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Abstract

Subgroup analyses to explore mechanisms and conduct falsification tests are in-
creasingly common in regression discontinuity designs (RDDs). However, existing
methods fail to account for other differences across subgroups beyond the charac-
teristic of interest. As a result, evidence of subgroup effect heterogeneity - or lack
thereof - is often difficult to interpret. This paper introduces a new approach to
conduct regression discontinuity subgroup analysis while holding other observable
characteristics constant, based on inverse probability weighting. Observations from
subgroup zero with high (low) estimated probability scores to belong to subgroup
one are up-weighted (down-weighted). Successful balancing of observables across
subgroups helps to isolate effect heterogeneity due to the subgroup characteristic of
interest from effect heterogeneity driven by observed confounders. The approach is
illustrated with data from two studies that use RDD subgroup analysis to explore a
particular mechanism (Fujiwara, 2015) or run a falsification exercise (Solis, 2017).
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1 Introduction

Subgroup or effect heterogeneity analysis has become standard practice in regression dis-

continuity designs (RDDs).1 Many of those papers conduct a descriptive subgroup anal-

ysis, showing RDD results by gender or race for example. A more ambitious objective for

subgroup analysis is to explore a specific mechanism or conduct a falsification exercise,

arguing that the effect should be smaller, larger or absent altogether for observations with

a given characteristic of interest. However, existing methods do not allow researchers to

account for other differences across subgroups beyond the characteristic of interest. As

a result, evidence of subgroup effect heterogeneity - or lack thereof - is often difficult to

interpret.

This paper outlines a new approach to help isolate effect heterogeneity by a given

subgroup characteristic of interest from effect heterogeneity by other observed covariates

that are correlated with that characteristic. We call it “weighted subgroup analysis”. The

approach requires two subgroups of interest but is otherwise fairly general. It is likely

most useful in (sharp or fuzzy) RD designs since it minimizes functional form assumptions

as further discussed below. The basic idea of weighted subgroup analysis is as follows.

Suppose a researcher wants to know whether a larger effect of a given intervention for

females (subgroup one) compared to males (subgroup zero) is in fact driven by some

other pre-intervention attribute, such as age. The goal of weighted subgroup analysis is to

construct a weighted subgroup sample of males that matches the female sample as much as

possible in terms of age and then run separate RDDs in the weighted male and unweighted

female samples. Under the standard continuity assumption, these separate RDDs identify

the causal effect of crossing the cutoff for males, and for females, respectively. And to

the extent that observable balancing is successful, the difference between male and female

subgroup effects reflects the heterogeneity by gender isolated from the heterogeneity by

age. This difference provides the contribution of gender to the average effect plus the

effect of potential imbalances in unobserved factors.

The approach proceeds in three steps. First, construct a weighted subgroup sample

that matches the other subgroup sample as much as possible in terms of mean observables

using inverse probability weighting (IPW) (Horvitz and Thompson, 1952). Observations

from subgroup zero with high estimated probability scores to belong to subgroup one

1Similarly, Hsu and Shen (2019) find that in 2015-2016, 89% percent of papers in the QJE, AER,
JPE, REStud, AEJ:Applied and AEJ:Economic Policy that use RDDs report subgroup analyses in their
results.
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are up-weighted, while subgroup zero observations with low estimated scores are down-

weighted. Intuitively, since subgroup zero units with high scores will have covariate values

that are similar to subgroup one units, up-weighting them will improve balance. Second,

analyze the extent of balance improvement in terms of average absolute standardized dif-

ferences in covariate means across subgroups. While balance is guaranteed to improve

as long as the probability score exhibits some variation, there is no guarantee that the

weighted subgroup zero means match the subgroup one covariate means. If observables

are still not balanced, go back to the first step and re-estimate the score, adding interac-

tion terms between covariates or higher-order terms. Third, conduct conventional RDD

analysis in the weighted subgroup zero and unweighted subgroup one samples, and test

for effect heterogeneity across subgroups using a simple t-test.

In randomized and other non-RD designs, the standard approach to investigate ef-

fect heterogeneity is based on specifications that include the subgroup of interest indicator

and an interaction term of the treatment indicator with that subgroup indicator. This

approach is convenient because it easily accommodates additional covariates and their in-

teractions with treatment status, thus holding other observables constant when testing for

differential effects for the subgroup of interest. However, the simple treatment-subgroup-

interaction approach is not generally valid in the RDD setting, unless the relationship

between the outcome and the running variable is exactly the same across subgroups. A

valid and common approach to RDD subgroup analysis instead allows for separate slopes

and curvature by subgroup (i.e. full interaction of the running variable polynomial with

the subgroup indicator). The problem remains, however, that other characteristics may

vary systematically across subgroups, thus making it difficult to interpret differential sub-

group impacts. Simply including these additional covariates and their interaction with the

treatment indicator would easily lead to specification errors and is thus typically avoided

in practice. Instead, extant heterogeneity analysis in RDDs implicitly or explicitly (e.g.

Becker et al. (2013)) assumes that relevant covariates are uncorrelated with the charac-

teristic of interest at the cutoff. Our approach relaxes this assumption by only requiring

that unobserved confounders are balanced across subgroups at the cutoff.2

A potential approach would be to run separate subgroup-specific RDDs in cells de-

fined by specific covariate combinations and then aggregate the resulting estimates. While

theoretically attractive because the subgroup effects are nonparametrically identified for

2See (Hsu and Shen, 2019) for alternative tests that study whether an intervention is 1) beneficial
for at least some subpopulations, 2) has any impact on at least some subpopulations, and 3) has a
heterogeneous impact across subpopulations.
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each cell, this approach quickly runs into sample size issues, as well as potential weak

instrument problems in fuzzy RDDs (Feir et al., 2016). Weighted subgroup analysis pro-

vides a practical solution by balancing covariates across subgroups only on average, rather

than within each cell. Another potential approach is to include interactions of the covari-

ates with running variable polynomials, but this has not been formally investigated in the

RDD setting as far as we know.3 Overall, weighted subgroup analysis provides the first

practical method for RD designs to account for differences across subgroups beyond the

characteristic of interest.

We illustrate weighted subgroup analysis with two examples. In the first, (Fujiwara,

2015) shows that the introduction of electronic voting technology in Brazil had a stronger

effect on valid voting in municipalities with high illiteracy rates (a roughly 5 percentage

point higher increase than in more literate municipalities). While these results might indi-

cate that mostly less educated voters were effectively enfranchised by the new technology,

the literacy rate also correlates with geographic location. The more illiterate populations

are concentrated in the Brazilian Northeast. The observed effect heterogeneity could

therefore be driven by political or cultural confounders that vary with geography. Put

differently, it is unclear whether illiteracy alone drives this effect heterogeneity since the

two samples differ so much in terms of location.

We show that inverse probability weighting of the subgroup of municipalities with low

illiteracy rates leads to a substantial balance improvement in terms of a more similar share

of municipalities from the Brazilian Northeast as in the subgroup of municipality with high

illiteracy rates. Specifically, the average absolute standardized difference of proportions

belonging to different regions of Brazil is reduced by an order of magnitude (from 0.65

to 0.06). The corresponding weighted RD estimate for the low illiteracy subgroup is

reduced by half and produces a differential effect that is about twice as large as without

weights (a roughly 10 percentage point differential effect compared to about 5 percentage

points without weights). These results strengthen the argument that the introduction

of electronic voting technology mostly enfranchised less educated voters, even holding

confounders associated with geography constant.

A second study we use to illustrate our approach is (Solis, 2017), who analyzes credit

access and college enrollment in Chile exploiting a cutoff in a nationwide entrance exam.

3Calonico et al. (2019) aim to clarify the conditions under which adding covariates in the RDD identifies
the average effect of treatment at the cutoff. An earlier version of their paper suggests that future work
could study how the interaction approach might be used to investigate treatment effect heterogeneity at
the cutoff.
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The paper finds that access to credit leads to higher immediate college enrollment for

preselected candidates who are eligible for student loans. They are 18 percentage points

more likely to enroll immediately in college when they are above the threshold score for

access to credit. At the same time, there is virtually no effect for nonselected students, i.e.

those who are ineligible for the student loan program because their parents are deemed

too rich. The author’s interpretation of the null result for the nonselected subgroup is

that scoring above the college entrance exam cutoff only relaxed a credit constraint for the

preselected subgroup, rather than also providing a positive signal about student ability

to students themselves or to admissions officers. But an alternative interpretation is that

the nonselected subgroup was simply academically weaker and would not have wanted to

go to college in any case.

We first document a substantial imbalance between preselected and nonselected stu-

dents in terms of high school academic performance and other covariates. Weighting

completely eliminates the imbalances but the weighted RDD estimates remain unchanged

compared to no weights. This suggests that even with the same average high school

performance and other characteristics as preselected students, nonselected students’ col-

lege enrollment did not respond to them scoring above the college admission cutoff. We

show that contrary to the Fujiwara (2015) study, in the Solis (2017) study the R-squared

improvement with covariates is only marginal, suggesting that only relevant confounders

matter for unbiased subgroup effect estimation.

The paper proceeds as follows. Section 2 discusses the limitations of existing ap-

proaches to subgroup analysis in RD designs. Section 3 presents the weighted subgroup

analysis approach. Section 4 illustrates the approach using the two examples mentioned

above (Fujiwara, 2015; Solis, 2017). Finally, Section 5 concludes.

2 Existing approaches to RDD subgroup analysis

The standard approach to investigate effect heterogeneity in randomized studies (and also

often used in other quasi-experimental estimation strategies) is to include a dummy for the

subgroup of interest and an interaction term of the treatment indicator with that subgroup

dummy. This section illustrates that the simple treatment-subgroup-interaction approach

is not generally valid in the RDD setting without strong assumptions. For it to be valid,

the relationship between the outcome and the running variable would have to be the

same across subgroups. And even when the model allows for separate slopes or curvature
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by subgroup (i.e. full interaction of the running variable polynomial with the subgroup

indicator), the problem remains that other characteristics may vary systematically across

subgroups.

2.1 RDD with subgroup-treatment interaction term

Consider aiming to estimate the differential impact of a treatment on two subgroups,

G = 0 and G = 1. There are two estimands of interest, corresponding to the RD-gaps in

the outcome Y at the cutoff in each of the two subgroups:

lim
Xi↓0

E[Yi|Xi, Gi = 0]− lim
Xi↑0

E[Yi|Xi, Gi = 0] = αR0 − αL0 = α0 (1)

and

lim
Xi↓0

E[Yi|Xi, Gi = 1]− lim
Xi↑0

E[Yi|Xi, Gi = 1] = αR1 − αL1 = α1 (2)

where the cutoff is normalized to zero and the notation is adapted from Lee and Lemieux

(2010).

Now consider a linear spline specification, augmented only with the subgroup dummy

G and an interaction term of the subgroup dummy with treatment assignment ZG, where

Zi = I[Xi ≥ 0]. In terms of the parameters above, the model can be written as

Yi = αL0 + α0Zi + (α1 − α0)ZiGi + (αL1 − αL0)Gi + δ1Xi + δ2XiZi + ϵi. (3)

To see the correspondence between the regression specification in (3) and the pa-

rameters of interest (the αs), simply evaluate the regression function at a given point.

For example, when X, Z, and G are all zero, the predicted value is the mean of Y in

subgroup zero just before crossing the cutoff, i.e. αL0. Just above the cutoff, the mean

of Y in subgroup zero is αL0 + α0 = αR0, so the coefficient on Z is the discontinuity in Y

in subgroup zero. Similarly, when X and Z are zero and G is one, the predicted value is

the mean of Y in subgroup one just before crossing the cutoff, i.e. αL1. Just above the

cutoff, the mean of Y in subgroup one is αL1 + α0 + (α1 − α0) = αR1, so the coefficient

on ZG is the difference in discontinuities in Y between subgroups one and zero.

Figure 1 illustrates the specification bias that arises when both true RD gaps are

zero (αR0 = αL0 = αR1 = αL1, i.e. the treatment has no effect in either subgroup) yet the

relationship between Y and X is not the same in the two subgroups (i.e. different slope
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in each subgroup). The two solid lines show the linear approximations to the conditional

expectation functions in the two subgroups, E[Yi|Xi, Gi = 0] and E[Yi|Xi, Gi = 1] within

a neighborhood h around the cutoff. The dashed lines represent the slope estimates from

equation (3), which are allowed to differ to the left and to the right of the cutoff but are

assumed constant across subgroups. Crucially, the slope estimates are necessarily between

the true slope parameters because OLS tries to minimize deviations from the regression

line across subgroups. Now as long as the slope estimates are biased, the intercept and

discontinuity estimates at the cutoff are necessarily biased as well. In Figure 1, the

discontinuity estimate for the G = 1 subgroup is upward biased and for the G = 0

subgroup the discontinuity estimate is downward biased.

2.2 RDD with full subgroup interaction

The specification bias above is easily fixed if the model allows for separate slopes by

subgroup (i.e. a linear spline fully interacted with Gi), which yields

Yi = (1−Gi)
(
αL0 + α0)Zi + δ1Xi + δ2XiZi

)
+Gi

(
αL1 + α1Zi + δ3Xi + δ4XiZi

)
+ ϵi.

(4)

The problem remains, however, that other characteristics may vary systematically

across subgroups. Including additional interactions with the treatment indicator easily

leads to specification errors. Instead, extant heterogeneity analysis in RDDs implicitly

or explicitly (e.g. Becker et al. (2013)) assumes that relevant covariates are uncorrelated

with the characteristic of interest at the cutoff. Our approach relaxes this assumption by

only requiring that unobserved confounders are balanced across subgroups at the cutoff.

3 Weighted RDD subgroup analysis

3.1 Identification

In the sharp RDD, the parameter of interest is the average treatment effect (ATE) at the

cutoff, i.e., E[βi|Xi = 0], where βi = Yi(1)− Yi(0) is the difference in potential outcomes

with and without treatment for unit i. If potential outcomes are continuous in X, the

outcome RD-gap identifies this average effect. Similarly, as long as potential outcomes in

each subgroup are continuous, each subgroup outcome RD-gap identifies a corresponding
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subgroup average effect. Using the notation above we have

lim
Xi↓0

E[Yi|Xi, Gi = 0]− lim
Xi↑0

E[Yi|Xi, Gi = 0] = E[βi|Xi = 0, Gi = 0] (5)

and

lim
Xi↓0

E[Yi|Xi, Gi = 1]− lim
Xi↑0

E[Yi|Xi, Gi = 1] = E[βi|Xi = 0, Gi = 1]. (6)

However, the difference in subgroup average effects may be driven at least in part

by observed and unobserved factors that are correlated with the subgroup characteristic,

rather than by the subgroup characteristic itself. To make this idea precise, consider the

standard approach for subgroup analysis in non-RD settings, which is to assume a linear

model for βi, such as

βi = E[βi|Xi, Gi,Wi] + Ui = β0 + βXXi + βGGi + βWWi + Ui. (7)

In this setup, β0 is the average effect at the cutoff (when Xi = 0) in subgroup zero for

observations with Wi = 0 and Ui = 0, while βX , βG and βW respectively represent the

contributions of running variable X, characteristic G and observed confounder W to the

average effect. U represents unobserved effect heterogeneity, potentially correlated with

G but uncorrelated with W by construction. The setup easily accommodates multiple

observables. Simply substituting the equation for βi into an RDD equation leads to the

specification problems discussed in Section 2.

The goal of subgroup analysis is to identify βG. Figure 2 shows conditional expecta-

tion functions E[Wi|Xi, Gi = 0] and E[Wi|Xi, Gi = 1] to illustrates covariate imbalance

across subgroups as well as the idea of weighted subgroup analysis. The observable W

is continuous in X in each subgroup as required for identification of the corresponding

subgroup average effects. However, due to a marked level difference in means of W at the

cutoff, it is difficult to attribute any difference in subgroup average effects to the subgroup

characteristic alone. The figure also shows the conditional mean function in the weighted

subgroup zero where the observable has the same mean at the cutoff as in subgroup one

E
[
Wi|Xi, Gi = 0, E[Wi|Xi = 0, Gi = 1]

]
. Intuitively, any remaining difference in sub-

group average effects cannot be driven by W if the means of W at the cutoff are balanced

across subgroups.

In what follows, we formalize these ideas. Consider the two subgroup average effects
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and their difference:

E[βi|Xi = 0, Gi = 1] = E[β0 + βXXi + βGGi + βWWi + Ui|Xi = 0, Gi = 1]

= β0 + βG + βWE[Wi|Xi = 0, Gi = 1] + E[Ui|Xi = 0, Gi = 1],

E[βi|Xi = 0, Gi = 0] = E[β0 + βXXi + βGGi + βWWi + Ui|Xi = 0, Gi = 0]

= β0 + βWE[Wi|Xi = 0, G0 = 0] + E[Ui|Xi = 0, Gi = 0],

and

E[βi|Xi = 0, Gi = 1]− E[βi|Xi = 0,Gi = 0] = βG

+ βW

[
E[Wi|Xi = 0, Gi = 1]− E[Wi|Xi = 0, Gi = 0]

]
+ E[Ui|Xi = 0, Gi = 1]− E[Ui|Xi = 0, Gi = 0].

The last equation makes it clear that the difference in subgroup effects is due not

only to the subgroup characteristic, but also due to potential differences in mean observed

and unobserved factors at the cutoff. Now consider the weighted subgroup zero average

effect:

E
[
βi|Xi = 0, Gi = 0, E[Wi|Xi = 0, Gi = 1]

]
= E

[
β0 + βXXi + βGGi + βWWi + Ui|Xi = 0, Gi = 0, E[Wi|Xi = 0, Gi = 1]

]
= β0 + βWE[Wi|Xi = 0, Gi = 1] + E

[
Ui|Xi = 0, Gi = 0, E[Wi|Gi = 1]

]
.

Finally, consider the difference between the subgroup one and weighted subgroup

zero average effects:

E[βi|Xi = 0, Gi = 1]− E
[
βi|Xi = 0, Gi = 0, E[Wi|Xi = 0, Gi = 1]

]
= βG

+ βW

[
E[Wi|Xi = 0, Gi = 1]− E[Wi|Xi = 0, Gi = 1]

]
+ E[Ui|Xi = 0, Gi = 1]− E

[
Ui|Xi = 0, Gi = 0, E[Wi|Gi = 1]

]
.

To the extent that observables are balanced at the cutoff across subgroups, βG is

identified as the difference between the subgroup one and weighted subgroup zero effects

as long as unobservables are also balanced.
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3.2 Estimation

Weighted RDD subgroup analysis requires three steps. First, balance subgroups based on

propensity score weighting. Second, assess the balance improvement with weights at or

around the cutoff. And finally conduct conventional RDD analysis in the weighted G = 0

and unweighted G = 1 subgroups.

Step 1: Inverse Probability Weighting

Our weighting approach is based on inverse probability weighting (IPW) in the spirit of

Horvitz and Thompson (1952). It involves weighting observations from subgroup zero

by the inverse of their conditional probabilities to belong to subgroup one given a set

of covariates. Observations from subgroup zero with high estimated probability scores

to belong to subgroup one are up-weighted, while subgroup zero observations with low

estimated scores are down-weighted. Intuitively, since subgroup zero units with high

scores will have covariate values that are similar to subgroup one units, up-weighting

them will improve balance.

To estimate the probability score, we first restrict the sample to observations close

to the cutoff using determined bandwidths. We then follow the standard approach for

propensity score weighting. Estimate a logit model in order to calculate a predicted

probability to belong to subgroup Gi=1:

P (Gi = 1|Xi,Wi) =
eh(Xi,Wi)

1 + eh(Xi,Wi)
= P (Xi,Wi), (8)

where h(Wi) is a starting specification that includes the covariates Wi as linear or

interaction terms. Restrict the sample to the common propensity score support and

weight observations by the inverse propensity score. Specifically, the weight attached to

the i-th observation is

Gi + (1−Gi)
P (Xi,Wi)

1− P (Xi,Wi)
, (9)

where p is the unconditional probability of belonging to subgroup Gi = 1. The weights

in (10) implies that observations from subgroup zero with high (low) estimated

probability scores are up-weighted (down-weighted).
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Step 2: Assessing Covariate Imbalance Reduction

After weighting, we can check whether this process removed imbalances in covariates

between the two subgroups of interest by comparing mean differences in the unweighted

and weighted samples. To assess the statistical significance, we use a t-test for individual

coefficients and an F-test for overall balance, as typically done in balance tables. Thus,

t-test for the difference in means at the cutoff for a specific covariate Wki is given by:

Wki = (1−Gi)
(
θ00k + θ01kXi) +Gi

(
θ10k + θ11kXi) + ϵi (10)

Then, we use standardized mean differences (SMD) or economic or substantive bal-

ance. This is:

SMDk =
θ10k − θ00k
sd(Wki)

(11)

To assess average balance across covariates we take a simple average of the SMDs in

absolute terms.

For joint significance of all K covariates, we estimate the following equation for the

unweighted and weighted samples, respectively:

Gi = γ1W1i + ...+ γKWKi + δXi +Qi (12)

Finally, we use an F-statistic to test the joint null hypotheses that all γ coefficients

are zero.

Step 3: Estimating the RDD by Subgroup

Once we have settled on a propensity score specification that eliminates or strongly reduces

the imbalances of observables between Gi = 0 and Gi = 1, we can proceed to estimate

the differential treatment effect. The weighted and unweighted subsample specifications

are4:

Yi = (1−Gi)
P (Wi)

(1− P (Wi))

(
αL0 + (αR0 − αL0)Zi + δ1Xi + δ2XiZi

)
+ Gi

(
αL1 + (αR1 − αL1)Zi + δ3Xi + δ4XiZi

)
+ ϵi (13)

4Weights are rescaled so as to keep the number of observations constant
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By estimating model in (14), we test for effect heterogeneity across subgroups using

a simple t-test.

Notice that conventional (robust or clustered) standard errors do not capture sam-

pling variability coming from the fact that the propensity score is estimated. To deal

with this issue, our Stata command (block) bootstraps standard errors and confidence

intervals.

4 Real examples using our approach

In this section, we apply our methodology using two well published papers that use the

standard approach to study subgroup analysis. We compare these results with those

under our approach.

Electronic voting in Brazil (Fujiwara, 2015)

Fujiwara (2015) studies the introduction of electronic voting technology in Brazilian elec-

tions. Prior to 1998 there were only paper ballots in Brazil which was challenging for

illiterate adults who represent about 23%. Additionally, another challenge is that State

legislator, governor, federal deputy, senator, and president elections are all held on the

same day. For the elections prior to 1998, citizens needed to write down the chosen name

or number based on written instructions. Consequently, in practice large numbers of votes

were invalid (blank or error-ridden).

In 1998 electronic voting (EV) was introduced, which has mainly four characteristics:

(1) Guided step by step voting process; (2) Candidates photographs as visual aids; (3)

Number-based interface (like a phone keypad); and (4) Error messages for voters about

to cast invalid votes. EV was available in municipalities with more than 40,500 registered

voters5.

This paper uses a sharp RDD to estimate the effect of the introduction of electronic

voting technology. Figure A2 plots the main outcome of interest (valid votes in state

legislature elections, as a share of turnout) against the forcing variable (registered voters

in 1996) for three different elections. A clear jump is visible in the 1998 election (in

circles). A little over 75% of the votes are valid on the municipalities below the cutoff,

and this figure rises to close to 90% as the cutoff is crossed and EV is introduced. The

5Figure A1 depicts the paper ballot above. And below is depicted the EV, in particular, the initial
screen of the device, and the screen just before a vote can be confirmed.
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fact that no discontinuity is visible for the elections held in 1994 (when all municipalities

used paper ballots) and 2002 (when EV was completely phased in) provides a falsification

test indicating that municipalities “just above” and “just below” the cutoff are indeed

valid treatment and control groups.

In the paper, Fujiwara (2015) presents heterogeneous effects to study whether there

are differences between low and high illiteracy populations using subgroup analysis un-

der the standard approach. We compare them with those that are obtained using our

approach.

Table 1 document a striking geographical imbalance across high and low illiteracy

groups. Inverse probability weighting of the low illiteracy subgroup leads to a substantial

balance improvement. Table 2 show that unweighted estimates overstate the effect on

valid votes out of turnout in low illiteracy populations. The weighted RD estimate for

the low illiteracy subgroup is less than half as large as without weights. Thus, weighted

results show that the impact of the technology adoption on valid votes found is mainly

due to their positive effect in less educated population.

However, we have some drawbacks given the available data. First, limited number

of covariates that are not directly related to literacy (income per capita, poverty rate,

share of urban population). And second, moderate sample size precludes zooming in on

imbalance close to the cutoff.

College access and credit constraints in Chile (Solis, 2017)

Solis (2017) studies whether access to credit explain the gap in schooling attainment

between children from richer and poorer families. In Chile, most universities are private

and financed by tuition fees. They are high and equivalent to 47 percent of the median

family income. In terms of the duration of a average program, they are designed for 5

years but students take an average of 6.5 years to graduate. Thus the cost of studying a

career represent large financial burden for the families.

To reduce the financial burden, private and public loans are available for students.

Access to private student loans is restricted by minimum income requirements for the

parents in formal jobs. Thus, half the families in the country make too little formal

income to qualify. Then, students of poor families can not get private loans and so many

of them are looking for a job while they are studying. However, non-college jobs pay too

little to work and save for college.

In terms of public loans, Chile has introduced two college loan programs that are
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available to students scoring above a threshold on the national college admission test.

Students from the richest quintile of the income distribution are not eligible. The threshold

is above 475 points to get a standardized government loan that is roughly equivalent to

950 SAT points. Most of the poorer students get lower than 475 points, so they are not

eligible to get a public loans.

Because of the threshold on the national college admission test in order to get a

loan, Solis (2017) estimates a RDD to study whether credit access affect to immediate

college enrollment. The top panel of Figure A3 shows the effect of loan eligibility on

immediate enrollment for pre-selected students. At the eligibility cutoff, where access to

loans changes sharply for preselected students (those that are preselected for a loan), we

observe that the enrollment rate for barely eligible students is twice the rate for barely

ineligible students. On ahother hand, for the non-selected students. the bottom of Figure

A3 suggests that there is no jump. These results illustrates the impact of getting a loan

on college enrollment.

However, results in Solis (2017) have the drawback that characteristics across pre-

selected and selected student could be different (e.g. gender, household size, etc). Then,

the differential effect in college enrolment for pre-selected and non-selected students is

not because of credit access, but for example pre-selected students in the sample could

come from more educated families that allows them to immediately decide to enroll in a

college. In this sense, our approach allow us to address this issue.

Table 3 shows substantial imbalance between preselected and nonselected students

in terms of high school academic performance and a long list of other covariates. IPW

completely eliminates the imbalances. Table 4 shows the RDD results using the weights

that make both groups balanced. We notice that R-squared improvement with covariates

is only marginal. As a result, weighting does not make any difference for the estimated

null effect. Thus, results with weights still support the Solis’ interpretation.

5 Conclusions

In this document, we propose a new approach to balanced RD subgroup analysis based on

inverse probability weighting (IPW) (Horvitz and Thompson, 1952). This approach re-

quires three steps. First, construct weighted subgroup samples using IP weights. Second,

assess the balance improvement. And third, conduct conventional RDD analysis in the

weighted subsample(s) and test for effect heterogeneity across subgroups using a simple
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t-test.

To show the utility of our approach, we replicate two well-published papers that

use subgroup analysis. First, for the Fujiwara (2015) example, we show that unweighted

estimates overstate the effect in low illiteracy populations. Results with the new approach

strengthen the argument that mostly less educated voters were effectively enfranchised

by the new technology. Second, for the Solis (2017) example, weighting does not make

a difference for the null effect. Results support the zero signaling value of scoring above

the cutoff interpretation.
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Figure 1: Specification bias

Notes: This figure illustrates the specification bias that arises when the true RD gaps in both
subgroups are zero and the slope parameters of the running variable and the outcome are different
across subgroups, yet the model imposes that the slope parameters are the same.
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Figure 2: Covariate imbalance and balancing across subgroups

Notes: This figure illustrates covariate imbalance that arises when the subgroups have differences
in the observables and then weighting one subgroup allows to get balancing across subgroups.
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Table 1: Balance Improvement for Fujiwara Example

(1) (2) (3) (4) (5) (6) (7) (8)

Original balance Balance after propensity score-weighted

Low High Low High
illiteracy illiteracy illiteracy illiteracy
16.1% 45.8% 22.6% 45.8%
(n=279) (n=279) (n=279) (n=279)

Mean Mean St.mean
diff.

P-value Mean Mean St.mean
diff.

P-value

Central Region 0.065 0.050 0.062 0.467 0.051 0.050 0.003 0.968
North Region 0.043 0.158 -0.381 0.000 0.194 0.158 0.119 0.272
Northeast Region 0.014 0.706 -1.440 0.000 0.665 0.706 -0.086 0.301
South Region 0.337 0.018 0.834 0.000 0.019 0.018 0.003 0.932
Southeast Region 0.541 0.068 1.027 0.000 0.072 0.068 0.008 0.869
population - 1991 49.891 47.472 0.143 0.091 49.92 47.47 0.145 0.112

Abs(St. mean diff.) 0.648 0.061
F-statistic 252.826 0.879
P-value 0.000 0.494

Notes: Columns (1) and (5) show the mean of each variable for entities with below-median of illiteracy. Columns (2) and (6)
show the means for entities with above-median share of illiteracy. Columns (3) and (7) show the standardized mean differences.
Columns (4) and (8) show the p-values of t-tests for statistical significance of the difference in means between the two groups.
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Table 2: Subgroup analysis by high and low Illiteracy Brazilian Municipalities: The
Outcome is valid votes out of turnout

(1) (2) (3) (4)

Panel A: Nonweighted

1{S ≥ cutoff} × 1{ Illiteracy > p(50)} 0.148∗∗∗ 0.150∗∗∗ 0.152∗∗∗ 0.176∗∗∗

(0.020) (0.015) (0.021) (0.033)
1{S ≥ cutoff} × 1{ Illiteracy < p(50)} 0.092∗∗∗ 0.113∗∗∗ 0.095∗∗∗ 0.089∗∗∗

(0.021) (0.016) (0.022) (0.033)
Difference Estimate 0.056∗ 0.037∗ 0.057∗ 0.087∗

(0.029) (0.022) (0.030) (0.047)
Observations 265 558 229 116
R-squared 0.484 0.408 0.463 0.432
R-squared Covariates included as Controls 0.608 0.536 0.602 0.621

Panel B: Propensity score-weighted

1{S ≥ cutoff} × 1{ Illiteracy > p(50)} 0.148∗∗∗ 0.150∗∗∗ 0.152∗∗∗ 0.176∗∗∗

(0.020) (0.015) (0.021) (0.033)
1{S ≥ cutoff} × 1{ Illiteracy < p(50)} 0.024 0.047 0.020 0.060

(0.038) (0.035) (0.036) (0.057)
Difference Estimate 0.124∗∗∗ 0.103∗∗∗ 0.132∗∗∗ 0.116∗

(0.043) (0.038) (0.042) (0.066)
Observations 265 558 229 111
R-squared 0.520 0.500 0.525 0.531
R-squared Covariates included as Controls 0.614 0.718 0.619 0.625

Bandwidth ±11, 873 ±20, 000 ±10, 000 ±5, 000

Notes: Robust standard errors in brackets. Reduced Form estimations. Panel B was obtained
using propensity score weighting. Column (1) provides the Imbens and Kalyanaraman (2012)
optimal bandwidth. ***p<0.01, **p<0.05, *p<0.1
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Table 3: Balance Improvement for Solis Example

(1) (2) (3) (4) (5) (6) (7) (8)

Original balance Balance after propensity score-weighted

Not Pre-
selected

Preselected Not Pre-
selected

Preselected

(n=6793) (n=7645) (n=5859) (n=7645)

Mean Mean St.mean
diff.

P-value Mean Mean St.mean
diff.

P-value

Both parents work 0.191 0.142 0.131 0.000 0.163 0.142 0.056 0.001
Mother housewife 0.469 0.514 -0.090 0.000 0.569 0.514 0.110 0.000
Father has formal work 0.594 0.527 0.135 0.000 0.597 0.527 0.141 0.000
Mother has formal work 0.314 0.281 0.073 0.000 0.283 0.281 0.005 0.762
Household sizee 4.476 4.489 -0.007 0.669 4.711 4.489 0.119 0.000
Self-reported income 1.515 1.286 0.392 0.000 1.296 1.286 0.017 0.225
Father college graduate 0.112 0.050 0.227 0.000 0.054 0.050 0.014 0.297
Mother college graduate 0.088 0.045 0.171 0.000 0.047 0.045 0.005 0.708
Father drop high school 0.411 0.473 -0.125 0.000 0.431 0.473 -0.085 0.000
Mother drop high school 0.415 0.461 -0.094 0.000 0.428 0.461 -0.067 0.000
Father years of education 11.52 10.68 0.224 0.000 10.64 10.68 -0.011 0.508
Mother years of education 11.33 10.67 0.187 0.000 10.64 10.67 -0.009 0.597
Female 0.491 0.591 -0.201 0.000 0.587 0.591 -0.008 0.643
Private school 0.077 0.012 0.322 0.000 0.011 0.012 -0.005 0.589
Voucher school 0.525 0.502 0.045 0.007 0.512 0.502 0.019 0.254
Public school 0.394 0.482 -0.177 0.000 0.473 0.482 -0.017 0.323
High school GPA 52.43 55.17 -0.285 0.000 54.81 55.17 -0.038 0.003

Abs(St. mean diff.) 0.170 0.043
F-statistic 58.92 0.759
P-value 0.000 0.743

Notes: Columns (1) and (5) show the mean of each variable for entities with below-median of illiteracy. Columns (2) and (6)
show the means for entities with above-median share of illiteracy. Columns (3) and (7) show the standardized mean differences.
Columns (4) and (8) show the p-values of t-tests for statistical significance of the difference in means between the two groups.
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Table 4: Subgroup analysis by preselected and not preselected: The Outcome is
immediate college enrollment

(1) (2) (3)

Panel A: Nonweighted

1{T ≥ τ} × Preselected 0.175∗∗∗ 0.170∗∗∗ 0.188∗∗∗

(0.006) (0.006) (0.020)
1{T ≥ τ} × Not Preselected 0.003 0.007 0.025

(0.006) (0.006) (0.018)
Difference Estimate 0.172∗∗∗ 0.163∗∗∗ 0.164∗∗∗

(0.008) (0.008) (0.027)
Observations 147638 475165 14438
R-squared 0.102 0.351 0.050
R-squared Covariates included as Controls 0.133 0.358 0.088

Panel B: Propensity score-weighted

1{T ≥ τ} × Preselected 0.175∗∗∗ 0.170∗∗∗ 0.188∗∗∗

(0.006) (0.006) (0.020)
1{T ≥ τ} × Not Preselected 0.004 0.013∗∗ 0.005

(0.006) (0.006) (0.018)
Difference Estimate 0.171∗∗∗ 0.157∗∗∗ 0.184∗∗∗

(0.008) (0.009) (0.027)
Observations 137938 436736 13504
R-squared 0.122 0.354 0.070
R-squared Covariates included as Controls 0.142 0.360 0.097

Bandwidth ±44 All ±4
Spline Linear 4th-Order

Polynomial
Linear

Notes: Robust standard errors in brackets. Reduced Form estimations. Panel B was obtained
using propensity score weighting. ***p<0.01, **p<0.05, *p<0.1
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Figure A1: Examples of the voting technologies
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Figure A2: Valid votes/turnout

Notes: Local averages and parametric fit. Each marker represents the average value of the
variable in a 4000-voter bin. The continuous lines are from a quadratic fit over the original
(“unbinned”) data. The vertical line marks the 40,500-voter threshold.
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Figure A3: RD for immediate college enrollment

Notes: Each dot represents average college enrollment within bins of 2 PSU points. The top
figure considers PSU first-time takers who applied for benefits and were classified as eligible for
loans by the tax authority (preselected students). The bottom figure considers students who did
not complete the FUAS or were classified in the richest income quintile (nonselected). Cohorts
2007–9 are pooled together. The vertical lines at 475 and 550 correspond to the loan cutoff
and the Bicentenario scholarship, respectively. The dashed lines represent fitted values from the
estimation of equation (1) where f() is a fourth-order polynomial at each side of the cutoff and
95 percent confidence intervals.
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