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Second moments of asset returns are important for risk management and portfolio selection. The prob-
lem of estimating second moments can be approached from two angles: time series and the cross-section.
In time series, the key is to account for conditional heteroscedasticity; a favored model is Dynamic Condi-
tional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In the cross-
section, the key is to correct in-sample biases of sample covariance matrix eigenvalues; a favored model is
nonlinear shrinkage, derived from Random Matrix Theory (RMT). The present article marries these two
strands of literature to deliver improved estimation of large dynamic covariance matrices. Supplementary
material for this article is available online.

KEY WORDS: Composite likelihood; Dynamic conditional correlation; GARCH; Markowitz portfolio
selection; Nonlinear shrinkage.

1. INTRODUCTION

Multivariate GARCH models derived from the ARCH/
GARCH family started by Engle (1982) are popular tools for
risk management and portfolio selection. However, the num-
ber of assets in the investment universe generally poses a chal-
lenge to such models. When this number is large, say on the
order of a thousand, many multivariate GARCH models exhibit
unsatisfactory performance or cannot even be estimated in the
first place due to computational problems. In other words,
many multivariate GARCH models suffer from the curse of
dimensionality.
The aim of this article is to robustify the dynamic condi-

tional correlation (DCC) model originally proposed by Engle
(2002) against large dimensions. To this end we combine two
tools. The first tool is the composite likelihood method of Pakel
et al. (2014), which makes the estimation of a DCC model in
large dimensions computationally feasible: Composite likeli-
hood ensures that DCC can be used in the first place when
the number of assets is large. The second tool is the nonlin-
ear shrinkage method of Ledoit and Wolf (2012), which results
in improved estimation of the correlation targeting matrix of a
DCC model: Nonlinear shrinkage ensures that DCC performs
well when the number of assets is large.
Although both methods already exist, the original contribu-

tion of the article is that we identify how best to apply nonlin-
ear shrinkage in the DCC model, namely, in the estimation of
the intercept matrix—rather than in the “direct” application of
nonlinear shrinkage to estimated conditional covariance matrix
itself. In addition, we have made substantive improvements
to the software designed to estimate the dynamic parameters of
the GARCH process in correlation space. Compared to existing

toolboxes, these improvements increase the number of assets
that can be handled by one order of magnitude.
Related to our proposal is the work of Hafner and Reznikova

(2012). The approach that they champion does not use the first
tool, which is composite likelihood, and uses linear shrinkage
instead of nonlinear shrinkage for the estimation of the intercept
matrix. Furthermore, their empirical study only goes to dimen-
sion 100, whereas ours can handle at least 1000 assets.
The remainder of the article is organized as follows.

Section 2 gives a brief description of the DCC model includ-
ing the composite likelihood method. Section 3 gives a descrip-
tion of the nonlinear shrinkage method. Section 4 details our
loss function, which is custom-tailored to the problem of portfo-
lio selection. Section 5 contains Monte Carlo simulations while
Section 6 provides backtesting results based on real-life stock
return data. Section 7 gives an extension of our approach to the
BEKK model presented in Engle and Kroner (1995). Section 8
concludes. Supplementary material provides additional details
and motivation regarding the nonlinear shrinkage method.
Matlab code implementing the DCC model based on nonlin-

ear shrinkage can be downloaded at http://www.econ.uzh.
ch/en/people/faculty/wolf/publications.html under the link
“Programming Code.”

2. THE DCC MODEL

Our exposition of the DCC model is primarily based on the
works of Engle (2002) and Engle (2009, sec. 11.2).
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2.1 Notation

In what follows, the subscript i indexes the variables and covers
the range of integers from 1 to N, where N denotes the dimen-
sion of the covariance matrix. The subscript t indexes the dates
and covers the range of integers from 1 to T , where T denotes
the sample size. The notation Diag(·) represents the function
that sets to zero all the off-diagonal elements of a matrix.

� ri,t : observed data series for variable i at date t, stacked into
rt := (r1,t, . . . , rN,t )′

� d2i,t := var(ri,t |Ft−1): conditional variance of the ith vari-
able at date t

� Dt is the N-dimensional diagonal matrix whose ith diago-
nal element is di,t

� Ht := cov(rt |Ft−1): conditional covariance matrix at
date t; thus Diag(Ht) = D2

t
� si,t := ri,t/di,t : devolatilized series, stacked into st :=
(s1,t, . . . , sN,t )′

� Rt := Corr(rt|Ft−1) = cov(st|Ft−1): conditional correla-
tion matrix at date t

� σ 2
i := E(d2i,t ) = var(ri,t ): unconditional variance of the ith

series
� C := Corr(rt ) = cov(st ): unconditional correlation matrix

2.2 Model Definition

This exposition is not meant to review the full generality of the
DCC family, but to describe a representative member. Certain
specific choices have been made for simplicity, tractability, and
scalability. For the dynamics of the univariate volatilities, we
use a GARCH(1,1) process:

d2i,t = ωi + air
2
i,t−1 + bid

2
i,t−1, (2.1)

where (ωi, ai, bi) are the variable-specific GARCH(1,1)
parameters.

Remark 1. We use the standard GARCH(1,1) specification
here for simplicity. However, it is possible to upgrade to more
sophisticated GARCH(-type) models instead; for example, to
models incorporating asymmetry effects.

The square roots di,t of the conditional variances go into
the diagonal of the matrix Dt . These N separate univariate
models also yield the vector of devolatilized residuals st :=
(r1,t/d1,t, . . . , rN,t/dN,t )′.
We assume that the evolution of the correlation matrix over

time is governed by the DCC model with correlation targeting.
This is an adaptation of the variance targeting idea of Engle and
Mezrich (1996); see eq. (11.7) of Engle (2009). In our notation,
it is expressed as

Qt = (1 − α − β )C + α st−1s
′
t−1 + β Qt−1, (2.2)

where (α, β ) are the DCC parameters analogous to (ai, bi), but
in correlation space instead of variance space. ThematrixQt can
be interpreted as a conditional pseudo-correlation matrix, or a
conditional covariance matrix of devolatized residuals. It cannot
be used directly because its diagonal elements, although close
to one, are not exactly equal to one. From this representation,
we obtain the conditional correlation matrix and the conditional

covariance matrix as

Rt := Diag(Qt)
−1/2 Qt Diag(Qt)

−1/2 (2.3)

Ht := DtRtDt, (2.4)

and the data-generating process is driven by the multivariate
normal law

rt |Ft−1 ∼ N (0,Ht ). (2.5)

Remark 2. Aielli (2013) showed that there is a consistency
issue related to the estimation of the intercept matrix in the
standardDCCmodel described above. He proposes a correction,
labeled cDCC, that apparently solves this problem. However,
this correction seems to make very little difference in practice,
if any. For the sake of simplicity, we therefore retain the original
DCC formulation in the present article.

2.3 Estimation in Large Dimensions

It is well known that estimating the DCC model with a large
number of assets is challenging. One of the difficulties is
to invert the conditional covariance matrix Ht (for each t =
1, . . . ,T ) for the computation of the (log-)likelihood. Fortu-
nately, a way to overcome this computational hurdle has been
found by Pakel et al. (2014). The basic idea is that, instead
of looking at all assets together jointly, it is easier to look at
pairs of assets. They call it the composite likelihood method:
The composite log-likelihood is computed by summing up the
log-likelihoods of pairs of assets.
Of the different variants proposed by the authors, the most

scalable one is the 2MSCLE method, which is the composite
likelihood estimator based on all contiguous pairs. Thus, there
are only N − 1 bivariate log-likelihoods to compute. Pakel et al.
(2014) showed that maximizing the composite (log-)likelihood
thus constructed yields consistent, if not efficient, estimators of
the two correlation-dynamics parameters α and β.
To summarize, the estimation unfolds as a three-stage

process:

1. For each asset, fit a univariate GARCH(1,1) model and use
the fitted model to devolatilize the return series.

2. Estimate the unconditional correlation matrix and use it for
correlation targeting.

3. Maximize the composite likelihood to estimate correlation
dynamics.

The focus of the present article, starting with the next section,
is to improve the second step.

Remark 3. The assumption of normality in (2.5) is not a cru-
cial one. In case it does not hold, (composite) likelihood esti-
mation becomes quasi (composite) likelihood estimation, an
approach that still enjoys good properties and is commonly
accepted by now; for example, see Hamilton (1994, sec. 5.3).

3. LARGE UNCONDITIONAL CORRELATION
MATRICES

The critical juncture where the time-series approach of the
DCC model meets the cross-sectional results of random matrix
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theory (RMT) is in the estimation of the unconditional corre-
lation matrix C, which serves as the target or intercept of the
ARCH/GARCH dynamics in Equation (2.2).

3.1 Sample Correlation Matrix

It is widely acknowledged that the sample correlation matrix
works poorly in large dimensions. This observation goes back
at least to Michaud (1989), who famously described portfolio
optimization as “error maximization.” The sample correlation
(and covariance) matrix is a good fit in-sample but it suffers
from overfitting, so it underperforms out-of-sample. Portfolio
managers invest out-of-sample. Therefore, the sample correla-
tion matrix should be shunned for decision-making.
The reason is that the sample correlation matrix has

N(N − 1)/2 parameters, and the dataset has N × T noisy obser-
vations. When N is of the same order of magnitude as T , these
two quantities are similar-sized. It is not possible to estimate
accurately O(N2) parameters from O(N2) noisy data points:
This is the curse of dimensionality in action.
RMT teaches us that the ratio N/T , generally called the con-

centration (ratio), is the determinant factor. If the concentration
is small, say less than 1/100, then standard (fixed-dimensional)
asymptotics represent a good approximation of the true behav-
ior, and the sample correlation matrix can be trusted out of sam-
ple. As the concentration gets higher, special methods need to
be employed to address the issue of in-sample overfitting due to
the excessive number of free parameters.
The most egregious and easily understood example is when

the concentration ratioN/T exceeds one, whichmeans that there
are more assets than time-series observations, so the sample
correlation matrix is singular. In this case, (pseudo) inverting
it blows up optimal portfolio weights to plus or minus infin-
ity, which obviously is an economically incorrect solution. But
by continuity, as N gets closer to T , problems start to creep in.
Indeed, themain lesson of RMT is that, unlessN/T is negligible,
the sample correlation (and covariance) matrix will systemati-
cally misbehave out-of-sample.

3.2 Shrinkage Estimator

Fortunately, recent developments have provided effective solu-
tions to this problem. It is now possible to rectify the in-sample
bias of the sample correlation (or covariance)matrix due to over-
fitting. This rectification takes place at the level of the eigenval-
ues. The small sample eigenvalues are too small and the large
ones too large. So it is just a matter of pushing up the small
ones and pulling down the large ones. Since this transformation
reduces the spread of the cross-sectional distribution of eigen-
values, it is generally called shrinkage.

In this article, we will focus on the nonlinear shrinkage for-
mula of Ledoit and Wolf (2012). The intuition is as follows. Let
� denote the population covariance matrix, S the sample covari-
ance matrix, and u an eigenvector of S. Then by basic linear
algebra, the corresponding sample eigenvalue is equal to u′Su.
It is the in-sample variance of a portfolio with weights given
by the vector u. This is the quantity that needs to be rectified due
to overfitting. Nonlinear shrinkage replaces it with (a consistent
estimator of) u′�u, the out-of-sample variance of the same port-
folio. Clearly, we want to decide our portfolio allocation in the

direction of the vector u based on its true out-of-sample risk
u′�u, rather than its in-sample counterpart u′Su, which is heav-
ily biased due to the curse of dimensionality.
This may seem like magic: given that we do not know �,

how could we know u′�u? However, Ledoit and Péché (2011)
showed that we do not need to know all of the true covariance
matrix �—which would be a hopeless task—but only its eigen-
values. There are just N of them. Given a dataset of dimen-
sion N × T , it is clearly impossible to estimate accurately a
whole matrix of dimension N × N, but it is theoretically pos-
sible to estimate its N eigenvalues. The ratio of parameters to
data entries is 1/T , which is a small number, regardless of how
big the matrix dimension N is.

Recovering the population eigenvalues from the sample
eigenvalues requires inverting the Marčenko and Pastur (1967)
equation, which governs their asymptotic relationship when the
dimension is large. El Karoui (2008) andMestre (2008) were the
first to make attempts in this direction. The solutions they pro-
posed suffered from some limitations that made them unsuit-
able for general use. Subsequently, Ledoit and Wolf (2015)
introduced an effective method based on numerical inversion
of what they call the QuEST function; this acronym stands
for “quantized eigenvalues sampling transform”. It is a deter-
ministic N-dimensional function that discretizes the Marčenko–
Pastur equation and lends itself to numerical inversion; it is the
technology that we will use here.
The basic idea of the article is to use the nonlinear shrinkage

estimator of Ledoit and Wolf (2012) to estimate the correlation
targeting matrix C in Equation (2.2) instead of the sample cor-
relation matrix. When the dimension N is large and of the same
order of magnitude as the sample size T , this approach gener-
ates an estimator of the conditional covariance matrix Ht that
has better out-of-sample properties.

3.3 Mathematical Formulation

Let S := [si,t] denote the N × T matrix of devolatilized returns.
Assuming mean zero, its sample covariance matrix is

Ĉ := 1

T
SS′. (3.1)

Decompose Ĉ it into a set of eigenvalues (λ1, λ2 . . . , λN ), sorted
in descending order without loss of generality, and correspond-
ing eigenvectors (u1, u2, . . . , uN ); consequently

Ĉ =
N∑
i=1

λiuiu
′
i. (3.2)

Let QN,T denote the QuEST function defined in Section 2.2
of Ledoit and Wolf (2015). It is a multivariate deterministic
function that maps [0,∞)N onto itself. Given a set of popula-
tion eigenvalues t := (t1, . . . , tN ) as input, it returns as output a
deterministic equivalent of the sample eigenvalues QN,T (t) =
(q1N,T (t), q

2
N,T (t), . . . , q

N
N,T (t)). Thus, population eigenvalues

can be estimated by numerically inverting theQuEST function:

τ̃ := argmin
t∈[0,∞)N

1

N

N∑
i=1

[
qiN,T (t) − λi

]2
. (3.3)
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Given estimated population eigenvalues τ̃ = (̃τ1, τ̃2, . . . , τ̃N ),
we can then use Theorem 4 of Ledoit and Péché (2011) to com-
pute a nonlinear shrinkage formula that is asymptotically opti-
mal under large-dimensional asymptotics. Denote the shrunk
eigenvalues by λ̃(̃τ) := (̃λ1(̃τ), λ̃2(̃τ), . . . , λ̃N (̃τ)).

The mathematical expressions for the QuEST function and
the nonlinear shrinkage formula are quite involved, as they
depend on the Stieltjes transform, an integral transform defined
on the upper half of the complex plane, so they will not be
repeated here. The way to intuitively understand λ̃i (̃τ) is that
it is a consistent estimator for the out-of-sample variance u′

i�ui
under large-dimensional asymptotics. The shrinkage estimator
of the covariance matrix can then be reconstructed as

C̃ :=
N∑
i=1

λ̃i (̃τ)uiu
′
i. (3.4)

Two important advantages of this approach are (i) that it does not
require the assumption of normality and (ii) that it can handle
the challenging case where the number of assets exceeds the
sample size.
Supplementary material contains a primer on this technol-

ogy imported from Probability Theory and from Multivariate
Statistics; see Ledoit and Wolf (in press-a) for a more rigor-
ous exposition. In terms of assumptions on the data-generating
process, Ledoit and Wolf (in press-a) do not assume normality,
but assume that the 12th moment is finite. While this assump-
tion simplifies the mathematical proofs, numerical simulations
indicate that a bounded fourth moment would be sufficient in
practice.

3.4 Linear Shrinkage

A simpler alternative is to use the linear shrinkage formula of
Ledoit and Wolf (2004b). Define the cross-sectional average of
sample eigenvalues as

λ := 1

N

N∑
i=1

λi. (3.5)

This method provides a consistent estimator ρ for the opti-
mal shrinkage intensity, which is a number between zero and
one controlling the amount by which the sample eigenvalues
are dragged toward their cross-sectional average λ. The linear
shrinkage estimator is expressed as

C :=
N∑
i=1

[
ρλ + (1 − ρ)λi

]
uiu

′
i. (3.6)

This estimator has proven popular with applied researchers
but it is optimal only in a class of dimension two, which is nested
inside the class of dimension N over which nonlinear shrink-
age is optimal. Therefore, asymptotically, when N and T grow
large together, nonlinear shrinkage should perform better in the
generic case. The main difference is that the shrinkage inten-
sity ρ is constrained to be the same for all eigenvalues under
linear shrinkage, whereas it is individually fitted to each eigen-
value under nonlinear shrinkage. This approach is obviously
more complicated but due to the highly nonlinear nature of the
problem, it is also more powerful. Hafner and Reznikova (2012)

proposed the application of linear shrinkage to the estimation
of DCC models. However, they restricted themselves to smaller
dimensions and threw shrinkage into a horse race against com-
posite likelihood, instead of harnessing the combined powers of
the twomethods. In addition, there is theoretical justification for
upgrading from linear to nonlinear shrinkage (Ledoit and Wolf
2012).

Remark 4. As suggested by a referee, one can alternatively
consider the linear shrinkage method of Ledoit and Wolf
(2004a) for the estimation of the intercept matrixC. This estima-
tor does not belong to the class of rotation-equivariant estima-
tors studied by Ledoit andWolf (2012, 2015) and also described
in supplementary material for completeness.

3.5 Renormalization

In practice, the diagonal elements of Ĉ, C̃, andC tend to deviate
from one slightly, in spite of the fact that devolatilized returns
are used as inputs. Therefore, every column and every row has
to be divided by the square root of the corresponding diagonal
entry, so as to produce a proper correlation matrix.

4. LOSS FUNCTION

This section builds upon Engle and Colacito (2006), hereafter
abbreviated by EC. It is couched in terms of the unconditional
covariance matrix initially, and the adaptation to conditional
covariance matrices is described in Section 4.4. To make the
exposition more fluid, the word “return” stands for the raw
return on a risky asset minus the risk-free interest rate.

4.1 Out-of-Sample Portfolio Variance

Let� denote theN-dimensional covariance matrix of returns, �̂
a generic estimator of �, and m an assumed vector of expected
returns. EC’s equation (3) gives the out-of-sample variance of
the optimal portfolio based on the estimator �̂ as

LV (�̂,�,m) := m′�̂−1��̂−1m(
m′�̂−1m

)2 . (4.1)

This loss function corresponds to the quintessential risk or
error minimization objective. It was also adopted by Ledoit and
Wolf (in press-a, Definition 2.1), up to rescaling by the squared
Euclidian norm of m. In addition, it captures the performance
of a covariance matrix estimator for mathematically equivalent
problems where variance minimization decisions must be taken,
such as Capon (1969) beamforming in signal processing and
optimal fingerprinting in climatology (IPCC 2007).
EC’s Theorem 1 demonstrates that LV is minimized when

�̂ = �, so if we want a loss function that is always nonneg-
ative, and is equal to zero when the covariance matrix estimator
happens to be equal to the truth—as is customary—, then we
can compute the excess portfolio variance caused by covariance
matrix estimation error:

LE (�̂,�,m) := LV (�̂,�,m) − LV (�,�,m)

= m′�̂−1��̂−1m

(m′�̂−1m)2
− 1

m′�−1m
≥ 0. (4.2)
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4.2 Expected Returns

The vector of expected returns that we have assumed is not
required to be equal to the true one. Different investors will have
different models of expected returns. This suggests investigat-
ing over a wide range of alternatives for m. The idea is to inte-
grate the excess portfolio variance LE over a relevant manifold
of expected return vectors.
The relative efficiency of two covariance matrix estimators

is unaffected by the norm of the vector m, so we can take
‖m‖ = 1 without loss of generality, where ‖ · ‖ denotes the
Euclidian norm. For this reason, in dimension 2, EC’s sec. 2.1
considers expected returns of the form m = [cos(θ ), sin(θ )]′

where θ is some angle. The generalization in dimension N is to
consider vectorsm that belong to the N-dimensional unit sphere
UN := {x ∈ R

N : ‖x‖ = 1}. Averaging out the excess portfolio
variance across all possible m’s in this manifold leads to a loss
function that depends solely on covariance matrices:

LI (�̂,�) :=
∫
UN

LE (�̂,�,μ) dμ

=
∫
UN

[
μ′�̂−1��̂−1μ(

μ′�̂−1μ
)2 − 1

μ′�−1μ

]
dμ, (4.3)

where
∫
UN denotes the integral over the N-dimensional unit

sphere. The intuition is that we want a covariance matrix estima-
tor that is the best “all-rounder” and thus performs well across
the board. Given that this article focuses explicitly on the sec-
ond moments, we are not in a position to take a stance on the
orientation of the linear constraint vector.

4.3 Equivalent Formulation Under Large-Dimensional
Asymptotics

The integral in LI is not easy to evaluate analytically. At this
juncture, we can get help from a foundational lemma in random
matrix theory (RMT):

x′Ax ≈ Tr(A) ‖x‖2
N

, (4.4)

where Tr(·) denotes the trace of a matrix, A is some symmetric
random matrix of large dimension N, and x is an N-dimensional
vector not statistically related to A, that is, x is distributed inde-
pendently of A and its distribution is rotation-invariant. Rigor-
ous versions of Equation (4.4) appear decisively as Lemma 1
of Marčenko and Pastur (1967), Lemma 3.1 of Silverstein and
Bai (1995), and Lemma 1 of Ledoit and Péché (2011). This is
basically a cross-sectional law of large numbers. Indeed if, con-
ditional on A, x follows the standard multivariate normal distri-
bution, then even in finite samples the relation

E

[
x′Ax

∣∣∣∣A] = E

[
Tr(A) ‖x‖2

N

∣∣∣∣A] (4.5)

holds exactly. Injecting (4.4) into the loss function LI naturally
suggests the alternative loss function L, which is significantly
easier to evaluate.

Definition 1. The loss function is defined as

L(�̂,�) := Tr(�̂−1��̂−1)
/
N

[Tr(�̂−1)
/
N]2

− 1

Tr(�−1)
/
N

. (4.6)

This is the loss function that will be used throughout the rest
of the article. The formulations LI and L are interchangeable
under large-dimensional asymptotics, as the following proposi-
tion attests.

Proposition 1. Under the assumptions of Theorem 3.1 of
Ledoit and Wolf (in press-a), both loss functions LI (�̂,�) and
L(�̂,�) converge almost surely to the same, nonstochastic limit
as T → ∞ with N/T → c ∈ (0, 1).

Proof. Let m be a random vector distributed according to the
N-dimensional standard multivariate normal distribution, inde-
pendently from �̂. Thenm/‖m‖ is uniformly distributed on UN .
This implies that

LI (�̂,�) = E
[LE (�̂,�,m/‖m‖)∣∣ �̂] . (4.7)

Proposition 1 then follows directly by injecting Lemma 1 of
Ledoit and Péché (2011) into the proof of Theorem 3.1 of Ledoit
and Wolf (in press-a). �

A traditional property of a loss function is that if one plugs
the population parameters into the loss function, the value of the
loss is zero. By convention, there is no loss from estimation if
somehow you happen to know the truth; the loss should only
be strictly positive if the estimator has error in it. The follow-
ing theorem, which is equivalent in spirit to EC’s Theorem 1,
shows that the loss function in Definition 1 possesses the desired
property.

Theorem 1. L(�̂,�
) ≥ 0; and L(�̂,�

) = 0 ⇐⇒ ∃ γ > 0
s.t. �̂ = γ�.

Proof. It is a standard result in linear algebra that, for any two
symmetric positive-definite matrices �̂ and �, there exists an
invertible matrix A such that

A′�A = IN (4.8)

A′�̂A = �, (4.9)

where the superscript ′ denotes the transpose of a matrix, IN
denotes the identity matrix of dimensionN, and� denotes some
diagonal matrix with strictly positive diagonal elements. Substi-
tuting Equations (4.8)–(4.9) into the definition (4.6) yields

L(�̂, �) ≥ 0 ⇐⇒ Tr(�−2A′A) × Tr(A′A)

≥ [
Tr(�−1A′A)

]2
. (4.10)

Denote the ith diagonal element of � by δi and the ith diagonal
element of A′A by αi, for i = 1, . . . ,N. Note that ∀i = 1, . . . ,N,
αi > 0, and δi > 0. Then,

L(�̂,�) ≥ 0 ⇐⇒
(

N∑
i=1

αi

δ2i

)(
N∑
i=1

αi

)
≥
(

N∑
i=1

αi

δi

)2

.

(4.11)
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Define xi := √
αi/δi and yi := √

αi, for i = 1, . . . ,N. Then

L(�̂,�) ≥ 0 ⇐⇒
(

N∑
i=1

x2i

)(
N∑
i=1

y2i

)
≥
(

N∑
i=1

xiyi

)2

.

(4.12)
On the right-hand side of the equivalency we recognize
the Cauchy–Schwarz inequality; therefore, the loss function
is always nonnegative. For equality to hold, we need the
vectors (x1, . . . , xN )′ and (y1, . . . , yN )′ to be collinear, which
implies that the diagonal matrix � is a scalar multiple of the
identity. Inspecting Equations (4.8)–(4.9) reveals that this can
only happen if the estimator �̂ is a scalar multiple of the true
covariance matrix �. �

4.4 Adaptation for Conditional Covariance Matrices

Given that the loss function from Definition 1 is designed for
unconditional covariance matrices, it must be adapted for condi-
tional ones. Let Ĥt denote a generic estimator of the true condi-
tional covariance matrixHt (for t = 1, . . . ,T ). Then the average
loss is given by

L̂ := 1

T

T∑
t=1

L(Ĥt,Ht ). (4.13)

This is the quantity that will be reported in all Monte Carlo sim-
ulations below.

5. MONTE CARLO SIMULATIONS

5.1 Base-Case Scenario

To carry out realistic Monte Carlo simulations, we estimate
the unconditional population covariance matrix from the N ∈
{100, 500, 1000} most liquid stocks in the CRSP database using
10 years of daily data from 2005 through 2014. This matrix will
be taken as the “true” unconditional covariance matrix in all the
simulations.
We then simulate a DCC model with parameters α = 0.05

and β = 0.93 as in Pakel et al. (2014, Table 4). According to
(2.5), the DCC variates are drawn from a multivariate standard
normal distribution, that is,

rt = H1/2
t zt with zt

iid∼ N(0, IN ). (5.1)

The univariate volatility dynamics are governed by
GARCH(1,1) models with identical parameters ai = 0.05
and bi = 0.90 across all stocks i = 1, . . . ,N.
For each simulation, we generate an N × T matrix of sim-

ulated returns, where the sample size is T = 1250. This sam-
ple size corresponds to approximately 5 years of daily data, an
estimation window commonly used in practice. Thus, the con-
centration ratio for the broadest universe is c := N/T = 0.8,
which is not negligible, and we can expect substantial shrink-
age effects. Even though we could potentially accommodate the
case c > 1, we choose a value of c less than one so that the sam-
ple correlation matrix can be used as a benchmark. In any case,
having a universe of 1000 assets in which to invest is sufficiently
broad for most portfolio managers.

5.2 Numerical Details

The nonlinear shrinkage estimator of the correlation targeting
matrix is computed in Matlab using version 025 of the QuEST
package. It contains the QuEST function itself, a routine to
invert it numerically by using a nonlinear optimizer, and another
routine to compute the optimal nonlinear shrinkage formula.
The end user does not have to do anything except input the raw
data and collect the shrinkage estimator. The linear shrinkage
estimator of the correlation targeting matrix is also computed in
Matlab using codes that implement the formulas of Ledoit and
Wolf (2004a, 2004b). All codes are available from the Univer-
sity of Zurich faculty website of Michael Wolf.
The program to simulate the DCC model has been adapted

from Kevin Sheppard’s legacy UCSD GARCH Toolbox. The
program to estimate the DCC model has been based on the suc-
cessor to theUCSDGARCHToolbox, which is theOxfordMFE
Toolbox, also by Kevin Sheppard.
We have made two important modifications to the latter. The

first one was to add the flexibility to shrink the eigenvalues
of the sample correlation matrix used for correlation target-
ing as delineated in Section 3. The second one was to rewrite
the function that computes the composite likelihood in a way
that is improved in terms of speed and memory management;
this rewriting required, among other things, translating the Mat-
lab code into the C language, which in this case can gener-
ate substantial speed advantage, if used judiciously. The end
result is that we can go to N = 1000 assets without running out
of memory, and it takes less than 3 min to estimate the DCC
model with nonlinear shrinkage, a speed gain by a factor of at
least 20. (These numbers correspond to using Matlab R2016a
on an Apple Mac Pro with a 3.5 GHz Intel Xeon E5 processor
and 64GB of memory.)

5.3 List of Candidate Estimators

It is clearly beyond the scope of the present article to compare
all the covariance matrix estimators in the literature. Therefore,
we focus on the following representative set of six candidates:

� DCC-S: DCC with the correlation targeting matrix C esti-
mated by the sample covariance matrix of the devolatilized
returns.

� DCC-L1: DCC with C estimated by the linear shrinkage
estimator of Ledoit andWolf (2004b), whose shrinkage tar-
get is (a multiple of) the identity matrix.

� DCC-L2: DCC with C estimated by the linear shrinkage
estimator of Ledoit andWolf (2004a), whose shrinkage tar-
get is the equicorrelation matrix.

� DCC-NL: DCC with C estimated by the nonlinear
shrinkage estimator; this is the main focus of our
article.

� CCC-NL: The constant conditional correlation model
using Qt ≡ C, with C estimated by nonlinear shrinkage as
in DCC-NL.

� RM-2006: The RiskMetrics 2006 methodology detailed by
Zumbach (2007) and implemented in Kevin Sheppard’s
Matlab routine riskmetrics2006.
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Table 1. Average loss for six different covariance matrix estimators
in dimension N ∈ {100, 500, 1000} with sample size T = 1250. The
unit is 10−3. The lowest number in each row appears in bold face

N DCC-S DCC-L1 DCC-L2 DCC-NL CCC-NL RM-2006

100 0.061 0.060 0.054 0.055 0.103 0.086
500 0.120 0.098 0.070 0.066 0.092 0.194
1000 0.421 0.147 0.087 0.079 0.099 0.602

5.4 Results

The results averaged across 105/N Monte Carlo simulations are
presented in Table 1. (Note that in large dimensions, such asN =
1000, the results are extremely consistent from one simulation
to the next, so there is no need to go to thousands of simulations.)
DCC-NL dominates across the board in large dimensions, but

for N = 100 linear shrinkage toward the equicorrelation matrix
does slightly better. This is probably because we calibrated
our population unconditional correlation matrix to actual stock
returns data, for which constant correlation happens to be a par-
simonious yet accurate model. As the cross-section increases,
DCC-NL has more information to pick up on, which enables it
to first beat DCC-L2 and to then widen the gap.
An intuitive way to quantify the improvement is to compute

the percentage relative improvement in average loss (PRIAL).
For example, the PRIAL of DCC-NL with respect to DCC-S is
defined as

100 ×
{
1 − E

[̂
LDCC-NL

]
E
[̂
LDCC-S

] }%, (5.2)

where the loss L̂ for each estimator is calculated as per
Equation (4.13) and the expectation is taken across Monte Carlo
simulations. By construction, the PRIAL (5.2) of the true condi-
tional covariance matrix with respect to DCC-S is 100%, which
is the maximum attainable; on the other hand, 0% means no
improvement at all.
The interpretation is that, as long as we do not know the

true conditional covariance matrix, estimation error will cause
excess out-of-sample portfolio variance, and we want to elim-
inate as much of it as possible. The PRIAL of DCC-NL with
respect to a given estimator (such as DCC-S) says what percent-
age of the average loss of the given estimator we have managed
to eliminate by the use of DCC-NL. Table 2 presents the PRIAL
of DCC-NL with respect to each of the other five estimators.
Overall, the magnitude of the improvement from using DCC-

NL is substantial. The one exception is DCC-L2 but, once

Table 2. PRIAL of DCC-NL with respect to each of the five other
candidate estimators. The setup is the same as in Table 1

N DCC-S DCC-L1 DCC-L2 CCC-NL RM-2006

100 10.6% 8.3% − 0.5% 47.1% 36.2%
500 45.4% 33.1% 6.8% 28.8% 66.2%
1000 81.2% 46.0% 9.3% 20.3% 86.8%

Table 3. Estimated parameter α from correlation matrix dynamics.
The panels show the mean and (in parentheses) the standard deviation
across Monte Carlo simulations. The setup is the same as in Table 1

N DCC-S DCC-L1 DCC-L2 DCC-NL

100 0.0485 0.0485 0.0485 0.0485
(0.0026) (0.0026) (0.0026) (0.0026)

500 0.0489 0.0490 0.0490 0.0490
(0.0019) (0.0019) (0.0019) (0.0019)

1000 0.0490 0.0490 0.0491 0.0491
(0.0023) (0.0023) (0.0023) (0.0023)

again, this is easily explained by the fact that the equicorre-
lation shrinkage target is a very parsimonious model that fits
closely the population correlation matrix that we happened to
choose. The improvement from DCC-NL generally increases
in the number of assets N; the one exception is with respect to
CCC-NL, but this is likely to be because CCC-NL also benefits
from nonlinear shrinkage estimation of the matrixC.

5.5 Dynamic Correlation Parameters

There are two possible channels through which the improve-
ment could be happening: either directly because nonlinear
shrinkage just gives a better estimate of the correlation target-
ing matrix or indirectly because it yields better estimates of the
dynamic correlation parameters α and β in Equation (2.2). To
distinguish between these two hypotheses, we report the mean
and standard deviations (across Monte Carlo simulations) of the
estimates of the parameters α and β produced by the various
methods; remember that the true parameters are α = 0.05 and
β = 0.93 as per Section 5.1. Table 3 presents the results for the
α estimates and Table 4 for the β estimates. By construction,
this exercise cannot be carried out for the non-DCC estimators,
namely, CCC-NL and RM-2006, so they are not included.
One can see that there is no pattern. Therefore, the explana-

tion for the outperformance of DCC-NL lies not in the better
estimation of the dynamic correlation parameters but in the bet-
ter estimation of the correlation targeting matrix C.

Remark 5. An alternative way of summarizing the same set
of results would be to say that the composite likelihood method
manages to obtain accurate estimates of the α and β parame-
ters even when the correlation targeting matrix is the sample
correlation matrix, with all the associated difficulties in large

Table 4. Estimated parameter β from correlation matrix dynamics.
The panels show the mean and (in parentheses) the standard deviation
across Monte Carlo simulations. The setup is the same as in Table 1

N DCC-S DCC-L1 DCC-L2 DCC-NL

100 0.9301 0.9301 0.9301 0.9301
(0.0035) (0.0035) (0.0035) (0.0035)

500 0.9296 0.9296 0.9296 0.9297
(0.0026) (0.0026) (0.0026) (0.0026)

1000 0.9292 0.9293 0.9293 0.9293
(0.0030) (0.0030) (0.0030) (0.0030)
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Table 5. PRIAL of DCC-NL with respect to each of the five other
candidate estimators. DCC variates are generated according to the
“Student” t-distribution with 5 degrees of freedom, rescaled to have

marginal variance one

N DCC-S DCC-L1 DCC-L2 CCC-NL RM-2006

100 10.0% 7.8% − 0.2% 44.4% 34.2%
500 44.5% 32.6% 6.9% 28.2% 65.4%
1000 80.8% 45.6% 9.3% 19.5% 86.5%

dimensions. This is an advantage of composite likelihood, as
we would expect the maximum likelihood estimators of α and
β to be hampered in the presence of a rank-deficient, or at least
ill-conditioned, correlation targeting matrix.

5.6 Fat Tails

Given that financial data are generally leptokurtotic, it is worth
checking whether the DCC-NL estimator is robust against fat-
tailedness. To this end, instead of drawing the variates zt in
(5.1) from the multivariate normal distribution, we draw them
from the Cartesian product of the “Student” t-distribution with
5 degrees of freedom, rescaled to have marginal variance one.
(This means that the entries of zt are independent and identi-
cally distributed according to the t-distribution with 5 degrees
of freedom, rescaled to have variance one.) All other configura-
tions are as per the base-case scenario presented in Section 5.1.
The results are presented in Table 5.
Overall, the changes with respect to Table 2 are minimal,

and there is no discernible pattern. Therefore, the conclusions
reached in Section 5.4 are confirmed.

5.7 Misspecified Model

Although we know that multivariate GARCH effects are preva-
lent in financial data, it is possible that the “true” data-generating
process differs from the DCC model. In such a case, it would be
helpful to know that DCC-NL can still add value by producing
conditional covariance matrix estimators that are robust against
model misspecification and continue to be relatively accurate.
To this end, we simulate data from the BEKK model pre-

sented in Engle and Kroner (1995) with parameter values α̈ =
0.05 and β̈ = 0.9; see Equation (7.1). In practice, we use the
Matlab function scalar_vt_vech_simulate from Kevin
Sheppard’s Oxford MFE Toolbox. All the other configurations
are as per the base-case scenario. The results are presented in
Table 6.

Table 6. PRIAL of DCC-NL with respect to each of the five other
candidate estimators. Data are generated from the BEKK model

N DCC-S DCC-L1 DCC-L2 CCC-NL RM-2006

100 20.3% 17.8% 5.1% 72.5% 72.1%
500 54.3% 47.1% 19.3% 41.0% 79.7%
1000 85.4% 65.2% 24.1% 26.8% 91.3%

Compared with Table 2, the PRIAL of DCC-NL with respect
to each of its five competitors always goes up. The differences in
PRIALs (i.e., the entry in Table 6 minus the corresponding entry
in Table 2) range from a low of +4.5% to a high of +35.9%, with
an average additive boost of +13.1%. Thus, an additional advan-
tage of DCC-NL is that it appears more robust against model
misspecification than other comparable estimators.

6. EMPIRICAL RESULTS

The goal of this section is to examine the out-of-sample prop-
erties of Markowitz portfolios based on our newly suggested
covariance matrix estimator. There are a myriad of popular
investment strategies by now and it is not our goal to compare
to an extensive list of them. The only focus of this section is to
compare nonlinear DCC to a set of seven other representative
portfolio selection strategies.
For compactness of notation, we do not use the subscript T in

denoting the covariance matrix itself, an estimator of the covari-
ance matrix, or a return-predictive signal that proxies for the
vector of expected returns.

6.1 Data and General Portfolio-Formation Rules

We download daily data from the Center for Research in
Security Prices (CRSP) starting in 01/01/1980 and ending
in 12/31/2015. For simplicity, we adopt the common convention
that 21 consecutive trading days constitute 1 “month.” The out-
of-sample period ranges from 01/08/1986 through 12/31/2015,
resulting in a total of 360 “months” (or 7560 days). All port-
folios are updated “monthly.” (“Monthly” updating is common
practice to avoid an unreasonable amount of turnover and thus
transaction costs. During a “month,” from one day to the next,
we hold number of shares fixed rather than portfolio weights; in
this way, there are no transactions at all during a “month.”)
We denote the investment dates by h = 1, . . . , 360. At any

investment date h, a covariance matrix is estimated using the
most recent T = 1250 daily returns, which roughly corresponds
to using 5 years of past data.
We consider the following portfolio sizes: N ∈ {100,

500, 1000}. For a given combination (h,N), the investment uni-
verse is obtained as follows. We find the set of stocks that have
a complete return history over the most recent T = 1250 days
as well as a complete return “future” over the next 21 days. (The
latter, forward-looking restriction is not a feasible one in real life
but is commonly applied in the related finance literature on the
out-of-sample evaluation of portfolios.) We then look for possi-
ble pairs of highly correlated stocks, that is, pairs of stocks that
return with a sample correlation exceeding 0.95 over the past
1250 days. With such pairs, if they should exist, we remove the
stock with the lower volume of the two on investment date h.
(The reason is that we do not want to include highly similar
stocks; in the early years, there are no such pairs; in the most
recent years, there are never more than three such pairs.) Of
the remaining set of stocks, we then pick the largest N stocks
(as measured by their market capitalization on investment
date h) as our investment universe. In this way, the investment
universe changes slowly from one investment date to the next.
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6.2 Global Minimum Variance Portfolio

We consider the problem of estimating the global minimum
variance (GMV) portfolio, in the absence of short-sales con-
straints. The problem is formulated as

min
w

w′Htw (6.1)

subject to w′1 = 1, (6.2)

where 1 denotes a vector of ones of dimension N × 1. It has the
analytical solution

w = H−1
t 1

1′H−1
t 1

. (6.3)

The natural strategy in practice is to replace the unknown Ht
by an estimator Ĥt in formula (6.3), yielding a feasible portfo-
lio

ŵ := Ĥ−1
t 1

1′Ĥ−1
t 1

. (6.4)

Estimating the GMV portfolio is a “clean” problem in
terms of evaluating the quality of a covariance matrix esti-
mator, since it abstracts from having to estimate the vector
of expected returns at the same time. In addition, researchers
have established that estimated GMV portfolios have desir-
able out-of-sample properties not only in terms of risk but
also in terms of reward-to-risk, that is, in terms of the infor-
mation ratio, for example, see Haugen and Baker (1991),
Jagannathan and Ma (2003), and Nielsen and Aylursubrama-
nian (2008). As a result, such portfolios have become an addi-
tion to the large array of products sold by the mutual-fund
industry.
The following eight portfolios are included in the study.

� 1/N: the equal-weighted portfolio. This portfolio is a stan-
dard benchmark and has been promoted by DeMiguel,
Garlappi, and Uppal (2009), among others.

� DCC-S: the portfolio (6.4), where the estimator Ĥt is
obtained from DCC based on the sample correlation
matrix.

� DCC-L1: the portfolio (6.4), where the estimator Ĥt is
obtained fromDCC based on the linear shrinkage of Ledoit
and Wolf (2004b) with shrinkage target given by (a multi-
ple of) the identity matrix.

� DCC-L2: the portfolio (6.4), where the estimator Ĥt is
obtained from DCC based on the linear shrinkage of
Ledoit andWolf (2004a) with shrinkage target given by the
equicorrelation matrix.

� DCC-NL: the portfolio (6.4), where the estimator Ĥt is
obtained from DCC based on nonlinear shrinkage.

� NL-DCC: the portfolio (6.4), where the estimator Ĥt is
obtained by post-processing the DCC-S estimator of Ht
with nonlinear shrinkage.

� CCC-NL: the portfolio (6.4), where the estimator Ĥt is
obtained from CCC based on nonlinear shrinkage. This
means that instead of the DCC dynamics of model (2.2),
one considers the static constant-conditional-correlation
model Qt ≡ C; in practice, the estimator of C is obtained
by nonlinear shrinkage just as in DCC-NL.

� RM-2006: the portfolio (6.4), where the estimator Ĥt is
obtained from the RiskMetrics 2006 methodology; see
Zumbach (2007). (We use the Matlab routine riskmet-
rics2006 provided by Kevin Sheppard.)

We report the following three out-of-sample performance
measures for each scenario. (All of them are annualized and in
percent for ease of interpretation.)

� AV:We compute the average of the 7560 out-of-sample log
returns and then multiply by 252 to annualize.

� SD:We compute the standard deviation of the 7560 out-of-
sample log returns and thenmultiply by

√
252 to annualize.

� IR: We compute the (annualized) information ratio as the
ratio AV/SD.

Our stance is that in the context of the GMV portfo-
lio, the most important performance measure is the out-of-
sample standard deviation, SD. The true (but unfeasible) GMV
portfolio is given by (6.3). It is designed to minimize the vari-
ance (and thus the standard deviation) rather than to maxi-
mize the expected return or the information ratio. Therefore,
any portfolio that implements the GMV portfolio should be
primarily evaluated by how successfully it achieves this goal.
A high out-of-sample average return, AV, and a high out-
of-sample information ratio, IR, are naturally also desirable,
but should be considered of secondary importance from the
point of view of evaluating the quality of a covariance matrix
estimator.
We also consider the question of whether DCC-NL delivers

a lower out-of-sample standard deviation than DCC-S at a level
that is statistically significant. For a given universe size N, a
two-sided p-value for the null hypothesis of equal standard devi-
ations is obtained by the prewhitened HACPW method described
by Ledoit and Wolf (2011, sec. 3.1).
The results are presented in Table 7 and can be summarized as

follows; unless stated otherwise, the findings are with respect to
the out-of-sample standard deviation as performance measure.

� All other portfolios consistently outperform 1/N by a wide
margin. In addition, all DCC and CCC portfolios also out-
perform RM-2006 by substantial margin.

� Among the DCC portfolios, there is a consistent ranking
across all portfolio sizes N: DCC-NL, NL-DCC, DCC-L2,
DCC-L1, and DCC-S.

� The second-best portfolio consistently is CCC-NL, that is,
its performance ranks between DCC-NL and NL-DCC.

� The outperformance of DCC-NL over DCC-S is always
statistically significant and it is also economically mean-
ingful for N = 500, 1000.

� DeMiguel, Garlappi, and Uppal (2009) claimed that it
is difficult to outperform 1/N in terms of the out-of-
sample Sharpe ratio with “sophisticated” portfolios (i.e.,
with Markowitz portfolios that estimate input parameters).
It can be seen that all other portfolios consistently out-
perform 1/N in terms of the out-of-sample information
ratio, which translates into outperformance in terms of
the out-of-sample Sharpe ratio. For N = 100, CCC-NL is
best overall, whereas for N = 500, 1000, DCC-NL is best
overall.
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Table 7. Annualized performance measures (in percent) for various estimators of the GMV portfolio

Period: 01/08/1986–12/31/2015

1/N DCC-S DCC-L1 DCC-L2 DCC-NL NL-DCC CCC-NL RM-2006

N = 100

AV 12.10 9.92 9.91 9.91 9.95 10.24 11.37 8.41
SD 21.56 13.36 13.33 13.27 13.17

∗∗∗
13.22 13.20 14.69

IR 0.56 0.74 0.74 0.74 0.76 0.77 0.86 0.57

N = 500

AV 13.46 13.94 13.88 13.76 13.38 10.87 13.25 11.26
SD 19.53 10.57 10.40 10.16 9.64

∗∗∗
9.93 9.74 12.60

IR 0.69 1.32 1.33 1.35 1.39 1.09 1.36 0.89

N = 1000

AV 14.21 11.77 12.15 11.88 12.17 11.12 11.72 11.37
SD 19.04 10.59 9.14 8.55 8.02

∗∗∗
8.79 8.13 14.86

IR 0.75 1.11 1.33 1.38 1.52 1.27 1.44 0.77

NOTES: AV stands for average; SD stands for standard deviation; and IR stands for information ratio. All measures are based on 7560 daily out-of-sample returns from 01/08/1986
through 12/31/2015. In the rows labeled SD, the lowest number appears in bold face. In the columns labeled DCC-S and DCC-NL, significant outperformance of one of the two portfolios
over the other in terms of SD is denoted by asterisks: ∗∗∗denotes significance at the 0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.

6.3 Markowitz Portfolio with Momentum Signal

We now turn attention to a “full” Markowitz portfolio with a
signal.
By now a large number of variables have been documented

that can be used to construct a signal in practice. For simplic-
ity and reproducibility, we use the well-known momentum fac-
tor (or simply momentum for short) of Jegadeesh and Titman
(1993). For a given investment period h and a given stock, the
momentum is the geometric average of the previous 252 returns
on the stock but excluding the most recent 21 returns; in other
words, one uses the geometric average over the previous “year”
but excluding the previous “month.” Collecting the individual
momentums of all the N stocks contained in the portfolio uni-
verse yields the return-predictive signal m.

In the absence of short-sales constraints, the investment prob-
lem is formulated as

min
w

w′Htw (6.5)

subject to w′m = b, and (6.6)

w′1 = 1, (6.7)

where b is a selected target expected return. The problem has
the analytical solution

w = c1H
−1
t 1 + c2H

−1
t m, (6.8)

where c1 := C − bB

AC − B2
and c2 := bA− B

AC − B2
, (6.9)

with A := 1′H−1
t 1, B := 1′H−1

t b, and

C := m′H−1
t m. (6.10)

The natural strategy in practice is to replace the unknown Ht
by an estimator Ĥt in formulas (6.8)–(6.10), yielding a feasible
portfolio

ŵ := c1Ĥ
−1
t 1 + c2Ĥ

−1
t m, (6.11)

where c1 := C − bB

AC − B2
and c2 := bA− B

AC − B2
, (6.12)

with A := 1′Ĥ−1
t 1, B := 1′Ĥ−1

t b, and

C := m′Ĥ−1
t m. (6.13)

The following eight portfolios are included in the study.

� EW-TQ: The equal-weighted portfolio of the top-quintile
stocks according to momentum m. This strategy does not
make use of the momentum signal beyond sorting of the
stocks in quintiles.
The value of the target expected return b for the remain-
ing four portfolios below is then given by the arithmetic
average of the momentums of the stocks included in this
portfolio (i.e., the expected return of EW-TQ according to
the signal m).

� DCC-S: the portfolio (6.8)–(6.10), where the estimator Ĥt
is obtained from DCC based on the sample correlation
matrix.

� DCC-L1: the portfolio (6.8)–(6.10), where the estimator
Ĥt is obtained from DCC based on the linear shrinkage of
Ledoit and Wolf (2004b) with shrinkage target given by (a
multiple of) the identity matrix.

� DCC-L2: the portfolio (6.8)–(6.10), where the estimator
Ĥt is obtained from DCC based on the linear shrinkage of
Ledoit andWolf (2004a) with shrinkage target given by the
equicorrelation matrix.

� DCC-NL: the portfolio (6.8)–(6.10), where the estimator
Ĥt is obtained from DCC based on nonlinear shrinkage.

� NL-DCC: the portfolio (6.8)–(6.10), where the estimator
Ĥt is obtained by post-processing the DCC-S estimator of
Ht with nonlinear shrinkage.

� CCC-NL: the portfolio (6.8)–(6.10), where the estima-
tor Ĥt is obtained from CCC based on nonlinear shrink-
age. This means that instead of the DCC dynamics of
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model (2.2), one considers the static constant-conditional-
correlation modelQt ≡ C; in practice, the estimator ofC is
obtained by nonlinear shrinkage just as in DCC-NL. Note
that CCC-NL can be interpreted as a robustification of the
CCC model of Bollerslev (1990) against large dimensions.

� RM-2006: the portfolio (6.8)–(6.10), where the estima-
tor Ĥt is obtained from the RiskMetrics 2006 methodol-
ogy; see Zumbach (2007). (We use the Matlab routine
riskmetrics2006 provided by Kevin Sheppard.)

Our stance is that in the context of a “full” Markowitz
portfolio, the most important performance measure is the out-
of-sample information ratio, IR. In the “ideal” investment prob-
lem (6.8)–(6.10), minimizing the variance (for a fixed target
expected return b) is equivalent to maximizing the information
ratio (for a fixed target expected return b). In practice, because
of estimation error in the signal, the various strategies do not
have the same expected return and, thus, focusing on the out-of-
sample standard deviation is inappropriate.
We also consider the question whether DCC-NL delivers a

higher out-of-sample information ratio than DCC-S at a level
that is statistically significant. For a given universe size N, a
two-sided p-value for the null hypothesis of equal information
ratios is obtained by the prewhitened HACPW method described
in Ledoit and Wolf (2008, sec. 3.1).

The results are presented in Table 8 and can be summarized
as follows; unless stated otherwise, the findings are with respect
to the out-of-sample information ratio as performance measure.

� With the exception of RM-2006, all other portfolios con-
sistently outperform EW-TQ by a wide margin.

� Among the DCC portfolios, DCC-NL is consistently best
followed by DCC-L2. NL-DCC does well for N = 1000
but badly for N = 100, 500.

� The CCC-NL portfolio is second best for N = 500, 1000
but does badly for N = 100.

� The outperformance of DCC-NL over DCC-S is statis-
tically significant and also economically meaningful for
N = 500, 1000.

� The performance of RM-2006 is disappointing. It is also
worse than DCC-S and for N = 1000 is also worse than
EW-TQ.

� DeMiguel, Garlappi, and Uppal (2009) claimed that it
is difficult to outperform 1/N in terms of the out-of-
sample Sharpe ratio with “sophisticated” portfolios (i.e.,
with Markowitz portfolios that estimate input parameters).
Comparing Table 8with Table 7, it can be seen that all DCC
variants of the “full” Markowitz portfolio consistently out-
perform 1/N in terms of the out-of-sample information
ratio, which translates into outperformance in terms of the
out-of-sample Sharpe ratio.
Even though momentum is not a very powerful return-
predictive signal, the differences can be enormous. For
example, for N = 1000, the information ratio of 1/N is
only 0.75 whereas the information ratio of DCC-NL is
1.62, more than twice as large.

� Engle and Colacito (2006) argued for the use of the
out-of-sample standard deviation, SD, as a performance
measure also in the context of a “full” Markowitz
portfolio. Also for this alternative performance mea-
sure, all DCC variants consistently outperform EW-TQ
by a wide margin. Furthermore, DCC-NL consistently
has the smallest out-of-sample standard deviation and
its outperformance over DCC-S is always statistically
significant.

7. THE BEKK-NL MODEL

Although the present article focuses on the DCC model,
which works at the level of correlations and devolatilized

Table 8. Annualized performance measures (in percent) for various estimators of the Markowitz portfolio with momentum signal

Period: 01/08/1986–12/31/2015

EW-TQ DCC-S DCC-L1 DCC-L2 DCC-NL NL-DCC CCC-NL RM-2006

N = 100

AV 17.13 15.79 15.79 15.77 15.77 15.09 15.65 15.96
SD 28.43 17.05 17.03 16.99 16.90

∗∗∗
16.88 17.02 18.87

IR 0.60 0.93 0.93 0.93 0.93 0.89 0.92 0.85

N = 500

AV 17.15 16.60 16.66 16.55 16.78 14.53 16.13 16.50
SD 24.42 12.36 12.16 11.87 11.31

∗∗∗
11.87 11.55 16.14

IR 0.70 1.34 1.37 1.40 1.48
∗∗

1.22 1.40 1.02

N = 1000

AV 17.35 12.78 13.96 13.96 14.92 14.08 14.03 15.55
SD 22.89 13.07 10.76 9.85 9.20

∗∗∗
10.31 9.45 29.29

IR 0.76 0.98 1.30 1.42 1.62
∗∗∗

1.36 1.48 0.53

NOTES: AV stands for average; SD stands for standard deviation; and IR stands for information ratio. All measures are based on 7560 daily out-of-sample returns from 01/08/1986 until
12/31/2015. In the rows labeled IR, the largest number appears in bold face. In the columns labeled DCC-S and DCC-NL, significant outperformance of one of the two portfolios over
the other in terms of IR is denoted by asterisks: ∗∗∗denotes significance at the 0.01 level; ∗∗denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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returns, an alternative approach involves the BEKK model pre-
sented by Engle and Kroner (1995), which works in an analo-
gous way at the level of covariances and straight returns. The
most scalable version of the BEKK model, and the one most
similar to the particular version of DCC presented in Section 2,
is the one with scalar dynamics and covariance targeting. Using
the notation of Section 2.1, Equations (2.2)–(2.4) are replaced
with

Ht = (1 − α̈ − β̈ )� + α̈ rt−1r
′
t−1 + β̈ Ht−1, (7.1)

where � is the unconditional covariance matrix and (α̈, β̈ ) are
BEKK dynamic parameters analogous to (α, β ), but in covari-
ance space instead of correlation space.
BEKK is simpler compared to DCC, but it does not handle

well investment universes that include correlated assets with
volatilities of different magnitudes. For example, if we have
gold and short-term government bonds, both of which can be
considered “safe havens” in times of financial crises, volatilities
vary by one or two orders of magnitudes, so putting them on
the same footing (as BEKK does) may not be the best model-
ing strategy. To give another example, if we replace one asset,
say the S&P 500 index, with a 2-to-1 leveraged version of itself
(and such ETFs do exist), then the set of investment opportuni-
ties remains the same and DCC adapts automatically, whereas
any portfolio allocation based on BEKK will be impacted. In
other words, BEKK will be favored by a homogenous, unlev-
ered investment universe.
Estimation of the BEKKmodel in large dimensions using the

composite likelihood method is described by Pakel et al. (2014,
Example 2.1 and sec. 3). The BEKK-NL model is obtained
by inserting the nonlinear shrinkage estimator of the covari-
ance matrix developed by Ledoit and Wolf (2012, in press-a) in
place of the “true” covariance targeting matrix �, which is
unavailable in practice.

8. CONCLUSION

This article demonstrates that there is a “division of labor”
between composite likelihood and nonlinear shrinkage in the
estimation of a Dynamic Conditional Correlation (DCC)model:
The former takes care of the dynamic correlation parameters
(time series) whereas the latter takes care of the correlation tar-
geting matrix (cross-section). Their actions complement each
other. Together, they enable DCC to conquer large dimensions
on the order of a thousand, which are frequently encountered
in modern portfolio theory and risk management. We call the
resulting estimator DCC-NL, which stands for DCC based on
nonlinear shrinkage. The attractive performance of the DCC-NL
estimator has been established both by simulation studies and by
backtesting on real-life stock return data; we thus recommend
this estimator as the new DCC standard in large dimensions.

SUPPLEMENTARY MATERIAL

The supplementary material provides additional details and
motivation regarding the nonlinear shrinkage method.
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