiguities, phonetic transcriptions using the IPAlpha can add additional informa-
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tion that is not typically represented in orthographic text. The length marker in
/e:/ denoted by a symbol similar to the colon, is such an example. There is no
way to see the lengthening of the ‘e’ in the orthographic text, while it can easily be
observed in the phonetic text.

2.4 Phonetic features

As every language has a sound system and a set of phonemes that are part of that
system, it is absolutely necessary that we can describe a phoneme very precisely.
In computational linguistic analysis you would typically refer to a description of
a phoneme as a set of features of that phoneme. For example, I could say that I
use one feature to describe every phoneme. This one feature is if the phoneme is a
consonant or not. If it is not a consonant, it follows that it is a vowel.

(2.8) The examples show how we can describe different phonemes using features.
1 stands for: ‘is-a-consonant’. 0 stands for: ‘is-not-a-consonant’ (which
means that it is a vowel).

(a) /@/ → 0

(b) / R/ → 1

(c) /a/ → 0

With only one feature I cannot really distinguish different phonemes as becomes
clear when looking at example 2.8. In this case, I can in fact only distinguish vowels
and consonants. Therefore we need to add more features to describe phonemes
better. In linguistics it is very common to use the vowel and consonant schemes
described above to describe each phoneme. But it is also possible to use a feature
like ‘syllabic’ that tells us whether a sound can be used as a syllable on its own or
not. Or we could use a feature like ‘suprasegmental’ that tells use if a phoneme is a
suprasegmental. In section 4.4 I will introduce a specific set of features that allows
to describe many phonemes uniquely.
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CONSONANTS (PULMONIC) © 2015 IPA
 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive                       
Nasal                       
Trill                       
Tap or Flap                       
Fricative                       
Lateral 
fricative                       
Approximant                       
Lateral 
approximant                       

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

CONSONANTS (NON-PULMONIC) 
Clicks Voiced implosives Ejectives

 Bilabial  Bilabial  Examples: 

 Dental  Dental/alveolar  Bilabial 

 (Post)alveolar  Palatal  Dental/alveolar 

 Palatoalveolar  Velar  Velar 

 Alveolar lateral  Uvular  Alveolar fricative 
 

VOWELS 
Front Central  Back

Close      
     

Close-mid     
     

Open-mid    
     

Open     
Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

OTHER SYMBOLS 
 Voiceless labial-velar fricative   Alveolo-palatal fricatives 
 Voiced labial-velar approximant   Voiced alveolar lateral flap 
 Voiced labial-palatal approximant   Simultaneous and 

 Voiceless epiglottal fricative Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

 Voiced epiglottal fricative 
 Epiglottal plosive 

 

 

SUPRASEGMENTALS 
 Primary stress 
 Secondary stress 
 Long  

 Half-long  

 Extra-short  

 Minor (foot) group 

 Major (intonation) group 

 Syllable break  

 Linking (absence of a break) 
 

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g. 
 Voiceless    Breathy voiced    Dental  

 Voiced    Creaky voiced    Apical  

 Aspirated    Linguolabial    Laminal  

 More rounded    Labialized    Nasalized  

 Less rounded    Palatalized    Nasal release  

 Advanced    Velarized    Lateral release  

 Retracted    Pharyngealized    No audible release 

 Centralized    Velarized or pharyngealized  

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

 Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root  

 Rhoticity    Retracted Tongue Root  
 

TONES AND WORD ACCENTS 
LEVEL   CONTOUR
or Extra  or Risinghigh 
  High Falling
  Mid High

rising
  Low Low

rising
  Extra Rising-

low falling
Downstep  Global rise 
Upstep  Global fall 

 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015) 

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols) 
 

 

Figure 1: This is the full IPA chart, last updated in 2015
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3 Computational Models to Create

Phonetic Transcriptions

In this chapter I present the technical background that is needed to understand how
we can create phonetic transcriptions using computational models. I will first set
the basis and dive into general architectures and frameworks that are commonly
used and then present current state-of-the-art models. In chapter 2, I have pointed
out that there are many different written representations of language. In the first
section of this chapter, I am going to explain how a computer represents language
and different scripts.

3.1 The Unicode Standard and the International

Phonetic Alphabet

Computational representations of languages are very important as no matter what
task we try to solve, we need to understand how written text is processed by a
computer. For the present thesis, this topic is relevant for multiple reasons:

1. The IPAlpha contains many special characters and many diacritics.

2. The language data is available in many different scripts.

It is crucial that all data files, be it phonetic or ‘normal’ scripts, are formatted and
read correctly by any machine that needs to process them. There exists a standard
that is widely used to computationally represent written text. This standard is
called The Unicode Standard, in the following referred to as simply Unicode1.

When it comes to representing letters or signs in a machine-readable format things
get very tricky, very quickly. In order to understand this fundamental problem it is
necessary to understand the basic concept behind Unicode and how characters are
represented behind the scenes. My explanations in the following are mainly based on

1https://unicode.org/standard/standard.html
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a book by Moran and Cysouw [2018] who present an overview of important Unicode
topics for linguists.

As discussed in chapter 2, there are many different kinds of what I referred to as
letters or signs. From now on, I will use grapheme to denote the smallest meaning-
ful element of any writing system except when I am referring to a specific script.
Grapheme does not imply any specific writing system nor does it get into the way
of Unicode terminology. If I wish to distinguish the Unicode specifications I will use
the correct Unicode term as described in this section.

Just as a human writer must be able to uniquely identify each different grapheme, so
must a computer. In Unicode, graphemes are mapped to unique numbers that can
be rendered differently depending on the font and the context. There are different
stages of representation until a grapheme can be represented on screen:

CODE POINT A unique numerical, non-negative value usually expressed as a hex-
adecimal number (U+0000). Allows one-to-one mapping between characters
and codes. Each code point has a set of properties attributed to it. Properties
like the script, uppercase or not, etc.

CHARACTER An abstract representation of the shape of a grapheme. Can in theory
not be represented visually, as this includes a font. A Unicode character is not
the same as what we would call a grapheme in different writing systems. It is
not possible to visually perceive a character.

GLYPH The rendered and therefore visual representation of one or more Unicode
characters that can be identified by its code point(s). A glyph is rendered in
a specific font in a specific context. For me as a user, two glyphs can look
completely different. Still, both glyphs might have the exact same code point
and thus Unicode treats them as the exact same character.

(3.1) (a) e : Unicode code point U+0065

(b) e : Unicode code point U+0065

In example 3.1, both subexamples represent the same Unicode code point.
Their glyphs look different because it is a different font that is used to represent
the same character. Sometimes one character is represented as two glyphs. It
is important to note here, that the exact visual representation of a glyph is
not at all defined by its code point. This means that the exact same glyph can
represent more than one code points. This happens sometimes in the IPAlpha.
An example is the post-alveolar click:
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(3.2) (a) ! : this glyph represents an exclamation mark with Unicode code
point U+0021.

(b) ! : the same glyph represents a post-alveolar click with Unicode
code point U+01C3.

It is striking that both glyphs in example 3.2 look exactly the same. This
ambiguity becomes important when, for example, I want to count the different
characters in a text. Counting the glyphs will result in a different number than
counting the code points.

Unicode code points are often organized in blocks. Blocks are not needed by Unicode
but they help users to organize characters that are related into larger groups. For
example: all letters of the Latin alphabet are represented by a code point. Instead
of just using any random code point for all letters it makes sense to use consecutive
numbers as code points. Then I can say that all basic Latin letters have a code point
in the range of U+0000 to U+007F. Those blocks are helpful although not always
consistent. The IPAlpha is represented in a basic block but many IPAlpha symbols
are actually found in other blocks.

Further confusion often arises from the fact that one human-perceived grapheme is
sometimes represented as more than one code point:

GRAPHEME CLUSTERS A grapheme cluster is one visual grapheme that is repre-
sented in Unicode as more than one code point. This is the case for diacritic
marks. Diacritic marks are characters that cannot really exists without their
base character. But they have their own code point just as their base char-
acter has its own code point (see examples 3.3 b and 3.3 c). A problem with
grapheme clusters is that some diacritic marks are underspecified. This means
that when we want to split a text into clusters, we do not always know if
a diacritic mark belongs to the left or the right base character. This is the
case for many characters in the IPAlpha. Unicode does not specify these but
leaves it to the user to create tailored grapheme clusters. An example is the
superscript aspiration /h/. It is typically written after the respective aspirated
character (/ph/), but there is no reason why it could not be written before the
respective character (/hp/), except for convention.

PRECOMPOSED CHARACTERS Note that sometimes, grapheme clusters can be pre-
composed and the combination of those two or more characters is assigned a
new code point. These clusters can be problematic if in a specific context, the
graphemes should not be clustered but read separately. An example is the
German ‘ä’, illustrated in example 3.3.
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(3.3) This example shows a precomposed character and the different
characters it is made of. Note the different code points. If the
character was not precomposed, it would simply have two code points
similar to sub-example (d).

(a) ä : U+00E4

(b) a : U+0061

(c) ¨ : U+00A8

(d) e
˚

: U+0065 U+0325

An additional challenge is that of picking the right font. Our standard font format
can only contain about half of all the Unicode code points. It is therefore simply
not possible to display the entire set of Unicode characters with one font. Many
problems encountered with displaying writing systems are somehow connected to
the font rather than Unicode itself [Moran and Cysouw, 2018].

Segments library Moran and Cysouw [2018] present a Python library called
segments2 that can be used to process phonetic text. It includes a method to segment
IPAlpha strings into grapheme clusters. Those grapheme clusters are designed in a
way such that they represent sound units better. Example 3.4 illustrates how this
segmentation looks like. Different segments are separated by white space.

(3.4) /j u: z I
>
dZ/

In the IPAlpha there exists a length marker to denote vowel lengthening. The vowel
and the length marker are displayed as one segment. Characters connected by a
tie bar are displayed as one segment as well. This segmentation is adapted to the
actual sounds as it is not possible to pronounce a vowel and the length marker as
a separated sound. However, from a Unicode perspective those are both different
code points. Later when processing the data I will make use of this library.

Unicode normalization forms

The above explanations make clear that there are considerable differences in what a
human reader perceives and in what happens in the background. Unicode therefore
provides normalization forms that can help to process written data. Unicode pub-
lishes extensive explanations along with their standards which also includes those

2https://pypi.org/project/segments/
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normalization forms. I will therefore not explain everything in full detail as this is
done already online3.

There are two important aspects to normalization. One is that we can have decom-
posed or composed characters. The second aspect of normalization is that we have a
compatibility form and a non-compatibility form. Based on these two aspects there
are four normalization forms:

NFD : Canonical Decomposition

NFC : Canonical Decomposition, followed by Canonical composition

NFKD : Compatibility Decomposition

NFKC : Compatibility Decomposition, followed by Canonical Composition

What is important is that each normalization form results in very different behaviour
if a text is processed. It is not necessarily visible to the human reader what the nor-
malization form of a text is. All of this happens at the level of internal representation
of a computer which means that it happens at the level of Unicode code points. In
a decomposed string, we split the characters into their individual components. This
means that characters with diacritics are split up into two or more characters. This
again means that a character that is assigned one code point in a composed nor-
malization form can in a decomposed form have more than one code points. As this
is very difficult to understand on a abstract level, figures 2 and 3 show what each
normalization form changes about the characters and code points.

Figure 2: This figure4 illustrates what composed and decomposed normalization
forms change about the character representation. The code points are
below the glyphs. We can see that in the decomposed version (NFD) the
character is split up into its components. In the composed form (NFC) the
characters are not different from the original source character. This is not
always the case as figure 3 illustrates. That there is no difference between
source and composed version is because we cannot compose a character
that exists of one code point only.

3https://unicode.org/reports/tr15/
4https://unicode.org/reports/tr15/images/UAX15-NormFig3.jpg
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In a composed normalization usually precomposed forms are kept. This means that
some parts can be similar or the same to the decomposed version. If for a character
there exists a precomposed version, the character is shown precomposed and not
split up into its individual parts (see figure 3, first example).

If a normalization is according to compatibility decomposition, this means that any
formatting is removed such that we receive the underlying character in its origi-
nal form. In figure 3, the second example, the superscript character is displayed
differently in the two forms using compatibility decomposition (NFKD and NFKC).

Figure 3: This figure5 illustrates the difference between all four Unicode normaliza-
tion forms. The code points are below the glyphs.

How exactly these normalization forms work is not always equally important, but
what is absolutely crucial is to make sure that when characters are compared or
counted, the same normalization form is used. This is because when counting char-
acters, we do not count the human perceivable glyphs, but Unicode code points.

In Python, it is possible to convert a text that is read from a file in a normalization
form into another normalization form. None of this process is visible for the human
reader. Similarly, it is not possible for a human reader to see what the normalization
form of a text is. This is because computational text representations depend on
Unicode code points. But what the human reader perceives are the individual glyphs.
And has I have pointed out, glyphs have nothing to do with the underlying Unicode
representation.

Understanding Unicode and its normalization forms is the first step to be able to
create computational models for phonetic transcriptions as we need to pass text data
as input to the model. In the following section, I will focus on the actual model that
performs the conversion from orthographic text to phonetic text.

5https://unicode.org/reports/tr15/images/UAX15-NormFig6.jpg

22

https://unicode.org/reports/tr15/images/UAX15-NormFig6.jpg


Chapter 3. Computational Models to Create Phonetic Transcriptions

3.2 G2P as sequence-to-sequence task

No matter what computational model I use, creating phonetic transcriptions can
be referred to as a sequence-to-sequence (seq2seq) task. There are many other
seq2seq NLP tasks whose goal it is to transform a sequence of symbols into another
sequence of symbols. seq2seq is not only a type of task but also an architecture for
computational models that are build to solve seq2seq tasks. Further down, I will
introduce this architecture. Machine translation is a very well-known seq2seq task
[Rao et al., 2015]. In machine translation we transform a sequence of words in one
language into another sequence of words in another language. In the present case
of creating phonetic transcriptions, the input sequence is a sequence of graphemes
in any script. The output sequence is a sequence of phonemes6 written in IPAlpha.
This process is typically referred to as grapheme-to-phoneme (G2P) conversion.
There are a few problems and characteristics of seq2seq tasks that are important
also for G2P conversion:

• The input and output sequences are not always of the same length. It is
difficult to align input and output which means to map one or more input
grapheme to one or more output phoneme. Not all systems rely on aligning
input and output but often it is needed to analyse the results. For example to
visualize which grapheme(s) is/are mapped to which phoneme(s).

• Due to the open-vocabulary situation and the impossibility to cover all possible
words, all systems must be able to deal with rare and unseen words [Rao
et al., 2015; Bisani and Ney, 2008]. Open-vocabulary in this case means that
a language develops and changes and the set of possible words is therefore
infinite.

• Most of the research done in this area is limited to the English language. This
is not uncommon in NLP research. The availability of English data resources
and the unavailability and struggles to find data in other languages heavily
influences this research.

There exist powerful seq2seq models that can deal with the first point mentioned
in the listing above. Some but not all of the models I will present below can deal
with the second point mentioned above while the third point does not depend on
the model but on the availability of language resources. However, there are compu-

6Please refer to section 2.3 in order to understand the terminological implications of phoneme.
As it is common in research, I will stick to the term phoneme although strictly speaking it is
not always correct. Phoneme in this case just refers to any symbol that is used to represent a
sound.
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tational models that can deal better with only little available data as I will explain.

3.3 Computational models for G2P

In the following, I am going to explain the most important model types. Some-
times, it is possible to use more than one model type in combination to exploit the
advantages of each model.

3.3.1 Look-up dictionary

The simplest approach to G2P is a look-up table that allows me to store a grapheme
sequence (typically a word) and a phonetic transcription of that word. If I’d like to
transcribe a specific word, I can search the table for that word and get its phonetic
transcription. Such a look-up-table, which is also called a dictionary, is expensive
to create and has a limited coverage as it requires to add each grapheme-phoneme
pair manually. Although such a system is no longer useful on its own it can still be
used in addition to other, for example, statistical models [Bisani and Ney, 2008].

3.3.2 Rule-based models

The first systems to create phonetic transcriptions of text were rule-based systems.
Although rule-based systems are outperformed by more recent neural models [Ashby
et al., 2021; Gorman et al., 2020], I will introduce them as they were an important
step towards G2P modelling. Additionally, rule-based models can be used together
with other models to reach a better performance. Rule-based transcription models
are built using linguistic pronunciation rules. For example, if in a language a certain
word initial grapheme is always pronounced the same way, we can store a rule that
states that if that grapheme is encountered word initially it should be transcribed
using a specific phoneme. While this is a rule on grapheme level, there exist also
rules on word or sub-word level [Mortensen et al., 2018]. In order to be able to
create such a system, one needs to collect or create the pronunciation rules first
which needs a lot of linguistic expertise. Another drawback of such systems is that
they might fail when presented with unseen or rare words if rules are at the word
level [Bisani and Ney, 2008].
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3.3.3 N-gram models / statistical models

N-gram models or statistical models were used before neural models took over the
field. These are sometimes referred to as traditional models. Statistical models
need an alignment of graphemes and phonemes. This means that they need to map
grapheme(s) to corresponding phoneme(s). This is needed because one grapheme
can be realized as multiple phonemes and vice versa. It is not possible to sim-
ply have a one-to-one alignment. The necessity of grapheme-phoneme alignment is
one reason why statistical models were outperformed by neural models. The main
intuition about statistical models is that they, in some way or other, try to statis-
tically model the relationship between graphemes and phonemes. A very common
statistical model is the joint-sequence model. Other names for statistical models en-
countered in the research are finite-state transducers (FSTs) or weighted finite-state
transducers (WFSTs).

3.3.4 Neural models

Neural G2P models have been reported to outperform most other models [Lee et al.,
2020]. The most important neural models will be introduced in the following. As
I have pointed out earlier, G2P modelling is a seq2seq task that can be solved
by seq2seq models. Neural seq2seq models include an encoder and a decoder or
more than one of each depending on the exact implementation. The encoder first
processes the entire input sequence. Once the encoder is done, the output of the
encoder is passed to the decoder as input. Then the decoder processes the sequence
and outputs the final sequence. Figure 4 shows the basic structure of the encoder-
decoder architecture. What makes such a model architecture powerful is that they
can map an input sequence to an output sequence of a different length and different
type which is exactly what we need for G2P conversion. As encoder and decoder we
can use different types of reccurent neural networks (RNNs) which I present below.

RNN The important fact about RNNs is that they process the input sequen-
tially. In our case, this means that a RNN performs a specific computation on each
grapheme of the input sequence. It can only process the next input grapheme once
it is done with the preceding grapheme. Instead of only outputting something for
each grapheme, a hidden representation is passed on to be processed together with
the next grapheme. This sequential processing is crucial as it means that the model
has information about all graphemes preceding the grapheme that is currently pro-
cessed. The output of a RNN is, put very plainly, just a numerical representation of
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Figure 4: This figure shows how the basic encoder-decoder or sequence-to-sequence
architecture looks like. The colored RNN boxes represent the computa-
tional model that is used as the encoder and decoder. The input sequence
x is processed token by token by the model. The output of the encoder
is passed to the decoder which outputs an output sequence y, again token
by token. Note that the input and the ouput sequence are not of the same
length.7

the input sequence. This is typically called a hidden representation. Figure 5 shows
a basic RNN model.

A special kind of RNN is the LSTM. LSTM means long short-term memory. As their
name suggests they include what we could call a memory. Instead of just including
a representation of the preceding graphemes when processing the next grapheme in
the sequence, LSTMs can more flexibly decide what information is added and what
information should be forgotten [Olah, 29.01.2022; Kostadinov, 12.02.2017]. LSTMs
are used a lot for G2P conversion [Lee et al., 2020; Hammond, 2021; Gautam et al.,
2021; Rao et al., 2015]. Neural transducers are also a variation of RNNs. When
neural transducers are used as encoder and decoder in a seq2seq architecture they
can start with the decoding step before all of the input sequence is processed by the
encoder. This allows for more flexibility.

Transformer Transformers are seq2seq models as well. A central concept and
what makes transformers powerful models is their attention mechanism. Attention
allows transformers to model dependencies between tokens of one sequence. For

7https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-seque
nce-model-679e04af4346
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Figure 5: The figure illustrates how a single RNN processes an input sequence. x0

- xt denotes the input sequence. Each xn is one grapheme in our case.
We can see that a representation of each segment xn is passed to the next
block which processes the next segment xn+1. h0 - ht denotes the output
sequence of the RNN. We can see that there is one output segment for
each input segment. A represents a computation of the model which is a
mathematical function.8

example: if one grapheme is pronounced differently depending on another grapheme
in the sequence, the transformer can model this dependency using the attention
mechanism. In addition, it can also model dependencies between the input and
the output sequence. This means that while creating the output sequence, the
transformer has access to the input sequence. This is possible because transformers
do not have to process the input sequence sequentially like RNNs or LSTMs. They
can process the entire input sequence in parallel [Alammar, 03.01.2022].

3.4 Training & evaluation

For the training of (neural) models, it is necessary to follow a specific training
regimen. The data that is used to train the model is typically split into three parts:

• Training set: The training set is the largest part of the dataset. Typically it
is about 80% or more of the entire data. When training a model this is what
we pass to the model such that it can learn how to solve the task in question.

• Development or validation set: The development or validation set consists
of about 5% - 15% of the entire data. It is used to evaluate the model perfor-
mance during the training process. This means that we let the model predict
its solutions for the data in the validation set and evaluate it by comparing
it to the correct solutions. This procedure gives us an idea of how and if the

8https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202c
3945f3
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model improves or not.

• Test set: The test set is often of the same size as the development set and
contains about 5% - 10% of the data. This set is exclusively used to test the
model once it is trained. This is necessary as we want to avoid that the model
sees the entire data. Using a test set we can ensure that the model actually
abstracted some rules from the training data and did not just learn how to
reproduce the training data.

Evaluation metrics

No matter what model is used, we need to evaluate it appropriately. For neural
models this evaluation is performed on the test set. This means we let the model
produce output phonemes for a set of input grapheme sequences and then evaluate
the performance of this output. In the case of G2P conversion we have a correct
reference transcription and a system output (the model’s predictions). We can
compare the system output to the reference and then the difference can be quantified
and given a score. The most common metric to evaluate G2P conversion is the word
error rate (WER). The lower the score, the better the model. If the WER is 0, this
means that both texts, the sytem’s phoneme sequence and the reference phoneme
sequence, are exactly the same. The idea behind the score is that we can capture
the cost that it takes to transform the system output into the reference phoneme
sequence. Doing this we can find out how different the system output and the
reference solution are. The following formula is used to calculate the WER:

WER =
S + I +D

N
(3.5)

In equation 3.5 S stands for substitution, I for insertion, D for deletion and N

denotes the total number of words in the reference sequence. Those numbers can
be calculated by using an algorithm to get the edit distance. It is quite common
to multiply the resulting number with 100 [Gorman et al., 2020]. A WER of 0.5
or 50 indicates that about half of the two phoneme sequences is overlapping. Note
that the WER can be more than 100. This happens if, for example, the are a lot of
additional insertions or deletions in the system text.

If we would like to evaluate the performance of our model based on individual
characters, the score is called character error rate (CER). It is calculated in the exact
same way as the WER, but instead of words, everything is calculated on character
basis. In the phonetic transcriptions setting, the CER is typically replaced by the
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phone error rate (PER) to match the correct terminology. The calculations are not
changed. In a multilingual setting, the same model is sometimes used for different
languages. In such cases it is common to use a macro-averaged WER or CER. This
means that the sum of the scores for each language is divided by the number of
languages [Leung, 24.6.2021].

In the case of G2P conversion, the WER actually just reflects the rate of wrongly
predicted words, as one sequence consists of only one word. It is therefore just 1
minus the accuracy. The accuracy is the rate of the correctly predicted words (which
means we divide the number of all correctly predicted words by the total number of
words). It is important to note, that the WER and the PER assess slightly different
things. If each word has exactly one wrong character this means that the WER
would be 100 as all words are predicted wrongly. Now, if the words are really long,
the PER score would be very good compared to the really bad WER. For example,
one wrong character out of 10 is not very bad as this gives a PER score of 10. If
the words are rather short, for example only 3 characters, the PER of 66 would get
worse as well but the WER would just stay the same. So, when analysing the results
it is important to pay close attention and possibly perform an error analysis if the
results diverge a lot.

3.5 State-of-the-art G2P models

The Special Interest Group on Computational Morphology and Phonology (SIG-
MORPHON)9 regularly organizes shared tasks concerned with morphology and
phonology. For the years 2020 and 2021 they organized a G2P conversion task [Ashby
et al., 2021; Gorman et al., 2020]. The tasks represent a first attempt at creating
benchmarks for multilingual G2P conversion. Although there is other research on
G2P, many recent publications have been made within the SIGMORPHON shared
tasks. In the next sections, I will summarize the results and insights from G2P
research with a focus on those shared tasks. As they covered so many different
languages, I will use their results to compare my results to. Tables 3 and 4 list the
models and their results from those two tasks.

9https://sigmorphon.github.io/

29

https://sigmorphon.github.io/


Chapter 3. Computational Models to Create Phonetic Transcriptions

3.5.1 Model architectures

In section 3.2, I explained the most important theoretical basics. Now, I familiarized
myself a bit more with strategies that work well in practice and what some concrete
problems are. The methodologies mentioned below are for the most part task-
agnostic. This means that they often improve results on most NLP tasks and are
not specifically developed for the G2P task.

Ensembles Many models that are used and achieve peek performance for G2P
modelling are ensemble models. An ensemble is essentially just a pool of different
models that are trained on the data with different settings or they are completely
different models. The way such a model can be used for inference is that all of the
models process the input and present their predicted results. Out of all possibilities,
one prediction will be chosen that is then the final model output. In order to get the
final output, an ensemble needs some kind of decision algorithm to output the best
result. A disadvantage of ensembles is that the models need a lot of storage. Also,
it is to some extent a bit of a brute-force approach as it could lead to preferring
quantity over quality.

Learning edit actions Instead of learning to output a phoneme sequence, a
model can also learn how to edit the input sequence in order to get the output
sequence. Such a model would then output an edit sequence which can be applied
to the input sequence in order to obtain the final phoneme output. The model
therefore learns to create sequences of edit actions. The edit actions are typically
‘insert’, ‘substitute’ and ‘delete’. The problem with this approach is that there are
many possible sequences of edit actions that produce the same result. For example, it
is always correct to delete every unit in the input sequence and then insert every unit
from the output sequence. But this does not tell us anything about how graphemes
and phonemes relate. To this end, we would also want to use substitution actions
to see whether one grapheme is always substituted by the same phoneme. Imitation
learning is proposed as a solution for this problem which is a type of reinforcement
learning. Easily put, the idea is that the model learns to imitate the behaviour of
an expert (for example, a human expert that provides correct samples of the task in
question) [Lőrincz, 19.9.2019]. The model can then learn that certain edit sequences
are more often used than others.

Multi-task learning What has worked well for G2P models is to use multi-task
learning. This means that the model is not only trained on one task but on multiple
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tasks that are related. In the present case, a model was trained on phoneme-to-
grapheme conversion as well [Gorman et al., 2020].

Neural models Not surprisingly, models that achieve peek performance are al-
most exclusively neural models [Gorman et al., 2020]. Due to their ability to process
increasingly longer sequences and the above discussed techniques like attention, they
are ideal for almost all NLP tasks. What type of neural model is chosen also de-
pends on the amount of data available. Transformers are suggested to work better
for larger datasets, while they are outperformed by LSTMs on medium-size datasets
(a few thousand training pairs) [Gorman et al., 2020].

3.5.2 Data preprocessing

A model is only as good as the data that is used to train it. While this is a very
basic paradigm, in reality assuring data quality is not always easy. In this section,
I list a few strategies that are used to preprocess and prepare G2P data and to deal
with too little available data.

Data quality Authors mostly include a section about their preprocessing and
what should be done to ensure high quality datasets. The list given below is an
incomplete list of potential problems and measures taken in different settings for
G2P data [Ashby et al., 2021]:

• Exclusion of words with less than two Unicode characters or less
than two phone segments: If the words are too short, the model cannot
learn dependencies between graphemes or phonemes. It depends on the lan-
guage and the typical word length if such a preprocessing makes sense.

• Separation by script: There is no obvious connection between the different
scripts of a language and its pronunciation. It makes sense to treat different
scripts as different languages.

• Exclude foreign words with foreign pronunciations: Foreign words in
a language with their original foreign pronunciation can add phonemes that
are not in that language’s phoneme inventory. If foreign words were to be
included it would make sense to include a pronunciation adapted to the actual
language’s phoneme inventory.

• Words with multiple pronunciations in word lists: It is very common in
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some languages that the same grapheme sequence has a different pronunciation
as we have seen in section 2.2. While it is possible to exclude duplicates it
might also be possible to add part-of-speech (PoS) tags or other linguistic
information to distinguish at least some words with more than one possible
pronunciation.

• Consistent broad transcriptions: With broad transcriptions it is impor-
tant to be consistent and not use allophones. Ashby et al. [2021] did this
specifically for Bulgarian. They identified allophones of a language and re-
placed them by their respective phoneme.

• Linguistic variation and processes: Some transcriptions include examples
for monophthongization which is an ongoing linguistic process but should not
be part of a dataset representing a standard variation. Monophthongization
just means that diphthongs are replaced by monophthongs which are just
single vowels. Ashby et al. [2021] dealt with monophthongization by choosing
the longer of two transcriptions as this logically excluded the monophthonged
version. This does of course only work if there is more than one pronunciation
available. The idea behind this type of preprocessing is that G2P modelling
should focus on current standard variations.

• Tie bars: Some languages have inconsistent use of tie bars. This can be
corrected by replacing all inconsistencies by the tie-bar-version. It is also
possible to exclude the tie bars at all.

• Errors in the transcriptions: Gautam et al. [2021] noticed many errors
in the WikiPron English data. They identified errors by looking at the least
frequent phonemes and then checked the grapheme-phoneme pairs where those
phonemes occurred in. As the phoneme inventory of a language is often known,
it can be used to check the phonemes in the datasets and identify uncommon
ones.

Especially the task of finding errors in the transcriptions is quite tricky. It requires
a lot of knowledge about the phonology and phonetics of a specific language.

Low-resource setting Apart from a few well-studied examples, for most lan-
guages there is only little data available. It is therefore highly interesting and
important to find solutions of how to deal with lack of data. Hammond [2021]
presented a system focusing on data augmentation methods. The primary goal of
their approach was to test how successful a minimalist data augmentation model
would be, knowing it would most probably not outperform any other models. They
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identified two approaches that might improve low-resource models. The first one is
to use as much as possible of the development set for training. The second is to
train all languages together differentiating the languages only by a tag added to the
word representations. The results for these strategies were not very clear as both of
these strategies were successful for some languages but did not improve the results
for others.

Yu et al. [2020] proposed a data augmentation model for low-resource settings. The
methodology applied in their approach is ensemble learning combined with a self-
learning strategy. They used their ensemble to make predictions on unlabelled data.
This newly created data is then added to the training data and the models are
trained for another epoch on the extended data. This strategy worked well and
produced good results.

Results in a low-resource setting are still bad when only using around 800 samples for
training [Ashby et al., 2021]. More research needs to be done in data augmentation
techniques and improving the systems to cope with only little available data.

Reduce vocabulary size Some syllabary languages like Korean allow the de-
composition into smaller units that make up the signs. Many other languages that
do not use the Latin alphabet allow to be written with Latin letters. If a reduction
of the character vocabulary size is possible in one of these ways, it almost always
improves performance as smaller vocabulary sizes are easier to handle for computa-
tional models [Gorman et al., 2020].

3.5.3 Error and result analysis

In this section I will list different types of analyses that have been performed by
different authors on a trained model to improve future research.

Broad and narrow transcriptions In the SIGMORPHON tasks, there are great
differences in the performance of models for different languages. One possible ex-
planation is that the datasets were a mix between broad and narrow transcriptions.
As narrow transcriptions are a lot more detailed, it can be argued that this is more
difficult for any system [Ashby et al., 2021]. This assumption still needs to be anal-
ysed more closely. This differing performance for various languages calls for the
question what makes a language hard to pronounce. For example: for Georgian all
models from the SIGMORPHON task reached a WER of 0.0 although the provided
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training set only contained 10,000 samples. Interestingly enough, the WER for En-
glish which was trained on 42,000 samples reached one of the highest WERs. This
suggests that English is more irregular to pronounce than Georgian. That a model
trained on considerably less data for one language compared to a model trained on
much more data for another language performs a lot better is a strong indication
that one language is easier to pronounce.

Linguistic error analysis Lo and Nicolai [2021] chose to perform an error analy-
sis and try to minimize the frequent errors of a model in a multilingual low-resource
setting. The analysis showed that often the model gets vowels and diacritics wrong.
They extended the model in such a way that wrong vowel and diacritics predictions
are punished more than other errors. Compared with the unchanged model, this
extended model reached a better performance for some languages. The predictions
with their model shows an improvement in vowel prediction. A further analysis
showed that many errors still happen with vowels. Vowels get often confused with
similar vowels. Their conclusion is that many of these errors make sense in a lin-
guistic sense. Linguistically speaking, it is understandable that vowels are confused
with other vowels as vowels tend to appear in similar positions (think of the syllable
patterns explained in section 2.1).

Another type of linguistic analysis that can be performed is to analyse the data and
check for uncommon pronunciations or language internal ambiguities. If a model
produces a lot of wrong output because of ambiguities or uncommon data, then this
is not necessarily the model’s fault but just a language inherent inconsistency. As
languages are generally ambiguous, this type of analysis is very insightful to find out
about real errors of the model. If a model makes a lot of mistakes although there
is no underlying language inherent ambiguity this is a real mistake of the model. It
should be possible for a model to abstract a transcription rule from the data if there
are no ambiguities. Ashby et al. [2021] did such an analysis for the SIGMORPHON
2021 task which showed that many errors are due to language internal ambiguities.

Include linguistic information What has been suggested by Gorman et al. [2020],
is to make use of phonetic resources or rule-based systems to improve the quality
of current models. The advantage of such an approach is that it is specifically tai-
lored to the problem at hand and not at all task-agnostic. Makarov and Clematide
[2020] confirm this suggestion as they performed an error analysis which showed
that including linguistic information such as PoS-tags might be useful.

As is always the case with such research there are many different aspects that can
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be tuned in order to improve model results. For my thesis I will have a closer look
at how we can use phonetic features to improve models.
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ISO396-3 BS20 DeepSPIN20 IMS20 BS21 CL21 UBC21 DP21

LSTM transformer pair n-gram CL UBC-1 UBC-2

WER PER WER PER WER PER WER PER WER PER WER WER WER WER

adyB 28.00 6.53 28.44 6.49 32.00 7.56 24.673 25.00 5.79 22.00 22.0023 25.00 22.00

bulA 31.11 5.94 34.00 7.89 41.33 9.05 - 22.22 4.85 18.30 18.806

cym (wel_sw)B 10.00 10.001 13.00 12.00

ell (gre)B 18.89 3.30 18.89 3.06 21.78 4.05 - 18.67 2.97 21.00 20.0013 22.00 22.00

eng(_us) 41.94 37.43

fra (fre)A 6.22 1.32 6.89 1.72 13.56 3.12 5.113 6.89 1.60 8.50 7.50456

hbsA 32.10 35.37

hin 6.67 1.47 9.56 2.40 12.67 4.05 - 5.11 1.20

hunA 5.33 1.18 5.33 1.28 6.67 1.51 - 5.11 1.12 1.80 1.0067

hye (arm_e)A 14.67 3.49 14.22 3.29 18.00 3.90 - 12.67 2.94 7.00 6.407

iceB 10.00 2.36 10.22 2.21 17.56 3.62 - 9.33 2.04 12.00 10.0013 13.00 11.00

itaB 19.00 31.003 20.00 22.00

jpn(_hira)A 7.56 1.79 7.33 1.86 9.56 2.07 4.894 5.33 1.26 5.20 5.007

kat (geo)A 26.44 5.14 28.00 5.43 37.78 6.48 - 24.89 4.57 0.00 0.004567

khmB 34.00 32.0013 31.00 28.00

korA 46.89 16.78 43.78 17.50 52.22 15.88 24.0013 26.22 4.38 16.30 16.204

lavB 55.00 49.0023 58.00 49.00

lit 19.11 3.55 20.67 3.65 23.11 4.43 - 20.00 3.63

mlt(_ltn)B 19.00 12.001 19.00 18.00

nld (dut)A 16.44 2.94 15.78 2.89 23.78 3.97 - 13.56 2.36 14.70 14.707

rumB 10.67 2.53 12.00 3.62 11.56 3.55 9.783 10.22 2.23 10.00 12.003 14.00 10.00

slvB 49.00 50.001 56.00 47.00

vieA 4.67 1.52 7.56 2.27 8.44 1.79 0.892 1.56 0.48 2.50 2.0057

Table 3: The table lists the SOTA models from the SIGMORPHON tasks in 2020 and 2021. Superscript: model numbers. Numbers in
bold: best WER. Languages in bold are in the TeDDi Sample. A: 10,000 training samples in 2021. B: 800 training samples in
2021. Model explanations: table 4.



Model name Authors Model Architecture

CL21 SIG21:
Clematide
and Makarov
[2021]

These are seven models in total. LSTM-based neural
transducer with pointer network-like monotonic hard at-
tention trained with imitation learning. All models 1-7 are
majority-vote ensembles with different number of models
(5-30) and different inputs (characters or segments).

UBC21 SIG21: Lo and
Nicolai [2021]

The authors analysed the errors of the baseline model at
the task and extend it by adding penalties for wrong vow-
els and wrong diacritics. Errors on vowels actually de-
creased. UBC-2 achieved the best macro average for low-
resource languages in 2021. UBC-1 included syllable pre-
diction which did not improve the results.

DP21 SIG21: Gau-
tam et al.
[2021]

Dialpad-1: Majority-vote ensemble consisting of three dif-
ferent public models (weighted FST, joint-sequence model
and a neural seq2seq model), two seq2seq variants (LSTM
and transformer) and two baseline variations.

BS21 Ashby et al.
[2021]

The baseline in 2021 is a neural transducer trained with
imitation learning similar to a model submitted in 2020
[Makarov and Clematide, 2020]. As they are so similar, I
did not include the model twice, but only the newer one.

DeepSPIN20 SIG20: Peters
and Martins
[2020]

DeepSPIN-2,-3,-4: Transformer- or LSTM-based seq2seq
models with sparse attention. Add language embedding
to encoder or decoder states instead of language token.

IMS20 SIG20: Yu
et al. [2020]

IMS: Self training ensemble of one n-gram-based FST and
three seq2seq models (vanilla with attention, hard mono-
tonic attention with pointer, hybrid of hard monotonic at-
tention and tagging model).

BS20 Gorman et al.
[2020]

The baseline for the task in 2020 consisted of three different
model types. An LSTM, an transformer and a pair-n-gram
model that is based on a weighted FST. All of them were
outperformed by other models except for Lithuanian. The
LSTM performed best among these three.

Table 4: This table presents the state-of-the-art G2P models from the
SIGMORPHON tasks in 2020 and 2021 which will be important to com-
pare my own results to. More explanations of the models are found in the
cited papers. The results for these models can be found in table 3



4 Experiments: Data Collection and

Preprocessing

The first practical part of this thesis is concerned with data collection. Although
phonetics is an important subarea in linguistics, phonetic transcriptions in the form
of continuous text are hard to find. If there are any transcriptions available, it is
not always possible to use them as-is. In the following, I outline the different data
types which are available and the different strategies that are used to convert the
data into one well-formatted corpus. All the data that I collected and used for this
thesis can be found on my public GitHub repository1.

There is quite a famous set of phonetic texts which is a collection of short stories
called The North Wind and the Sun. Those stories were the starting point for
my search for data. The reason for this is that the short stories are available in
many different languages. As I aim at creating a multilingual phonetic corpus, the
availability of data in many languages was one of the key criteria to choose the
datasets. Not all languages are relevant for my thesis. In section 4.2, I will present
the languages that are relevant for my thesis and why those languages are relevant.

One of the first things I have noticed while collecting my datasets is the abundance
of different codes and names to refer to the languages. I have decided to use the
ISO 396-32 convention, not to be confused with the ISO 396-2 convention which
uses sometimes completely different codes and does not cover all of my languages.
ISO 396-3 distinguishes some more dialects and variants. This also means that
throughout my research I paid close attention to what language variant was actually
referred to. For some cases, it seems that there exists a dataset for a language which
is relevant for my thesis, but actually it is not the same variant that I am looking
for. To make sure I pick the same code and language, I used the Glottolog database
as a reference3.

1https://github.com/theDebbister/masterThesis
2https://iso639-3.sil.org/code_tables/639/data
3https://glottolog.org/glottolog
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4.1 Transcription sources & formats

Phonetic transcriptions of various languages are available from different sources in
different formats. From what I have found out in my research, phonetic transcrip-
tions are available as either full texts or word lists.

Full Text For the task of G2P conversion, phonetic transcriptions in the form of
fully transcribed texts would be ideal. As became clear, it is hardly possible to find
full text phonetic transcriptions. There is plenty of material describing how different
languages can be transcribed but those rarely contain fully transcribed text. If they
do, it is mostly limited to one or a few sentences. The only fully transcribed texts
are the NWS short stories which are described in section 4.3.2.

Pronunciation Dictionaries Another data type I found quite often are word
lists. Those are sometimes referred to as pronunciation dictionaries. However, pro-
nunciation dictionary often means that there are words mapped to an audio repre-
sentation of that word which is not what is meant in this present case. Pronunciation
dictionary in this present case refers to the mapping of an orthographic word to its
pronunciation using phonetic symbols. Although such lists are very handy, espe-
cially as they can easily be used to train a transcription model, transcriptions of
individual words and of entire texts are not exactly the same. There are two major
problems:

• Pronunciation depends on the context of the word in question. Word forms
are ambiguous and sometimes their pronunciation differs given on their specific
context.

• Phonetic boundaries are not always equivalent with word boundaries. Spoken
language sometimes merges certain words which leads to one phonetic unit.

My research showed that phonetic data is mostly available as word lists when com-
pared to the availability of phonetic full text. An example is the Nidaba4 website
that presents a few word lists in different languages. What becomes clear when look-
ing at this data is that there are two important limitations: First, there are only
very few languages available in the Nidaba corpus that are relevant for my thesis.
Second, there are different transcription conventions used. Another data source for
word lists is the WikiPron data (refer to section 4.3.1).

4http://nidaba.co.uk/Contents/OriginalWordList
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Transcription conventions No matter if the transcriptions are available as full
text or word list, a key factor for me to choose a particular dataset is the transcription
convention. The IPAlpha is a well-known convention but there is a lot of data that
is available using different conventions. Although it might be possible to convert one
convention into another convention, this is very tedious and often those conventions
are made specifically for one language or a group of related languages and are not
cross-linguistically applicable. This is why for this present thesis, I decided to only
look at datasets that make use of the IPAlpha transcription convention.

4.2 The Text Data Diversity Sample (TeDDi Sample)

The basis of the data used in this thesis is a corpus provided by the SPUR lab at
the University of Zurich (UZH). The text group of the Language and Space lab
at the University of Zurich maintains a project that provides a multilingual corpus
consisting of 100 language text samples which is referred to as TeDDi Sample [Moran
et al., 2022; Sozinova et al., 2021]. The 100 languages in the TeDDi Sample are meant
to be representative for all the world’s languages. The corpus is therefore meant
to give insights into relations, similarities, differences or properties of individual
languages or language families. Specifically, the goal of the team at UZH is to use
quantitative methods like statistical modelling, machine learning and information
theory to study language variation and compare languages. So far, the corpus
consists of only written language samples. My goal with this thesis is to work on
providing phonetic representations of the same samples. In the end, the corpus
should be a parallel corpus consisting of written and phonetic samples.

The corpus contains 100 languages which are proposed by Comrie et al. [2013]. The
sample of 100 proposed languages is part of an online book that contains different
chapters each of which shows a different linguistic feature including a map which
shows the distribution of that feature over the world’s languages. While the number
of languages presented on the individual maps depends on the amount of research
done in a specific area, the sum of all maps gives quite an impressive overview on
the structure of nearly half of the world’s languages. Out of the 2676 languages
that are shown at least once on one of the maps in the online book, a sample of
100 languages was proposed. This sample does not contain too many languages
from one area (areal diversity), neither does it contain too many languages from
one language family (genealogical diversity). All languages that are in the 100-
language sample are in the TeDDi Sample. Not considering the aforementioned
criteria of maximizing genealogical and areal diversity can lead to misleading results
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Iso 639-3 Language name Type WikiPron # Words
WikiPron

Type NWS

cmn Chinese broad 133,686 unk

deu German broad 34,145 broad

deu German narrow 10,984 narrow

ell Greek (Modern) broad 10,547 unk

eng English US broad 57,230 broad

eng English US narrow 1,633 narrow

eng English UK broad 60,422 -

eng English UK narrow 1,284 -

eus Basque (Goizueta) broad 1,742 broad

fin Finnish broad 69,015 -

fin Finnish narrow 69,008 -

fra French broad 56,911 unk

hin Hindi narrow 9,563 -

hin Hindi broad 10,812 unk

ind Indonesian broad 1,555 unk

ind Indonesian narrow 2,637 -

jpn Japanese (Hiragana) narrow 19,689 -

kat Georgian broad 15,123 broad

kor Korean narrow 14,141 unk

mya Burmese broad 4,631 broad

rus Russian narrow 402,586 unk

spa Spanish (Castilian) broad 60,677 broad

spa Spanish (Castilian) narrow 52,190 narrow

spa Spanish (Latin America) broad 48,649 -

spa Spanish (Latin America) narrow 41,845 -

tgl Tagalog broad 3,321 -

tgl Tagalog narrow 1,915 -

tha Thai broad 15,050 unk

tur Turkish broad 1,789 unk

tur Turkish narrow 1,812 -

vie Vietnamese narrow 15,240 unk

zul Zulu broad 1,677 -

Table 5: These are all languages I will use for my experiments as they are in the
TeDDi Sample (section 4.2) and they are available as a WikiPron word list
(section 4.3.1). For some of those languages there is an NWS short story
available as well. If not, the ‘Type NWS’ column does not have an entry.
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in multilingual analysis.

Figure 6 shows the distribution of the languages in the corpus on a world map.
The different icons show the genus of the languages which is a classification of lan-
guages defined by the World Atlas of Language Structures (WALS) that maintains
the language description collection where the 100 language sample is published. The
interactive map can be viewed online [Max Planck Institute for Evolutionary An-
thropology]. Table 20 in the appendix A shows all languages that are in the TeDDi
Sample. None of the actual text samples in the TeDDi Sample are provided by
WALS. The entire corpus is provided by the SPUR team at UZH that collected the
corpus over the last few years and is continuously working on and with it.

Figure 6: WALS-map that shows the 100 languages that are in the TeDDi Sample.

4.3 Data used for this thesis

Based on the outcome of my research on the availability of phonetic data, I decided
to use two datasets for my experiments in this thesis. I will introduce both of them
below.

4.3.1 WikiPron

A very recent project that publishes pronunciation lists is WikiPron. The WikiPron
project [Lee et al., 2020] is an open-source Python mining tool to retrieve pro-
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nunciation data from Wiktionary5. The WikiPron database contains 1.7 million
word-pronunciation pairs in 165 languages. Both, the database and the mining tool,
are freely available online. The WikiPron data for one language is always structured
the same. It is a tsv-file that has graphemes as a first column and corresponding
phonemes as the second column. While the graphemes are just listed as-is, the
phonemes are split using the segments library, which I shortly presented in section
3.1. The phoneme segments are separated by white spaces. In table 6, I show an
example of how the WikiPron data looks like.

The WikiPron data has already been used in shared tasks which means that results
on this data can easily be compared to other results. For a shared task in 2021 orga-
nized by SIGMORPHON, the WikiPron data was improved and additional scripts
were added based on feedback and findings from a similar task in 2020. One major
improvement was concerned with languages written in different scripts. WikiPron
supports now the detection of different scripts and languages can be sorted according
to those scripts. For some languages, there is a filtered version of either the broad
or the narrow transcription available. Whenever WikiPron made a filtered word list
available for one of my languages, I used this filtered version as a starting point for
my experiments.

Grapheme Phoneme

a P a:

aa a:

aachen a: x @ n

aachener a: x @ n 5

aachenerin a: x @ n @ K I n

... ...

übungen P y: b U N @ n

übungsbuch y: b U N s b u: x

üppig Y p I c»

üsselig Y z @ l I c»

œuvre œ: v K @

Table 6: This table shows an extract from the German broad WikiPron word list.
Instead of using two columns like in this example, the grapheme and the
phoneme sequence are separated by a ‘tab’ character in the original file.

5https://en.wiktionary.org/wiki/Wiktionary:Main_Page
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4.3.2 The North Wind and the Sun

As I have already mentioned, the NWS short stories are quite a well known corpus
of phonetic transcriptions. The Journal of the International Phonetic Association
(JIPA) continuously published different phonetic transcriptions of this short story.
The story is a fable said to be written by Aesop and has been translated into many
languages. Additionally, for many languages there exits a phonetic transcription.
Many of these texts are available already transcribed in a text file format and free to
use6. Table 7 shows the languages for which the short story is available and which
are also in the TeDDi Sample. Baird et al. [2021] performed an analysis on these
texts to find out how many phonetic tokens we need to cover a phonetic inventory
of a language adequately. What they have found out in their study is that those
short stories are by far not long enough to give a good picture of the phonetics of a
language. This is of course problematic if those texts are used to demonstrate how
a language works phonetically. That said, I will use these stories with care and only
as an additional dataset to have more variety.

Iso 639-3 Type Variation Language

arn broad and narrow Mapudungun

cmn Pekinese Mandarin Chinese

deu broad and narrow North German German

ell Modern Greek

eng broad and narrow Americsn English

eus broad and narrow Goizueta Basque

hau narrow Hausa

heb Modern Hebrew

hin narrow Hindi

ind Indonesian

kat broad and narrow Georgian

kor Korean

mya Burmese

pes Western Farsi

spa broad and narrow Castilian Spanish

tha Thai

tur broad Istanbul Turkish

Table 7: The table shows a list of all the short stories The North Wind and the Sun
that are available as phonetic text and whose languages are in the TeDDi
Sample (see section 4.2).

6https://github.com/SimonGreenhill/jipa
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Below, I include the English version of the short story including its broad American
English phonetic transcription (examples 4.1 and 4.2).

(4.1) The North Wind and the Sun were disputing which was the stronger, when
a traveler came along wrapped in a warm cloak. They agreed that the one
who first succeeded in making the traveler take his cloak off should be
considered stronger than the other. Then the North Wind blew as hard as
he could, but the more he blew the more closely did the traveler fold his
cloak around him; and at last the North Wind gave up the attempt. Then
the Sun shined out warmly, and immediately the traveler took off his cloak.
And so the North Wind was obliged to confess that the Sun was the
stronger of the two.

(4.2) D@ "noôT ­wInd @n (D)@ "s2n w@~ dIs"pjutIN "wItS w@z D@ "stôANg@~, wEn @

"rôæv@l@~ ­k@m @"lAN "ôæpt In @ "woôm "klok. De @"gôid D@t D@ "w2n hu "f@~st

s@k"sid@d In "mekIN D@ "tôæv@l@~ "tek Iz "klok ­Af SUd bi k@n"sId@~d "stôQNg@~

D@n DI "@D@~. DEnD@ "noôT ­wInd "blu @z "hAôd @z i "kUd, b@t D@ "moô hi "blu D@

"moô "klosli dId D@ " tôævl@~ "fold hIz "klok @"ôaUnd Im; ­æn @t "læst D@ "noôT

­wInd ­ gev "2p Di @"tEmpt. "DEn D@ "s2n "SaInd ­aUt "woômli @nd I"midi@tli D@

tôævl@~ "tUk ­Af Iz "klok. @n "so D@ "noô ­wInd w@z @"blaIZ tI k@n"fEs D@t D@ "s2n

w@z D@ "stôANg@~ @v D@ "tu.

Transcription of NWS stories

A collection of the NWS stories is available in a handbook of the JIPA which is only
available as a PDF scan of the original book [Cambridge University Press, 2010].
Luckily, most of those texts have been transcribed and made available by Simon
Greenhill7. At least the phonetic part of it has been transcribed, the original ortho-
graphic version was still not available already transcribed. Before I knew about the
availability of these texts in text file format, I did some research on optical charac-
ter recognition (OCR) for IPAlpha texts and manual transcription. While OCR is
technically possible it turns out to be very difficult for IPAlpha characters. There
are tools that include IPAlpha character recognition like the ABBYY FineReader
which can be acquired for a fee. The Computational Linguistics institute at the
UZH owns a version of the ABBYY tool but this version does not include the IPA
module. I ran the ABBYY version without the IPAlpha module on a JIPA PDF
containing said phonetic transcriptions but the result could not be used. Mostly
diacritics and special phonetic symbols were not correctly transcribed. Diacritics

7https://github.com/SimonGreenhill/jipa
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and special phonetic symbols are exactly those graphemes that make it difficult to
transcribe IPAlpha manually, so there is no point in using this tool. There are also
open source tools, one of which is called tesseract8. tesseract does not include the
IPAlpha. It is possible to train the model to include the IPAlpha but this would
need appropriate training data which I do not have.

As it was not possible to use OCR to transcribe the texts, a next approach is to
manually transcribe them. I experimented with a software called Transkribus9 to
manually transcribe the PDF scans. The software allows to make use of neural
handwritten text recognition (HTR) models. There exists no pre-trained model for
transcribing IPAlpha characters, but I trained my own while transcribing some of
the documents. On the website they mention that, ideally, training needs 5,000 -
10,000 words already transcribed. Although my available data is not nearly enough
to train a reliable model (the short stories have around 40 - 100 tokens), it was a
great help to transcribe. As the scans where not handwritten but machine typed
text, the model still reached a surprisingly good quality. As an example: For the
Hebrew transcription, the model reached a WER of 34.52 and a CER of 6.11 (more
on these metrics is found in section 3.4). The two main mistakes were made for two
characters that were not even in the training data. The quality of the scans differed
quite a lot which had an influence on the performance of the model as well. After
transcribing more documents I trained the model again on the newly transcribed
text and let it automatically transcribed a few more documents. The transcriptions
got continuously better such that in the end it did not take me nearly as much
time to correct the model’s automatic transcriptions as it got most of the IPAlpha
characters correct. Most of the errors resulted from characters that had not been in
the previously transcribed documents.

It was interesting to see that it is relatively easy to transcribe IPAlpha text when
using the right software. The orthographic texts were easier to transcribe as they
do not contain as many diacritics or other special characters. Still, for some texts
like Chinese or Hindi, I asked different people for help that know the respective
language.

To assemble the full NWS corpus, I used the phonetic versions of the short sto-
ries provided by Greenhill and added the orthographic versions of the short stories
transcribed by someone I asked to help me or by myself.

8https://github.com/tesseract-ocr/tesstrain
9https://readcoop.eu/de/transkribus/
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4.4 PHOIBLE

A way to analyse phonetic corpora is to use phonetic features to represent each
phoneme. Phonetic features are a list of properties that are overlapping with the
phonetic description of each phoneme. I have mentioned how to describe phonemes
before when writing about phonetics in general in chapter 2. Phonetic features
are a minimal list that can be used to describe unique phonemes. There exists
an online database called PHOIBLE [Moran and McCloy, 2019] that contains over
3,000 phonemes for more than 2,000 languages. PHOIBLE includes a feature system
that can describe each phoneme uniquely.

The entire PHOIBLE inventory is structured around languages. It lists all phonemes
including features for all languages that are in the database. This means that one
phoneme can be listed for more than one language, but the features will always be
the same for the same phoneme no matter what language. In total, there are 37
phonetic features that are used to describe the phonemes. Each of the features can
take on three values:

• ‘+’ (applies to this phoneme)

• ‘-’ (does not apply to this phoneme)

• ‘0’ (not applicable)

When we give each feature a value for each phoneme, this gives us what we can
call a feature vector for each phoneme. In addition to the phonetic features, each
phoneme has other features like for example what allophones are used for it in a
specific language. Table 8 shows an example for two phonetic feature vectors for two
phonemes. The fact that PHOIBLE is structured around languages means that we
cannot only use PHOIBLE to represent each phoneme as a feature vector, but we
can also get an overview of the phoneme inventory of each language that is covered
in PHOIBLE.

All the PHOIBLE phonetic features are listed in table 8 together with an example.
Some of them might sound familiar from the linguistic background chapter. This is
because the feature system was designed based on linguistic descriptions of sounds
and is supposed to be cross-linguistically applicable10 just as the IPAlpha. In order
to understand better how those features work, I will explain them in a bit more
detail. The features can be grouped into subsets of features. The features in one
of the subsets are related to some extent. Some of the features and subgroups of

10https://github.com/phoible/dev/tree/master/raw-data/FEATURES
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Phon. tone stress syllabic
(syll)

short long consonan-
tal (cons)

h 0 - - - - -

j 0 - - - - -

Phon. sonorant
(son)

continuant
(cont)

delayed
Release
(dR)

approxi-
mant
(appx)

tap trill

h - + + - - -

j + + 0 + - -

Phon. nasal lateral
(lat)

labial
(lab)

round labiodental
(lab-den)

coronal
(cor)

h - - - 0 0 -

j - - - 0 0 -

Phon. anterior
(ant)

distributed
(dist)

strident
(stri)

dorsal high low

h 0 0 0 - 0 0

j 0 0 0 + + -

Phon. front back tense retracted
Tongue
Root
(rTR)

advanced
Tongue
Root
(aTR)

periodic
Glottal
Source
(pGS)

h 0 0 0 0 0 -

j + - + 0 0 +

Phon. epilaryngeal
Source
(elS)

spread
Glottis
(sprG)

constricted
Glottis
(conG)

fortis raised
Larynx
Ejective
(rLE)

lowered
Larynx
Implosive
(lLI)

h - + - - - -

j - - - - - -

Phon. click

h -

j -

Table 8: This table shows two PHOIBLE phonetic feature vectors for the phonemes
/h/ and /j/. Note that all the features would be on one line. I split them
into multiple lines to show them more easily. For reasons of convenience
I split some of the feature names with a white space (for example: ‘de-
layedRelease’ → ‘delayed Release’). In the original PHOIBLE database,
all feature names are written as one string. I added abbreviations for some
features in parentheses.
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features are more straightforward to understand, while others need more linguis-
tic background. Although the PHOIBLE features are similar to the description of
phonemes based on the IPAlpha, there are sometimes features that seem very dif-
ferent or incomplete. This is because the PHOIBLE features are designed to be
minimal. A minimal set of features means that sometimes two or more features are
used in combination to obtain an additional feature as the goal is to avoid unnec-
essary information. Please see the description of ‘stress, long, short’ below
where I give an example:

STRESS, LONG, SHORT: These three features are very straightforward to understand
and roughly correspond to the suprasegmental chart in the IPAlpha figure 1.
The special thing about the features ‘long’ and ‘short’ is that we can combine
them to obtain an additional feature ‘half-long’ (which is also found in figure
1). In order to do that we simply mark ‘long’ as ‘+’ and ‘short’ as ‘+’ as well.
Although at the first sight this combination does not make sense as something
cannot be long and short at the same time, it is a smart way to minimize the
numbers of necessary features. Many other PHOIBLE features are used in
a similar way to be able to represent more different phonemes by combining
already existing features.

TAP, TRILL, LATERAL, LABIODENTAL, NASAL, CONSONANTAL, LABIAL, APPROXI-

MANT, DORSAL, CORONAL, ANTERIOR: All of these features can be inferred
from the IPAlpha consonant table (see figure 1). The PHOIBLE feature ‘labial’
is called ‘bilabial’ in the IPAlpha consonant table. For example: The conso-
nant / B/ has features ‘trill’ and ‘labial’ marked as ‘+’ as we can infer from
the IPAlpha table. The ‘dorsal’ feature summarizes palatal, velar and uvular.
The same is true for the ‘coronal’ and ‘anterior’ features which each represent
a different subset of consonants.

ROUND, HIGH, LOW, FRONT, BACK: Those five features are inspired by the vowel
schema described in section 2.1. We can use the combination of these to
describe the different vowel tongue positions. For consonants, these features
are typically not applicable.

SYLLABIC, RETRACTEDTONGUEROOT, ADVANCEDTONGUEROOT, RAISEDLARYNXE-

JECTIVE, LOWEREDLARYNXIMPLOSIVE: While in the IPAlpha we use a dia-
critic mark to add each of these features to a phoneme, in PHOIBLE we
simply mark the respective PHOIBLE feature as ‘+’ in the phoneme’s fea-
ture vector. Note that in the IPAlpha table, some features are named a bit
differently (for example, ‘advanced’ instead of ‘advancedTongueRoot’).
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TONE, CLICK: For IPAlpha tones and clicks there exists a separate table or column
in figure 1. Whenever a phoneme can be considered a click or a tone, we mark
the respective PHOIBLE feature as ‘+’.

CONTINUANT, SONORANT: These two features are not connected directly to the
IPAlpha. They are two broad phonetic categories that are used to describe a
specific manner of articulation. Both are applicable to different consonants as
well as vowels.

SPREADGLOTTIS, CONSTRICTEDGLOTTIS, DELAYEDRELEASE, STRIDENT, DISTRIBUTED,

TENSE, FORTIS, PERIODICGLOTTALSOURCE, EPILARYNGEALSOURCE: These
are features that have no direct connection to any of the linguistic phenomena
or categories that I have introduced. But just as for all the other PHOIBLE
features, they are well based on linguistic knowledge and how the sounds are
produced.

PHOIBLE is curated very carefully and contains many different phonemes for each
language. As it is based on many different studies and other phonetic databases it
is very complete. This means that if there is a phoneme used in one of my datasets
that cannot be found in PHOIBLE, chances are very high that it might be a mistake
in my dataset. Although it is of course also possible that there is a phoneme missing
in PHOIBLE. Still, comparing phonetic data to the PHOIBLE database helps to
identify potential mistakes or at least very uncommon transcriptions. This is why
for this present thesis, PHOIBLE serves as a phonetic reference database to clean
my data. Refer to section 4.6 where I present a possible use case of using PHOIBLE
as a reference database.

4.5 Pronunciation dictionary coverage

As I am using two different datasets, WikiPron and NWS short stories, I want to
find out how these two datasets relate. I order to do that, I am using the WikiPron
lists to write the NWS stories. In a way, I used the WikiPron data as a look-
up table to create phonetic transcriptions for the NWS stories. This means that
for each orthographic word in the short story, I search in the WikiPron data for
the respective language for that specific grapheme sequence. If the word is in the
WikiPron data, I write it to a separate transcription file. If the word is not in the
WikiPron data, I write a capitalized version of the orthographic word into the same
transcription file. Capitalizing words that are not in the WikiPron data allows me to
easily count words that occur in the short story but are not found in the WikiPron
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data. Examples 4.1 and 4.2 show the orthographic version of the English NWS story
and its phonetic transcription. Example 4.3 shows the phonetic transcription of the
same English orthographic text using the WikiPron English word list as a look-up
dictionary. I produced a text similar to example 4.3 for each language that is present
in both the WikiPron corpus and the NWS corpus, and compared it to the original
NWS transcription of that language.

(4.3) D@ "noôT ­wInd AND (D)@ "s2n w@~ DISPUTING "wItS w@z D@ "stôANg@~, wEn @

"rôæv@l@~ ­k@m @"lAN "ôæpt In @ "woôm "klok. De @"gôid D@t D@ "w2n hu "f@~st

s@k"sid@d In "mekIN D@ "tôæv@l@~ "tek Iz "klok ­Af SHOULD bi k@n"sId@~d

"stôQNg@~ THAN DI "@D@~. DEnD@ "noôT ­wInd "blu @z "hAôd @z i "kUd, b@t D@

"moô hi "blu D@ "moô "klosli dId D@ " tôævl@~ "fold hIz "klok @"ôaUnd Im; AND @t

"læst D@ "noôT ­wInd ­ gev "2p Di @"tEmpt. "DEn D@ "s2n "SaInd ­aUt "woômli

AND I"midi@tli D@ tôævl@~ "tUk ­Af Iz "klok. AND "so D@ "noô ­wInd w@z @"blaIZ

tI k@n"fEs D@t D@ "s2n w@z D@ "stôANg@~ @v D@ "tu.

By comparing the text produced with the WikiPron data as look-up table to the
reference transcriptions from the JIPA articles, I could calculate the coverage, the
WER and the PER. As the IPAlpha does not contain any capital letters, all inserted
capitalized original words will be regarded as wrong for any score. The coverage is
calculated by simply calculating the percentage of how many words from the NWS
stories are in the WikiPron data of one language. The comparison and the analysis
of the metrics gives the following insights. In addition, I manually checked some
errors which gave me insights about the word lists in general:

• For some NWS transcriptions it is not clear whether their transcription is
narrow or broad. On the other hand, sometimes there is no broad or narrow
word list available for a specific language but only one of those. For the short
stories where the type was unclear, I tried both word list types if those were
available. The analysis shows that NWS transcriptions of unknown type where
the broad WikiPron list is used as a look-up table gives better results than if
the narrow word list is used as a look-up table. See, for example, Indonesian
[ind] or Hindi [hin] in table 9. As this is the case, it makes sense to treat the
unknown transcriptions as broad.

• The IPA allows to transcribe intonation segments. In German, those corre-
spond mostly to punctuation marks like end of sentence symbols or commas.
But this must not be true for every case. It needs to be decided if those should
be kept or potentially deleted for further analyses.

• The pronunciation dictionaries sometimes included duplicates with different
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pronunciations. This is not surprising but still it needs to be handled well. A
solution is to simply delete duplicate words.

• In order to do this very simple experiment, it is necessary to tokenize the
texts. This works well for languages using the Latin script. For languages
like Chinese or Korean this is more difficult to accomplish. I used a special
Python library called polyglot11 to tokenize languages using other scripts than
alphabets.

• Interestingly enough, for some languages the coverage is really low although
there are quite a lot of words in the word list. This is the case for German
(narrow) where the coverage is only 22% (see table 9) and the word list contains
more than 10,000 words. A manual analysis showed that some frequent words
like ‘sich’ and ‘und’ are not in the word list. The result suggests that a few
thousand words are not enough to reach a reasonable coverage. 10,000 - 15,000
words seem to be a lower bound for covering around 50% of this short text.

• For most of the languages, the PER is lower than the WER. This is a good
sign, as it suggests that if a word is in the list, the phonetic transcription
of the word is at least partially overlapping with the reference text. Still,
it is surprising that for broad Spanish, the WER is actually lower than the
PER. Results like this show that even if the words are covered, their phonetic
transcription might be spelled differently. This is related to the fact that the
IPAlpha is not really standardized. It always depends on the person who
transcribes a text.

The results from this experiment are summarized in table 9. Generally it is good to
see that most texts are at least partially covered by the pronunciation dictionary. It
will later be interesting to see how the neural models perform when predicting these
short texts.

4.6 Language profiles

Once I collected my datasets, I wanted to find out what characters they include. I
collected phoneme and grapheme profiles of the WikiPron data and the NWS stories
and compared it to the PHOIBLE dataset. A profile lists all segments used in the
text (segments can be characters or tokens, this depends on your chosen settings)
and lists the frequency of each segment in the given text. All profiles were collected

11https://polyglot.readthedocs.io/en/latest/
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Iso 639-3 Coverage WER PER Type ref Type list # Words list

cmn 85.15 93.07 59.26 unk broad 133,686

deu 75.00 72.22 52.67 broad broad 34,145

deu 22.22 97.22 84.85 narrow narrow 10,984

ell 26.32 84.21 87.74 unk broad 10,547

eng 92.04 83.19 37.27 broad broad 57,230

eng 7.08 100.00 108.35 narrow narrow 1,633

eus 5.75 96.55 97.95 broad broad 1,742

ind 22.22 96.30 88.04 unk broad 1,555

ind 1.85 100.00 101.69 unk narrow 2,637

kat 44.29 90.00 73.85 broad broad 15,123

mya 7.50 97.50 97.70 broad broad 4,631

spa 64.95 46.39 48.64 broad broad 60,677

spa 35.05 98.97 65.92 narrow narrow 52,190

tha 83.85 88.20 40.62 unk broad 15,050

tur 18.46 100.00 88.89 unk broad 1,789

tur 6.15 100.00 92.53 unk narrow 1,812

hin 31.75 100.00 84.00 unk narrow 9,563

hin 57.94 93.65 69.81 unk broad 10,812

kor 18.64 100.00 51.97 unk narrow 14,141

fra 86.11 51.85 40.76 unk broad 56,911

vie 96.58 79.49 48.66 unk narrow 15,240

rus 94.79 95.83 56.30 unk narrow 402,586

Table 9: The table shows the coverage, WER and PER when the pronunciation
dictionaries are used to write The North Wind and the Sun.

for each language and each dataset separately. For each language and each dataset
I got three lists:

• Grapheme list: contains all graphemes in that language. Characters that
need a base character like diacritics are shown together with their base char-
acter.

• Phoneme list: contains all phonemes in that language. Again, diacritics are
shown with their base characters.

• Phoneme cluster list: Phonemes can be clustered into bigger sound groups.
How to do this is an ongoing discussion, but I used the segments library to get
the clusters (compare Moran and Cysouw [2018]). I introduced this library
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including the segments in section 3.1.

Having this overview for the characters for each language allowed me to compare
the character vocabulary to the characters or character clusters available in the
PHOIBLE database. This comparison showed that quite a few characters are in-
cluded in the WikiPron data and the short stories which cannot be found in the
PHOIBLE database. My observations are listed below.:

• Characters that are not included in the official IPAlpha chart: Some-
times there are characters included in the phonetic version of the WikiPron
data or the NWS short stories that are not a part of the IPAlpha. There
might be a reason why the authors of the transcriptions decided to use a spe-
cific character that is not in the IPAlpha to denote a particular sound, but the
reason is not always known. A possibility is to try and map it to a character
that is available in PHOIBLE and that represents a similar sound (or even the
same sound actually).

• Tie bars: The creators of PHOIBLE decided to exclude tie bars because they
add no real value to the transcriptions12.

• Stress marks and other suprasegmentals: Stress marks are not repre-
sented in PHOIBLE as they do not represent a sound. They are included in
the NWS short stories. The same is true for other suprasegmental elements.

• Tones: Even within the IPAlpha there exist different conventions of how to
represent tones. Some are better suited for different languages. Apart from
different ways of representing tones, it is not always sensible to have tones
represented at all. Mostly, tones are not written in orthographic versions as
speakers of a language know how to pronounce the tones. I am going to explain
more about tones in my datasets at a later stage.

I conducted this preliminary analysis at an early stage of my thesis. In chapter 6
I will clean the datasets to use them for training and testing of neural models. At
this point, I will give a more detailed list of what characters are in my datasets but
not included in PHOIBLE and what I cleaned in the datasets.

12https://phoible.github.io/conventions/
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4.7 Conclusion

In this chapter I familiarized myself with the corpus underlying my thesis and the
general availability of phonetic data. At the beginning of this chapter I simply had
a set of languages that I knew are a part of the TeDDi Sample. Now, I have two
datasets of a subset of the 100 languages in the TeDDi Sample: one consisting of
phonetic full texts together with their orthographic version (NWS), the second one
consisting of phonetic word lists (WikiPron). I found out that both datasets diverge
quite a lot in how they transcribe the same words and that it will be important to
clean the phonetic transcriptions and make them more consistent. Additionally, I
presented PHOIBLE, a large phonetic database, that I will use to clean my datasets.
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5 Experiments: Phonetic &

Orthographic Word Length

Correlation

Multilingual corpora, like the one I am using for the present thesis, are used more
and more in NLP research. Having a multilingual corpus allows to perform multilin-
gual analyses as introduced in chapter 2. Such analyses are more useful if a corpus
represents linguistic diversity well. Having a linguistically diverse multilingual cor-
pus instead of only having a multilingual corpus is important as multilingual does
not necessarily mean that the languages in the corpus represent a broad spectrum
of different languages. Sometimes, having a large number of languages in a corpus
is referred to as linguistic diversity. But the number of languages is not enough to
account for linguistic diversity. A linguistically diverse multilingual corpus ideally
includes languages that are different from each other in terms of linguistic properties.
More on linguistic diversity is presented in section 5.1.

Someone might ask why we need linguistically diverse corpora. One reason why we
should use linguistically diverse corpora is that we want to be able to generalize our
findings well to as many languages as possible. If we can generalize well, it allows us
to make statements about languages in general even if those languages are not in the
corpus. If in our corpus there are only languages with the same properties, we cannot
make assumptions about languages with very different properties. If we observe
something for a subset of similar languages, we do not know if our observations
are true for a different subset of languages with very different properties. However,
making an observation based on a linguistically diverse corpus, allows us to assume
that our observations generalize to other languages as, ideally, there is at least one
language in a linguistically diverse corpus that is similar to any other language.

As the corpus my work is based on is already designed to be linguistically diverse
(see section 4.2), I will not go into more detail about the linguistic diversity of my
corpus. The goal of the experiment presented in this chapter is to find out if phonetic
versions of languages need to be treated as a completely different way of representing
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a language. Or if they represent the same linguistic properties of a language as the
orthographic version of that same language represents. This means: if we study a
language, do we need both orthographic and phonetic texts of that language in order
to fully represent the language in question. If both orthographic and phonetic texts
represent one language equally well, it suffices to use only orthographic text to study
a language. If both orthographic and phonetic texts represent different aspects of a
language, we need samples of orthographic and phonetic text to properly study the
language in question. Only if we can study one language properly, we can study
multiple languages and compare them. More on the experiment is found in section
5.3.

5.1 Language description and diversity

If we would like to create linguistically diverse corpora, we need to measure linguistic
diversity somehow to judge whether a corpus is linguistically diverse or not. While
linguistic diversity in general is often neglected in present NLP research there are
approaches to measure linguistic diversity. One very simple part of such a diversity
score is the number of languages in our corpus as I have mentioned before. Although
the number of languages on its own is not sufficient to measure linguistic diversity,
a corpus with only two languages cannot be linguistically diverse either.

No matter how we intend to create such a diversity score, we will eventually need
to compare languages and tell whether they are similar or not. This is needed as a
multilingual corpus can only be diverse if the languages it contains are not all very
similar. But they need to be similar to languages that are not in the corpus as those
need to be represented as well. In order to compare languages, we need to be able
to describe them properly. There are many different characteristics like language
family, script, grammatical features and other characteristics of languages that can
be used to describe a language. Using my multilingual corpus I can make a small
contribution to push work on linguistic diversity. In the next section, I will have a
look at one property of languages that can be used to compare languages to each
other.

5.2 Mean word length as a descriptor

A very simple characteristic to describe a language is to calculate the mean word
length of a language. Although this task sounds very simple there are in fact multiple
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challenges to tackle before it is possible to calculate the mean word length of a
language. As both orthographic and phonetic representations of a language are
correct representations of that language the words that we use to calculate the
mean word length can be either orthographic or phonetic words.

5.2.1 Orthographic word length

In order to calculate the orthographic mean word length of a language we need to
answer a few questions:

• Tokenization: In order to calculate word lengths, the texts need to be to-
kenized properly. This sounds extremely trivial, but in reality this can be a
problem. In order to tokenize a text we need to define the notion of a token
which depends on the script. For Japanese, Thai and Chinese, I used the same
tokenizer polyglot1 that I have already used in previous experiments. For all
other language I split the texts at white spaces.

• Preprocessing: Different scripts use different punctuation symbols. Is it
necessary to exclude those? For example hyphens between two words. Do they
count as part of the word? For every language, there are many uncertainties
about how to preprocess the data similar to the one in example 5.1. In the
end, preprocessing often breaks down to deciding what information in a text
should be kept and what can be excluded because it does not add any valuable
information.

(5.1) The example of the English word ‘sub-area’ shows the difficulties of
preprocessing. The question is how to treat hyphens in English. Does
a hyphen add any valuable information to the text? What happens to
character or token counts for different preprocessing options? I can
think of four versions of how to process the word. It is likely that there
are more.

(a) Leave the word as-is: ‘sub-area’
Token count: 1, character count: 8

(b) Delete the hyphen and merge the word: ‘subarea’
Token count: 1, character count: 7

(c) Delete the hyphen and split the word: ‘sub area’
Token count: 2, character count: 7

1https://polyglot.readthedocs.io/en/latest/
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(d) Leave the hyphen to preserve the character count but split the
word: ‘sub- area’
Token count: 2, character count: 8

For the current experiment, I excluded all punctuation marks from the ortho-
graphic texts. I chose to exclude them as they are not typically a fixed part
of a word. For example: I will add a question mark at the end of a sentence
not matter what word is the last word of a sentence.

• Counting characters: In section 3.1 I have given an introduction to the
Unicode Standard and that there can arise problems when counting characters
of a token. While there is no clear answer how to count characters, it is
important to decide for one way to count the characters and do this for every
language. Otherwise it is not possible to compare the results. For the present
case, I used the default Python string length function to count the length of
the orthographic tokens.

As the texts I am using for this experiment are rather short, some of those challenges
are already resolved because the phenomenon is not present in the corpus. Still,
it is important to be aware of these challenges especially as I will conduct more
experiments on the same datasets in chapter 6.

5.2.2 Phonetic word length

Just as for orthographic texts, we need to decide how to calculate the mean word
length of phonetic texts.

• Tokenization: For phonetic texts it is necessary to define what a token is
just as for the orthographic texts. In the present case, I decided to split the
phonetic tokens at white spaces.

• Preprocessing: For phonetic texts we do not typically have different scripts
for different languages (all of the data typically follows one transcription con-
vention, IPAlpha in my case), but there are still some decisions to be taken:
What to do about tones in the phonetic transcription? Should tones be ex-
cluded or are they a part of the phonetic word? The same is true for tie-bars
or other special phonetic characters. To clean the texts for this experiment,
I decided to exclude segment markers and tones as those cannot be mapped
directly to a sound but are part of another sound. For example: a tone is
a specific intonation of another underlying sound. It changes a sound but I
cannot pronounce a tone on its own.

59



Chapter 5. Experiments: Phonetic & Orthographic Word Length Correlation

• Counting characters: As phonetic texts typically have many diacritics, the
word length can get very long if every diacritic mark is counted as one char-
acter. Therefore I decided to use the segments library to split the phonetic
tokens into phonetic segments (refer to section 3.1). The length of a phonetic
token can then be calculated by counting the number of phonetic segments of
that token.

5.3 Correlation between orthographic and phonetic

mean word length

In this section I present the actual analysis I performed. As I have pointed out in
the introduction to this chapter, the question I would like to answer is:

• Is the difference between orthographic and phonetic text of the same language
small enough such that we do not need samples of both orthographic and
phonetic texts to properly represent the language?

One way to quantify the difference between the phonetic and the orthographic ver-
sion of a language is to use the above explained property of mean word length. I
will calculate the correlation between the phonetic and the orthographic mean word
length to find out if the two mean word lengths behave very differently or if they
correlate strongly. I performed to following steps:

1. STEP - CORPUS: As a corpus I used the NWS corpus that I have collected (see
section 4.3). It contains parallel examples of orthographic and phonetic written
full text for 21 languages. Refer to table 11 for an overview of all languages.

2. STEP - PREPROCESSING AND WORD LENGTH: I prepared the orthographic and
the phonetic texts including tokenization, preprocessing and counting the word
length as described in the section before. Table 10 gives an example of how
the word lengths can be counted for orthographic and phonetic texts.

3. STEP - CALCULATING MEAN WORD LENGTHS: For each language, I calculated two
mean word lengths:

1. the mean word length for the orthographic version of the NWS short
story for one language

2. the mean word length for the phonetic version of the NWS short story
for one language
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Graphemes Length graphemes Phonemes Length phonemes

t h e 3 D @ 2

n o r t h 5 "n o ô T 4

w i n d 4 ­w I n d 4

a n d 3 @ n 2

t h e 3 D @ 2

s u n 3 "s 2 n 3

Table 10: This table gives an example for the word length of orthographic and pho-
netic texts. The text is a parallel example of the first few tokens of the
English NWS story. The characters are separated by white space to make
manual counting easier. The phonemes are processed by the segments
library such that phonetic segments are counted. We can see that, for
example, the IPAlpha symbols marking stress (" and ­) are one segment
together with the subsequent character.

In order to calculate the mean, I summed up all word lengths for one text
and divided it by the number of tokens of that text. All the means for both
texts for all languages are found in table 11. To calculate the mean word
lengths I exclusively used the narrow transcriptions if those were available for
the specific language. If not, I used the broad transcription or just the one I
had with the unknown transcription type.

4. STEP - CALCULATING CORRELATION In the last step, I calculated the correlation
between the mean word length for phonetic texts and orthographic texts. For
this step, I do not distinguish anymore between languages. The correlation
is calculated on two lists, one containing all mean word lengths for all or-
thographic texts and the other one containing all mean word lengths for the
phonetic texts.

I calculated the Spearman correlation between phonetic and orthographic
mean word length:

ρ = 0.66

The correlation value is a real number between 0 and 1. If the correlation
between two factors is strong (which means it is close to 1) this means that the
two factors behave in a similar way. For my experiment this means that both
mean word lengths for orthographic and phonetic texts behave in a similar way.
A Spearman correlation of 0.66 is not extremely strong, but there definitively
is some correlation.
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Iso396-3 Language name Mean word
length
orthographic

Mean word
length phonemes

Type

aey Amele 5.21 5.5 unk

arn Mapudungun 4.81 4.65 narrow

cmn Chinese 1.59 4.44 unk

deu German 5 4.35 narrow

ell Greek 4.62 4.23 unk

eng English 4.19 3.46 narrow

eus Basque 5.3 4.98 narrow

fra French 4.55 3.18 broad

hau Hausa 3.8 4.07 narrow

heb Hebrew 6.62 6.57 unk

hin Hindi 3.53 3.93 narrow

ind Indonesian 5.92 5.25 unk

jpn Japanese 1.59 3.77 unk

kat Georgian 5.99 6.32 narrow

kor Korean 2.85 6.56 unk

mya Burmese 10.22 8.15 unk

pes Farsi 3.99 5.03 unk

spa Spanish 4.62 4.36 narrow

tha Thai 3.25 3.03 unk

tur Turkish 6.74 7.02 broad

vie Vietnamese 3.24 3.87 unk

Table 11: This table shows the mean word lengths for the NWS phonetic and ortho-
graphic texts.

5.4 Conclusion

Although this study is very small, it indicates that phonetic and orthographic texts
are not representing contrary properties of a language as there is some correlation
between their mean word lengths. However, the correlation is not so strong that I
could reasonably argue that it does not matter if we are using orthographic texts or
phonetic texts of a language. It is up to future research to further investigate how
orthographic and phonetic texts relate.
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Grapheme-to-Phoneme Conversion

In this chapter, I present the experiments I conducted to obtain computational mod-
els to create phonetic transcriptions. The goal of the experiments in this chapter
is to be able to create a parallel phonetic corpus for written text samples in any
language. In chapter 4, I have shown that there are hardly any phonetic full texts
available. In chapter 5, I gave an example that it is well possible to perform in-
teresting analyses even on small parallel phonetic and written text corpora. This
is why I will now present my approach to creating more phonetic text that can be
used for larger analyses.

The datasets I use to train the models are presented in section 6.1. The model that
I am using for my G2P experiments is explained in section 6.2. In order to compare
my results to already existing models, I will use the results of the SIGMORPHON
tasks 2020 and 2021. They present results for quite a few languages. Also, they use
the same data type as I do. I introduced some of those models in chapter 3.

Reproducability All scripts that I used to preprocess, train and evaluate my
models are found on my GitHub1. I installed the model on my machine as specified
on the model’s GitHub2.

6.1 Datasets

As a result of my first practical part in chapter 4, I presented two datasets that I will
now use to perform the experiments in this chapter. The WikiPron corpus serves as
a training dataset for my model. Note that WikiPron continuously adds data to their
repository. This means that there might be new languages added to WikiPron that

1https://github.com/theDebbister/masterThesis
2https://github.com/cmusphinx/g2p-seq2seq
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are in the TeDDi Sample and that I did not use. Additionally, there were languages
which had a WikiPron dictionary that was smaller than 1,000 grapheme-phoneme
pairs. Ashby et al. [2021] have found out that a dataset with 1,000 samples is not
enough to train a decent model for G2P conversion which is why I excluded datasets
for languages with less than 1,000 samples. Their finding is relevant for my thesis
as they based their conclusion on similar WikiPron data. For some languages in the
WikiPron data there is a cleaned version available. Whenever a filtered version is
available I used the filtered version as the basis for my experiments.

The NWS corpus is much smaller which is why I will use it as a test dataset only. As
the NWS corpus is quite well known among linguists or at least among phoneticians,
it will hopefully give interesting insights when testing the models on these short
texts.

Table 5 shows all languages that I am using in my experiments. Generally, broad and
narrow transcriptions are treated as separate languages and thus trained separately
as well. The same is true for dialects if there is any information available. For
example: for American and British English I will train different models.

6.2 CMUSphinx

For my experiments, I decided to use the CMUSphinx seq2seq G2P model. This
model has been used in the SIGMORPHON 2021 task as part of the Dialpad en-
semble [Gautam et al., 2021]. It was not used on many languages but promised a
good performance which is why I decided to use this model for this present thesis.
The CMUSphinx model is a transformer-based seq2seq model implemented with
tensorflow. Unfortunatley, there is not a lot of information available online about
the model. There exists a pre-trained version of the model for G2P. However, they
use a transcription format other than IPAlpha which means it cannot be used for
my dataset3.

For all my experiments, the following two settings of the model are the same:

• The CMU model splits the data automatically if not specified otherwise. The
automatic split is 85% training data, 5% development data and 10% test data.
I did not change this split.

• The hyperparameters are left as default if not mentioned otherwise. This
means that I did not adapt the model and used it as it can be found online.

3https://github.com/cmusphinx/g2p-seq2seq
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More on the default settings can be found on the model’s GitHub.

The model takes as input parallel examples of grapheme and phoneme sequences.
This is typically a tsv (tab-separated-values) file structured as shown in table 6.
Sometimes this data format is referred to as a input dictionary.

6.3 Training settings

There are different settings which I will use to train the models and analyse their
performance. The settings are designed in a way that each setting introduces a new
or more complex adaption of the previous setting. The first experiments are set up
very simply and without much effort. Then I continuously add more complexity.
Below I added a short description of each setting as an overview. I will add more
details on the individual steps in separate sections.

Setting 1: Baseline short This is the most basic setting. I will train a model for
each language to get a baseline result. The model is trained with the least amount
of effort. The model is trained for the minimum number of steps which is 10,000
steps in this case.

Setting 2: Baseline long This setting is similar to setting 1 except that the
model is trained considerably longer for each language. All models have been trained
for 200,000 steps. This setting is supposed to show if training for a considerably
longer time changes the results a lot or if it does not result in a better performance.

Setting 3: Baseline clean short I will train another model that is the same like
the baseline short, but I will use the cleaned WikiPron data. What I will clean is
described below (section 6.4).

Setting 4: Baseline clean long The same as setting 3 except that the models
were trained for longer like in setting 2.

Setting 5: Feature input version 1 short The final experiments will be with
phonetic features as input. I used the cleaned WikiPron data from setting 3 and
added phonetic features to it. In section 6.5, I explain how I encode the features.
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Setting 6: Feature input version 1 long The same as setting 5, but again the
models are trained for 200,000 steps like in setting 2.

Setting 7: Feature input version 2 short This setting is the same as setting 5,
but with a different version of the input feature data.

Setting 8: Feature input version 2 long The same as setting 7, but again the
models are trained for 200,000 steps like in setting 2.

The training time for the short model for one language with 10,000 steps is about
20 minutes. The long models took another six hours to complete the training per
language.

6.4 Preprocessing

In section 2.3, I wrote about the incompleteness and difficulties of transcribing using
the IPAlpha. How exactly a sound is mapped to an IPAlpha symbol also depends
on whoever transcribes a particular text. The WikiPron data has been put together
by many different people. There are conventions on how to add transcriptions to
Wiktionary4 where the WikiPron data is scraped from, but there still might be
inconsistencies. Other than that, it is always possible that a transcription is correct,
but computational models just cannot handle it well. That said I will carefully
examine and clean the datasets. In chapter 5, example 5.1 I have already given an
example of the type of questions that need to be answered to preprocess a text to
perform an analysis on that text. This current section is centered around a multiple
of such questions. Some of the preprocessing will be done for both of my datasets
to be consistent in the preprocessing. As the datasets are very different there needs
to be done individual preprocessing for each dataset as well.

The first analysis to decide on what to preprocess is a character based comparison of
the datasets and the PHOIBLE database. This means that I used the Python seg-
ments library5 to split all the phonemes into Unicode characters. Then I compared
those characters to the PHOIBLE database. As I have explained in section 4.4, I
can use the PHOIBLE database to find phonemes that are uncommon for a specific
language. While it is possible that a correctly used phoneme is not in PHOIBLE,
it still gives a good overview of uncommon phonemes in the transcription or even

4https://en.wiktionary.org/wiki/Wiktionary:Pronunciation
5https://pypi.org/project/segments/
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points out mistakes in my data. This character based cleaning is done for both
datasets. A more detailed list of what needs to be cleaned is found in table 12.

There are two more character types not found in table 12 that I removed from the
datasets. The first is tones. The reason for removing tones is that it is not possible
to infer tones from graphemes. Although they are used to distinguish meaning, they
are not written down, but usually just known. This means that there are grapheme
sequences that look exactly the same and their transcription is the same as well
except for the tones. Example 6.1 shows the same Chinese grapheme together with
its transcription. The superscript number represent the tones. For none of the three
examples are the tones the same. For the exact same Chinese grapheme there exist
three different possible pronunciations. But if only shown the grapheme, there is
absolutely no way to find out which tones are meant:

(6.1) (a) 浸 >
tCh i n 214

(b) 浸 >
tCh i n 51

(c) 浸
>
tCh i n 55

For the reason of the ambiguity shown in example 6.1, I decided to exclude tones.
There are different ways to represent tones and I excluded all of them (refer to figure
1 for the different tone versions).

The second additional preprocessing step I performed is to remove all punctuation
symbols. This accounts mostly for the orthographic version of the NWS short
stories. For character-based modelling, punctuation does not add any valuable in-
formation as this only becomes relevant on a sentence basis.

In example 6.2 I list a few phonetic transcriptions before and after cleaning.

(6.2) This example shows strings from the WikiPron data before and after
cleaning them. The left-hand side of the arrows shows the uncleaned version
and the right-hand side the cleaned version. I added the language code and
the transcription type and the original grapheme sequence in parentheses.

(a) deu, narrow

a: b @ n t m a: l
>
ts a I

“
t → a: b @ n t m a: l t s a I

“
t (Abendmahlzeit)

(b) fin, broad

A: l: o t Ax → A: l: o t A P (aallota)

(c) cmn, broad
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>
tCh i n 214 → t C h i n (浸)

(d) eng uk, narrow

@ l 3~ d Z I k → @ l @~ d Z I k (allergic)

NWS corpus

I had to transform the NWS stories into dictionary format in order to be able to use
them as testing data. It was necessary to tokenize both orthographic and phonetic
texts and then align orthographic tokens and phonetic tokens. As the number of
tokens (when split naively at white space) is not always the same for orthographic
and phonetic text, it was necessary to align the orthographic and phonetic texts
for some languages manually. While this is not a problem for languages that I
know how to pronounce, it is a bit tricky for languages completely unknown to
me. Luckily there are tools online that provide a rough pronunciation of a word
in a given language or even a phonetic transcription (although rarely in IPAlpha)8.
For my experiments described in section 4.5 and chapter 5 I had to tokenize both
phonetic and orthographic texts for most of my languages. Please refer to the before
mentioned section and chapter to find more details on tokenization.

Apart form the characters listed in table 12 that I excluded from the NWS texts,
there were a few more characters that needed to be excluded. As the models trained
on the WikiPron corpus cannot handle characters that are not in their vocabulary,
I needed to remove the unknown characters to be able to evaluate the models on
the NWS stories. The vocabulary of the neural models I use contains all charac-
ters that were in the training data. The models I train consequently contain all
characters that are in the training split of the WikiPron data. However, for some
characters, they were in the vocabulary, but the input data was in the wrong Uni-
code normalization form as described in section 3.1. For example, some characters
were precomposed characters in the WikiPron training data while they were not
precomposed in the NWS stories I used to test the models. Both characters in the
model’s vocabulary and the NWS stories look exactly the same but the model treats
them as two completely different characters because they have a different code point.
I could easily solve that problem by converting the NWS short stories to the same
normalization form as the model’s vocabulary. See example 3.3 where I illustrate
the difference between precomposed and non-precomposed characters.

8For most languages I could use Google translator (https://translate.google.com/?hl=de&s
l=ko&tl=de&op=translate), for languages like Hebrew, I could ask someone who knows the
language to help me out.
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Phon. Unicode name Repl. Explanation

" MODIFIER
LETTER
VERTICAL LINE

NULL These are all IPAlpha suprasegmentals except the long
and half long marker and the extra short (: ; ˘). The
reason why these were excluded is that they are not
meaningful on the character level. The vertical lines,
for example, mark intonation groups which only
matter in a larger sentence or text context. There are
a few rare occurrences of COMBINING VERTICAL
LINE ABOVE which is probably meant to be
MODIFIER LETTER VERTICAL LINE as they look
similar. It is excluded as well.

­ MODIFIER
LETTER LOW
VERTICAL LINE

NULL

Š VERTICAL LINE NULL

Ş DOUBLE
VERTICAL LINE

NULL

. FULL STOP NULL

< UNDERTIE NULL

> COMBINING
DOUBLE
INVERTED BREVE

NULL Both tie bars below and above are excluded in
PHOIBLE6 which is why I am excluding it as well.
Put plainly, those do not add any additional
information that cannot be derived otherwise.< COMBINING

DOUBLE BREVE
BELOW

NULL

3~ LATIN SMALL
LETTER
REVERSED OPEN
E WITH HOOK

@~ Both base graphemes are very similar vowels. It is just
more common to use the latter than the former.

g LATIN SMALL
LETTER G

g The IPAlpha ‘g’ has a different code point and is a
different character than the typical keyboard small
Latin ‘g’. This is just an IPAlpha decision. For some
fonts the two characters do not look different, for some
they do.

∼ SWUNG DASH NULL All of these characters make out less than 1% of their
respective dataset, most of the time it is less than
0.1%. A close examination of the dataset and the
Wiktionary transcription conventions for the
respective language did not show any reason why to
keep the phonemes. Note that the ‘v’ for the tilde is
only there for correct representation.

, COMMA NULL

ṽ TILDE NULL
@ MODIFIER

LETTER SMALL
SCHWA

NULL

x MODIFIER
LETTER SMALL X

P The x only occurred in the broad Finnish transcription
and is used to denote possible gemination. In the
narrow transcriptions there is a glottal stop instead.
The occurrence of glottal stops and gemination follows
the same rules. Therefore, for consistency, the
gemination x is mapped to a LATIN LETTER
GLOTTAL STOP.

( ) ( SUPERSCRIPT ) [
LEFT | RIGHT ]
PARENTHESIS

NULL Parentheses are used to denote optionality for
phonemes or tones. WikiPron actually discards those
but keeps the content7. I will do the same for all
parenthesis found.

Table 12: The table shows what phonemes where changed or excluded in my datasets
and what the reason is for this preprocessing. All characters that were
excluded are replaced by a NULL value.
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WikiPron

Just as for the NWS corpus, I needed to do some additional preprocessing for the
WikiPron data. As the CMU model does not expect the orthographic input se-
quences to contain white space, I replaced any white space in the input grapheme
sequences with underscores. This was necessary only for Vietnamese. In a first run,
I did not replace white space by underscores. When running the evaluation on the
Vietnamese model, it did not work but showed an error message. As the model
creates a vocabulary file, I had a look at it which revealed the following:

• The model does not actually split the input file at tab characters, but splits it
at spaces and then uses the first item of the resulting list as input grapheme
and the rest as a list containing the output phoneme segments. Consequently,
if the input grapheme contains a white space, everything following it will be
in the phoneme part. Part of the input will be treated as a phoneme segment
in the training which results in a huge vocabulary and wrong predictions.

In Japanese there is the superscript phoneme /β/. This phoneme actually means
compression, which is a special type of rounding9. This special case of rounding in
Japanese is not reflected in PHOIBLE nor in the official IPAlpha but this does not
mean it is wrong. As it is quite common in the Japanese data, I decided to keep the
phoneme /β/. This is one of those cases where the PHOBILE data helped to find a
uncommon transcription that is not necessarily wrong.

A last thing I did to clean the WikiPron datasets was to exclude duplicate grapheme
sequences with different pronunciations. Although ambiguities and multiple possi-
ble pronunciations for one word are linguistically speaking very common, it is not
possible for a neural model to distinguish such cases without any context. As G2P
modelling happens on character basis and not on word basis there is no context
available in our case that could account for at least some ambiguities. Also, in the
WikiPron data that was preprocessed for the SIGMORPHON task, duplicates were
excluded as well. It makes sense to clean all datasets in a similar way to allow for
better comparability.

6.5 Feature encoding

In order to incorporate the phonetic features into the dataset, we decided to add
what we refer to as ‘flags’ to the phonemes. Generally, the idea is to encode the

9https://en.wikipedia.org/wiki/Roundedness
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phonetic features that PHOIBLE provides for each phoneme and add them to the
WikiPron dataset. I will list the steps of my experiments in the following. For all
feature experiments I used the WikiPron data that I had cleaned according to what
is explained in section 6.4.

Version 1

The first idea to incorporate the phonetic features into the datasets is to use the
PHOIBLE feature set for each of the phonemes and encode the information that is
found in those features. The model does then not only learn to predict the phoneme,
but also the phonetic features. As there are 37 features for each phoneme they allow
to encode much more and more finegrained information than one single character
can. By encoding the phonetic features we can add more information that the model
can use to learn how graphemes are mapped to phonemes. For example: in some
languages, there are vowel-consonant patterns. In English a word typically needs at
least one vowel and it is uncommon to have consonant sequences longer than three
graphemes. If it was possible to explicitly encode for each phoneme if it was a vowel
or a consonant, the model could abstract that information more easily an learn how
sound patterns work.

In order to add phonetic information to the datasets, I performed the following
steps:

1. STEP I split the list of all 37 PHOIBLE features (see section 4.4) into two sets of
PHOIBLE features. After this step, I had two disjoint sets of features. One
containing the first half of all features, the other one containing the second
half of all features.

2. STEP For each of the two sets, I used two different capital letters to encode all
possible feature combinations that can be obtained by combining all features
in the set with all other features in the same set. Remember that each feature
can take on three values. If there had been two features in the set, ‘syllabic’
and ‘consonantal’, there would have been nine possible combinations. To each
of these combinations I assigned one string of two capital letters. Table 13
shows how this step looks like for a small example.

3. STEP Once I completed the above step, I had two sets of strings that I could com-
bine to encode all possible combinations of features for each of the phonemes.
Each string represents a different feature combination of one of the two subsets
of the features.
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4. STEP Then, I could assign two strings to each phoneme in my data. The first
string represents the first half of the phoneme’s features, the second string
represents the second half of the phoneme’s features.

syllabic consonantal Feature encoding

+ - AA

+ 0 AB

+ + AC

- - AD

- 0 BA

- + BB

0 - BC

0 0 BD

0 + CA

Table 13: This table shows an example of how the feature encoding works. In this
case there are only two features involved. Nonetheless, the procedure
works the same for more features. Refer to section 4.4 to understand the
meaning of the values for each feature.

After completing the above steps, I got an output that looks similar to the examples
below (examples 6.3 and 6.4). The combination of the two flags is unique for each
phoneme. The model will interpret each two-letter feature string as one phoneme
segment.

(6.3) p AB CD kh AA BC

(6.4) kh AA BC U BF CC

A problem with this approach is that the sequences get really long if all phoneme
segments are now represented by three segments. Examples 6.3 and 6.4 show that the
phoneme sequence gets three times longer. Originally there were only two segments
separated by a white space while after the feature flags are added there are six
segments. However, the CMU model separates the phoneme sequences at white
spaces and cuts off every segment after 30 segments. This means that only phoneme
sequences that are no longer than 10 segments will be represented in full when
for each phoneme two additional feature flags are added as in the example above.
Example 6.5 shows how the CMU model cuts off the phoneme sequences.

(6.5) The CMU model cuts off phoneme sequences that are longer than 30
segments. Sub-example (a) shows the original phoneme sequence without
features and the corresponding grapheme sequence. Sub-example (b) shows
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the full length phoneme sequence with features and sub-example (c) shows
the shortened version with features. It is easily understandable that there is
a lot of information lost if a sequence is shortened like that.

(a) y: b U N s b u: x z a I» t @ n

Übungsbuchseiten

(b) y: BA EF b AH FG U AN GE N AG EC s AJ FE b AH EE u: BA
FF x AJ GH z DE HG a BG FG I

“
DC EH t AB HH @ AA FE n BB

EE

(c) y: BA EF b AH FG U AN GE N AG EC s AJ FE b AH EE u: BA
FF x AJ GH z DE HG a BG FG

Many original phoneme sequences are longer than 10 segments. It is possible to
increase the limit of the model after how many segments to cut off segments. How-
ever, 30 segments is already quite long. There is no point in setting this limit too
high as neural models like the CMU model still experience difficulties in processing
sequences that are too long. Not only the sequence length is influenced but also
the vocabulary size. Each flag will be added to the vocabulary which increases the
vocabulary by a lot. This makes it harder for the model to pick one character from
the vocabulary as output as there are more options available.

It is therefore not surprising that the model did not perform well. In fact, the WER
of the model trained on the German data with feature version 1 was about double
the WER of the long model trained on the data with no features. Given this results,
I decided not to train any more models for this feature version and look for another
way of how to encode the features.

Version 2

For the second attempt at encoding phonetic features I tried a different approach.
Instead of adding two flags, I added only one flag after each phoneme. Also, this
time the idea was not to add a unique flag to each phoneme but to encode only
some features for all phonemes. This means that for some phonemes that have
overlapping features the same flag was added. As the phonemes were not replaced
by the flags, but the phonemes were kept in the text, there is no information lost.

The intuition behind this second approach is to encode high-level patterns in phoneme
sequences. For example, as vowels typically have some overlapping features, very
similar vowels will be encoded using the same flag. Again, in order to enrich my
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data with the features, I followed specific steps which I will describe in more detail
below:

1. STEP As a very first step, I collected a list of all unique phonemes in PHOIBLE
together with their features. I will later use this set to encode each phoneme.

2. STEP In contrast to the first feature version, for the second feature version I com-
puted the features based on the phoneme inventory of each language. Conse-
quently, I collected additional sets all PHOIBLE phonemes for each language
separately. All of the following steps are conducted for each language sepa-
rately.

3. STEP As a next step, I collected a set of all phonemes for each language that are
found in the training data for the models which is the WikiPron data in my
case. After this step, I have two sets of phonemes for each language:

1. one set of all phonemes in PHOIBLE for the respective language

2. one set of all phonemes in the WikiPron training data for the respective
language

Taking the intersection of these two sets gives me the set of phonemes which
are found in PHOIBLE and in the WikiPron data for that language.

4. STEP For each phoneme in the WikiPron data, I got the PHOIBLE feature vector
for that phoneme. If a phoneme is not found in PHOIBLE but in the WikiPron
data, I just ignore that phoneme for the next steps. This means I only consider
phonemes that are in the intersection of the two sets mentioned in step 3.

5. STEP This step is the key step of the current feature version. I decided what
features to encode for each language performing this step. In table 15, I list
all features that I encoded for each language. In order to choose appropriate
features for each language, I calculated the Pearson correlation between the
features of all phonemes for each language. The idea behind calculating the
correlation between the features is to exclude features for one language that
are not important for that language. If I find two features for the phonemes
of a language that have a strong correlation, it means that those two features
behave in a similar way across phonemes. For example:

• There is a phoneme /N/ that has feature ‘sonorant’ marked as ‘+’ and
feature ‘continuant’ as ‘-’.

• Then there is another phoneme /n/ that also has feature ‘sonorant’
marked as ‘+’ and feature ‘continuant’ as ‘-’.
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Based on the above very small example, we could argue that whenever the
feature ‘sonorant’ is ‘+’, then the feature ‘continuant’ is ‘-’. If we observe this
pattern for those two features for many phonemes of a language, then there is
a correlation between the two features ‘sonorant’ and ‘continuant’. It means
that when we only observe the feature ‘sonorant’ to be ‘+’, we can infer that
the feature ‘continuant’ is ‘-’. For all features of all phonemes of a language,
the calculation is a bit more complex but the intuition is the same. When we
study table 15 closely, we can actually see that for some languages (for example
Chinese or German) only ‘sonorant’ was encoded but not ‘continuant’. This
means, that there actually is a correlation between ‘continuant’ and at least one
other feature in those languages which is why ‘continuant’ was not encoded.
Having two strongly correlating features in a dataset means to encode the
same information twice. And this is exactly what we would like to avoid.

I only encoded those features for a language whose correlation with no other
feature within that language is higher than a certain threshold. For this exper-
iment I set the correlation threshold to be 0.5. If the threshold was too high,
for many languages, no correlating features were found. This is not surprising
as features in general do not make a lot of sense if they are all encoding the
same information. This is why I set the threshold relatively low which means
I did not encode a lot of features.

The reason why I suggest that this feature encoding strategy can be used to
find important features for a language is that all languages only use a relatively
small subset of phonemes. This means that many features are not important
for a language as those features are not used to distinguish meaningful sounds
in that language. In order to recognize high-level phonetic patterns in a lan-
guage, only the most distinctive features are important.

6. STEP Once I have all the features for one language that I want to encode, I can
actually encode them. This step is similar to the encoding of the features of
the first version. I get all combinations of the set of features to encode for each
language (similar as in table 13) and assign it a different capitalized two-letter
string. Table 14 lists a few example strings for how the input data changed
after enriching it with features.

There are still a few phonemes that are not in the PHOIBLE set that are in the
WikiPron data. These will just not be encoded. An exception is the length marker.
There are a few long vowels that are not found in the PHOIBLE data. As there is
the ‘long’ feature in PHOIBLE, it is easily possible to use the base character feature
vector and mark the ‘long’ as ‘+’. This is the only thing I changed for the following
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experiments. All other features vectors are just used as they are retrieved from
PHOIBLE. I encoded the features in a jupyter notebook which is in my GitHub
repository10.

Grapheme Phoneme Phonemes with features

a P a: P AK a: AM

aa a: a: AM

aachen a: x @ n a: AM x AJ @ AL n AG

aachener a: x @ n 5 a: AM x AJ @ AL n AG 5 AN

aachenerin a: x @ n @ K I n a: AM x AJ @ AL n AG @ AL K AJ I AL n AG

... ... ...

übungen P y: b U N @ n P AK y: BA b AH U AN N AG @ AL n AG

übungsbuch y: b U N s b u: x y: BA b AH U AN N AG s AJ b AH u: BA x AJ

üppig Y p I c» Y AN p AH I AL c»

üsselig Y z @ l I c» Y AN z AJ @ AL l AE I AL c»

œuvre œ: v K @ œ: BA v BC K AJ @ AL

Table 14: This table shows parallel examples for the first few and the last few entries
of the German broad WikiPron data file for the feature encoding version
2. It shows the graphemes, the unchanged phoneme sequence and the
phoneme sequence with features. In the original file, the phoneme column
is omitted. The feature encodings are not unique for each phoneme. I
marked an example for the same encoding for two phonemes in red. Note
that the two phonemes are very similar (see figure 1), thus have similar
features and consequently the same feature encoding.

While encoding these features, I noticed that some phonemes are not listed as indi-
vidual phonemes in PHOIBLE but are listed as allophones of one phoneme that is
in PHOIBLE. This means that some broad transcriptions contain allophones which,
ideally, should not be the case (see section 2.3). Also, it means that I did not have
features for these phonemes which means that those were not encoded. It would be
possible to replace all allophones for each language with the respective phoneme.
However, this would have gone beyond the scope of this present thesis.

10https://github.com/theDebbister/masterThesis/blob/master/data/MA_Encode_feature
s.ipynb
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ISO 396-3 Type Features

all langs - tone, stress, syll, short, cons, tap, trill, lat, lab, elS, sprG, lLI

cmn broad long, cont, nasal, conG, rLE

deu narrow long, cont, nasal, conG, rLE

ell broad long, son, cont, dR, nasal, cor, dorsal, conG, rLE

eng uk broad long, cont, nasal, conG, rLE

eng uk narrow long, cont, nasal, conG

eng us broad long, cont, nasal, conG, rLE

eng us narrow long, cont, nasal, conG

eus broad long, cont, dR, nasal, conG, rLE

fin broad long, cont, nasal, conG, rLE

fin narrow long, cont, dR, nasal, conG, rLE

fra broad long, nasal, conG, rLE

hin broad conG, rLE

hin narrow nasal, conG, rLE

ind broad long, cont, nasal, conG, rLE

ind narrow long, cont, nasal, conG, rLE

jpn narrow long, dR, cor, dorsal, conG, rLE

kat broad long, cont, dR, nasal, cor, conG

kor narrow cont, nasal, conG, rLE

mya broad long, dR, nasal, rLE

rus narrow long, cont, nasal, cor, dorsal, conG, rLE

spa ca broad long, son, cont, dR, nasal, dorsal, conG, rLE

spa ca narrow long, son, cont, nasal, conG, rLE

spa la broad long, son, cont, nasal, cor, dorsal, conG, rLE

spa la narrow long, son, cont, nasal, conG, rLE

tgl broad long, cont, dR, nasal, conG, rLE

tgl narrow long, son, cont, nasal, dorsal, conG, rLE

tha broad nasal, conG, rLE

tur broad long, cont, nasal, conG, rLE

tur narrow long, nasal, conG, rLE

vie narrow long, nasal, cor, conG, rLE

zul broad cont, dR, nasal, cor, conG, rLE

Table 15: The table shows all features that were encoded for each language for fea-
ture version 2. Some of them are encoded for all languages, those are at
the top of the table. All features that are listed for each language have a
correlation lower than 0.5 with all other features listed for that language.
The overview of the abbreviated features is found in table 8.
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6.6 Results

For the evaluation of my models, I first used the WikiPron test sets. The test set
is a subset of the entire WikiPron dataset for one language as explained in section
3.4. In addition, I tested each model on the respective NWS story if available in
that language. Below, I first discuss the results separately for the short (setting 1,
setting 3 and setting 7) and the long (setting 2, setting 4 and setting 8) models. I
will mostly compare the WER scores of the model, as this is common in research.
Also, the PER scores are a bit harder to interpret, as the edit distance it involves is
not very intuitively understandable as there are many different ways of how to get
to the same result.

To evaluate the models that were trained on data containing feature flags, I cleaned
out the features to calculate the scores on the predicted phonemes only. Leaving in
the feature flags would make it difficult to compare it to the other models’ results.

6.6.1 Results: short models

Table 16 shows the results for all models that I trained for 10,000 steps. It is in-
teresting that the results for all three data types (uncleaned, cleaned and feature
data) are actually very similar. I was surprised by the fact that for a vast major-
ity of the languages the version trained on the cleaned data did not improve the
performance although the cleaning was supposed to make the data more consistent.
For example, excluding duplicate words with different phoneme sequences should
remove some ambiguities. However, it is also possible that it actually introduced
more ambiguities as I randomly took one version of the duplicates which might be
an uncommon one.

An interesting result is the one for Zulu [zul]. The cleaned model performed a lot
better than the other two. As this result seemed rather strange, I had a close look
at the data again. Manually comparing the test prediction for Zulu to the reference
phonemes (there are only 167 samples in the test set) reveals that the model almost
exclusively got the tones wrong. Those were excluded in the cleaned version which
might explain the wide gap. Finnish [fin] had a very similar result but the gap was
not as large. This finding shows how important appropriate preprocessing is.

Table 17 shows a comparison between my short models and the SIGMORPHON
models. The results for the shared task are the same no matter to which of my
models I compare them. As we will see in the next section, my long models performed
better than the short ones presented in the current section. Therefore, I will not
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ISO
639-3

Type
WikiPron

WER
BS

PER
BS

WER
BS-
clean

PER
BS-
clean

WER
F2

PER
F2

cmn broad 19.6 4.5 18.1 5.0 20.3 6.0

deu broad 40.3 5.4 38.1 5.3 40.2 6.6

deu narrow 52.1 7.5 59.9 9.4 59.9 10.4

ell broad 9.8 0.9 10.4 1.0 11.5 1.1

eng us broad 54.4 10.6 53.0 10.8 57.7 12.1

eng us narrow 84.6 32.0 84.2 31.8 86.6 32.2

eng uk broad 48.6 9.5 50.0 10.1 51.8 11.1

eng uk narrow 88.8 32.2 93.8 34.5 90.5 31.2

eus broad 19.4 2.8 22.8 2.8 23.6 4.0

fin broad 5.8 0.4 11.3 1.3 11.5 3.1

fin narrow 14.3 1.0 7.1 0.7 17.1 4.3

fra broad 7.2 1.0 8.8 1.3 9.1 1.6

hin narrow 8.4 1.4 10.1 1.6 8.3 1.3

hin broad 5.6 1.2 7.3 1.2 6.9 1.2

ind broad 35.3 5.3 36.3 4.8 38.6 5.7

ind narrow 43.5 5.5 44.1 6.0 44.3 6.1

jpn narrow 6.6 0.9 6.7 0.9 6.8 1.1

kat broad 0.3 0.2 1.1 0.2 1.7 0.9

kor narrow 28.7 4.6 27.0 4.4 26.7 4.9

mya broad 34.2 7.4 34.1 7.1 87.5 18.8

rus narrow 14.8 1.7 16.4 1.9 22.0 3.6

spa ca broad 2.3 0.3 2.7 0.4 5.3 1.5

spa ca narrow 3.6 0.5 9.1 1.5 8.4 1.6

spa la broad 2.6 0.3 2.8 0.5 4.4 1.0

spa la narrow 3.3 0.4 3.2 0.3 5.4 0.8

tgl broad 33.3 5.9 33.4 5.1 34.8 5.6

tgl narrow 42.9 6.6 51.1 7.6 50.3 7.2

tha broad 14.1 2.9 13.0 2.8 15.3 3.7

tur broad 52.8 8.0 53.4 7.9 54.3 8.6

tur narrow 57.9 8.4 53.9 7.9 52.0 8.5

vie narrow 3.0 1.3 3.0 1.5 4.3 2.0

zul broad 61.7 11.5 10.4 1.1 95.1 13.7

Table 16: This table shows the results for setting 1 (BS), setting 3 (BS-clean) and
setting 7 (F2). These are the short models.
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discuss the results at this point for the short models compared with the shared task.
I will only discuss my results of the long models compared with the SIGMORPHON
models.

ISO396-3 BS WER SIG WER Transcription type Model name SIG

eng (us) 53.00 37.43 broad DP21

fra 7.20 5.11 broad DeepSPIN20

ell 9.80 18.67 broad IMS20

kat 0.30 0.00 broad BS21/CL21

hin 5.60 5.11 broad IMS20

jpn 6.60 4.89 narrow DeepSPIN20

kor 26.70 16.20 narrow CL21

vie 3.00 0.89 narrow DeepSPIN20

Table 17: The table shows the WER results for the best of my short models com-
pared with the SIGMORPHON 2020 and 2021 results. For each language
the best score is reported no matter what year or what model from the
SIGMORPHON task. My models and the SIGMORPHON models were
trained on WikiPron data. However, the SIGMORPHON data was pre-
processed in a slightly different way which means that the results are not
directly comparable. All references for the SIGMORPHON models can
be found in tables 4 and 3.

6.6.2 Results: long models

Table 18 shows the results for all models that I trained for 200,000 steps. The results
and the differences between the models are very similar to the short models. The
observation for Zulu [zul] is still the same. In fact, the long Zulu model trained on
the uncleaned data performed even worse than its short equivalent.

The largest improvement from the short to the long models was for Russian [rus].
Russian had by far the largest dataset with more than 400,000 samples. It makes
sense that for this large dataset, the model takes more time to extract all the relevant
information. But it also shows that longer training times are not always equally
helpful.

Table 19 shows a comparison of my best long model compared with the best SIG-
MORPHON shared task result for different languages. For three of eight languages
in table 19, my model reached a better or the same score. The SIGMORPHON
Korean [kor] model performed quite a lot better than mine. This result can be ex-
plained as the SIGMORPHON model was not trained on the Korean logograms but
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ISO
639-3

Type
WikiPron

WER
BS

PER
BS

WER
BS-
clean

PER
BS-
clean

WER
F2

PER
F2

cmn broad 17.6 3.9 17.0 4.0 18.1 4.4

deu broad 37.1 4.8 38.1 5.0 38.6 5.9

deu narrow 52.2 7.1 56.9 8.4 55.9 9.4

ell broad 7.1 0.6 9.0 0.7 9.1 0.8

eng us broad 50.7 9.5 51.2 10.2 51.3 10.4

eng us narrow 84.6 31.4 84.2 33.1 84.9 32.3

eng uk broad 45.5 8.6 47.5 9.2 47.6 9.7

eng uk narrow 90.3 30.2 94.8 35.3 93.7 34.2

eus broad 21.2 2.7 19.6 2.3 21.7 3.2

fin broad 2.8 0.2 3.3 0.3 8.9 3.1

fin narrow 3.2 0.3 3.9 0.4 9.0 3.5

fra broad 5.3 0.7 5.8 0.8 5.9 0.8

hin narrow 7.7 1.2 8.4 1.4 8.4 1.3

hin broad 4.4 0.7 6.4 1.0 6.3 1.0

ind broad 37.9 5.3 34.9 5.3 39.3 6.1

ind narrow 43.1 5.4 43.0 5.6 43.1 5.6

jpn narrow 6.5 0.6 6.8 0.6 6.6 0.8

kat broad 0.0 0.0 0.0 0.0 1.0 0.8

kor narrow 23.4 4.1 25.3 4.4 25.8 4.6

mya broad 35.1 6.5 36.0 6.9 88.0 17.4

rus narrow 1.9 0.2 2.4 0.3 5.0 1.5

spa ca broad 1.1 0.1 1.3 0.1 2.2 0.7

spa ca narrow 2.3 0.3 2.2 0.3 2.8 0.6

spa la broad 1.4 0.1 1.5 0.2 1.9 0.6

spa la narrow 2.6 0.3 2.7 0.3 2.7 0.4

tgl broad 28.4 4.6 31.2 5.2 33.9 5.0

tgl narrow 45.5 6.4 47.3 7.0 48.6 6.9

tha broad 12.5 2.6 11.1 2.5 12.1 3.1

tur broad 50.6 7.8 52.3 7.5 49.1 7.2

tur narrow 55.1 7.6 55.6 8.3 54.8 8.0

vie narrow 1.5 0.8 1.6 0.8 2.6 1.5

zul broad 65.9 10.7 9.8 0.9 91.4 12.0

Table 18: This table shows the results for setting 2 (BS), setting 4 (BS-clean) and
setting 8 (F2). These are the long models
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those were converted to hangul characters which is a Latin alphabet representation
of Korean. As explained in section 3.5, converting logographic scripts to alphabets
can lead to better results as it reduces the vocabulary size of the model. My result
for English is a lot worse as well. Generally, English (as well as German) seems
to be a language that is relatively difficult to pronounce as the results are often a
lot worse than those of other languages. In the present case, the difference might
result from the fact that the SIGMORPHON model for English was an ensemble
and it was only trained for English and therefore optimized to work for the English
language.

My model performs better than the SIGMORPHON model on Modern Greek. The
SIGMORPHON model was trained on only 800 samples. I had more than 10,000
samples. This result aligns with cutting edge research, as Ashby et al. [2021] have
found that 800 samples are not enough to train a decent G2P model. My results
confirm this finding as my model trained on 10,000 samples of the same data was
considerably better than the model trained on only 800 samples. The only difference
between the training sets of the models was that I applied different preprocessing
(see section 6.4).

ISO396-3 BS WER SIG WER Transcription type Model name SIG

eng (us) 50.70 37.43 broad DP21

fra 5.30 5.11 broad DeepSPIN20

ell 7.10 18.67 broad IMS20

kat 0.00 0.00 broad BS21/CL21

hin 4.40 5.11 broad IMS2

jpn 6.50 4.89 narrow DeepSPIN2

kor 23.40 16.20 narrow CL21

vie 1.50 0.89 narrow DeepSPIN20

Table 19: The table shows the WER results for the best of my long models com-
pared with the SIGMORPHON 2020 and 2021 results. For each language
the best score is reported no matter what year or what model from the
SIGMORPHON task. My models and the SIGMORPHON models were
trained on WikiPron data. However, the SIGMORPHON data was pre-
processed in a slightly different way which means that the results are not
directly comparable. All references for the SIGMORPHON models can
be found in tables 4 and 3.
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6.6.3 Results: NWS tests

Table 20 presents the WER results for the tests on the NWS stories. In the appendix
A in table 21 I report the PER scores for the stories. The WER scores are sufficient
to show that the models do not perform very well on these stories in general. Con-
cerning the data types, there is no real pattern in how the models trained on each
of the data types perform. The clean models seem to perform a bit better than the
other two types. Also, as the texts are really short, the performance of all models
is often very similar. These results show that it is not very easy to create phonetic
full texts when the computational models are trained on word lists.

Still, when compared to the coverage experiment in section 4.5, many G2P models
perform quite a lot better than if we just used the WikiPron data as a look-up table.
Although this is not surprising, it is good that we can confirm that those models are
able to extract a lot of information that is not found in a simple look-up table. What
is surprising is that there are a few languages like broad Hindi [hin] or Vietnamese
[vie] where the WER of the G2P models is higher or very similar to the coverage
experiment. Neither of these models performed particularly bad when tested on
the WikiPron test set (WER long model Hindi: 4.4, Vietnamese: 1.5), in fact the
results were very good. In addition, both training sets contain more than 10,000
samples. The most plausible explanation is that the transcription conventions used
in the WikiPron data and the NWS stories are just very different.

6.7 Conclusion

All models trained on one data type show a similar performance no matter how long
they were trained. The most notable observation is that the difference between the
performance of the long and the short models is rather small. For some languages,
the best short model performed even better than the long one or the results were
the same. This was the case for narrow German [deu], narrow US English [eng us],
narrow UK English [eng uk], broad Goizueta Basque [eus], broad Burmese [mya],
narrow Tagalog [tgl] and narrow Turkish [tur]. I find it surprising that most of
these languages are the narrow variants as those are more detailed. I would expect
a model trained for longer to catch more details. However, none of the scores were
really low, the lowest being 19.4 for Basque. Additionally, the differences between
the short and long models for these languages are never larger than 2.8 percentage
points. All in all, it is good to know that even very short training times can lead to
good results. Long training times are inefficient and if they can be avoided it is a
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ISO 396-3 Type BS-long BS-
short

BS-
clean-

long

BS-
clean-
short

F2-long F2-
short

WER

cmn broad 95.0 100 94.1 86.1 93.1 84.2

deu broad 74.1 76.9 72.2 63.0 72.0 65.4

deu narrow 50.9 54.6 63.9 63.9 57.0 59.8

ell broad 78.9 75.4 75.4 75.4 77.0 77.0

eng us broad 66.4 87.6 84.1 87.6 83.9 92.0

eng us narrow 94.7 97.3 97.3 97.3 97.3 97.3

eus broad 36.8 48.3 36.8 34.5 34.9 34.9

fra broad 37.0 45.4 34.3 48.1 34.6 48.6

hin narrow 91.1 91.1 90.3 90.3 90.2 90.2

hin broad 96.0 96.0 95.2 95.2 95.1 95.1

ind broad 81.5 81.5 81.5 81.5 82.2 82.2

ind narrow 85.2 82.4 82.4 82.4 86.0 86.0

kat broad 64.2 64.2 58.2 58.2 59.1 59.1

kor narrow 100.0 100.0 100.0 100.0 100.0 100.0

mya broad 97.5 97.5 95.0 95.0 97.4 97.4

rus narrow 91.6 91.6 89.5 91.6 91.5 91.5

spa ca broad 27.8 28.9 27.8 27.8 32.3 32.3

spa ca narrow 56.7 53.6 58.8 54.6 65.6 54.2

tha broad 99.4 99.4 56.9 56.9 57.2 56.6

tur broad 53.8 63.1 46.2 55.4 56.2 64.1

tur narrow 76.9 66.2 76.9 75.4 75.0 68.8

vie narrow 100.0 100.0 79.5 79.5 80.2 80.2

Table 20: In this table I present the WER results for all models when they predicted
the NWS stories. The models are explained in section 6.3 where I explain
the different training settings. ‘BS-long’ corresponds to setting 2, ‘BS-
short’ to setting 1, ‘BS-clean-long’ to setting 4, ‘BS-clean-short’ to setting
3, ‘F2-long’ to setting 8 and ‘F2-short’ to setting 7.

good sign.

The feature models did not lead to any relevant improvement compared to the
models trained without features. They did not worsen the results but performed
very similarly. When the long feature models are compared to the short ones, the
models trained for longer reached a better performance for almost all languages. As
the input data is more complex because I added the features, it might be worth
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exploring even longer training times. However, also the long trained models without
features reached a better performance than the short models without features. This
means that it could be possible that the feature models would still not outperform
the models trained without features if the models for both data types were trained
for longer.
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7 Conclusion

In the course of the work on my thesis, I have intensively studied the relationship
between spoken and written language. The way phonetic and orthographic texts
encode information is not exactly the same across languages, as my experiment in
chapter 5 shows, at least when talking about word length. Still, there is some cor-
relation between orthographic and phonetic texts which should be further explored
in future research. My results from chapter 6 show that it is possible to computa-
tionally map written language to spoken language using the same model type for
all languages. The differing performance across languages points once more to the
overwhelming complexity of mapping a written representation of a language to a
phonetic representation of the same language.

As a first step of this thesis I created an overview of what phonetic data is available
in which languages. The overwhelming majority of available data is word lists. But
in general, there is quite a lot of data that I could use for my experiments. The
WikiPron data keeps growing and even if it is not cleaned, the models were able to
produce good results for quite many languages. One thing I noticed about the data
is that phonetic text (given it is written in IPAlpha) is more complex and has more
characters than most alphabets. The case for Zulu also showed that the tones (which
are represented as diacritics in Zulu) add to that complexity. The comparison of the
NWS transcriptions and the WikiPron test sets showed that phonetic transcriptions
are not as standardized as typical writing systems. It might be worth looking into
why exactly the models performance was so bad on the NWS short stories and how
the transcription convention has an influence on the models’ performance.

As G2P conversion is a well-known seq2seq task, there exist a lot of models and
architectures that can be used. My experiments with the feature models showed
that it is possible to manipulate the input and the model does still perform well. All
in all, there were some good results produced for a large collection of my languages.
Some of my models outperformed existing state-of-the-art models, for some there
was no comparison available. It would certainly be good to train more G2P models
on more languages such that my results can be compared.
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An important lesson I learnt from this thesis is the overwhelming complexity of
computational representations of different scripts and the IPAlpha. While I did not
read a lot about this topic in present research, it was very important for my mul-
tilingual processing. Multilingualism in general presents a huge challenge. Starting
from transcription conventions that are not always cross-linguistically applicable to
machine learning models that are very carefully designed to work for one language
only, it seems that many steps of creating G2P models are not made for working
with a huge multilingual dataset. Research about linguistic diversity and language
comparison in NLP datasets is certainly a good start to pave the way for more work
with multilingual corpora.

Future work

Non surprisingly, apart from many exciting things I could do, there are many others
that would have gone beyond the scope of this thesis. I would like to list a few entry
points on where future research could start.

• Data preprocessing: Ashby et al. [2021] cleaned broad transcriptions for
Bulgarian and replaced all allophones by their standard phoneme. I also de-
tected allophones in some broad transcriptions of some language. Replacing
allophones by their respective phoneme could further improve model quality
by having consistent broad transcriptions. Also, my results showed that clean-
ing the data did not always improve the models’ performance. It might give
interesting insights to look more into what preprocessing steps are actually
necessary for which languages.

• Phonetic features: Although my feature models did not outperform the
other models on many languages, they did not perform a lot worse. In this
thesis, I tried to add the features by manipulating the input to the model. It
might also be possible to chose a different model architecture such that the
features can be passed more explicitly to the model. I am sure that it is worth
digging deeper into phonetic features and how we can use them to train better
G2P models.

• Low resource languages: There are a lot of languages where only very little
data is available. I did not deal with those in this thesis but it is technically
possible to use transfer learning or other techniques to make use of those
languages. Low resource languages still are a challenge.
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A Tables

Table 20: This table lists all the languages that are in the TeDDi Sample described
in section 4.2.

Iso 639-3 Name-WALS Family-WALS

abk Abkhaz Northwest Caucasian
amp Alamblak Sepik
aey Amele Trans-New Guinea
apu Apurinã Arawakan
bmi Bagirmi Central Sudanic
bsn Barasano Tucanoan
gry Grebo Niger-Congo
eus Basque Basque
ape Arapesh (Mountain) Torricelli
bsk Burushaski Burushaski
ram Canela-Krahô Macro-Ge
tzm Berber (Middle Atlas) Afro-Asiatic
cha Chamorro Austronesian
ckt Chukchi Chukotko-Kamchatkan
zoc Zoque (Copainalá) Mixe-Zoque
dgz Daga Dagan
hae Oromo (Harar) Afro-Asiatic
arz Arabic (Egyptian) Afro-Asiatic
fij Fijian Austronesian
fin Finnish Uralic
gni Gooniyandi Bunuban
khk Khalkha Altaic
hau Hausa Afro-Asiatic
heb Hebrew (Modern) Afro-Asiatic
hin Hindi Indo-European
hix Hixkaryana Cariban
hnj Hmong Njua Hmong-Mien
qvi Quechua (Imbabura) Quechuan
imn Imonda Border
ind Indonesian Austronesian
kal Greenlandic (West) Eskimo-Aleut
kyh Karok Karok
gyd Kayardild Tangkic
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Iso 639-3 Name-WALS Family-WALS

kio Kiowa Kiowa-Tanoan
cku Koasati Muskogean
kor Korean Korean
ses Koyraboro Senni Songhay
kgo Krongo Kadu
kut Kutenai Kutenai
lkt Lakhota Siouan
laj Lango Eastern Sudanic
lvk Lavukaleve Solomons East Papuan
lez Lezgian Nakh-Daghestanian
dni Dani (Lower Grand Valley) Trans-New Guinea
lue Luvale Niger-Congo
ayz Maybrat West Papuan
myh Makah Wakashan
cmn Mandarin Sino-Tibetan
mpc Mangarrayi Mangarrayi-Maran
mni Meithei Sino-Tibetan
arn Mapudungun Araucanian
mrc Maricopa Hokan
vma Martuthunira Pama-Nyungan
mph Maung Iwaidjan
ote Otomí (Mezquital) Oto-Manguean
ell Greek (Modern) Indo-European
naq Khoekhoe Khoe-Kwadi
scs Slave Na-Dene
tur Turkish Altaic
kat Georgian Kartvelian
kan Kannada Dravidian
mya Burmese Sino-Tibetan
jpn Japanese Japanese
one Oneida Iroquoian
pwn Paiwan Austronesian
gug Guaraní Tupian
myp Pirahã Mura
crk Cree (Plains) Algic
plt Malagasy Austronesian
jac Jakaltek Mayan
rma Rama Chibchan
rap Rapanui Austronesian
rus Russian Indo-European
sag Sango Niger-Congo
mig Mixtec (Chalcatongo) Oto-Manguean
xsu Sanuma Yanomam
spa Spanish Indo-European
fra French Indo-European
eng English Indo-European
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Iso 639-3 Name-WALS Family-WALS

deu German Indo-European
spp Supyire Niger-Congo
swh Swahili Niger-Congo
tgl Tagalog Austronesian
tml Asmat Trans-New Guinea
tha Thai Tai-Kadai
tiw Tiwi Tiwian
bhq Tukang Besi Austronesian
vie Vietnamese Austro-Asiatic
wyb Ngiyambaa Pama-Nyungan
wba Warao Warao
pav Wari’ Chapacura-Wanham
pes Persian Indo-European
kew Kewa Trans-New Guinea
kjq Acoma Keresan
wic Wichita Caddoan
mzh Wichí Matacoan
yad Yagua Peba-Yaguan
yaq Yaqui Uto-Aztecan
yor Yoruba Niger-Congo
zul Zulu Niger-Congo
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ISO 396-3 Type BS-long BS-
short

BS-
clean-

long

BS-
clean-
short

F2-long F2-short

PER

cmn broad 72.5 73.8 45.2 40.5 39.2 36.4

deu broad 26.0 28.0 24.5 23.4 20.8 19.8

deu narrow 16.2 16.4 19.6 20 16.6 17.9

ell broad 32.8 31.1 29.2 29.5 17.3 18.3

eng us broad 22.3 32.5 27 30.4 20.9 24.7

eng us narrow 47.5 44.5 51.8 47.9 45.1 44.1

eus broad 4.2 5.9 4.8 4.7 5.1 4.8

fra broad 15.6 17.7 14.3 19.3 11.6 15.5

hin narrow 62.6 62.6 58.5 58.5 29.9 30.4

hin broad 56.1 55.8 57.8 57.8 47.0 47.0

ind broad 30.8 27.9 29.7 30.1 17.8 19.4

ind narrow 33.0 32.2 31.3 31.0 23.8 23.6

kat broad 14.6 14.6 11.5 11.5 7.5 7.8

kor narrow 52.5 52.7 52.5 51.4 100.0 100.0

mya broad 34.4 36.5 21.3 23.2 29.4 35.8

rus narrow 37.2 37.3 36.3 37.6 35.7 37.1

spa ca broad 5.1 5.4 5.1 5.1 5.4 5.4

spa ca narrow 17.3 16.5 16.2 16.2 17.3 16.1

tha broad 62.3 62.2 19.0 19.1 16.3 16.4

tur broad 7.8 10.1 6.7 8.7 9.1 9.2

tur narrow 15.6 11.6 11.9 13.7 11.9 12.1

vie narrow 99.8 99.8 44.2 44.2 36.1 36.1

Table 21: In this table I present the PER results for all models when they predicted
the NWS stories. The models are explained in section 6.3 where I explain
the different training settings. ‘BS-long’ corresponds to setting 2, ‘BS-
short’ to setting 1, ‘BS-clean-long’ to setting 4, ‘BS-clean-short’ to setting
3, ‘F2-long’ to setting 8 and ‘F2-short’ to setting 7.
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