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Abstract

Climate change and energy poverty in low- and middle-income countries are global chal-
lenges that are sometimes in tension with each other. This paper analyzes a randomized
intervention that addresses both: distribution of solar lights to replace kerosene lamps.
The solar lights strongly reduce carbon emissions from kerosene by half, while at the
same time lowering household expenditures and improving health and subjective well-
being. Providing lights for free, rather than charging a co-pay, boosts take-up without
lowering usage. Access to solar lights can therefore be a highly cost-effective climate
interventions, which at the same time increases the welfare of the poor.
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1 Introduction

The global community faces two critical challenges that may seem at odds with each other:

climate change and a lack of access to modern energy for the world’s poor. Over 750 million

people still have no access to electricity in their homes, out of which 80% live in Africa

(42% of the total population) (IEA, 2023). An often-raised concern is that access to energy

for these populations would jeopardize the global goal of fighting climate change (United

Nations, 2021). However, this trade-off may not exist in situations where those without

access to electricity instead rely on energy biomass such as kerosene, which is particularly

detrimental to global climate (IEA, 2011). Kerosene lamps, in particular, are estimated to

emit around 270,000 tons of black carbon per year (Lam et al., 2012). In these situations,

providing access to clean energy may at the same time reduce energy poverty and carbon

emissions.

In recent years, production costs for solar energy have decreased dramatically, making

off-grid solar a potential cost-effective solution to provide low-income households with cheap

and clean energy. However, examples abound of “development solutions” with promising

engineering projections from novel devices that ended up having much lower impacts in

practice, for instance, due to low adoption or costly maintenance requirements (Davis et al.,

2014; Bensch and Peters, 2015, 2019; Hanna et al., 2016). It is therefore key to understand to

what extent access to new technologies such as solar lights indeed reduces carbon emissions

(Beltramo et al., 2023). While prior RCTs have studied the effects of solar lights on edu-

cation, health (through reduced indoor air pollution), kerosene consumption, and economic

and subjective well-being, (Furukawa, 2012, 2014; Hassan and Lucchino, 2016; Aevarsdottir

et al., 2017; Aklin et al., 2017; Furukawa, 2017; Grimm et al., 2017; Kudo et al., 2019a,b;

Sharma et al., 2019; Mahajan et al., 2020; Stojanovski et al., 2021; Wallach et al., 2022),

causal estimates on their impact on carbon emissions have so far been lacking.1

This study analyzes both the demand for and impacts of access to solar lights through

a randomized field experiment in rural Kenya, where kerosene was the predominant energy

source for lighting. The solar lights strongly reduce carbon emissions, while at the same

time lowering expenditures of these very poor households and improving their health and

subjective well-being. Over two years, access to a solar light that costs USD 9 leads to a

1While Wagner et al. (2021) analyze the environmental benefits of solar home systems in terms of CO2-eq
emissions, they rely on cross-sectional evidence on solar home systems ownership.
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reduction of 9.13 kg of CO2 and 1.63 kg of black carbon (BC). According to the central

estimate from the climate science literature, this amounts to a reduction of 1, 371kg in CO2-

equivalents (CO2-eq) in terms of climate impacts.2 At current carbon prices of the EU

carbon market, this reduction would amount to USD 120, and at the currently estimated

social costs of carbon by the U.S. Environmental Protection Agency (EPA), this corresponds

to a social value of USD 260. However, since carbon markets do not include BC emissions

(so far), carbon credits cannot be used to pay for this type of intervention.

The school-based intervention we evaluate was conducted in 2015-2016 among about

1,400 households and consists of five treatment arms in which solar lights were offered to

randomly selected households at different price points. This allows us to study both the

price elasticity of demand and usage and the impacts of the lights on households and on the

environment. To measure these outcomes we combine survey data from 7-8 months after the

distribution of the lights, administrative educational records as well as—for a subset of the

study sample—electronic sensor data on usage.

Before analyzing the impacts of the solar lights, we investigate the role of price, as well

as information and transaction costs, for take-up and usage. The lights were provided at the

school to the guardians of selected students. At the end of a baseline survey, guardians were

either directly offered a free light, or given a voucher to redeem such a light at the market

price of USD 9, or at subsidized prices of USD 7 or 4, respectively. Comparing take-up of the

different voucher treatments shows that demand is highly elastic to price: for a 1% increase

in price, take-up drops by 0.5 percentage points.

The fact that take-up is still 31% for participants who receive a voucher to purchase

the light at market price suggests that information and transaction costs may present an

important barrier to take-up.3 Similarly to studies from other contexts of good distribution

at different price points (e.g., Kremer and Miguel, 2007; Dupas, 2009; Ashraf et al., 2010;

Cohen and Dupas, 2010; Kremer et al., 2011), we find that while take-up responds strongly

to prices, usage of the lights conditional on take-up is not lower when lights are distributed

2CO2-equivalents are a measure to compare the climate impact of different sources of emissions. Non-CO2

emissions are converted to equivalent quantities of carbon dioxide with the same global warming potential.
BC has a particularly strong impact on climate change (Bond et al., 2011). The climate science literature
calculates a range of estimates for the conversation factor of BC to CO2-eqs. Our preferred estimates are
based on the central estimate in the climate literature, but we also report results for the full range of
estimates.

3For instance, in our setting, locations where solar lights can be bought are often quite a distance away.
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for free. Light usage is also similar for a different, larger and mobile-charging-enabled solar

light, which was distributed for free in a fifth treatment arm. Data from the sensors shows

that usage does not decline over time.

The solar lights are used for an average of around 3.3 hours a day. Having a solar light also

helps households to have more consistent lighting, as there are fewer lighting interruptions.4

Owning a functioning solar light almost fully replaces the use of one kerosene-fueled lamp.As

a result, households purchase 16 fewer liters of kerosene on average, a 50% reduction. Taking

into account which type of kerosene lamp any given household used prior to the intervention,

we can estimate that this translates into a reduction of 71, 296g of CO2-eq emissions per

month, a 50% drop compared to the control complier mean. Given the costs of the basic

light at USD 9 and the larger light at USD 24, over two years this implies an abatement

cost per ton of CO2-eq emissions averted of USD 6.56 and USD 17.60, respectively, taking

into account a monthly breakage of the lights of 1.15%. These costs are substantially below

the current price of carbon in the EU of 80€ (Trading Economics, 2023) or of the EPA’s

recommended social cost of carbon estimate of USD 190 (U.S. Environmental Protection

Agency, 2022).

Beyond the environmental benefits, access to the solar lights also generates private bene-

fits to the household. First, monthly energy expenditures fall substantially. This is the only

outcome for which we find significant differences between the basic and the larger light. The

reason is that in addition to the reduction in kerosene consumption, the larger light also

substantially reduces expenditures for mobile phone charging. As a result, total monthly

energy expenditures fall by USD 1.3 for the basic and USD 2.4 for the larger light. For both

types of light, the net present value (NPV)—i.e. the discounted stream of future reductions

in energy expenditures minus the cost of the light—is positive. It amounts to USD 7.14

for the basic and USD 5.82 for the larger light, and the lights pay off in terms of private

financial benefits after 9 and 19 months, respectively.

Finally, we also investigate the impacts of access to solar lights on health, education, and

subjective well-being. Kerosene lights emit noxious fumes that lead to indoor air pollution,

which is detrimental to respiratory and eye health.5 Using standardized survey questions

4Lighting interruptions, in which households have to sit in the dark, usually occur when they run out of
fuel for other types of lights, which most commonly is the result of financial constraints.

5In the longer-term, indoor air pollution can also lead to severe illness and death (WHO, 2016). However,
our sample size and the duration after which we observe the impact do not allow us to measure such effects.
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from the health literature we find significant improvements in both respiratory and eye-

related symptoms for both students and guardians, ranging from 0.15 to 0.27 standard

deviations.

Combining our survey data with administrative test scores we can analyze the impacts on

both educational inputs and outcomes. We observe improvements of the former but not the

latter. Students report spending more time doing homework after dark, being more likely

to complete their homework, and increased school attendance. However, we see no effects

on test scores nor on the probability of taking part in the national standardized graduation

exam (KCPE). However, we cannot rule out that this absence of observable impacts is a

result of within-school spillovers (both from sharing the light and from potential learning

spillovers).

Finally, we measure impacts on a number of psychological outcomes. There is a positive

effect on the average of all outcomes for both guardians (of about 0.07 standard deviations)

and students (0.11 standard deviations). In particular, guardians’ views improved signifi-

cantly in terms of whether their economic situation had improved over the last three months,

and whether their life as an adult would be better than their parents’.

Our study contributes to two main literatures. First, we add to the economics literature

on access to electricity in low-and middle-income countries. Much of this literature has

focused on the impacts and cost-effectiveness of providing people with access to the electric

grid (e.g., Lee et al., 2016a,b, 2020; van de Walle et al., 2015).6 However, in many areas

of the world, access to the grid is likely still years or even decades away. In addition, even

where access to the grid is available, it is often unreliable (e.g., Ayaburi et al., 2020). There

has therefore been a debate on whether off-grid or on-grid solutions should be prioritized

in the short- and medium-run (e.g., Ortega-Arriaga et al., 2021; Leo, 2015; Dagnachew

et al., 2018). Off-grid alternatives may in particular be more affordable for households in

poor, isolated regions (Lee et al., 2016b) where on-grid schemes may have low take-up rates

or be challenging to implement (Lee et al., 2016a,b; Deichmann et al., 2011; Urpelainen,

2014). An alternative to grid-access are solar- (or hydro-) powered micro-grids. These can

power multiple household appliances in addition to lighting. However, they are substantially

more costly—and therefore usually not affordable to the poorest—and technologically more

6For a review of impact estimates, see Bonan et al. (2014) on access to electricity and Bos et al. (2018)
on access to the electric grid in Africa.
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challenging to install and maintain (Fowlie et al., 2019; Aklin et al., 2017; Millinger et al.,

2012). This paper contributes to our knowledge of the benefits of off-grid solutions by

focusing on one of the lowest-cost off-grid products, small solar lights.

Second, our paper contributes to the literature on the economics of climate change, and

in particular to the long-standing debate on whether reducing global poverty is in tension

with global efforts to slow down climate change, as lower poverty often implies higher carbon

emissions (Ravallion et al., 2000; Rojas-Vallejos and Lastuka, 2020; Bruckner et al., 2022;

Wollburg et al., 2023; Fouquet, 2016). This paper provides an example of an intervention

that can overcome this trade-off, in the sense that it provides a clean technology that at the

same time reduces household poverty and carbon emissions (World Bank, 2022; Dagnachew

et al., 2018; Alstone et al., 2015; Fetter, 2022). As Wolfram et al. (2012) point out, reducing

poverty by increasing access to energy can even provide win-win solutions. Our intervention

provides such an example.

2 Background and Study Design

2.1 Context

Global Trends of Light Usage and Policy Environment

Increasing access to electricity is a key global goal (e.g. Sustainable Development Goal

7 (United Nations General Assembly, 2015)). While a lot of progress has been achieved

in recent decades, in rural and remote areas expanding access to the electric grid tends

to be very costly (Bos et al., 2018; Golumbeanu and Barnes, 2013). Thus, off-grid energy

systems7, of which solar lights are one example, have been increasingly used as a cost-effective

alternative until the electric grid can reach everyone (Barnes, 2011; Rahman et al., 2013;

Come Zebra et al., 2021). The International Renewable Energy Agency (IRENA) estimates

that between 2012 and 2021, the number of people worldwide using basic solar lights grew

from 16 to 138 million (IRENA, 2022).

Kerosene Emissions and their Impacts

Kerosene-fueled lamps produce three main types of emissions: carbon dioxide (CO2), par-

ticulate matter 2.5 (PM2.5), and black carbon (BC). PM2.5 are inhalable fine particles with

7Off-grid energy is energy that is generated autonomously and independently of the public grid.
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a diameter of 2.5 micrometers or less. These air pollutants are particularly detrimental to

health. BC (colloquially also referred to as soot) is a component of PM2.5 and is estimated

to be the second most important agent contributing to global warming after CO2 (Bond et

al., 2013). At least 88% of the PM2.5 mass that kerosene lamps emit is BC (Lam et al.,

2012).

Different types of kerosene lights produce different amounts of emissions per kilogram of

burnt kerosene.8 The most common ones are tin lamps and kerosene lanterns (pictured in

Figure 1). Lam et al. (2012) find emissions of 2,770g of CO2, 93g of PM2.5, and 90g of BC

for tin lamps, and 3,080g of CO2, 13g of PM2.5, and 9g of BC for kerosene lanterns.9

Environmental Effects: BC acts both fast and locally. Though less often in the headlines,

it has much stronger effects than CO2 on the climate per kg emitted. While BC only remains

in the atmosphere for a short period of time, its effects can continue for years and even

decades, due to the thermal inertia in the climate system (Szopa et al., 2021). Climate

scientists have estimated the impact of BC on climate change in terms of CO2 equivalents

(henceforth referred to as CO2-eq). The climate impact of BC depends on its atmospheric

abundance and concentration (Bond et al., 2013, 2011), and therefore varies across world

regions. Bond et al. (2011) provide CO2-eq estimates from BC emissions through fuel-burning

activities by region. Their central estimate for Eastern Africa is 836 CO2-eq per kg of BC

emitted. We show results using this estimate, as well as a range of alternative conversion

factors from BC to CO2-eq from the climate science literature.10

Health Effects: Kerosene-fueled lighting also has adverse health effects through indoor

air pollution, especially from PM2.5. Indoor air pollution is considered one of the most

important environmental health risk factors worldwide (WHO, 2016). While lights burn

less kerosene than cookstoves, their impact on health may still be substantive, in particular,

8Conversion of liters to kilograms of kerosene depends on the density of the kerosene used. Kerosene
sold in Kenya must have a density of between 0.771 and 0.830kg/dm3 (TotalEnergies, 2022). We take the
mid-point of this interval and calculate with 0.8 kilograms per liter.

9This study was conducted in Kenya’s neighboring country Uganda, where the type of lights and fuel
used are very similar to our context.

10The parameters chosen to calculate the conversion factors from BC to CO2-eq are subject to a substantial
degree of uncertainty. We therefore report results using a number of alternative conversion rates. First, we
show results using the lower and upper bounds of the Bond et al. (2011) conversion factor. Second, we
show estimates using an alternative approach from climate science, calculated in (Bond et al., 2013), which
does not have different conversion factors by geographic region—as well as the lower and upper bound of
this alternative approach. For all conversion factors, we use the version with a 100-year time horizon—as
opposed to 20 years—since this is more conservative (i.e. provides lower conversion factors).
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because people sometimes spend many hours sitting very close to the lights.

While indoor air pollution from kerosene burnt for cooking has been studied extensively

(e.g. Berkouwer and Dean, 2022), the role of lighting is less clear.11

The Kenyan Context

Increasing access to electrification for Kenyan households has been a key priority of the

government in recent years. As a result of the various initiatives of the government and

of the Rural Electrification Authority, the rate of access to electricity (grid and off-grid

combined) grew from 42% in 2015 to 76% in 2021 (World Bank, 2021a). Nevertheless, about

32% of the population in rural regions of Kenya still did not have access to electricity in

2021 (World Bank, 2021b). The continued weakness of Kenya’s power transmission and

distribution infrastructure has led to a high system cost, which limit electrification in the

country (Osiolo et al., 2017). At the same time, individual barriers, such as distance to

transformers, prices, income, and the frequent issues that plague the Kenyan electricity grid

(black-outs, breakdowns, voltage drops, and long restoration times) lead to low take-up by

households, even where electrification is theoretically possible (Moner-Girona et al., 2019).

Therefore, renewable off-grid technologies, including solar energy sources, are considered by

many to be an important part of the solution to address the Kenyan electrification gap

(Moner-Girona et al., 2019; Zeyringer et al., 2015).

At the time of our intervention, in 2016, about 35% of Kenya’s households relied mostly

on kerosene for lighting (KIHBS, 2018).12 Since our study took place in a rural part of

Kenya, where few people had access to the electric grid, 93% of study participants used

kerosene as the main source for lighting prior to the intervention. By lamp type, at baseline,

63% of households in our control and free treatment groups used only tin lamps during

the preceding month, 36% used both tin lamps and kerosene lanterns, and 0.4% used only

kerosene lanterns.

At the same time, solar lights were not always easily available. In our study, 47% of

respondents in the control group mentioned at baseline that they had never seen a solar

light being sold before. Of those who had seen a light being sold, only 9% had seen it in

11According to WHO (2021) “each year, 3.2 million people die prematurely from illness attributable to
the household air pollution caused by the inefficient use of solid fuels and kerosene for cooking”.

12Around 41% powered their light mainly through the electric grid, 14% used solar lights, and 9% alter-
native sources such as fire, wood and batteries.
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their own village, while 69% saw it at the closest market center and 24% only in a larger

city.

2.2 Intervention

We conducted a randomized field experiment between June 2015 and March 2016, which

consisted of the distribution of solar lights in schools in rural Kenya to investigate the

demand for solar lights and their potential environmental, financial, health, and educational

benefits. The intervention took place in 20 primary schools (grades 5-7) in Western Kenya

(sub-counties Nambale and Teso South) in partnership with SolarAid, a large distributor of

portable solar lights in Kenya. (See Appendix B for an in-depth description of the sample

selection, randomization, treatment assignment, light distribution, and surveys and Figure

B.1 and B.2 for a graphical representation of the research design and timeline.)

Sampling Frame and Randomization: Out of 97 eligible rural public schools, we randomly

selected 10 schools from each sub-county.13 The sampling frame included the 3,360 house-

holds that had at least one child in grades 5–7.14 Among these households, we randomly

selected 1,410 students into treatment and control groups (stratified at the school level).

The final study sample consists of 1, 286 households, since there was about 6.9% attrition in

the endline survey (discussed in Section 3.6).

Baseline Survey and Treatments: The intervention started with a baseline survey with the

students, followed by another survey of their guardians (usually a parent or other relative) at

the school.15 The baseline surveys were conducted between July and August 2015. The solar

lights - or vouchers to purchase a solar light - were distributed to the guardian at the end of

their survey.16 There were five different treatment arms, which varied along two dimensions:

13Excluded from this sample were thirty schools that had less than 200 students, were boarding schools,
unisex, special needs schools, part of other research projects, or too far away to be reached within a day
from the field office.

14Students in grades 1–4 were not included since it would have been hard for them to answer survey
questions and students in grade 8 would have left school before the study had ended. For households with
more than one student in grades 5–7, we randomly selected one student to be in the sampling frame.

15At the end of the student survey, we gave students a note that invited their guardian to come to the
school for the guardian survey. We also asked students for their guardian’s name and phone number, so that
if the guardian did not come to the school, surveyors could contact them and conduct the survey at home or
at their workplace. (The share of guardians who did the survey at the school is balanced across treatment
arms.) 50.6% of guardians were the mother, 28.9% the father, 7.8% the grandmother, 3.8% the aunt, 2.8%
the grandfather, and 2.5% the uncle.

16To make participants aware that it was determined by chance whether they received a light, a voucher,
or nothing, we designed a text message process that informed them about what they ”won” in a way that
was similar to text message-based lottery games that are common in Kenya.
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price and type of light (see Figure 1 for a graphical representation of the treatment arms and

pictures of the different types of lights). The former allows us to estimate the price elasticity

of demand, the latter to compare the impacts of a basic light vs. a larger light. The different

treatment arms are as follows:

1. Free basic light (N=200): This light provides up to 27 lumens (a measure of brightness)

and has a battery life of 8.1 hours at maximum brightness. For comparison, a simple

kerosene tin lamp provides around 8 lumens and a kerosene lantern around 45 lumens

(Mills, 2003). The market price of this light was USD 9.

2. Voucher for basic light with high subsidy (N=209): Guardians received a voucher to

purchase a basic solar light for USD 4 (i.e., with a subsidy of USD 5 compared to

the market price of USD 9), which they could redeem at the school within 4–6 weeks.

Surveyors also showed participants a light and provided basic information about its

features. The voucher contained the respondent’s name and was not transferable.

3. Voucher for basic light with low subsidy (N=201): This treatment was identical to

that of group 2, except that the voucher was to purchase a basic light at the school for

USD 7 (i.e., with a subsidy of USD 2).

4. Voucher for basic light at market price (N=200): This treatment was identical to that

of groups 2 and 3, except that the voucher was to purchase a basic light at the school

for USD 9 (i.e., without a subsidy).17

5. Free larger light (N=200): This treatment was identical to that of group 1, but the

guardian received a free larger solar light. This light provides up to 98 lumens, has

a battery life of 5.4 hours at maximum brightness and is enabled for mobile phone

charging. The market price of this light was USD 24.

6. Control group (N=400): Households in this group were not offered any light or voucher.

Endline Survey: 7-8 months later, we conducted endline interviews with students and

guardians. The student endline surveys were again conducted at the school, the guardian

17In addition to helping us estimate the price elasticity of demand, this treatment also helps estimate the
effect of the reduction of information and transaction costs provided by the intervention, in comparison to
the control group, which could of course purchase a light on their own, but often had to travel far for this
and did not get any information about the light.
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endline surveys took place at their home.18

2.3 Data

We combine data from baseline and endline surveys (with both the students and their

guardians) with electronic sensor data from a sub-sample of the solar lights, and admin-

istrative data on students’ test scores.

Baseline Surveys: The student baseline survey includes information about the stu-

dents’ school attendance, homework, ownership and usage of lighting sources (including

solar lights), time use, and health symptoms. The guardian survey covers guardians’ and

households’ baseline characteristics, such as household size, economic activities, connection

to the electric grid, and ownership and usage of lighting sources, including solar lights.

Endline Surveys: The student survey includes questions on time use, lighting use (hours

of light use, usage of lights during specific activities, specifically during homework, and

ownership and usage of a solar light), eye and respiratory health, education, and psychological

outcomes. The guardian endline survey also includes questions on time use, lighting (hours

of light use, ownership of differential light types, particularly of a working solar light, usage

of lights during specific activities), eye and respiratory health, and psychological outcomes

and in addition contains questions about energy sources and household expenditures.

We undertook multiple measures to increase the share of participants who could still be

located for the endline survey.19 As a result, we were able to locate 93% of guardians in the

endline survey. The guardian endline survey is crucial to measure the impacts of having a

working solar light, as it includes the question of whether the household owns a working solar

light at endline (our first stage outcome variable for the LATE effects). Correspondingly,

our main sample includes the 1, 286 households where the guardian could be reached for the

endline survey.

Guardian attrition in the control group is 8.3%, but it is somewhat lower among treated

households (see Section 3.6). We therefore provide robustness checks accounting for differen-

18If the student was absent during the survey day, surveyors attempted to survey them at a later date
either at the school or at home. Similarly, if the guardians were not home the first time, the surveyor
attempted to interview them another day.

19For instance, asking guardians in the baseline survey for own and alternative phone numbers and di-
rections to their home, tracking students who were not present at school on the day of the endline survey,
conducting guardian follow-up interviews at home and booking their appointments via phone or locating
them through village elders.
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tial attrition (Lee-bounds (Lee, 2009) and Inverse Probability Weighting (Wooldridge, 2002,

2007)). Results are highly robust to adjusting for attrition. Among households with no

guardian attrition, 8.4% of students could not be reached for the endline survey. Therefore,

estimates for outcomes reported by students have a smaller sample size of 1, 203. For student

attrition, the difference between treatment and control groups is not statistically significant.

For completeness, we nevertheless provide robustness checks for this attrition as well.

Sensor Data: Approximately 33% of the solar lights had a sensor installed that recorded

at what times the light was on. This data was collected through home visits 1, 3, and 7

months after distribution. Unfortunately, matching the sensor data with survey responses

was only possible for approximately two-thirds of the sensors.20 We therefore only use these

data to illustrate general patterns of light usage over time.21

Administrative Test Data: We collected test scores from end-of-term exams in the schools

for all tested subjects (English, math, science, social studies, and Swahili). For students who

were in grade 7 at the start of our intervention, we also obtained results from the Kenyan

standardized primary school graduation exam “Kenya Certificate of Primary Education”

(KCPE) which students take in the 8th grade.

Piloting and Qualitative Data Collection: Prior to the intervention, we also conducted

semi-structured interviews and focus groups to gain more information about the context

and to strengthen the study design and survey instruments. This qualitative data collection

included teachers (in other schools in which our partner SolarAid had distributed lights be-

fore), as well as field staff and executives from SolarAid, and five focus groups with users and

non-users of solar lights. We also piloted both the intervention and the survey instruments

before the start of the study.

Balance Tests and Summary Statistics

Table 1 shows the balance of randomization and summary statistics at baseline. Column (1)

displays the means and standard deviations for the control group. For each row, Columns (2)

to (6) show coefficients and standard errors from regressing the baseline variable on treatment

dummies for each treatment arm, and Column (7) shows results from a similar regression

20The reason for this is that in the process of fieldwork management, the dictionary file that linked the
sensor IDs with the household IDs was compromised.

21More details on the installation and functioning of the sensors are discussed in Rom et al. (2020) and
information on the processing of the sensor data can be found in the Data Appendix.
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comparing all treatments combined to the control group. All regressions include school-fixed

effects since the randomization was stratified at the school level. The F-test analyzes the

joint significance of all baseline outcomes compared to the control group and is estimated

using stacked regressions following Lee and Lemieux (2010) and Pei et al. (2019). While the

F-tests show no systematic imbalances, 8 out of 90 individual coefficients are statistically

significantly different from zero (as can be expected due to random chance). Since 6 of these

coefficients refer to the gender of either the student or the guardian, we include gender-fixed

effects in all of the following specifications.22

As Table 1 shows, only 1.3% of households have a connection to the electric grid and the

share that already owns a solar light at baseline is 5.3%. Households include close to seven

people on average and over 99% of them conduct agricultural activities. 37% of students are

in grade 5, 36% in grade 6 and 27% in grade 7, and students are on average 13 years old.

Around 57% of students and 64% of guardians are female. In 78% of cases the guardian

is the student’s parent, for 11% it is a grandparent. We also check whether differences in

baseline survey modalities are balanced across treatment arms, i.e., whether the guardian

did the interview at the school (vs. at home) and whether the student was in the original

sample or is from the replacement list.23

2.4 Empirical Strategy

Our empirical strategy proceeds in four steps. First, we analyze take-up and endline owner-

ship by treatment arm. Then, we compare light usage across treatment arms conditional on

take-up. Third, we estimate the local average treatment effects (LATE) of owning a working

solar light on various environmental and household outcomes. We benchmark our LATE

using the “control complier mean” (CCM). We also discuss Intent-To-Treat estimates and

spillovers.

Take-Up and Endline Ownership

To understand the impact of the treatments on solar light ownership, we separately show

take-up—the share of participants who received a solar light through the program—and

endline ownership—the share who owned a working solar light at the time of the endline

22Results are similar without gender-fixed effects as we show in Section 3.6.
23If a student was not present for the interview, a replacement was selected following a predetermined

randomized backup list.
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survey—by treatment arm. These two measures can differ because some households already

owned solar lights prior to the intervention, some purchased other solar lights on the market

during the study period, and some lights broke before the endline survey or might have been

given away.

Usage

Conditional on owning a solar light, its usage could potentially differ across treatment groups

because of selection effects (e.g., households that purchase the light at a higher price may

be different) or treatment effects (e.g., households might use the light differently as a result

of having paid for it), or because usage might be different for the larger light compared to

the basic light. Whether this is the case will inform our empirical strategy.

To address this, we estimate the LATE on solar light usage separately for each treatment

arm using two-stage least-squares (TSLS) regressions. In the first stage, we use treatment

assignment as an instrument for the probability of owning a working solar light. This gives us

five first-stage regressions that include households in the control group and in each respective

treatment arm.

In the second stage, we estimate the impact of each treatment arm on solar light usage

in the full sample, with a separate instrument for each treatment arm. We simultaneously

estimate these regressions using a stacked regression in order to test for heterogeneity in

usage across treatment arms. We include gender and school fixed effects and cluster standard

errors at both the school and the household levels to account for the fact that households

are included repeatedly when stacking regressions.

Conditional on owning a working solar light, usage does not vary across treatment arms.

Hence, for most of our impact analyses, we estimate pooled effects of owning any functioning

solar light across all treatment arms as described below.24

Impacts of Solar Lights

To analyze the effect of owning a functioning solar light on our outcomes of interest such as

carbon emissions, household expenditures, health, education, psychological well-being, and

safety, we estimate the LATE. Since take-up varies by treatment, but usage conditional on

24When results do differ by type of light, we report them separately for the larger and basic light. This is
the case for energy expenditures, for which even though hours of usage are the same, impacts differ by type
of light. We also report results separately by treatment arm for all other main outcomes in the Appendix.
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owning a light does not, we include each treatment as a separate instrument in the first stage,

and pool across all treatments in the second stage. This gives us an estimate of the pooled

LATE of having a working solar light. Specifically, we estimate the following equations using

TSLS. In the first stage, we estimate:

solar worksi = π1Ti1 + π2Ti2 + π3Ti3 + π4Ti4 + π5Ti5 + ζi + γj + uij (1)

Where solar worksi is a binary indicator of whether the household i owns a working solar

light at endline, Tik are binary indicators for treatment assignments of household i to arm k,

ζi represents gender fixed effects, γj school fixed effects, and ui is the error term, clustered

at the school level.25 The sample for each first-stage regression consists of households in the

control group and the respective treatment arm k. In the second stage, we estimate:

yij = β ̂solar worksi + ξi + µj + eij (2)

Where yij represents the outcome of interest, ξi gender fixed effects, µj school fixed effects,

and ei is the error term, clustered at the school level. Under standard IV assumptions, β

represents the LATE of owning a working solar light on the outcome of interest for compliers

in the pooled treatment group, i.e., on households that own a working solar light at the time

of the endline survey as a result of the pooled treatment.26

Comparison Mean

To benchmark the magnitude of our estimates, we calculate the “control complier mean”

(CCM), following (Katz et al., 2001). The CCM is the average outcome of those households

in the control group that would have taken up the treatment had it been offered to them. It

is calculated as the mean outcome among compliers in the treated group minus the LATE

estimate. Since some participants in the control group also owned a solar light, we estimate

the CCM using the correction proposed by Heller et al. (2013).

Intent to Treat

The Intent-To-Treat estimates can be directly derived from the LATE estimates by dividing

the LATE estimates by the share of compliers. In our study, 17.4% of participants are

25We include school fixed effects in all estimations due to the fact that randomization was stratified at the
school level and not all schools have the same share of participants across treatment arms.

26For robustness, we also show the main results without gender fixed effects in the Appendix.

14



always-takers (i.e., participants in the control group who owned a solar light at the time of

the endline survey). In the treatment arms, there are 9.3%, 19.3%, 31.5%, 61.2%, and 60.1%

of never-takers in the free mobile light, free basic light, high subsidy voucher, low subsidy

voucher, and market price voucher treatment, respectively (i.e., participants who did not

acquire a solar light or whose solar light had broken by the time of the endline survey).

Accordingly, the ITT estimates are around 26.8%, 36.7%, 48.9%, 78.6%, and 77.5% smaller

than the LATE estimates for the free mobile light, free basic light, high subsidy voucher,

low subsidy voucher, and market price voucher treatment, respectively.

Spillovers

Given that randomization took place within schools, we cannot rule out that there might be

spillovers between treatment and control households. This could lead to a downward bias

in our estimates, making them a lower bound of the true effect. In particular, there could

be spillover effects from sharing the light.27 We collected the following descriptive evidence

on light sharing. Only 1.6% of guardians and 1.2% of students who received a solar light

through the study program shared it with someone else from the same school, and only 21

children ever took the light to school.

At the same time, 28% of students in the control group report going to someone else’s

house to do homework and personal studies in the week prior to the survey. Among these

students, over 46% mention that they do this to have access to a better lighting source. In

line with this finding, 29% of the students in the treatment group report receiving visits

from other children to do personal studies and homework. These children come mostly from

the same school and do this to be assisted by their classmates. This behavior might lead

to positive spillovers, in particular, in terms of educational outcomes and also in terms of

health (if students in the control group spend less time doing homework at home using the

kerosene lamp). It is also possible that there are educational spillover effects other than

from sharing the light if students in the treatment group study more and this leads to more

learning by their peers. All of this would lead us to underestimate the impacts on learning

outcomes.

27There could also be spillover effects of light ownership itself: households in the control group may be
more likely to buy a light on their own from having seen one in use in a treated household. This form of
spillover effect will not lead to any bias in our estimates, since our IV approach takes light ownership in the
control group into account.
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3 Results

3.1 Price Elasticity of Demand

This subsection analyzes how price (and reduced transaction and information costs) affect

take-up at baseline and ownership of a working solar light at the time of the endline survey.

Figure 2 shows that take-up strongly responds to price. The blue dots display the share of

households that took or bought a basic solar light through our intervention in each treatment

arm (free, and vouchers for USD 4, 7, or 9) and the corresponding solid blue line shows

elasticity of demand, regressing voucher prices on take-up rates. Based on the exogenous

price variation between the different voucher groups, we estimate the price semi-elasticity of

demand at 0.5, that is, for a 1% increase in price, take-up drops by 0.5 percentage points.28

30.6% of participants who are given a voucher to purchase the light at the market price

of USD 9 return to the school to purchase the light. The fact that this share is sizeable

indicates that information and transaction costs present an important barrier to purchasing

the lights outside of the intervention.29 Take-up grows to 39.9% for those who receive a

voucher with a co-pay of USD 7 and 69.5% for a co-pay of USD 4. In the free group, take-up

is 100%. The difference in take-up between the free light and the one for USD 4 is, therefore,

a combination of reduced transaction costs and reduced price.30

To measure the impact of having a solar light, we care not only about who takes a light

but also about who owns one at the time of the endline survey (i.e., seven months after the

distribution of the lights). The green triangles in Figure 2 show the share of households that

own a working solar light at endline (obtained through the study or otherwise). Treatment

assignment has a strong impact on ownership. Those offered a free basic light have a 40.8

percentage points higher ownership than those offered a light at market price, and 63.3 higher

than the control group (of which 17.4% have a working solar light at the time of the endline

survey).31

28To estimate the elasticity of demand, we only include the voucher treatments, not the free lights, since
across the voucher treatments, the only thing that varies is price.

29To purchase a solar light on their own, people often need to travel. 31.9% of participants who already
owned a solar light at baseline bought it at the closest market and 12.8% in another town.

30The fact that vouchers could only be redeemed 4 to 6 weeks later might have reduced the price elasticity,
as it gave households more time to come up with the money. Dupas (2009) finds that demand for bednets
fell less steeply with price when households were given more time to raise the money to purchase them.

31Based on the pre-analysis plan, we also analyze whether households with higher kerosene expenditure
at baseline are more likely to purchase a solar light. Table A.1 shows that this is not the case.
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3.2 Light Usage

Solar Light Usage Does Not Differ Across Treatment Arms

Next, we analyze whether solar light usage, conditional on owning a light, differs across

treatment arms, as described in Section 2.4. Table 2 shows these results for solar light usage

on the day and the week preceding the endline survey. For both guardians and students, the

corresponding F-test shows no significant heterogeneity and there is no positive correlation

between the price and usage.

Solar Light Usage Does Not Decrease over Time

The sensors installed in a subset of solar lights allow us to track their usage over time. Figure

3 depicts results from these sensor data. Some sensors become inactive over time (shown by

the red dotted line). The rate at which sensors become inactive is higher than the rate at

which lights become inactive since the sensors themselves often break even when the light

still works.32 Conditional on the sensor still being active, usage is remarkably constant over

time. The light is used, on average, on 6.87 days a week (solid blue line), for 4.27 hours per

day (dashed green line), with no decrease over time.33

Impact on Light Usage

Next, we analyze whether the solar light replaces other lighting sources or whether they are

used in addition (i.e., “stacking”). Table 3 shows effects of owning a working solar light on

lighting use by guardians (Panel A) and students (Panel B). Total light use increases for

students (by about 0.4 hours per day, compared to a control complier mean (CCM) of 3.2

hours) but not for guardians (Column 1). Having a solar light almost fully replaces the use

of one kerosene-fueled lamp in the household (Column 2). In addition, the solar light also

leads to more consistent lighting. Households with a working solar light are 39 percentage

points less likely to have experienced a lighting interruption in the preceding month, in which

they have to sit in the dark because they ran out of fuels, batteries or other energy sources,

compared to a CCM of 48%) (Column 3). The most frequently cited reason for lighting

32The breakage rate of the lights themselves is 1.15% per month, which we discuss in more detail in Section
3.3 about abatement costs.

33It is also interesting to note that there is no systematic difference between sensor data and self-reported
data on light use, conditional on the sensor working. For more details see (Rom et al., 2020).
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interruptions is lack of money to buy fuel or batteries (77%). Since solar lights do not rely

on such energy sources, they can provide more reliable lighting.

In terms of hourly light use, we also see a clear shift: both guardians and students spend

more time with solar lights being the main source of lighting and less time with kerosene-

fueled lights being the main source of lighting (Columns 4–7). This change shift is at the

source of the impacts of the intervention on kerosene consumption, emissions, and health,

which we now turn to.

3.3 Environmental Impacts

Kerosene Consumption

As a result of the reduced use of kerosene lights discussed above, there is a strong reduction

in kerosene consumption. Column (8) in Table 3 shows that households purchase 1.3 fewer

liters of kerosene in the month preceding the endline survey, a 50% reduction. Annualized,

this corresponds to approximately 16 fewer liters of kerosene purchased per household. This

reduction in kerosene consumption has both environmental benefits in terms of greenhouse

gas emissions and private benefits in terms of household budgets. We next discuss the impact

on emissions and then turn to the private benefits in Section 3.4.

Emissions

As discussed in the background section, how much emissions one liter of kerosene emits

depends on the type of light used. To estimate the intervention’s impacts on emissions,

we therefore multiply each household’s reduction in kerosene purchases with the emissions

generated by the type of light that household uses.34 Table 4 shows the resulting reduction in

monthly emissions: 81.8g of BC, 2, 882g of CO2, and 85.0g of PM2.5. In terms of reduction

in CO2-eqs, this implies a reduction of 71, 296g per month (using the central estimate of

the conversion factor from BC to CO2-eqs (Bond et al., 2011)). Given the uncertainty

surrounding the CO2-eq calculations by climate scientists (as described in the background

section), we also show impacts on CO2-eqs using a number of alternative conversion factors,

in Table A.2, row 2. We will turn to these alternative estimates again below.

34For the 19.4% of households that use both kerosene lanterns and tin lamps, we assume that they use
half of the kerosene for each type of light.
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CO2 Abatement Costs per Ton of CO2-eq Reduction

Based on these results, we can estimate the abatement costs of reducing CO2-eq emissions

through this intervention. We analyze the abatement costs for the free lights, and then

discuss how results may change when selling the lights.

In addition to knowing the emissions reduction per working light, we need to estimate

the likelihood of a light still working at any given point in time. Our data only allow

us to measure the breakage rate between the light distribution and the endline survey.35

In what follows, we assume that the breakage rate is constant over time. This implies

a monthly breakage rate b of 1.15%. Since the assumption of a constant breakage rate

becomes increasingly speculative when looking at the longer term, our main estimates of the

abatement costs focus on the emissions reduction in the first two years.36

To get to the net reduction in CO2-eq emissions, we deduct the CO2-eq emissions embed-

ded in the production of the lights. Based on Alstone et al. (2014) and Dones et al. (2003),

a conservative estimate of embedded emissions is 49.6 kg of CO2-eq.37 The embedded emis-

sions are low compared to the reduction of CO2-eq emissions from the reduced kerosene

burning. The total net reduction of CO2-eqs over two years through the free distribution of

solar lights is, therefore, 1, 371 kg of CO2-eqs for the basic and 1, 365 kg of CO2-eqs for the

larger light.38 Given the retail prices of USD 9 for the basic and USD 24 for the larger light,

the abatement costs per ton of CO2-eq emissions averted through free distribution of the

lights is, therefore, USD 6.56 and USD 17.60 for the basic and larger solar light respectively.

When thinking about a scale-up of this intervention, institutions that distribute free lights

at a large scale could likely pay a lower whole sale price, which would lead to even lower

abatement costs.

One question that may arise is whether it is more cost-effective to distribute the lights

for free or to sell them with co-pay. The answer to this question may differ by whether one

35Since the lights with a sensor break more often as a result of the post-production appending of the sensor,
we only include households that received a light with no sensor in this analysis. We do not use a separate
breakage rate for the basic and larger light since there is no statistically significant difference between the
two.

36The true evolution of the breakage rate could be increasing or decreasing over time. If some lights come
with production faults and break very early on, while the others last long, the breakage rate would decrease
early on. If materials become increasingly brittle over time, breakage rates may grow.

37This estimate is conservative in the sense that it assumes that all parts of the lights are produced with
coal energy from inefficient power plants in China.

38This is the combined effect of a reduction of 9.13 kg of CO2 and 1.63 kg of BC for the basic light, and
of 7.89 kg of CO2 and 1.62 kg of BC for the larger light.
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considers all costs to society or only the costs to the policymaker or institution that sells

or distributes the lights. From society’s perspective, free distribution is clearly more cost

effective. The cost of the light itself stays the same and, as we have seen in section 3.2,

the usage of the light and therefore the emissions reductions are not affected by the amount

of the co-pay by recipient households.39 However, selling lights (via vouchers or otherwise)

entails a higher implementation cost than free distribution, as it requires an entire system

of collecting and monitoring the payments.

When focusing on the environmental cost-benefit analysis from a donor’s or policymaker’s

perspective, however, distribution with co-pay by recipients may lead to higher emissions

reduction per dollar invested than free distribution. Whether this will be the case in any

particular setting depends both on the price elasticity of demand for the lights and the size

of the fixed and variable administrative costs of free distribution vs. selling of the lights.

Even when using the higher retail prices, as we do in our intervention, the abatement costs

per ton of CO2-eq averted are far below the social cost of carbon (SCC) for both the basic

and the larger light. The U.S. Environmental Protection Agency (EPA) recommended using

an SCC estimate of USD 190 per ton of CO2 (at a 2% discount rate) (U.S. Environmental

Protection Agency, 2022).40 In the European Union’s carbon market, the price of a ton

of CO2 was around 80€ in November 2023 (Trading Economics, 2023). The abatement

cost estimates of our intervention also compare favorably to other programs to reduce CO2

emissions. The IEA (2022) estimates an average global cost of USD 32.98 per ton of abated

CO2-eq through all types of solar PV.41

Based on the measures of the SCC and the estimated reduction of CO2-eq emissions

from having access to a solar light, we can calculate the social benefit of our intervention.

We estimate a social value of USD 260 based on the SCC estimates of the EPA and USD

39From the society’s perspective, whether the light is paid for by a donor or (in full or in part) by the
households is simply a redistribution of the costs, not a change in the total project cost.

40The EPA calculates the SCC for different discount rates (1.5%, 2%, and 2.5%), resulting in estimates of
USD 340, USD 190, and USD 120, respectively. In its most recent Circular on the issue, the US government
recommended the use of the 2% discount rate (Office of Management and Budget, 2023).

41However, this comparison may underestimate the average climate impact of solar technology interven-
tions, as some of the included projects may also lead to reductions in BC, which are not taken into account
in the IEA (2022) abatement cost estimate. One aspect that makes it likely that solar lights will lead to
higher reductions in CO2-eq per dollar invested than larger solar installations is that their electricity is used
exclusively for lighting, replacing polluting kerosene lamps, while the more expensive larger installations are
often also used for other purposes and additional electricity consumption, which does not lead to crowd out
carbon-based energy sources.
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120 based on the EU’s carbon price. However, because carbon markets do not include BC

emissions (so far), carbon credits from the carbon markets cannot be used to pay for this

intervention.

As mentioned above, abatement cost estimates depend on the conversion factor of BC to

CO2-eqs, and these can vary due to uncertainties of BC’s global warming potential, based on

the climate science literature. To analyze the robustness of our estimates, Table A.2 shows

abatement cost estimates using a broad range of conversion factors from that literature. In

addition, the table also shows abatement costs when taking emissions reductions beyond the

first two years into account. Across all these estimates, even the most conservative (using a

low conversion factor and taking only the first two years of emissions reduction into account)

leads to an abatement cost of USD 44.00 per ton of CO2-eq averted, which is still significantly

below the current SCC estimates. Overall, our results therefore show that distributing solar

lights is a very cost-effective way to reduce CO2-eq emissions.

3.4 Private Benefits

Next, we analyze the private benefits of the solar lights in terms of energy expenditures,

health, education, and psychological well-being.

Energy Expenditures

Table 5 shows the impacts on total energy expenditure and its components separately for the

larger and basic light. Overall, monthly energy expenditures fall by USD 1.3 for the basic

light and USD 2.4 for the larger light (compared to a CCM of USD 4.2). The main reason

the larger light has a bigger impact on energy expenditures is that it also enables phone

charging. We see a corresponding reduction of USD 0.9 in phone charging expenditures

(compared to a CCM of USD 1.1).42 Based on these estimates of the reduction in monthly

energy expenditures e, we can calculate the net present value (NPV) of getting a solar light.

To calculate the NPV, we use a monthly interest rate of r = 0.075, based on the cheapest

commonly available credit at the time,43 and a monthly breakage rate b of 0.0115, as discussed

above. The NPV is then e ∗ 1
1− 1−b

1+r

. This results in an NPV of expenditure savings of USD

16.14 for the basic and USD 29.82 for the larger light. This expenditure reduction is higher

42We also find that about a third of households that received the larger light let non-household members
charge their phone with it. This was not something the households charged money for (Table A.3).

43M-Shwari, a widely used mobile banking product for digital loans.
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than the market price of these lights, which was USD 9 and USD 24, respectively. The NPV

including net of cost of the light is 7.14 for the basic and 5.82 for the larger light, and the

lights pay off after 9 and 19 months, respectively.44

Health

In addition to the financial benefits, households may also experience health benefits as a

result of the reduction of PM2.5 emissions in the home. We analyze this using standardized

questions to measure respiratory and eye health symptoms, based on Lee et al. (2002), the

European Community Respiratory Health Survey II, and Bates et al. (2013), respectively.45

Following Bates et al. (2013), we summarize these outcomes in two indexes, ranging from

1–6 for eye-related symptoms and 0–5 for respiratory symptoms (expressed in standard

deviations based on the distribution of the control group).

Table 6 shows the impact on these indexes for guardians and students. There are sig-

nificant improvements both in terms of respiratory and eye health, for both guardians and

students. Treatment effects range between 0.15 and 0.27 standard deviations.

Education

Access to better lighting may also help increase students’ learning as it may allow them to

spend more time doing homework after dark. Table 7 shows education-related outcomes. We

find that indeed, access to a functioning solar light increases homework completion (Columns

1 and 2), homework done after dark (Column 3), as well as time spent in school (Column

5).46 Nevertheless, there is no effect on test scores nor on the probability of participating in

the exams for both the regular end-of-term school exams and the national primary school

graduation exam (KCPE) for students in grade 8 (Columns 6 - 9).47 We also find no impacts

on test participation and test scores looking at subgroups by students’ gender and pre-

treatment school performance (Table A.5).

A key potential reason why we may not find any significant impacts on test scores might

be spillovers to the control group. This would be consistent with Hassan and Lucchino

44Looking only at the first two years (similarly to what we did above when discussing environmental
impacts), the NPV is USD 5.16 and USD 2.16 for the larger and basic light, respectively.

45The Data Appendix lists the specific questions used.
46In terms of type of light used for doing homework, Table A.4 shows that students with access to a

working solar light are more likely to use the solar lights as their main source of lighting, and less likely to
rely on tin lamps or kerosene lanterns for this activity.

47Table A.6 shows results separately by subjects.
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(2016) who find positive within-school educational spillovers of access to a solar light. This

would imply that the learning outcomes for students in our control group might have also

improved, leading to a downward bias in our estimates of the impact on learning.

We therefore cannot rule out that the solar lights did improve learning and test scores. On

the other hand, it is also possible that in our setting, differently from Hassan and Lucchino

(2016), there were no positive impacts on learning despite the longer time spent on school

work, potentially as a result of the reduction of sleep by almost half an hour (Column 10).

Psychological Well-being

Previous research has shown that access to energy can also affect psychological outcomes (Lee

et al., 2020). Table 8 shows different psychological measures, all in standard deviations. We

measure a range of different but related concepts (8 for guardians, 5 for students). Column

(1) shows that averaging across all of them, there is a significant positive impact for both

students by 0.11 and guardians by 0.07 standard deviations, respectively. For individual

measures, we find significant improvements in guardians’ assessment that their life as an

adult will be better than it was for their parents (Column 3) and the perception that their

economic situation improved over the previous three months (Column 8).

3.5 Other Outcomes

In addition to the variables discussed above, we specified the following outcomes in the

pre-analysis plan: time use of guardians, attitudes towards aid for poor households, and

safety. With regard to guardians’ time use, we find no statistically significant effects other

than an increase in sleep duration of about 18 minutes (Table A.7, Column 1).48 We study

participants’ attitudes on who should provide for the needs of poor families (the families

themselves vs. others) to address a common concern that distributing free items may affect

such attitudes. We find no impact for either guardians or students (Appendix Table A.9).

Finally, we also find no improvements on safety, neither in terms of guardians’ subjective

48While we cannot be certain what led to this change (which goes in the opposite direction of the sleep
changes for students), it could potentially be due to better sleep due to improved psychological outcomes and
reduced financial expenditures; better sleep as a result of the health improvements, particularly breathing;
or reduced need to work to cover energy expenditures (this would be consistent with the reduction in time
spent working, which has a similar magnitude but is not statistically significant (Column 4)). Consistent
with the change in reported sleep duration, we find that guardians go to sleep earlier and wake up later, while
students go to sleep later and wake up earlier, though none of these are statistically significant (Appendix
Table A.8).
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feelings of safety at night inside or outside the home, nor on fire hazards or burn injuries

(Table A.10).

3.6 Robustness Checks

This section discusses attrition and presents the main results for robustness separately by

treatment arms and without gender-fixed effects.

Attrition

As discussed in the Data section above, there is slightly lower attrition in the treatment

group than in the control group. In the following, we therefore show a descriptive analysis of

attritors, and robustness checks accounting for differential attrition using Lee-bounds (Lee,

2009) and Inverse Probability Weighting (Wooldridge, 2002, 2007). As we will see, results

are highly robust to these adjustments.

Table A.11 shows attrition probabilities across treatment arms. For guardians in the

control group, the attrition rate is 8.3%. This rate is 2.3 percentage points lower for those in

the treatment group (controlling for school and respondent gender fixed effects, as in all our

regressions). Since our first stage outcome variable (whether the household owns a working

solar light) is collected in the guardian survey, our estimation sample includes only the 1, 313

households in which the guardian took the endline survey. Among this estimation sample,

there is also some attrition in the student endline survey. For outcome variables based on

the student survey, the estimation is therefore somewhat smaller. The student attrition rate

within our main estimation sample is (7.4%) for the control group, and 1.8 percentage points

higher for the treatment group (not statistically significantly different). For completeness,

we will still show robustness analysis accounting for student attrition below.

Table A.12 displays characteristics of attritors compared to non-attritors for the same

variables that are also included in Table 1, which analyzes balance across treatment arms. For

both students and guardians, attrition is higher when the guardian is not the student’s parent

(likely because settings in which the primary caregiver is not a parent are less stable and the

primary caregiver may have changed or moved since the baseline survey). Among students,

attritors are, in addition, more likely to have characteristics that tend to be associated with

school dropout: lower grades, older age, and being female.

Table A.13 presents our main outcomes adjusted for attrition. Columns (2) and (3)
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provide Lee bounds Lee (2009). This approach provides upper and lower bounds of the

estimates under extreme assumptions about the (unobserved) outcomes of attritors.49 For

most outcomes for which we find significant impacts in our main analysis, both upper and

lower bounds remain statistically significant and qualitatively similar to the original esti-

mates (shown in Column 1). Two exceptions are guardian respiratory health, for which

the upper Lee bound is no longer statistically significant, and the guardian psychological

index, for which the lower bound is no longer significant. Column (4) of Table A.13 shows

results after applying inverse probability weighting (IPW) following Wooldridge (2002) and

Wooldridge (2007). This approach re-weights the sample to re-balance observable character-

istics across treatment groups to compensate for the differential attrition. Weights are based

on a propensity score that calculates each observation’s probability of being a non-attritor,

using observable characteristics.50 Each observation is then weighted with the inverse of

this probability. This results in participants with characteristics that are underrepresented

among non-attritors compared to attritors being given more weight. All of the main results

that were statistically significant in our main analysis remain so after applying IPWs, with

the exception of the student psychological index, which is no longer statistically significant.

Results by Treatment Arm and Without Gender Fixed Effects

In our main results above, we show analyses of the impact of solar lights pooled across

all treatment arms, except for energy expenditures, where we find different effects for the

larger and basic lights. For completeness, Appendix Tables A.14 and A.15 show the impact

estimates for all our main results separately by type of light and for each treatment arm.

Table A.14 confirms that there is no statistically significant difference in the mean treatment

effects for the basic and solar light, with the exception of energy expenditures. Table A.15

shows all treatment arms separately. Given the smaller sample size in each treatment arm,

all estimates are of course more noisy, but we see no systematic differences and cannot reject

the null hypothesis of equal effects across all treatment arms for any of the main outcomes.

49Specifically, we trim the sample of the groups with less attrition such that the share of remaining
observations (after attrition plus trimming) is equal to the treatment arm with the least attrition (i.e., the
control group). To estimate the lower and upper bounds, the trimming is done in two different ways: once
by removing the observations with the largest values of the outcome, and once by removing the observations
with the smallest values of the outcomes. The estimates using these trimmed samples provide the Lee
bounds.

50We include the same characteristics in the calculation of the propensity score as in the balance of
randomization table (Table 1).
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As discussed, all estimates above include gender fixed effects, due to differences in gen-

der shares across treatment effects. Appendix Table A.16 shows our main results without

correcting for this imbalance. All results are qualitatively similar.

4 Conclusion

In light of the challenge to expand access to modern electricity while ensuring environmental

sustainability, solar lights could be an economical step towards achieving several goals at

once. They provide a more reliable, cheaper, and healthier lighting source to the 750 million

people who still live without a connection to an electric grid. Given current trends in

expansion of access to the electric grid, energy poverty will likely remain pressing for several

decades to come, particularly in regions where grid expansion is not financially cost-effective,

in rural areas in low- and middle-income countries. At the same time, the solar lights have a

strong impact on carbon emissions, in particular when considering the large climate impact

of black carbon, and the low costs of these lights.

While solar lights can of course only be a small part of the solution for both energy poverty

and climate change, they may provide a highly cost-effective medium-turn intervention that

makes a tangible contribution to reduce climate change while at the same time improving

the lives of some of the worlds’ poorest families.
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Figures

Figure 1: Intervention Design

Panel A: Control and Treatment Groups

Panel B: Types of light

Notes: Panel A describes different treatment arms of the randomized intervention. Panel B displays the
two types of solar lights that were distributed through the study and the two types of kerosene lights most
commonly used prior to treatment.
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Figure 2: Take-up and Endline Ownership of the Basic Solar Light by Price

Notes: This figure shows take-up and endline ownership of the basic solar light for the
prices of the different treatment arms (free, and vouchers to purchase a light for USD
4, 7, or 9). Blue dots show the share of participants who took or bought a light through
the intervention. Green triangles show the share who owned any working solar light
at the time of the endline survey. The solid blue and dashed green lines stem from
regressions of voucher prices on take-up and endline ownership, respectively. (These
regressions do not include free lights, since the voucher distribution differs from free
lights in other ways than just price.)
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Figure 3: Solar Light Usage as Measured by Sensors

Notes: This figure plots weekly solar light usage, based on sensors’ measurement, from
the third week of August to the third week of March 2016. The dotted red line shows
the evolution of the number of active sensors. Sensors are considered active from the
first to the last week in which the sensor indicates that the light was turned on. The
decay over time can therefore stem from sensors breaking, lights breaking, or lights
otherwise no longer being used. The solid blue and dashed green lines show the mean
days per week and mean hours per day a solar light was used, conditional on having
an active sensor.
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Tables

Table 1: Balance of Randomization

Difference to the control mean

Treatment arms Pooled

(1) (2) (3) (4) (5) (6) (7)
Control Free High Low Market Free All
mean basic subsidy subsidy price larger treatments

Connection to the grid 0.013 0.003 0.015 0.002 -0.003 -0.008 0.002
[0.112] (0.009) (0.013) (0.010) (0.010) (0.008) (0.006)

Household owns a solar light 0.053 0.018 0.006 0.006 -0.001 0.007 0.007
[0.224] (0.024) (0.023) (0.016) (0.021) (0.023) (0.017)

Household size 6.76 -0.178 0.088 0.253 0.265 -0.045 0.071
[2.18] (0.199) (0.204) (0.218) (0.186) (0.225) (0.148)

Household practices agriculture 0.992 0.002 -0.002 -0.008 −0.018∗ -0.007 -0.006
[0.087] (0.005) (0.008) (0.009) (0.009) (0.012) (0.005)

Student is in grade 5 0.372 0.023 −0.065∗ -0.048 -0.038 -0.017 -0.029
[0.484] (0.030) (0.033) (0.038) (0.043) (0.036) (0.023)

Student is in grade 6 0.355 -0.020 0.058 0.021 0.049 0.025 0.026
[0.479] (0.043) (0.043) (0.040) (0.039) (0.040) (0.025)

Student is in grade 7 0.273 -0.002 0.008 0.027 -0.011 -0.007 0.003
[0.446] (0.038) (0.043) (0.028) (0.045) (0.040) (0.027)

Standardized average test scores 3.30 0.029 -0.012 -0.034 0.051 0.081 0.024
[0.796] (0.049) (0.054) (0.048) (0.070) (0.062) (0.041)

Student’s age 13.12 -0.090 0.073 0.122 0.191 0.021 0.060
[1.73] (0.170) (0.170) (0.147) (0.208) (0.162) (0.122)

Student is female 0.568 −0.087∗ -0.011 -0.008 -0.001 −0.087∗ -0.040
[0.496] (0.043) (0.035) (0.045) (0.036) (0.042) (0.029)

Guardian is female 0.639 0.003 0.076∗ 0.051∗ 0.037 0.076∗ 0.048∗

[0.481] (0.047) (0.043) (0.029) (0.055) (0.037) (0.026)
Guardian is student’s parent 0.775 0.000 -0.000 -0.035 0.004 0.025 -0.001

[0.418] (0.027) (0.033) (0.041) (0.025) (0.037) (0.023)
Guardian is student’s grandparent 0.107 0.018 0.021 -0.009 -0.028 -0.022 -0.004

[0.310] (0.021) (0.028) (0.026) (0.017) (0.023) (0.015)
Student from replacement list 0.135 0.005 -0.004 0.006 -0.022 -0.000 -0.003

[0.342] (0.027) (0.022) (0.035) (0.027) (0.028) (0.019)
Baseline guardian survey at school 0.950 -0.010 -0.022 -0.013 -0.012 0.010 -0.009

[0.219] (0.014) (0.020) (0.018) (0.025) (0.015) (0.009)

School FE Yes Yes Yes Yes Yes Yes

Number of observations 400 200 209 201 200 200 1,010
P-value of F-test 0.993 0.619 0.952 0.387 0.268 0.724

Notes: This balance table shows baseline characteristics across treatment groups. Column (1) displays means and
standard deviations for the control group. Each row then shows two separate regressions. Columns (2) to (6) of the
baseline variable on treatment dummies for each treatment arm. Column (7) of the baseline variable on one dummy
combining all treatment groups. Standardized average test scores are averaged across English, math, science, social
studies, and Swahili. “Student from replacement list” indicates students that were added to the study from a randomized
replacement list because the originally designated student was absent on the day of the baseline survey. Standard errors
clustered at the school level in parentheses. Number of observations indicates households in each treatment group.
F-test for the null hypothesis of joint significance across all variables in each column (using a stacked regression with
bootstrapped p-values and standard errors additionally clustered at the household level). *** p < 0.01, ** p < 0.05, *
p < 0.1. 34



Table 2: Usage of Solar Lights

Hours yesterday Days past week

Guardians Students Guardians Students
(1) (2) (3) (4)

Free basic light 3.15∗∗∗ 2.41∗∗∗ 6.44∗∗∗ 6.62∗∗∗

(0.19) (0.25) (0.17) (0.44)
High subsidy (USD 4) 3.41∗∗∗ 2.32∗∗∗ 6.80∗∗∗ 5.92∗∗∗

(0.22) (0.24) (0.10) (0.45)
Low subsidy (USD 7) 3.51∗∗∗ 2.69∗∗∗ 6.63∗∗∗ 6.29∗∗∗

(0.64) (0.51) (0.32) (1.12)
Market price (USD 9) 2.63∗∗∗ 1.29∗∗ 6.45∗∗∗ 4.00∗∗∗

(0.56) (0.53) (0.38) (1.12)
Free larger light 3.40∗∗∗ 2.19∗∗∗ 6.84∗∗∗ 5.76∗∗∗

(0.19) (0.20) (0.10) (0.45)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Number of observations 1,249 1,202 1,253 1,203
P-value of F-test 0.592 0.272 0.148 0.262

Notes: This table shows impact estimates of having a working solar light on
solar light usage by treatment arm, following the specification described under
“Usage” in Section 2.4. Columns (1) and (3) show results from the guardian
endline survey; Columns (2) and (4) from the student endline survey. Standard
errors clustered at the school level in parentheses. F-test for the null hypothesis
of equal impacts by all treatment arms (using a stacked regression with standard
errors additionally clustered at the household level). *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 3: Impact on Light and Kerosene Usage

(1) (2) (3) (4) (5) (6) (7) (8)
Total Number of Light Solar light Tin lamp Kerosene lan- Other light Kerosene

light usage kerosene-fueled interruption as main as main tern as main as main purchased
yesterday lights used last month light source light source light source light source last month
(hours) last month (probability) yest. (hours) yest. (hours) yest. (hours) yest. (hours) (liters)

Panel A: Guardians

Solar light −0.207 −0.998∗∗∗ −0.385∗∗∗ 2.100∗∗∗ −1.811∗∗∗ −0.267∗∗∗ −0.229∗∗∗ −1.278∗∗∗

(0.144) (0.093) (0.046) (0.131) (0.112) (0.056) (0.080) (0.228)

Control complier mean 3.196 2.453 0.476 0.007 2.510 0.306 0.373 2.558
Number of observations 1,313 1,312 1,286 1,313 1,313 1,313 1,313 1,299

Panel B: Students

Solar light 0.390∗∗∗ 3.393∗∗∗ −2.815∗∗∗ −0.204∗ 0.009
(0.114) (0.178) (0.218) (0.100) (0.068)

Control complier mean 3.225 0.000 3.193 0.272 0.139
Number of observations 1,203 1,203 1,203 1,203 1,203

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table shows impact estimates of having a working solar light on light and kerosene usage, following Equations (1) and (2). Panel A shows
outcomes from the guardian and Panel B from the student endline survey. “Other” in Column 7 includes electricity-powered lighting, firewood, battery-
powered torches/lanterns, candles, pressurized kerosene lanterns, other rechargeable lanterns, and cell phone lighting. Standard errors clustered at the school
level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: Impact on Household Emissions

(1) (2) (3) (4)
BC CO2 CO2-eq PM2.5

emissions emissions emissions emissions
(g/month) (g/month) (g/month) (g/month)

Solar light −81.84∗∗∗ −2, 882∗∗∗ −71, 296∗∗∗ −85.04∗∗∗

(14.67) (532) (12,776) (15.24)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control complier mean 161.91 5,653 141,013 168.19
Number of observations 1,291 1,291 1,291 1,291

Notes: This table shows impact estimates of having a working solar light on house-
hold emissions, following Equations (1) and (2). Column (1) reports black carbon
and Column (2) CO2 emissions. Column (3) shows CO2-eq emissions of Columns (1)
and (2) combined, and Column (4) particulate matter PM2.5 emissions. Standard
errors clustered at the school level in parentheses. *** p < 0.01, ** p < 0.05, * p <
0.1.
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Table 5: Impact on Monthly Household Energy Expenditures

(1) (2) (3) (4) (5) (6) (7) (8)
Total Kerosene Phone Firewood Batteries Charcoal Electricity Other

expenditure charging bill

Basic light −1.299∗∗∗ −0.702∗∗∗ 0.162 −0.390∗∗ 0.016 −0.013 −0.269 −0.104
(0.397) (0.156) (0.127) (0.165) (0.069) (0.304) (0.257) (0.111)

Larger light −2.401∗∗∗ −0.903∗∗∗ −0.858∗∗∗ −0.093 0.131 −0.113 −0.424 −0.140
(0.469) (0.081) (0.076) (0.198) (0.077) (0.255) (0.289) (0.082)

School FE Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 4.211 1.821 1.143 0.369 0.274 0.211 0.362 0.033
Number of observations 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313
P-value of F-test 0.053 0.241 0.000 0.112 0.248 0.767 0.564 0.625

Notes: This table shows impact estimates of having a working solar light on households’ monthly energy expenditures in USD,
following Equations (1) and (2). Coefficients in each row stem from a separate regression by type of light. Column (1) shows
total energy expenditure, Columns (2) to (8) report its different components. “Other” includes candles, generator fuel, liquefied
petroleum gas, sawdust, dung/charcoal mixture, and others. Standard errors clustered at the school level in parentheses. F-test for
the null hypothesis of equal impacts by both types of light (using a stacked regression with standard errors additionally clustered
at the household level). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Impact on Health

Eyes Respiratory

Guardians Students Guardians Students
(1) (2) (3) (4)

Solar light −0.228∗∗∗ −0.244∗∗ −0.153∗∗ −0.270∗

(0.075) (0.090) (0.069) (0.135)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control complier mean 1.484 1.427 0.907 1.114
Number of observations 1,313 1,203 1,313 1,203

Notes: This table shows impact estimates of having a working solar light on
health outcomes, following Equations (1) and (2). Columns (1) and (2) display
an index of eye-related symptoms such as dryness, grittiness, redness, etc., and
Columns (3) and (4) an index of respiratory-related symptoms such as shortness
of breath, asthma, cough, etc., following Bates et al. (2013) and The European
Community Respiratory Health Survey II Steering Committee (2002). Higher
values indicate more symptoms. All outcomes expressed in standard deviations
of the control group. Standard errors clustered at the school level in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: Impact on Education Inputs and Outcomes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Completed Share of days Share of Homework and Time in school Average Average Participated Participated Sleep
homework with complete days homework personal (hours score of 5 KCPE score in school in KCPE (hours
every day homework after dark study (hours yesterday) school exam exam yesterday)
last week last week last week yesterday) exams

Solar light 0.153∗∗∗ 0.079∗∗∗ 0.111∗∗∗ 0.317 0.545∗ −0.085 −0.087 0.032 −0.088 −0.438∗∗

(0.032) (0.018) (0.037) (0.193) (0.277) (0.096) (0.172) (0.031) (0.092) (0.173)

School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 0.649 0.843 0.723 2.415 4.047 3.413 4.407 0.782 0.666 8.433
Number of observations 1,051 1,051 1,051 1,203 1,203 1,012 236 1,313 371 1,203

Notes: This table shows impact estimates of having a working solar light on education inputs and outcomes, following Equations (1) and (2). Columns (1) to (5) and (10) are
reported by students; Columns (6) to (9) are based on administrative test score records. Column (6) reports average school exam scores in March 2016 and Column (7) average
test scores in the national high school graduation exam KCPE, among students in grade 8 who participated in this exam (in control group standard deviations). Columns (8)
and (9) show the probability that a student participated in the March 2016 school exams and that grade 8 students participated in the KCPE, respectively. Standard errors
clustered at the school level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Table A.5 shows heterogeneity of these estimates by gender and by school performance at
baseline. Table A.6 shows the effects on test scores separately by subject.
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Table 8: Impact on Psychological Outcomes

Panel A: Outcomes of guardians

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Average Future Future In Most Happiness Life Economic Not at

of holds better charge people satis- situation risk of
outcomes good than of own can be faction improved depression

things parents’ destiny trusted

Solar light 0.072∗ −0.025 0.191∗∗ 0.035 −0.082 0.099 −0.060 0.282∗∗ 0.136
(0.040) (0.100) (0.070) (0.097) (0.085) (0.082) (0.102) (0.112) (0.128)

Control complier mean 2.123 3.847 2.550 2.466 0.362 3.811 2.102 1.113 0.735
Number of observations 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313 1,313

Panel B: Outcomes of students

(1) (2) (3) (4) (5) (6)
Average Future Future Able to On the Rarely

of holds better do things whole feeling
outcomes good than as well satisfied no good

things parents’ as others with self at all

Solar light 0.111∗∗ 0.028 0.101 0.153 0.120 0.154
(0.047) (0.076) (0.099) (0.112) (0.086) (0.091)

Control complier mean 3.019 4.209 5.314 2.332 1.307 1.936
Number of observations 1,203 1,203 1,203 1,203 1,203 1,203

School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table shows impact estimates of having a working solar light on psychological outcomes of guardians (Panel A) and students
(Panel B), following Equations (1) and (2). Column (1) shows the average of the variables in the other columns. Columns (2) and (3)
show the extent to which respondents agree (scale 1-4) with the statement that their future holds good things, and that their life as an
adult will be better than it was for their parents. For Columns (4) and upward, questions are different for students and guardians. Panel
A Column (4) shows the extent to which guardians believe that individuals can decide their own destiny vs. it being is impossible to
escape a predetermined fate (scale 1-10). Column (5) shows a dummy of whether guardians think most people can be trusted. Column
(6) displays self-reported happiness (scale 1-4) and Column (7) life satisfaction (scale 1-10). Column (8) shows guardians’ assessment of
how their economic situation changed over the previous 3 months (scale 1-5) and Column (9) displays a measure of depression based on
a series of questions from the CES-D scale (inverted, such that a positive number represents a low risk of depression). Panel B Columns
(4)-(6) shows the impact on students’ agreement (scale 1-4) with the statement that they are able to do things as well as most other
people, that they are satisfied with themselves, and that at times they think they are no good at all (inverted, such that a positive
number means low agreement). All outcomes expressed in standard deviations of the control group. Standard errors clustered at the
school level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Appendices

A Appendix Tables

Table A.1: Baseline Kerosene Expenditure and Take-Up

(1) (2) (3)
Take-up Take-up Take-up

Kerosene expenditures at baseline 0.006
in USD (0.007)
Kerosene expenditures at baseline 0.008
in log (USD) (0.032)
Kerosene expenditures at baseline -0.011
above median (0.031)

School FE Yes Yes Yes
Treatment arm FE Yes Yes Yes
Respondent gender Yes Yes Yes

Number of observations 564 564 564

Notes: This table shows estimates from a regression of take-up on
kerosene expenditures during the week prior to the baseline survey in
among participants in the voucher treatment arms (for which take-up is
a choice). Standard errors clustered at the school level in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.2: Impact on Emissions:
Different CO2-eq Conversion Factors and Time Horizons

(1) (2) (3) (4) (5) (6)
CO2-eq CO2-eq CO2-eq CO2-eq CO2-eq CO2-eq

SFP East Africa SFP East Africa SFP East Africa GWP 100 GWP 100 GWP 100
lower bound upper bound lower bound upper bound

Conversion factor 836 371 1,300 900 120 1,800
Reduction in CO2-eq per light (kg) per month 68.2 31.8 104 73.2 12.2 144

Reduction in CO2-eq per light (kg) over 2 years 1,371 613 2,127 1,475 205 2,941
Abatement cost per ton of CO2-eq (USD) 6.57 14.7 4.23 6.10 44.0 3.06

Reduction in CO2-eq per light (kg) over 5 years 2,881 1,319 4,441 3,097 475 6,121
Abatement cost per ton of CO2-eq (USD) 3.12 6.83 2.03 2.91 19.0 1.47

Reduction in CO2-eq per light (kg) over 10 years 4,343 2,001 6,680 4,665 736 9,198
Abatement cost per ton of CO2-eq (USD) 2.07 4.50 1.35 1.93 12.2 0.978

Reduction in CO2-eq per light (kg) infine time horizon 5,863 2,710 9,010 6,297 1,009 12,400
Abatement cost per ton of CO2-eq (USD) 1.53 3.32 0.999 1.43 8.92 0.726

Notes: This table shows estimates for the reduction in CO2-eq emissions per household and the cost per ton of CO2-eqs abated in USD for the basic solar
light when distributed for free. Columns (1) to (3) show the conversion factor for East Africa based on the concept of the Specific Forcing Pulse (SFP)
(over 100 years) from Bond et al. (2011), and its upper and lower bounds. Columns (4)-(6) show the Global Warming Potential (GWP) estimate (over 100
years) from Bond et al. (2013), and its upper and lower bound. Row 1 shows the respective values of the BC conversion factor that we use to calculate
CO2-eq emission reductions. Row 2 shows the estimated monthly reduction of CO2-eq emissions per household, equivalent to the impact of the basic light
on CO2-eq emissions shown in Column (2) in Appendix Table A.14. Subsequent rows show the estimated CO2-eq reductions for different lamp lifespans and
their respective estimated cost per ton of CO2-eq abated, in USD. We show estimates for 2 years, 5 years, 10 years, and an infinite time horizon. Calculations
are based on a monthly breakage rate of 1.15%.
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Table A.3: Impact on Guardians’ Provision of Phone Charging Services

(1) (2)
Letting others charge Generating income
their phones at home from letting others

or business charge their phone

Free basic light −0.082∗ −0.026
(0.040) (0.032)

High subsidy (USD 4) −0.045 −0.019
(0.066) (0.048)

Low subsidy (USD 7) −0.190 −0.062
(0.130) (0.093)

Market price (USD 9) −0.077 −0.095
(0.122) (0.077)

Free larger light 0.313∗∗∗ 0.022
(0.052) (0.027)

School FE Yes Yes
Respondent gender Yes Yes

Control complier mean 0.000 0.004
Number of observations 1,018 1,018
P-value of F-test 0.000 0.378

Notes: This table shows impact estimates of having a working solar light
on guardians’ provision of phone charging services by treatment arm. The
first stage instruments the probability of owning a working solar light with
each treatment assignment while the second stage simultaneously estimates
the effect of each treatment arm using a stacked regression, as described in
Section 2.4. Outcomes are binary indicators of whether phone charging ser-
vices are provided (Column 1) and if any income is generated from these
services (Column 2). Standard errors clustered at the school level in paren-
theses. F-test for the null hypothesis of equal impacts by all treatment arms
(using a stacked regression with standard errors additionally clustered at the
household level). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.4: Impact on Students’ Light Usage for Homework

(1) (2) (3)
Mostly use Mostly use Mostly use
solar light tin lamp kerosene lantern

for homework for homework for homework

Solar light 1.040∗∗∗ −0.878∗∗∗ −0.109∗∗∗

(0.054) (0.048) (0.032)

School FE Yes Yes Yes
Respondent gender Yes Yes Yes

Control complier mean 0.000 0.865 0.126
Number of observations 1,051 1,051 1,051

Notes: This table shows impact estimates of having a working solar light on stu-
dents’ light usage while doing homework during the week before the endline survey,
following Equations (1) and (2). Standard errors clustered at the school level in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.5: Impact on Education:
Heterogeneous Effects by Gender and Baseline School Performance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Completed Share of days Share of Homework and Time in school Average Average Participated Participated Sleep
homework with complete days homework personal (hours score of 5 KCPE score in school in KCPE (hours
every day homework % after dark study (hours yesterday) school exam exam yesterday)
last week last week last week yesterday) exams

Panel A: Heterogeneous effects by gender

Solar light 0.198*** 0.089** 0.148** 0.541** 0.813* -0.197 -0.095 0.035 0.005 -0.735**
(0.059) (0.034) (0.057) (0.257) (0.441) (0.157) (0.253) (0.058) (0.167) (0.276)

Solar light × female -0.078 -0.017 -0.073 -0.408 -0.508 0.200 0.022 -0.004 -0.162 0.562
(0.074) (0.043) (0.064) (0.401) (0.514) (0.161) (0.270) (0.087) (0.188) (0.326)

Female 0.021 0.000 0.031 0.127 0.348 -0.120 -0.135 -0.006 0.024 -0.374*
(0.043) (0.026) (0.043) (0.226) (0.344) (0.082) (0.201) (0.046) (0.097) (0.200)

Control complier mean 0.604 0.834 0.685 2.190 3.779 3.525 4.415 0.779 0.573 8.730
Number of observations 1,051 1,051 1,051 1,203 1,203 1,012 236 1,313 371 1,203
P-value of F-test 0.006 0.004 0.099 0.658 0.338 0.967 0.667 0.539 0.068 0.403

Panel B: Heterogeneous effects by school performance at baseline

Solar light 0.237*** 0.107*** 0.064 0.489* 0.784** 0.006 -0.204 0.055 0.006 -0.419
(0.054) (0.028) (0.064) (0.276) (0.313) (0.065) (0.335) (0.061) (0.154) (0.300)

Solar light × > 50th perc. -0.126 -0.035 0.066 -0.431 -0.640* -0.208 0.091 -0.091 -0.182 0.119
(0.093) (0.031) (0.097) (0.322) (0.315) (0.179) (0.394) (0.085) (0.202) (0.361)

> 50th percentile. 0.059 0.017 -0.058 0.361* 0.534*** 0.704*** 0.933*** 0.132*** 0.428*** -0.288
(0.068) (0.027) (0.059) (0.194) (0.172) (0.118) (0.223) (0.045) (0.112) (0.193)

Control complier mean 0.576 0.822 0.773 2.256 3.734 3.319 4.544 0.767 0.574 8.436
Number of observations 959 959 959 1,092 1,092 935 226 1,187 355 1,092
P-value of F-test 0.079 0.007 0.043 0.804 0.657 0.223 0.598 0.492 0.192 0.089

School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table examines the same outcomes presented in Table 7 in terms of heterogeneity by gender (Panel A) and baseline test scores (Panel B). > 50th percentile indicates that a
student’s average school exam score in March 2015 was above the sample median. F-tests for the null hypothesis that the sum of the first two coefficients (i.e. impact of solar lights on girls,
and impact of solar lights for students above the median, respectively) is different from zero. Standard errors clustered at the school level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.6: Impact on Students’ Test Scores

(1) (2) (3) (4) (5) (6)
Swahili Math English Science Social Average

studies score

Panel A: School exams

Solar light -0.096 0.022 -0.087 -0.159 -0.027 -0.085
(0.114) (0.106) (0.121) (0.099) (0.122) (0.096)

Number of observations 1,010 1,004 1,009 1,004 1,004 1,012

Panel B: KCPE exam

Solar light -0.019 0.232 -0.196 -0.193 -0.256 -0.087
(0.206) (0.229) (0.203) (0.218) (0.196) (0.172)

Number of observations 236 236 236 236 236 236

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Notes: This table shows test score results from Table 7, separately for each of the 5
compulsory subjects. Panel A shows school exam scores from March 2016. Panel B shows
test scores from the national high school graduation exam KCPE, among students in grade
8 who participated in this exam. All outcomes expressed in standard deviations of the
control group. Standard errors clustered at the school level in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table A.7: Impact on Time Use of Guardians

(1) (2) (3) (4) (5)
Sleep Social and Household Work Travel

recreational and
activities care work

Panel A: Activities over the entire day

Solar light 0.295∗ 0.396 −0.357∗ −0.352 0.122
(0.155) (0.397) (0.206) (0.440) (0.135)

Control complier mean 8.554 5.873 4.586 4.245 0.634
Number of observations 1,313 1,313 1,313 1,313 1,313

Panel B: Activities between 7pm and 7am

Solar light 0.345∗∗∗ −0.153 −0.048 −0.113 −0.016
(0.120) (0.119) (0.098) (0.066) (0.032)

Control complier mean 8.390 1.873 1.067 0.556 0.096
Number of observations 1,313 1,313 1,313 1,313 1,313

School FE Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes

Notes: This table shows impact estimates of having a working solar light on guardians’
time use (in hours) the day before the endline survey, following Equations (1) and (2).
Panel A refers to time use over the entire day. Panel B includes only activities during
times when it is dark, i.e. between 7pm and 7am. Columns (2) to (5) are aggregated
categories based on more detailed activities, as discussed in the data appendix. Standard
errors clustered at the school level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.8: Impact on Time at Which Participants go to Sleep and Wake Up

(1) (2) (3) (4)
Guardian Guardian Student Student
going to waking up going to waking up

sleep sleep

Solar light −0.068 0.035 0.078 −0.112
(0.111) (0.082) (0.066) (0.085)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control complier mean 19.375 3.977 21.479 5.947
Number of observations 1,290 1,286 1,172 1,181

Notes: This table shows impact estimates of having a working solar light on the
time at which guardians (Columns 1 and 2) and students (Columns 3 and 4) go
to sleep and wake up on the day before the endline survey, following Equations
(1) and (2). A negative coefficient indicates an earlier time, a positive coefficient
a later time. Standard errors clustered at the school level in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.
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Table A.9: Impact on Attitude of Who Should Provide for the Poor

(1) (2)
Guardians Students

Solar light −0.042 0.056
(0.081) (0.064)

School FE Yes Yes
Respondent gender Yes Yes

Control complier mean 2.602 2.730
Number of observations 1,313 1,203

Notes: This table shows impact estimates of having
a working solar light on attitudes about who should
provide for the needs of poor families, following Equa-
tions (1) and (2). Possible responses are 1–only the
poor family itself; 2–the poor family should provide a
lot and others should provide a little; 3–the poor fam-
ily should provide a little and others should provide a
lot; or 4–only others should provide for them. Stan-
dard errors clustered at the school level in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

50



Table A.10: Impact on Safety

(1) (2) (3) (4) (5) (6)
Feeling safe Feeling safe Number of Any household Number of Number of
inside the outside the fire hazards member had adults with children with

home at night home at night in home burn injury burn injury burn injury
(guardian) (guardian) past 3 months past 3 months past 3 months past 3 months

Solar light −0.040 −0.003 −0.020 −0.007 0.005 −0.012
(0.086) (0.088) (0.015) (0.010) (0.004) (0.009)

School FE Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes

Control complier mean 3.207 2.956 0.024 0.021 0.000 0.022
Number of observations 1,312 1,250 1,313 1,313 1,313 1,313

Notes: This table shows impact estimates of having a working solar light on several dimensions of safety, following Equations (1) and
(2). Columns (1) and (2) show categorical variables taking values of 1 (never), 2 (sometimes), 3 (usually), and 4 (always) of perceived
safety at night inside and outside the home, respectively. Column (3) shows the reported number of times there was a fire hazard in
the home in the past three months. Column (4) indicates whether any household member received any burn injuries in the past three
months. Columns (5) and (6) report the number of adults and children who were injured during the occurrences from Column (4),
respectively. Standard errors clustered at the school level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.11: Attrition Probabilities

(1) (2) (3) (4)
Endline attrition Endline attrition Endline attrition Endline attrition

guardians guardians students students

All treatments −0.023∗ 0.018
(0.013) (0.016)

Free basic light −0.018 −0.007
(0.021) (0.022)

High subsidy (USD 4) −0.033 0.025
(0.020) (0.026)

Low subsidy (USD 7) −0.014 0.030
(0.016) (0.029)

Market price (USD 9) −0.010 0.036
(0.017) (0.021)

Free larger light −0.039∗∗ 0.009
(0.018) (0.024)

School FE Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes

Control mean 0.083 0.083 0.074 0.074
Number of observations 1,410 1,410 1,313 1,313

Notes: This table shows estimates of having a working solar light on attrition probability by each treatment
arm. For all treatments, the first and second stage follow Equations (1) and (2) For individual treatments, the
first stage instruments the probability of owning a working solar light with each treatment assignment while the
second stage simultaneously estimates the effect of each treatment arm using a stacked regression, as described
in Section 2.4. Columns (1) and (2) show the probability that guardians did not take part in the endline survey.
Columns (3) and (4) show the same outcome for students. Standard errors clustered at both the school and
household level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.12: Attrition by Baseline Characteristics

Guardian attrition Student attrition

(1) (2) (3) (4)
Non - Difference Non - Difference

attritors attritors attritors attritors

Connection to the grid 0.014 -0.003 0.015 -0.007
[0.119] (0.010) [0.121] (0.009)

Household owns a solar light 0.058 0.027 0.060 -0.021
[0.234] (0.023) [0.237] (0.016)

Average test scores (baseline) 3.32 -0.022 3.34 -0.271***
[0.786] (0.066) [0.788] (0.062)

Student is in grade 5 0.343 0.032 0.344 -0.018
[0.475] (0.053) [0.475] (0.047)

Student is in grade 6 0.374 -0.036 0.377 -0.033
[0.484] (0.053) [0.485] (0.042)

Student is in grade 7 0.283 0.004 0.279 0.051
[0.451] (0.035) [0.449] (0.052)

Student is female 0.542 -0.034 0.530 0.141**
[0.498] (0.040) [0.499] (0.056)

Student’s age 14.17 0.00 14.07 1.20***
[1.75] (0.00) [1.69] (0.154)

Guardian respondent is student’s parent 0.792 -0.225*** 0.807 -0.171***
[0.406] (0.039) [0.395] (0.042)

Guardian respondent is student’s grandparent 0.104 -0.019 0.098 0.070**
[0.306] (0.028) [0.298] (0.029)

Guardian respondent is female 0.672 0.009 0.673 -0.014
[0.470] (0.059) [0.469] (0.039)

Student from replacement list 0.132 0.043 0.133 -0.021
[0.338] (0.034) [0.340] (0.026)

Baseline guardian survey at school 0.947 -0.052 0.949 -0.036
[0.225] (0.041) [0.219] (0.028)

Household size 6.82 -0.042 6.83 -0.141
[2.15] (0.250) [2.14] (0.195)

Household performs agricultural activities 0.988 0.003 0.989 -0.018
[0.110] (0.013) [0.103] (0.014)

School FE Yes Yes

Notes: This table shows results from OLS estimates where endline attrition is regressed on baseline
characteristics from Table 1. Columns (1) and (3) show means and standard deviations for guardian and
student non-attritors. Columns (2) and (4) show the difference between non-attritors and attritors for
guardians and students, respectively. Standard errors clustered at the school level in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.
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Table A.13: Main Impacts:
Robustness Check I: Attrition Adjustments

Lee Bounds Inverse
Non-adjusted Lower Upper Probability

estimates bound bound Weighted
(1) (2) (3) (4)

Kerosene purchased last month −1.278∗∗∗ −1.457∗∗∗ −1.176∗∗∗ −1.420∗∗∗

(0.228) (0.232) (0.237) (0.259)
CO2-eq emissions −71, 296∗∗∗ −81, 603∗∗∗ −66, 184∗∗∗ −80, 719∗∗∗

(12,776) (13,209) (13,509) (14,346)
Total monthly energy expenditure −1.871∗∗∗ −2.386∗∗∗ −1.732∗∗∗ −1.901∗∗∗

(0.334) (0.410) (0.350) (0.404)
Guardian eye health −0.228∗∗∗ −0.336∗∗∗ −0.157∗ −0.253∗∗∗

(0.075) (0.069) (0.085) (0.077)
Student eye health −0.244∗∗ −0.261∗∗ −0.243∗∗ −0.301∗∗∗

(0.090) (0.103) (0.091) (0.087)
Guardian respiratory health −0.153∗∗ −0.290∗∗∗ −0.094 −0.123∗

(0.069) (0.074) (0.088) (0.069)
Student respiratory health −0.270∗ −0.306∗∗ −0.271∗ −0.279∗

(0.135) (0.123) (0.135) (0.139)
Student homework completion 0.153∗∗∗ 0.150∗∗∗ 0.157∗∗∗ 0.177∗∗∗

(0.032) (0.032) (0.033) (0.034)
Student school exam scores −0.096 −0.103 −0.087 0.122

(0.098) (0.087) (0.091) (0.219)
Average of psychological outcomes (guardians) 0.072∗ 0.022 0.125∗∗∗ 0.082∗

(0.040) (0.041) (0.041) (0.043)
Average of psychological outcomes (students) 0.111∗∗ 0.112∗∗ 0.118∗∗ 0.093

(0.047) (0.050) (0.048) (0.054)

Notes: This table examines the robustness of the main results by accounting for differential attrition at endline.
Each row shows impact estimates of having a working solar light on the main outcomes of the study, following
Equations (1) and (2). Column (1) displays the main baseline estimates. Columns (2) and (3) report lower
and upper bound estimates using Lee-bounds (Lee, 2009). Column (4) shows adjusted estimates using Inverse
Probability Weights (IPW) obtained from probit estimates using baseline characteristics (Wooldridge, 2002, 2007).
Standard errors clustered at the school level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.14: Main Impacts:
Robustness Check II: Separate Estimates by Basic vs. Larger Light

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Kerosene CO2-eq Total Eye Eye Respiratory Respiratory Completed Average Psycho- Psycho-
purchased emissions monthly health health health health homework score of logical logical
last month (g/month) energy guardians students guardians students every day 5 school index lndex

(liters) expenditure (s.d.) (s.d.) (s.d.) (s.d.) last week exams guardians students
(USD) (prob.) (s.d.) (s.d.) (s.d.)

Basic light −1.262∗∗∗ −68, 204∗∗∗ −1.299∗∗∗ −0.263∗∗ −0.236∗∗ −0.167∗ −0.260∗ 0.170∗∗∗ −0.134 0.069 0.103
(0.298) (16,751) (0.397) (0.107) (0.096) (0.093) (0.150) (0.044) (0.135) (0.054) (0.065)

Larger light −1.198∗∗∗ −67, 929∗∗∗ −2.401∗∗∗ −0.221∗∗ −0.282∗∗ −0.124 −0.239 0.136∗∗∗ −0.050 0.057 0.107∗

(0.220) (11,943) (0.469) (0.101) (0.135) (0.090) (0.168) (0.045) (0.072) (0.050) (0.057)

School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 2.558 141,013 4.211 1.484 1.427 0.907 1.114 0.649 3.413 2.123 3.019
Number of observations 1,299 1,291 1,313 1,313 1,203 1,313 1,203 1,051 1,012 1,313 1,203
P-value of F-test 0.801 0.984 0.053 0.770 0.729 0.729 0.896 0.577 0.418 0.853 0.957

Notes: This table examines the robustness of the main results by separately estimating the impact of each type of light. It shows impact
estimates of having a working solar light on the main outcomes of the study, following Equations (1) and (2). Each row shows a separate
regression by type of light. Standard errors clustered at the school level in parentheses. F-test for the null hypothesis of equal impacts by
both types of light (using a stacked regression with standard errors additionally clustered at the household level). *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table A.15: Main Impacts:
Robustness Check III: Separate Estimates by Treatment Arm

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Kerosene CO2-eq Total Eye Eye Respiratory Respiratory Completed Average Psycho- Psycho-
purchased emissions monthly health health health health homework score of logical logical
last month (g/month) energy guardians students guardians students every day 5 school index lndex

(liters) expenditure (s.d.) (s.d.) (s.d.) (s.d.) last week exams guardians students
(USD) (prob.) (s.d.) (s.d.) (s.d.)

Free basic light −1.292∗∗∗ −68, 535∗∗∗ −1.418∗∗∗ −0.248∗∗ −0.248∗ −0.152 −0.219 0.147∗∗ −0.207 0.072 0.079
(0.305) (18,573) (0.345) (0.118) (0.120) (0.124) (0.135) (0.056) (0.141) (0.059) (0.078)

High subsidy (USD 4) −1.125∗∗ −61, 236∗∗ −1.255 −0.317∗ −0.250∗ −0.139 −0.271 0.191∗∗∗ −0.058 0.032 0.148∗

(0.453) (23,722) (0.773) (0.167) (0.131) (0.157) (0.210) (0.061) (0.154) (0.070) (0.082)
Low subsidy (USD 7) −0.169 −4, 698 −2.141 −0.152 −0.859∗ 0.221 0.054 0.158 −0.464 −0.103 0.270

(1.273) (80,130) (1.841) (0.446) (0.428) (0.435) (0.421) (0.247) (0.293) (0.263) (0.232)
Market price (USD 9) −0.658 −25, 125 −2.100 −0.943∗∗ 0.004 −0.268 0.201 0.076 0.035 −0.094 −0.070

(0.682) (40,807) (1.935) (0.357) (0.624) (0.411) (0.494) (0.255) (0.251) (0.174) (0.224)
Free larger light −1.198∗∗∗ −67, 929∗∗∗ −2.401∗∗∗ −0.221∗∗ −0.282∗ −0.124 −0.239 0.136∗∗∗ −0.050 0.057 0.107∗

(0.220) (11,957) (0.470) (0.101) (0.135) (0.090) (0.168) (0.045) (0.072) (0.050) (0.057)

School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Control complier mean 2.558 141,013 4.211 1.484 1.427 0.907 1.114 0.649 3.413 2.123 3.019
Number of observations 1,299 1,291 1,313 1,313 1,203 1,313 1,203 1,051 1,012 1,313 1,203
P-value of F-test 0.587 0.443 0.222 0.256 0.418 0.835 0.667 0.874 0.380 0.859 0.566

Notes: This table examines the robustness of the main results by separately estimating the impact of each treatment arm. It shows
impact estimates of having a working solar light on the main outcomes of the study. The first stage instruments the probability of owning
a working solar light with each treatment assignment while the second stage simultaneously estimates the effect of each treatment arm
using a stacked regression, as described in Section 2.4. Standard errors clustered at the school level in parentheses. F-test for the null
hypothesis of equal impacts by all treatment arms (using a stacked regression with standard errors additionally clustered at the household
level). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A.16: Main Impacts:
Robustness Check IV: Estimates Excluding Gender Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Kerosene CO2-eq Total Eye Eye Respiratory Respiratory Completed Average Psycho- Psycho-
purchased emissions monthly health health health health homework score of logical logical
last month (g/month) energy guardians students guardians students every day 5 school index lndex

(liters) expenditure (s.d.) (s.d.) (s.d.) (s.d.) last week exams guardians students
(USD) (prob.) (s.d.) (s.d.) (s.d.)

Solar light −1.321∗∗∗ −73, 255∗∗∗ −1.957∗∗∗ −0.220∗∗∗ −0.249∗∗ −0.133∗ −0.280∗ 0.155∗∗∗ −0.084 0.070 0.115∗∗

(0.220) (12,417) (0.328) (0.074) (0.092) (0.071) (0.137) (0.031) (0.096) (0.040) (0.047)

School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Respondent gender No No No No No No No No No No No

Control complier mean 2.601 142,972 4.297 1.476 1.432 0.887 1.124 0.647 3.412 2.126 3.015
Number of observations 1,299 1,291 1,313 1,313 1,203 1,313 1,203 1,051 1,012 1,313 1,203

Notes: This table examines the robustness of the main results by excluding gender-fixed effects. It shows impact estimates of having a
working solar light on the main outcomes of the study, following Equations (1) and (2). Standard errors clustered at the school level in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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B Research Design

We conducted a randomized control trial (RCT) between June 2015 and March 2016 that
consisted of the distribution of solar lights among 5th, 6th, and 7th grade students of 20
primary schools located in Nambale and Teso South, two sub-counties of the Busia county
in Western Kenya.51 Out of the seven sub-counties in Busia, we selected these two for the
following reasons. First, both counties have a large fraction of people living in rural areas,
which often have less access to electricity. Second, they were not part of an electrification
pilot program run by the Kenyan government at the time. Third, there were no other studies
in either of the two places that would have interfered with our intervention. Finally, our
policy partner (SolarAid) worked in these areas, and both counties were reachable from their
field offices. This appendix outlines the different stages of the intervention summarized in
Figure B.1. See Figure B.2 for a detailed timeline of the study.

B.1 Pre-Baseline

School selection: We selected schools from a list of 127 schools (50 from Nambale and 77 from
Teso South) provided by the Ministry of Education. We removed urban schools since these
areas often have better access to electricity. Among the rural schools, four did not provide
information on the number of students and were thus excluded. Subsequently, we removed
schools with less than 200 students, private schools, boarding schools, unisex schools, schools
for children with special needs, those schools too far away to be reached within one day from
the field office, and five schools that were already part of other projects. We randomly or-
dered the pool of 97 remaining eligible schools and selected the first 20 schools (10 in each
sub-county) to participate in the intervention. We recruited these schools by attending a
monthly meeting of all head teachers (teachers who are designated to have a management
role) in the sub-counties at which the research team provided information about solar lights.
After the meeting, we asked the selected head teachers to take part in the study.52 Table
B.1 shows the final list of schools that participated in the intervention.

Household and student selection: Upon identifying the sample of schools, we selected house-
holds that had at least one student enrolled in grades 5–7. Grades 1–4 were not included
since it would have been hard for those students to answer survey questions on their own,
while grade 8 was excluded since eighth graders would have left school before the study
had ended. The field team visited the schools to gather the list of students in grades 5–7
within each school and to assess which students belonged to the same household. The final
list resulted in 3,360 eligible households, from which we selected 1,410 to participate in the
intervention. If households had more than one student in grades 5–7 (i.e., siblings), a single
student was randomly selected while the other ones were replaced with students from a back-
up household list.53 Consequently, the intervention includes only one student per household.

51To distribute the lights, we partnered with SolarAid, a large Kenyan distributor of portable solar lights.
52Four head teachers did not attend the meeting so their schools were replaced with the following schools

on the list in the respective sub-county.
53This back-up list was randomly assembled for each school from households that were originally not

selected for the study in case it was necessary to fill in for students who were absent during the day of the
baseline survey. The share of back-up students is balanced across treatment arms.
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Randomization: Based on the final sample of students, we randomly assigned students within
each school to either the control or the five different treatment arms described in Section
2.2. Thus, randomization was conducted at the household level and stratified at the school
level by following the next steps. First, we randomly ordered all households within each
school. Second, we assigned the first 40 households to the control group or the free solar
light arms in an alternating order (starting with the control group). Among those receiving
a free solar light, treatment alternated between the basic and larger solar lights (starting
with the basic option).54 Third, we assigned the 41st to 70th, 75th or 80th, depending on
the school, ranked households to the rest of the treatment arms with an alternating pattern
among the vouchers to purchase the basic solar light: high subsidy, low subsidy, and market
price (starting with the high subsidy voucher).55 Finally, the rest of the ranked households
were kept to create the aforementioned back-up student list. For each selected household,
we surveyed the student and one of the student’s guardians.56

Implementation: The process of communicating the randomized treatment offers to par-
ticipants was as follows. We designed a lottery game based on text messages to make it clear
to guardians that whether they won a prize was decided by random chance.57 As these types
of text-message games are very common in Kenya, it was easy for guardians to understand.58

The lottery worked in the following way: at the end of the baseline survey guardians were
assigned a “lucky number” and surveyors invited them to participate in the lottery. Then,
the guardians sent a text message with the “lucky number” to participate in the lottery and
immediately received a text message back, announcing if they had either won a free solar
light, had the opportunity to purchase one at a given price during the following weeks, or
had not won anything. This text message could then be used to either receive a free solar
light on the spot or a personalized voucher to be redeemed at a later date.

B.2 Baseline Surveys

Student survey: The student baseline survey was conducted at school and was scheduled
on a specific day for each school in July and August 2015. Students originally selected to

54See Figure 1 for a description of the lights.
55For schools with at least 70 eligible students, this means that we selected 20 for the control group and

10 for each of the treatment arms. Two schools had less than 70 students who met the selection criteria,
even though overall more than 200 students were enrolled, so we reduced the number of distributed vouchers
to 0 (Sango) and to 10 (Aburi) in these schools. These are likely to be newer schools where most enrolled
students were in younger grades. Consequently, we increased the number of selected students to 75 or 80 in
larger schools in order to keep field operations as simple as possible. Table B.1 presents these numbers.

56Neither the randomization results nor process were disclosed to the head teachers or the study partici-
pants.

57This “lucky number” and the corresponding treatment assignment were determined in advance, but it
appeared to participants that they were generated on the spot.

58Kenyan phone providers frequently send subscribers codes that they can submit via text message to
participate in lotteries. After developing our process, we tested it in several pilots, discussed it with benefi-
ciaries, and made sure the lottery was well understood by our participants. It turned out that this process
had the advantage that people would intuitively understand that the allocation of prices was random and
that what they answered in the survey would not have an impact on their chances of winning.
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participate in the study were especially encouraged by the head teachers to attend school on
the day of the survey. Students on the back-up list were not asked specifically to be present
that day. 13.0% of students who were initially selected for the study did not attend school
on the day of the baseline survey and were thus replaced by students from the back-up list.59

During this survey, students were asked about their guardian’s name and phone number,
and to invite them to the interview at a specific date and time.60

Guardian survey: The guardian baseline survey was also conducted at school after the
student survey in June and July 2015. During their interviews, students received paper
slips with an invitation for the guardians, including a note stating that guardians would be
reimbursed for travel costs and receive a participation gift. In some cases, the guardian who
showed up at the interview differed from the one the student had listed.61

If the guardians did not attend the interview, surveyors would attempt to contact them
to conduct the survey at home or at their workplace.62 Head teachers also helped by telling
students to remind their guardians about the survey.

Treatment arms announcement: At the end of the baseline survey, the different treatment
offers were communicated to guardians as follows. Surveyors assigned guardians the “lucky
number” to participate in a lottery. Guardians then participated in the lottery by sending
a text message with the “lucky number”, and immediately received a text message back,
announcing whether they had not won anything, had won a free solar light, or had won the
voucher to purchase a light at a given price during the following weeks. Surveyors showed
the basic solar light to guardians who were offered the vouchers and read a script containing
basic information about the light.63

Solar light redemption: Guardians belonging to the free treatment arms were offered their
solar light directly at the end of their surveys at school or at home. Guardians in the voucher
arms were offered the vouchers instead, which they could use within 4 to 6 weeks to purchase
the light at the school (they could not purchase it on the same day).64 The guardians were
given dates and times when they could come back to the school to purchase the lamp.65 In
most cases, the guardians went back to school. In some cases the head teachers collected
the orders from the guardians in several rounds, as well as the money and vouchers, and
purchased the solar lights for them. In other cases, some participants went to SunnyMoney
directly.

59The share of replacement students is balanced across treatment arms.
6012 surveyed students who were initially assigned to receive a voucher (10) or a free lamp (2) did not

receive their respective treatment because their guardians did not attend their baseline interview.
61For instance, the student may have mentioned one parent, but the other one showed up.
62To identify whether the guardian survey at baseline took place at school we used the date on which

the survey was conducted as a proxy. If the actual date matches the scheduled date, we assume that the
interview took place at school; if not, we assume it took place outside of school.

63This script is shown in the Data Appendix
64All vouchers contained the guardian’s name and were not transferable. We later conducted audits to

ensure that respondents did not sell or trade their vouchers.
65Granting a certain amount of time to people to redeem the voucher is the usual way SunnyMoney

operates. Furthermore, this extra period might allow people to save enough money to purchase the light.
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B.3 Endline Surveys

Student survey: Endline surveys of students were also conducted at school, who were again
encouraged by the head teachers to attend school on the day of the survey. If the student was
absent during that day, surveyors attempted to contact the guardians directly to encourage
them to send the student to school for another survey attempt at a later date.66

Guardian survey: The endline guardian surveys were conducted at home. Surveyors tried
to book appointments directly with the guardians and notified them before coming to their
houses. For guardians without a phone number, surveyors went through the household’s
village elder to contact the guardians. Although surveyors intended to survey the same
guardian that had been interviewed in the baseline, there were 22 cases in which the sur-
vey respondent changed. Nonetheless, the share of respondent changes is balanced across
treatment arms.

66Some students were found at their house, while others had moved to another school. Depending on
their availability, an appointment was booked with them. If the parent was absent on the day of an at-home
survey, then surveyors again attempted to coordinate another interview with them at home on a later date.
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Figure B.1: Research Design and Survey Implementation

Notes: We received a list of 127 primary schools in the two sub-counties of Teso South and Nambale
in Busia, Western Kenya. Based on this list, we identified 97 schools that met our eligibility criteria
(rural areas, school size, public and mixed-gender schools, excluding special needs and boarding
schools). From these schools, we randomly chose 20 schools and created a list of all students in
grades 5-7. Randomization into treatment arms was conducted at the household level and stratified
at the school level. We selected only one student per household. We then randomly ordered the
students, creating a list of selected students and a back-up list. The treatment assignment follows
a specific pattern of the students’ ordering. We first surveyed students at the school and absent
students were replaced with students from the back-up list. We then invited their guardians for
another baseline survey that took place several days after the student survey. Households were
informed about their treatment assignment at the end of the guardian baseline survey by a lottery
game process.
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Figure B.2: Timeline of the Intervention

Notes: Baseline surveys were conducted in June–July 2015, during the second term of the year (Capital News, 2014). The Term
Exams took place in March and November of both 2015 and 2016 (Ministry of Education of Kenya, 2015). The KCPE Exams
took place from the 10th to the 12th November 2015 (Kenya National Examinations Council, 2015) and from the 8th to the
10th November 2016 (Kenya National Examinations Council, 2016). The endline surveys were conducted February–March 2016,
during the first term of the year (The Standard, 2015).
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Table B.1: Households by School and Control or Treatment Arm

Frequency by treatment arm

(1) (2) (3) (4) (5) (6) (7)
Control Free High Low Market Free All

Sub county School name Basic Subsidy Subsidy Price Larger Treatments

Nambale Malanga 20 10 10 10 10 10 70
Nambale Lwanyange 20 10 10 10 10 10 70
Nambale Emukhuyu 20 10 10 10 10 10 70
Nambale Esidende 20 10 10 10 10 10 70
Nambale Maolo 20 10 10 10 10 10 70
Nambale Sianda 20 10 14 13 13 10 80
Nambale Khayo 20 10 13 14 13 10 80
Nambale Sango 20 10 0 0 0 10 40
Nambale Opeduru 20 10 12 12 11 10 75
Nambale Mwangaza 20 10 10 10 10 10 70
Teso South Olepito 20 10 12 11 12 10 75
Teso South Obekai 20 10 12 11 12 10 75
Teso South Kaliwa 20 10 12 12 11 10 75
Teso South Kamarinyang’ 20 10 13 11 11 10 75
Teso South Ong’aroi 20 10 12 11 12 10 75
Teso South Asing’e 20 10 12 12 11 10 75
Teso South Ng’elechom 20 10 13 11 11 10 75
Teso South Akites 20 10 10 10 10 10 70
Teso South Aburi 20 10 4 3 3 10 50
Teso South Odiyoi 20 10 10 10 10 10 70

Total 400 200 209 201 200 200 1410

Notes: This table reports how many households (students) were randomly assigned to either control or
each treatment arm within each of the twenty schools and two sub-counties included in the intervention.
Initially, we selected 70 households with students in grades 5-7. However, two of the schools did not have
enough households that met the selection criteria. In these two schools, we reduced the number of vouchers
distributed to 0 (Sango) and to 10 (Aburi) and increased the number of sampled students in larger schools
instead. To keep field operations as simple as possible, we increased participation to 75 (Opeduru, Olepito,
Obekai, Kaliwa, Kamarinyang, Ong’aroi, Asinge, Ng’eechom) or 80 (Sianda, Khayo) in larger schools.
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