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Abstract

We propose a pipeline for automatic lexical stress detection in isolated English words.

It is designed to be part of the computer-assisted pronunciation training application

MIAPARLE that aims to improve stress production. The pipeline automatically

segments audio input into syllables over which duration, intensity, pitch, and spectral

information is calculated. Since the stress of a syllable is defined relative to its

neighboring syllables, the values obtained over the syllables are complemented with

differential values to the preceding and following syllables. The resulting feature

vectors, retrieved from 1011 recordings of single words spoken by English natives,

are used to train a Voting Classifier composed of four supervised classifiers, namely a

Suppor Vector Machine, a Neural Net, a K Nearest Neighbor, and a Random Forest

classifier. The approach classifies stress patterns of a single word with an F1 score

of 94% and an accuracy of 96%.

Zusammenfassung

In dieser Arbeit wird eine Pipeline zur automatischen Betonungserkennung in isolier-

ten englischen Wörtern vorgestellt. Sie ist als Teil der computergestützten Auspra-

chetrainingsanwendung MIAPARLE konzipiert, die darauf abzielt, die Aussprache

von Betonungen zu verbessern. Die Pipeline segmentiert Audio-Inputs automatisch

in Silben, über welche Informationen über Dauer, Lautstärke, Tonhöhe sowie Spek-

tralinformationen berechnet werden. Da die Betonung einer Silbe in Relation zu

ihren benachbarten Silben definiert ist, werden die über die Silben erhaltenen Wer-

te mit Differenzwerten zu der vorangehenden und nachfolgenden Silben ergänzt. So

werden Feature-Vektoren von 1011 Aufnahmen von einzelnen Wörtern, die von engli-

schen Muttersprachler:innen gesprochen wurden, gewonnen. Diese werden wiederum

verwendet, um einen Voting Classifier, bestehend aus einer Support Vector Machi-

ne, einem Neuronalen Netz, einem Random Forest und einem K Nearest Neighbor

Klassifikator, zu trainieren. Mit dieser Vorgehensweise werden Betonungsmuster ein-

zelner Wörter mit einem F1-Score von 94% und einer Accuracy von 96% erkannt.



Acknowledgement

I would like to thank my supervisors PD Dr. Sandra Schwab and Jean-Philippe

Goldman for their continuous guidance and advice over the course of this thesis.

Especially, I am thankful to PD Dr. Sandra Schwab for organizing a presentation

slot at the lunch meeting of the Phonetic Laboratory where I received valuable input

on my work.

I would also like to express my gratitude to my writing group for the weekly discus-

sions and motivation boosts, as well as for sharing tips and tricks.

Special thanks go to Kilian Werder, Martina Stüssi, Shirin Bär, and Hanno Bertle

for proofreading this thesis and their constructive feedback.

Finally, I would also like to thank my friends and family for reassuring me during

difficult times and their continuous mental and practical support.

ii



Contents

Abstract i

Acknowledgement ii

Contents iii

List of Figures v

List of Tables vi

List of Acronyms vii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Previous Literature 4

2.1 The Phenonemon of English Lexical Stress . . . . . . . . . . . . . . . 4

2.2 Perceptual and Accoustic Correlates of Stress . . . . . . . . . . . . . 5

2.3 The Task of Automatic Lexical Stress Detection . . . . . . . . . . . . 7

3 Materials and Methods 9

3.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 General Pipeline Description . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 From Audio to Syllable Alignment . . . . . . . . . . . . . . . . . . . 10

3.4 Representing Syllables with Feature Vectors . . . . . . . . . . . . . . 11

3.4.1 Durational Features . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.2 Loudness Features . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.3 Pitch Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.4 Spectral Features . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Developing a Lexical Stress Detector with Supervised Machine Learning 15

3.5.1 Training the Classifiers . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.2 Improving the Classifiers . . . . . . . . . . . . . . . . . . . . . . 16

iii



Contents

4 Results and Discussion 18

4.1 Performance of Different Features . . . . . . . . . . . . . . . . . . . . 19

4.2 Optimization of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion and Outlook 22

References 23

A Software and Code 27

B Hyperparameters for Grid Search 28

iv



List of Figures

1 Overview Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 F1 vs. Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 All Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Feature Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



List of Tables

1 Overview Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Grid Search Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 28

vi



List of Acronyms

CAPT Computer-Assisted Pronunciation Training

CALL Computer-Assisted Language Learning

dB Decibel

F0 Fundamental Frequency

FN False Negative

FP False Positive

Hz Hertz

L1 Native Language

L2 Target Language

MFCC Mel Frequency Cepstral Coefficient

ST Semitone

SVM Support Vector Machine

vii



1 Introduction

1.1 Motivation

Although language learning websites and apps are very popular, they often lack

prosodic training. The term prosody comprises suprasegmental features of speech,

meaning phenomena that extend over a single sound such as intonation or stress

(Meng et al., 2009). The web application MIAPARLE, developed by Goldman and

Schwab (2018), aims to address the latter and hence provides a range of tools to

train the perception and production of lexical stress. Several reasons can be named

why prosody, or more specifically lexical stress, cannot be disregarded in language

education:

Firstly, suprasegmental features are equally affected by negative language transfer as

segmental features (Meng et al., 2009). This means that the way prosody is produced

in a learner’s mother tongue (L1) leads to inaccurate or erroneous production in the

target language (L2). Lexical stress, in particular, poses difficulty for speakers whose

L1 is a fixed-stress language like French when learning a free-stress language such as

English (Goldman and Schwab, 2018). In fixed-stress languages, stress placement

is determined by a fixed rule for all words, whereas in free-stress language, stress

is assigned according to the complexity of the syllables (van Heuven, 2019). Thus,

stress patterns in languages like English vary from word to word and can convey

important grammatical information such as a difference in word class (e.g. ’import

- noun vs. im’port - verb 1)(Meng et al., 2009).

Apart from contributing to the grammaticality of a word, correct stress patterns also

have a considerable impact on the intelligibility (Ferrer et al., 2015) and perceived

fluency of a speaker (Li et al., 2017). A study by Anderson-Hsieh et al. (1992),

where native English speaker judged the pronunciation of nonnatives, even showed

that deviances in prosody in comparison to segmentals and syllable structure was

the most likely factor to decrease the perceived fluency of a L2 speaker.

1The apostroph signals that the following syllable is stressed.
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Chapter 1. Introduction

Lastly, prosody training is proving difficult to be included in a classroom setting as

the derivation of easily understandable pronunciation rules is challenging, and hence

it would require a teacher to correct the pupils’ pronunciation individually (Meng

et al., 2009). On the CAPT (computer-assisted pronunciation training) website

MIAPARLE, the correction of stress production is conducted by a lexical stress

detector. It requests the L2 learner to pronounce a certain word and returns which

syllable is stressed and whether this stress pattern is correct. However, at the current

state, this procedure is only implemented for Spanish.

Due to the importance of training stress production elaborated above and due to

the lack of English language support in the production exercise on MIAPARLE,

the aim of this Bachelor thesis is the development of a pipeline to detect stress

patterns in isolated English words. Therefore, a data set provided by Schwab and

Goldman consisting of isolated English words shall be used to train an automatic

stress detector. Consequently, this work will largely focus on feature engineering,

in other words, the effective representation of stress, and on exploring different

supervised machine learning approaches. The resulting pipeline and the included

lexical stress detector should satisfy the following requirements:

• The pipeline should receive an audio file as an input.

• The pipeline should represent the stress pattern of the input by meaningful

features.

• The pipeline should include a lexical stress detector trained on the provided

data.

• The lexical stress detector should detect stress patterns with comparable suc-

cess to state of the art approaches.

• The lexical stress detector should employ the features and the machine learning

algorithm most successful for its specific task.

1.2 Outline

The remaining part of this thesis is structured as follows: Chapter 2 provides the

theoretical background for this thesis. It discusses the phenomenon of stress in

English from a linguistic perspective, thematizes how stress manifests acoustically

and, finally, summarizes common automatic approaches to detect stress. Chapter 3

examines the training data and methods used to, on the one hand, train a lexical

stress detector with supervised machine learning and, on the other hand, develop

2



Chapter 1. Introduction

the entire pipeline in which the lexical stress detector will be embedded. In Chapter

4, the best-performing algorithms and features are presented, and Chapter 5 sum-

marizes the results and findings of this thesis. Appendix A lists the software used

for developing the pipeline and Appendix B includes the parameters used for grid

search.
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2 Previous Literature

2.1 The Phenonemon of English Lexical Stress

Lexical stress2 describes the phenomenon that in many languages not all syllables

within an uttered word are perceived as equally prominent (Cutler, 2005). How this

saliency of certain syllables is realized and what its function is, varies depending

on the language concerned (Cutler, 2015). In English, as briefly touched upon in

the introduction, stress can carry a grammatical function and, according to Cut-

ler (2015) even more importantly, stress is also a crucial perceptual cue to detect

word boundaries in speech. In multi-syllabic English words, one syllable is always

particularly salient and hence it carries so-called primary stress (Cutler, 2015; van

Heuven, 2019). The other syllables also differ in prominence, but the differences are

more subtle. Where the primary stress is placed in English depends, as already men-

tioned, on the syllable structure rather than on a fixed rule, which marks English

as a free-stress language (Cutler, 2015; van Heuven, 2019). Furthermore, one must

distinguish lexical stress from so-called sentence stress3. While lexical stress makes a

syllable protrude, sentence stress emphasizes a specific word in a phrase which “[...]

contributes new and contextually unpredictable information to the discourse [...]”

(van Heuven, 2019). Usually, the acoustic realization of sentence stress falls on the

stressed syllable of the word in focus, which means that lexical stress and sentence

stress coincide in that word (van der Hulst, 2014; van Heuven, 2019). Depending

on the experimental setup, this renders it impossible to discuss one phenomenon

separate from the other (cf. Chapter 2.2 and Chapter 3.4).

2Also called Word Stress in the work of van Heuven (2019).
3Also called Pitch Accent in the works by Li et al. (2017) and van der Hulst (2014).
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Chapter 2. Previous Literature

2.2 Perceptual and Accoustic Correlates of Stress

How stress manifests acoustically is an intensively debated question. However, re-

search agrees that “[S]tress [...] is never marked by a single acoustical property

[...]” (van Heuven, 2019). Rather, stress is signaled by a complex interplay of rela-

tive changes in several acoustic dimensions (Jenkin and Scordilis, 1996). From the

physiological perspective, a stressed syllable stands out from its context by being

articulated with “greater physiological effort” (van Heuven, 2019). This increase in

effort, according to van Heuven, results in more extreme articulatory movements,

which acoustically translates to longer syllable duration. Furthermore, more effort

causes rapid changes in the vibration rate of the vocal cords, which corresponds to

a rise or fall of vocal pitch. Lastly, the increased air pressure on the glottis is the

origin of increased loudness in stressed vowels.

Those physiologically caused acoustic changes in duration, pitch, and loudness were

tested in perceptual experiments from the early stages of stress research. Often cited

are Fry’s “Experiments in the Perception of Stress” (1958) where duration, intensity

(as a measure of loudness), and fundamental frequency (as a measure of pitch) were

altered to determine their effect on the perception of stress by English natives. He

concluded that longer duration and higher intensity are both reliable cues for a

listener to identify a stressed syllable, with duration showing better performance

overall. Furthermore, he also confirmed that the relative difference in fundamental

frequency (F0) is a similarly effective cue as duration with the stress falling on

the syllable with the higher pitch. Succeeding perceptual research predominantly

agrees with Fry’s findings that duration and pitch, followed by intensity are the

most effective cues (van Heuven, 2019). However, Sluijter and Van Heuven (Sluijter

et al., 1997) challenge the view of intensity as a weaker cue by introducing a new

correlate of loudness. Instead of measuring the overall intensity, they tested the

intensity levels above 500 Hz and discovered that this spectrally filtered measure is

more reliable to signal lexical stress.

Apart from the suprasegmental features, duration, fundamental frequency, intensity,

and spectral measure, in English particularly, vowels are known to differ in vowel

quality depending on stress (Cutler, 2015). Vowels located in a stressed syllable

are exclusively in their ‘full’ form, whereas vowels of unstressed syllables are often

‘reduced’, meaning that they tend to be more centrally articulated, but they can

also be ‘full’ (Xie et al., 2004). This means vowel quality does not correspond one-

to-one to stress but nevertheless has been explored as a correlate of stress (Xie et al.,

2004). Opinions on the importance of this segmental distinction for stress judgment
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Chapter 2. Previous Literature

are divided: Cutler (2015) defends the opinion that vowel quality is in fact the

most significant clue for listeners, whereas research by van Heuven (2019) identifies

spectral expansion4 as one of the weakest perceptual cues.

The results of perceptual studies have motivated many attempts of automatic ap-

proaches to detect stress. Overall, the perceptual correlates of stress, duration,

pitch, loudness, spectral information, and also vowel quality, were explored in dif-

ferent combinations over the years. One has to note that the most relevant clues

for humans might not be the same for automatic, computational approaches (van

Heuven, 2019). In the early attempts, simple correlates of duration, loudness, and

pitch were applied (Lieberman, 1960; Aull and Zue, 1985; Freij et al., 1990). The

work of Aull and Zue (1985) and of Freij et al. (1990) additionally explored some

spectral features, namely spectral change in the former and spectral envelope and

slope in the latter. Yet, both concluded that loudness and fundamental frequency

were their most successful feature, agreeing with Lieberman (1960), and that they

outperformed the spectral features. In the research of Jenkin and Scordilis (1996),

they first introduced context-aware features by considering durational, loudness,

and pitch features from the previous syllable. The idea of contextual features has

become popular in the close past (Deshmukh and Verma, 2009; Ferrer et al., 2015;

Li et al., 2017).

Including spectral features gained momentum again when Sluijter and van Heuven

(1996b) proposed a new spectral measure: They investigated why intensity is clas-

sified as a weaker perceptual cue in human stress judgment but is commonly con-

sidered a strong correlate of stress with automatic approaches. The reason for this,

according to Slujiter and van Heuven, lies in the experimental setup: The algorithms

are often trained on isolated words in focus-position, and hence the words also carry

sentence stress besides lexical stress. By analyzing words out of focus-position, they

found the performance of intensity being significantly less successful. Thus, they

came to the conclusion that a higher intensity is mostly caused by sentence stress.

Nonetheless, they still defend the view that stressed syllables are louder but instead

of affecting the entire spectrum, the increased intensities are mainly located above

500 Hz. This finding was operationalized as the intensity difference in three fre-

quency bands above 500 Hz, which is called spectral balance, and which was found

to be close in reliability to duration measures. Spectral balance is adopted in several

following works (e.g., Deshmukh and Verma (2009) or Zhao et al. (2011)) and has

motivated similar spectral measures (Ferrer et al., 2015).

In another study by Sluijter and van Heuven (1996a) where the relative strengths

4A synonym for vowel quality.
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of stress correlates were tested on English words, fundamental frequency was also

unmasked as an effect of sentence stress rather than lexical stress. Moreover, in

the same study, vowel quality was classified as a weak correlate no matter whether

sentence stress coincided with lexical stress or not. This finding was also supported

by the results of Xie et al. (2004). They compared and combined prosodic and vowel

quality features. A combination of loudness, namely amplitude, and duration out-

performed vowel quality features. In recent years, spectral information is commonly

provided in the form of mel-frequency cepstral coefficients (MFCC), which are re-

ported to outperform the traditional features such as duration or intensity (Ferrer

et al., 2015; Tuhola, 2019).

2.3 The Task of Automatic Lexical Stress Detection

In the context of CALL, lexical stress detection is defined as identifying the stressed

syllable within a spoken word (Tepperman and Narayanan, 2005). This differs from

earlier research intended to improve automatic speech recognition, where the deci-

sion took place on a single syllable without considering its context within a word

(Aull and Zue, 1985; Freij et al., 1990; Jenkin and Scordilis, 1996; Ying et al., 1996).

A common approach to classify the stress pattern of an entire word is the following:

Classification is still executed on the level of a syllable, but the classifier assigns

probabilities to each syllable and chooses the one with the highest score as the lo-

cation of primary stress. This approach is adopted in the works of Tepperman and

Narayanan (2005), Deshmukh and Verma (2009) and Zhao et al. (2011).

Both in the context of speech recognition and of CALL, lexical stress detection is

commonly addressed as a supervised machine learning problem. As a consequence,

the truth labels, the correct stress patterns, as well as the data, usually syllables,

represented as feature vectors need to be provided to the machine learning algorithm.

Thus, the first step of preprocessing the training data includes the detection of

syllables within the speech recordings. Syllable alignment has not been an easy

task and hence was responsible for a good portion of mistakes in early models

(Aull and Zue, 1985). In fact, early research often works with data where the

syllable boundaries have been annotated manually (Lieberman, 1960; Freij et al.,

1990). More recent works rely on state-of-the-art syllable aligners (see for example,

EduSpeak in the research of Ferrer et al. (2015)). For the truth label, each syllable

also has to be annotated with its stress value. In case that the speech data is

produced by native speakers, it is often assumed that they produce the correct stress

pattern, and hence the truth labels can be retrieved from a dictionary (Tepperman
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and Narayanan, 2005; Ferrer et al., 2015). Otherwise, the speech data has to be

manually annotated for stress, which is a time-consuming and therefore costly task

(Ferrer et al., 2015).

As already mentioned, each syllable is represented by a feature vector which is

calculated by means of diverse measures (cf. Chapter 2.2). Even though stress is

considered a phenomenon of the entire syllable (van Heuven, 2019), in all previous

literature considered in this thesis, the measures are calculated on the vowel portion

- the nucleus of the syllable - only. The linguistic reason for this is that “[...] large

part of prosodic stress information is carried by the vocalic nucleus [...]” (Silipo and

Greenberg, 1999). In practical terms, it is an easier task to detect the boundaries

of the syllable nucleus than of the entire syllable (Tepperman and Narayanan, 2005;

Li et al., 2017) and it simplifies the normalization procedure (Ying et al., 1996).

Normalizing the feature vectors is crucial as “[a]ll of these prosodic features may vary

for reasons other than signaling stress” (Xie et al., 2004). The cause for variation

might also lie in speaker differences such as speech rate or pitch range, recording

setup, or intrinsic differences of speech sounds.

Many different machine learning algorithms have been trained on the feature vectors.

Common classifiers include Naive Bayes (Deshmukh and Verma, 2009), Logistic

Regression (Deshmukh and Verma, 2009), Decision Trees (Lieberman, 1960; Xie

et al., 2004; Deshmukh and Verma, 2009), Gaussian Mixture Models (Tepperman

and Narayanan, 2005; Ferrer et al., 2015), Support Vector Machines (Xie et al.,

2004; Deshmukh and Verma, 2009; Zhao et al., 2011) and different Neural Network

architectures (Jenkin and Scordilis, 1996; Ferrer et al., 2015; Li et al., 2017; Tuhola,

2019). Defining the most successful approach is a difficult task, as the works differ

widely in what training data they use, what and in which manner the features are

calculated and how the models are evaluated. Only a few studies actually compare

different algorithms: Xie et al. (2004) concluded that Support Vector Machines

outperform Decision Trees. Decision Trees are also challenged in the work of Ferrer

et al. (2015) where Decision Trees and also Neural Networks were exceeded by

Gaussian Mixture Models. In contrast, Decision Trees perform well in the work of

Deshmukh and Verma (2009), where they achieved better results than Naive Bayes,

Logistic Regression, and Support Vector Machines.
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3 Materials and Methods

3.1 Training Data

The training data was collected by Schwab and colleagues5 and comprises 10126

recordings of isolated English nouns spoken by 6 English natives (three female and

three male). The 92 different nouns were chosen because, on the one hand, their

stress pattern does not differ between English varieties (i.e. British English vs.

American English), and, on the other hand, they vary between two to four syllables

in length. Following the examples of Tepperman and Narayanan (2005) and Ferrer

et al. (2015), it was assumed that natives produced the words correctly, and the

stress patterns were retrieved from a dictionary. In total, the training data consists

of 3054 syllables of which 67% are unstressed, and 33% are stressed syllables. This

means that the two classes are not represented equally, which is an intrinsic issue

with stress annotated English data as only one syllable in multisyllabic words carries

primary stress (Cutler, 2015; van Heuven, 2019). As will be discussed in Chapter

3.5.1, the resulting imbalance of the data has to be addressed when evaluating a

trained model.

3.2 General Pipeline Description

Following the previous research on automatic lexical stress detection, in this thesis, a

supervised machine learning model was trained on the provided data. As elaborated

in Chapter 2.3, several preprocessing steps, namely syllabification, normalization

and scaling, and one postprocessing step, ensuring a single stress per word, must

be taken, not only when training the model but also when classifying. In Figure

1, an overview of the pipeline, which is intended to be included on MIAPARLE,

is depicted: The pipeline receives an audio recording of a single word spoken by a

5The collection was financed by the Lehrkredit of the University of Zurich.
61011 of the recordings were used excluding the recording S5 LOC 4 4 secretary 2.wavwhich was

not processable by Prosogram, see Chapter 3.4.
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language learner together with the orthographic transcription of the word the learner

was asked to produce. Afterwards, with the help of the phonetic transcription,

syllables are detected in the speech signal. Each syllable is then represented by a

feature vector consisting of measures calculated on the syllable nucleus. To account

for variances that are not due to stress placement, the feature vectors are then

normalized and scaled before being sent to the classifier. The classifier considers

syllable by syllable, assigns each a probability score, and finally detects the primary

stress on the syllable with the highest probability. In the following subsections,

the preprocessing steps, the feature engineering, and the training of the classifier is

examined. An overview of all technical tools used in the pipeline and a link to the

code to reproduce the results is provided in Appendix A.

Figure 1: Overview of the pipeline to automatically detect stress in isolated words.

3.3 From Audio to Syllable Alignment

Since the MIAPARLE website tests a selected number of words, the phonetic tran-

scriptions were computed once and after that were only retrieved if a given record-

ing is to be classified. The transcription was performed by the ‘G2P’ (Grapheme

to Phoneme) service included in the BAS (Bavarian Archive of Spech Signals) Web

Services7 (Reichel, 2012). All web services of BAS can be accessed via an API. The

7https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
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Chapter 3. Materials and Methods

syllable alignment was performed by a pipeline consisting of two other BAS web

services: ‘MAUS’ automatically segmented the audio file into phones given the pho-

netic transcription (Kisler et al., 2017). Having had the phones aligned, ‘PHO2SYL’

(Phones to Syllable) grouped the segments into syllables (Reichel, 2012). These

preprocessing steps mentioned above resulted in a file in .TextGrid format, which

encompassed all syllables phonetically transcribed, accompanied by the timestamps

they occur in the recording.

3.4 Representing Syllables with Feature Vectors

Each syllable retrieved from the preprocessing was represented by a feature vector.

The first measure chosen to be calculated was duration, as it has been undisputedly

considered a correlate of stress in previous literature. Additionally, loudness and

pitch features were extracted from each syllable even though Sluijter and van Heuven

(1996b) showed both to be rather a result of sentence stress than lexical stress. This

is justified by the fact that the words in the training data and later on MIAPARLE

are pronounced in isolation, hence are in-focus position and, according to Sljuiter

and van Heuven’s argumentation, carry sentence stress as well. Lastly, motivated

by the statement of Sluijter and van Heuven (1996b) “[...] spectral balance is a clear

acoustic correlate of stress [...]”, spectral information in the form of spectral balance

was included.

Spectral information gained by MFCCs was disregarded because their performance

drastically decreases with the level of noise (Bhattacharjee et al., 2016) - a compli-

cation that cannot be ruled out when recording on MIAPARLE with simple laptop

microphones. Moreover, this work did not consider any features representing vowel

quality as neither the research of Sluijter and van Heuven (1996a) nor Xie et al.

(2004) showed convincing results. In addition, according to Xie et al. (2004) deriv-

ing an adequate measure to depict vowel quality is a challenging task in itself. The

four feature groups, duration, loudness, pitch, and spectral information, were all cal-

culated on the syllable nucleus8 for reasons outlined in Chapter 2.3. Subsequently,

each feature was passed through a normalization process.

Since a stressed syllable is defined by its differences in acoustic dimensions to the

neighboring syllables, this thesis followed the works by Jenkin and Scordilis (1996)

and Zhao et al. (2011) and calculated for each feature a set of differential values to

the previous and succeeding syllable. In case the syllable stands at the first or last

8One exception is the syllable duration which was experimentally included, see Chapter 3.4.1.

11



Chapter 3. Materials and Methods

position in the word and thus misses a left or right neighbor, the approach of Zhao

et al. (2011) was copied: The mean value over all syllables of the feature replaced

the missing neighboring feature. It also needs to be mentioned that the normalized

values were chosen to calculate the differences between the syllable and its neighbor.

Most of the features were calculated using the Praat9 extension Prosogram (Mertens,

2020). Prosogram analyses pitch variations in speech and can measure prosodic

features per syllable. For this purpose, it places great importance on applying

stylization on the pitch to reflect human perception as accurately as possible. Un-

fortunately, this modeling of human perception posed difficulties: Even though the

syllable alignments previously retrieved via the BAS web services could be given to

Prosogram as input, it still applied its own heuristics in the given syllable boundaries

based on pitch and intensity to detect the vowel nucleus. This resulted in Prosogram

not recognizing syllables that were indeed already found in the preprocessing step.

In total, in only about 50% of the files, Prosogram detected all syllables. To im-

prove the pitch detection of Prosogram, a Praat script10 was devised, which applies

a strategy by Hirst (2007) to recalculate the pitch with the maximum and minimum

F0 values of the 1st and 3rd quartile of the initially calculated pitch range. The

portion of files in which Prosogram detected all syllables could be improved to 73%.

Recalculating the pitch according to the specific pitch ranges of the six speakers in

the training data did not further increase the number of files with correctly aligned

syllables. Having still a quarter of files with undetected syllables, a fallback strat-

egy was devised. By means of Praat scripts, all measures that Prosogram calculated

and which could easily be emulated were retrieved from the undetected syllables

with the help of the syllable boundaries known from the syllable alignment. Praat

scripts were also used for extracting features that Prosogram did not provide. It is

interesting to note that all the undetected syllables were unstressed. Thus, a feature

encoding whether Prosogram detected the syllable or not was added to the feature

vector. Based on the fact “[...] that there is a highly significant tendency for stress

in English words to fall on the initial syllable [...]”(Cutler, 2015), the position of the

syllable within the word was appended to the features vectors as well.

In Table 1, one can see an overview of all features calculated. The features which

initially were not calculated by Prosogram are marked in grey. The columns ‘Proso-

gram’ and ‘Fallback’ describe which features were computed by Prosogram and for

which a fallback strategy could be implemented. Lastly, the right column encodes

for which features the neighboring syllables were taken into account. In the follow-

9Praat is open-source software for speech analysis (Boersma and Weenink, 2021).
10Based on a script by Sandra Schwab and the ’Extract pitch’ script from the Praat Vocal Toolkit

Corretge (2020).
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ing subsections, a brief overview of the implementation of duration, loudness, pitch,

and spectral features is provided.

Prosogram Fallback Context

Duration Features
Syllable Duration x x x

Nucleus Duration x x x

Loudness Features
Root Mean Square Amplitude x

Peak Intensity x x x

Spectral Features

Mean Intensity 500-1000 Hz x

Mean Intensity 1000-2000 Hz x

Mean Intensity 2000-4000 Hz x

Pitch Features

Trajectory x

Max F0 in Hz x x x

Max F0 stylized in HZ x x

Mean F0 in Hz x x x

Mean F0 in ST x x x

Intersyllab x

Other Features
Position of Syllable

Detected by Prosogram

Table 1: Overview of all features calculated per syllable.

3.4.1 Durational Features

As durational features, the nucleus and syllable duration were extracted. To reduce

the effects of the individual speech rate and to counteract the fact that the final

syllable of an utterance tends to be longer11, the nucleus duration and the sylla-

ble duration were normalized by dividing it through the mean nucleus respectively

syllable duration of the given word (Zhao et al., 2011; Sluijter and van Heuven,

1996b). Vowels that constitute the syllable nucleus vary in length according to in-

trinsic differences, as pointed out by Ying et al. (1996) and Xie et al. (2004) (e.g.

diphthongs are longer than ordinary vowels regardless of stress placement). There-

fore, the average duration of each phoneme was calculated on the entire dataset,

and each nucleus duration was normalized further by dividing it by the correspond-

ing mean vowel length. Both values, normalized for speech rate and normalized for

vowel type, were added. Feature engineering during the training of the machine

learning model decides which normalization strategy is more successful.

11A phenomenon called ‘preboundary lengthening’.
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3.4.2 Loudness Features

To depict loudness, measures describing the energy in Decibel (dB) and amplitudes

in Pascal have been used in previous literature. This thesis applied an amplitude

feature, namely the root mean square amplitude motivated by Silipo and Greenberg

(1999) and Xie et al. (2004), and peak intensity motivated by van Heuven (2019).

The mean values for both measures retrieved from all nuclei of a word were sub-

tracted from the value per syllable to normalize for speaker differences and varying

recording setup.

3.4.3 Pitch Features

Following several previous studies, peak and mean fundamental frequency were cal-

culated over the syllable nucleus (Aull and Zue, 1985; Jenkin and Scordilis, 1996;

Silipo and Greenberg, 1999; Xie et al., 2004; Tepperman and Narayanan, 2005; Desh-

mukh and Verma, 2009; Zhao et al., 2011). Since Prosogram also provided maximal

F0 stylized and mean F0 in semitones (ST), these features were incorporated as

well. The selection of a measure in semitones was also motivated by Zhao et al.

(2011). The maximum and mean F0 features were normalized by subtracting the

corresponding average value over all nuclei of a word. Apart from average and peak

F0, several different measures related to the movement of F0 in a syllable were pro-

posed in previous literature. For example, Freij et al. (1990) used derivates of the

F0 curve over a syllable or Li et al. (2017) used a pair of dynamic pitches, describing

rises and falls of tone. Inspired by this, Prosogram’s ‘trajectory’ features describing

“the sum of absolute pitch interval of tonal segments [...] after stylization” (Mertens,

2020) was added as well. Apart from default context-aware features (cf. Chapter

3.4), the difference in semitones between the end of the previous nucleus and the

start of the current nucleus was calculated using Prosogram (called ‘intersyllab’).

3.4.4 Spectral Features

As described in Chapter 3.4, this thesis adopts spectral balance inspired by Sluijter

and van Heuven (1996b). Therefore, the mean intensity in three frequency bands,

namely between 500-1000 Hz, 1000-2000 Hz, and 2000-4000 Hz was determined.
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3.5 Developing a Lexical Stress Detector with

Supervised Machine Learning

3.5.1 Training the Classifiers

Since a single best algorithm could not be identified in previous literature (cf. Chap-

ter 2.3), eight different classifiers were tested on the training data. Inspired by

previous literature, Decision Trees, Logistic Regression, Support Vector Machines,

Naive Bayes and a simple Neural Network architecture, more precisely a Multilayer

Perceptron, were applied. Since the Python library Scikit-Learn (Pedregosa et al.,

2011) was used for implementing all machine learning models, a K Nearest Neighbor

classifier and two Ensemble classifiers, namely Random Forest and AdaBoost, were

also trained as recommended in the Scikit-Learn Documentation (2021). Since most

machine learning algorithms are sensitive to different scales of the data, the training

data was scaled with Z-score normalization, which means that the features were

rescaled, such that their mean is zero and their standard deviation is one (Géron,

2019).

To evaluate the classifiers, 10-fold cross-validation was performed. This means that

the training data was split ten times into two non-overlapping sets (75/25 ratio).

In each case, on the larger part - the training set - the classifiers were trained, and

on the other part, they were evaluated. The average performance of the classifiers

over all splits was considered. This procedure makes sure that one yields reliable

performance measures as it rules out that the division into test and training set is

by chance more favorable to the classifier and hence responsible for the good perfor-

mance (Géron, 2019). When classifying the test data to evaluate the trained model,

a postprocessing step as in previous research, such as the works of (Tepperman and

Narayanan, 2005; Deshmukh and Verma, 2009; Zhao et al., 2011), was included to

ensure that only one stressed syllable per word is detected (cf. Chapter 2.3). Both

when no syllable or several syllables are recognized as stressed, the syllable with

the highest probability is classified as stressed. In this thesis, the evaluation relied

on F-Score (also called F1 score) instead of the common accuracy as the evaluation

metric. This decision was made on the basis of the following two considerations:

On the one hand, as discussed in Chapter 3.1, stress annotated English data is al-

ways imbalanced because there can be one syllable carrying primary stress at most.

With our data, 2/3 of the syllables are unstressed. This means that if a classifier

disregards the class ‘stressed’ entirely and only assigns the class ‘unstressed’, the

accuracy would still reach 60%. For the task of lexical stress detection, however,
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it is essential to ensure that the class ‘stressed’ is reliably detected. On the other

hand, since the lexical stress detector devised in this thesis is part of a CALL ap-

plication, it should avoid false corrections (Ferrer et al., 2015). Hence the model

should minimize false negatives (stressed syllables that are detected as unstressed)

and false positives (unstressed syllables that are detected as stressed). If we look at

the definitions of F1 and accuracy in Figure 2 Géron (2019), F1 increases as false

negatives (FN) and false positives (FP) decrease, whereas accuracy does not depend

on the two counts. Accordingly, F1 is the more adequate evaluation measure to

evaluate models in this thesis.

Figure 2: Definition of F1 score and accuracy.

3.5.2 Improving the Classifiers

From the eight classifiers, the four achieving the highest F1 score were chosen to

be further investigated. This included, on the one hand, feature engineering - to

discover the best performing feature combinations - and, on the other hand, opti-

mizing the hyperparameters of the remaining four models. In a scenario of unlimited

time and resources, both dimensions, features and hyperparameters, should be in-

vestigated parallelly as the chosen features might influence the optimal choice of

hyperparameters and the other way round (Kuhn and Johnson, 2019). However,

considering that time was limited for this project and that four models had to be

optimized, the procedure was simplified: Since feature engineering is known to have

a bigger impact on the model performance, it preceded hyperparameter optimization

(Lee, 2019). Therefore, the performance of different feature group combinations was

analyzed by training the four algorithms with only a certain feature group. Within a

feature group, it was manually experimented whether removing potentially correlat-

ing features (e.g. maximum Pitch in ST and Hz) and different normalization strate-

gies improved the model performance. After that, a more systematic grid search

on the four models was performed to retrieve the best hyperparameters. Again,

F1 was the evaluation measure for which the grid search was optimized. As a last
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optimization experiment, the four improved classifiers were combined into a Voting

Classifier. The idea of a Voting Classifier comprises that all four classifiers assign

probabilities to an item, in our case a syllable, and the average overall probability

defines which class is associated with the item (Géron, 2019). Voting Classifiers are

known to outperform the individual classifiers they are composed of (Géron, 2019).
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4 Results and Discussion

Figure 3: Baseline performance of all classifiers.

As can be seen in Figure 3, the Neural Network, Support Vector Machine, K Nearest

Neighbor and Random Forest classifiers performed the best when implemented out

of the box with all features. These results contradict the results of Deshmukh and

Verma (2009) where Decision Trees outperformed Naive Bayes, Logistic Regression,

and Support Vector Machine; with the presented work, Decision Trees show the

worst performance. Thus, it rather confirms the conclusion of Xie et al. (2004)

that Support Vector Machines surpass Decision Trees in detecting lexical stress.

The success of the postprocessing strategy can be seen in the same figure, as each

algorithm reached a higher F1 score when postprocessing was applied, which reflects

the findings of Tepperman and Narayanan (2005).
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Chapter 4. Results and Discussion

4.1 Performance of Different Features

Figure 4: Performance of feature groups. Top: Features are grouped according the
acoustic dimensions they cover. ‘Other’ includes ‘position of syllable’ and
‘detected by prosogram’. Bottom: Features are grouped according to how
they are calculated.

From all features, the durational features proved to be the most successful (see Fig-

ure 4 top). This ties in with the fact that durational measures were the uncontested

feature in previous literature. The exploratory features, ‘position of syllable’ and

‘detected by prosogram’ (both summarized in ‘Other’), are the weakest correlates of

stress. Hence, they were removed, which did not have a negative effect on the per-

formance metric. The strength of pitch, loudness, and spectral features depends on

which classifier is considered. For the Support Vector Machine, K Nearest Neighbor,

and Neural Network, spectral features led to a better performance than pitch and
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loudness features. With the Random Forest, the pitch features surpassed loudness

and spectral features. Nevertheless, the combination of pitch, loudness, spectral

and, duration features yielded the best performance with all classifiers.

The juxtaposition of absolute, normalized and, context-aware features (see Figure 4

bottom) revealed that in agreement with the work of Zhao et al. (2011), the context-

aware feature group outperformed the normalized and absolute features if the groups

are considered on their own. This finding is supported by the fact that stress is de-

fined as a phenomenon on the level of the syllable in relation to its neighboring

syllables. It is, however, surprising that normalized features performed worse than

the absolute features. This may be due to the fact that spectral features, which were

a strong correlate of stress, are not part of the normalized feature groups since this

paper did not adapt any normalization strategy for them. The best F1 score was

reached with either the combination of absolute, normalized, and context-aware fea-

tures or absolute and context-aware features. Correspondingly, both combinations

were tested when further optimizing the classifier.

Finally, removing some similar (e.g. vowel normalized vs. speech rate normalized

duration features) or collinear features (e.g. F0 mean in Hz vs. F0 mean in ST)

was explored. The removal of any feature led to a decrease in performance. As

a consequence, all features were considered (apart from ‘position of syllable’ and

‘detected by prosogram’ which had been removed earlier).

4.2 Optimization of Classifiers

Absolute + Context-Aware Features

Before After

Random Forest 0.90 0.90

SVM 0.91 0.93

Nearest Neighbor 0.89 0.93

Neural Net 0.92 0.92

Voting 0.94

Absolute + Nomalized + Context-Aware Features

Before After

Random Forest 0.89 0.89

SVM 0.91 0.93

Nearest Neighbor 0.90 0.93

Neural Net 0.92 0.93

Voting 0.94

Table 2: Performance in F1 scores of classifiers before and after grid search with
different feature combinations. The Voting Classifier is composed of all
four optimized classifiers but was not grid searched itself (no before/after).
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Most classifiers improved slightly after grid search (see Appendix B for an overview

of the grid search parameters and Table 2 for the performance results) both when

trained on absolute and context-aware features, as well as absolute, normalized and

context-aware features. As described in Chapter 3.5, the optimized classifiers were

combined into a Voting Classifier. The resulting Voting Classifiers, as predicted

by Géron (2019), outperformed the single classifiers. Unfortunately, no definite

conclusion between the two feature sets could be drawn; both resulting classifiers

reached an F1 score of 0.94. Since a model with less features is usually preferred

because less time for training is required, the Voting Classifier trained on absolute

and context-aware features was chosen to work in the lexical stress detection pipeline.

Therefore, the final model achieves an F1 score 94% and an accuracy of 96%. As

shown in Figure 5, the classifier performs slightly better at detecting unstressed

than stressed syllables (97% of unstressed and 94% of stressed syllables are detected

correctly). This can probably be accredited to the fact that unstressed syllables are

overrepresented in the training data, as described in Chapter 3.1.

Figure 5: Normalized confustion matrix of the Voting Classifier.
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5 Conclusion and Outlook

This thesis proposes a pipeline that successfully detects syllables in recordings of iso-

lated English words and identifies the syllables carrying primary stress. For syllable

alignment, three different tools from BAS Web Services were exploited. The lexical

stress detector was trained with a supervised machine learning algorithm: A Voting

Classifier composed of four different classifiers, including a Support Vector Machine,

a Neural Net, a Random Forest and a K Nearest Neighbor classifier, achieved a 94%

F1 score and 96% accuracy on the provided training data. With such high scores,

the classifier exhibits comparable performance to recent approaches in lexical stress

detection (e.g. Ferrer et al. (2015): 91.5% accuracy, Zhao et al. (2011): 88.6% ac-

curacy12). The final classifier employed absolute and context-aware duration, pitch,

loudness, and spectral features, which in combination led to the best performance.

The durational features proved to be the most reliable feature group to detect lexical

stress in this task setup. Apart from feature selection, a postprocessing step that

ensured that only one stressed syllable per word is found contributes substantially

to the quality of the classification. In sum, all requirements mapped out in Chapter

1.1 were met in the course of this thesis.

Future work should investigate how the proposed pipeline performs on non-native

and noisy data since this was not evaluated in the presented thesis but is the use

case scenario on MIAPARLE. Moreover, the proposed pipeline only detects primary

stress. Therefore, the detection of different degrees of stress could be a topic of future

research. Furthermore, the pipeline could also be improved if mispronunciation of a

language learner on MIAPARLE is taken into consideration. At the current state,

if a vowel is mispronounced, it is still force aligned with the correct pronunciation

in the preprocessing steps. Concerning the training, more time could be spent

on systematic and parallel feature engineering and hyperparameter optimization

to evaluate whether the performance of the system can be increased even further.

Lastly, exploring Deep Neural Network architectures, which are able to represent

time series13, may constitute the object of future studies.

12Both works consider secondary stress as well, which is probably the reason for the lower accuracy.
13For example, recurrent neural networks (RNN) as in Tuhola (2019).
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A Software and Code

The code to replicate the results and the finally trained model can be found on

GitHub:

https://github.com/vera-bernhard/stress-detector.

In addition, the following software was used:

• Praat14(Boersma and Weenink, 2021)

• Prosogram15(Mertens, 2020)

• G2P(Reichel, 2012) and MAUS PHO2SYL (WebMaus Basic(Kisler et al., 2017)

+ PHO2SYL(Reichel, 2012)) from the BAS Web Services16

• Praat Vocal Toolkit17, adapted ‘Extract pitch’ script to stylize pitch (Corretge,

2020)

• Scikit-Learn (Pedregosa et al., 2011)

14https://www.fon.hum.uva.nl/praat/
15https://sites.google.com/site/prosogram/home
16https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
17http://www.praatvocaltoolkit.com/index.html
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B Hyperparameters for Grid Search

Table 3 provides an overview of all hyperparameters considered for grid search. The

values marked in blue are the ones that achieved the best performance with feature

set 1 (absolute and context-aware features), values marked in red with feature set 2

(absolute, normalized and context-aware features) and orange when they performed

best for both feature sets.

Classifier Hyperparameter Values

Neural Net

Hidden Layer Size {(100), (50, 50), (100, 50), (50)}
Activation Function {identiy, logistic, tanh, relu}
Optimizer (solver) {lbfgs, sgd, adam}
Learning Rate (alpha) {0.001, 0.0001, 0.00001}

K Nearest Neighbor

Number of Neighbors {3, 5, 9, 13}
Weight Function {uniform, distance}
Algorithm {auto, ball tree, kd tree, brute}
Distance Metric {euclidian, manhattan}

Support Vector Machine

Regularization Parameter (C) {0.01, 0.1, 1.0, 10.0}
Kernel {linear, rbf, poly, sigmoid}
Kernel Coefficient (gamma) {scale, auto}
Class Weight {balanced, None}

Random Forest

Number of Trees (Nr or Estimators) {50, 100, 200}
Quality of Split Measure (criterion) {gini, entropy}
Maximal Depth {10, 50, 100, None}
Minimum Samples for Split {2, 5, 10}
Class Weight {balanced, None}

Table 3: Hyperparameters used in grid search for each classifier.
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