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Abstract

We study the effects of income inequality on technology adoption lags and on long-run tech-

nology penetration rates. Building on the model and findings of Comin and Mestieri (2013a),

we analyze a sample of 72 countries between 1960 and 1995. They find converging adop-

tion lags and diverging penetration rates between Western and non-Western countries. This

evolution explains 80% of the Great Income Divergence between the two country groups. Ap-

plying pooled OLS, we find that it matters where in the income distribution the inequality

appears, which confirms our theoretical predictions. In contrast, overall inequality measured

by the Gini coefficient is too broad to be significant. Hence, quantile income shares are crucial.

Distortion-free redistribution from the rich to the poor decreases the adoption lag. Moreover,

a higher income share of the middle class at the expense of the rich or the poor increases the

adoption lag. When it comes to the long run technology penetration rate, we find that lower

overall inequality increases the penetration. Increasing the income share of the middle class

at the expense of the rich or the poor increases the penetration rate. Our results suggest that

a strong middle class increased the adoption lags and penetration rates in Western countries.

Therefore, it may account for some of the convergence of adoption lags and divergence of

penetration rates between the two country groups.

Acknowledgement: I am grateful to Reto Föllmi, Stefan Legge, Paul Segerstrom, Örjan Sjöberg

and Jesper Roine for valuable discussions.
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1 Introduction

In the past 200 years, large cross-country differences in per capita incomes could be observed.

Maddison (2004) finds an 18.5 fold increase in per capita income in Western countries compared to

a factor 5 increase for non-Western countries between 1820 and 2000. This phenomenon is known

as the Great Divergence. Our knowledge about drivers of long-term growth is limited. Klenow

and Rodriguez-Clare (1997) show that only 10% of cross-country differences in productivity growth

between 1960 and 1985 are due to physical and human capital accumulation. This leaves 90% of the

variation of income growth to the total factor productivity (TFP). Comin and Mestieri (2013a)

therefore explore, whether the technology channel can account for some of these cross-country

income differences. They identify two margins of technology adoption. First, the adoption lag

(extensive margin), which measures how many years after their invention new technologies have

been adopted in a country. Second, the penetration rate (intensive margin), which is a measure of

the long-run intensity at which a technology is used in a country. We in this thesis argue that it

makes a difference for the productivity level in a country, whether for example only one computer

is available in China or whether every worker has access to the use of a computer. Clark (1987)

provides evidence that around 1910, the intensity of using spindles and looms can account for much

of the cross-country variation in the productivity of cotton mills.

Comin and Mestieri (2013a) divide the countries in Western and ”Rest of the World” or non-

Western countries. Then, they simulate the evolution of the GDP of Western countries and the

Rest of the World by including the adoption lags and penetration rates calculated for the respective

countries. They make three important findings. First, they find an income widening between these

groups by factor 3.2, compared to Maddison (2004) who finds a 3.9 fold widening. This leads

Comin and Mestieri (2013a) to the conclusion that these two margins of adoption can account for

82% of the cross-country differences. The remaining 18% are due to factor accumulation. Second,

they conclude that adoption lags are the key driver of differences in the nineteenth century. GDP

growth differences were largest in the beginning of the twentieth century. Over time the adoption

lag decreased in all countries, but much faster in non-Western countries. As one can see in figure

1, the growth difference of non-Western countries compared to Western countries decreased since

the beginning of the twentieth century. Finally, the income gap due to the adoption lag reached

pre-industrial levels in the year 2000. Nevertheless, the Great Divergence persisted in the twentieth

century, even though at a lower level as at the end of the nineteenth century. Comin and Mestieri

(2013a) conclude that the diverging penetration rate is the driver of the persistence of the Great

Divergence in the twentieth century.
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Figure 1: Growth of Western and non-Western countries inputing the estimated evolution of the intensive

and extensive margins (Comin and Mestieri, 2013a, p. 42)

In the course of the last century adoption lags converged and penetration rates diverged between

Western and non-Western countries. However, the drivers behind this evolution remain unclear.

Our particular interest is to identify whether within-country income inequality can account for

some of these differences.

We suggest that additionally to different demand patterns and economic development between

countries, within-country inequality matters for technology diffusion as well. Therefore, we put

forward the hypothesis that within-country inequality can explain part of the technology adoption

patterns across countries. In order to explain how within-country income inequality affects the two

margins of technology adoption, we build our idea on the model developed by Föllmi, Würgler and

Zweimüller (2009) who include non-homothetic preferences. They introduced the idea of product

innovation and process innovation. Product innovation is the invention of new products for the

luxury wants of the rich. Process innovation, on the other hand, is understood as the decrease of

cost per unit of quality, to transform the luxury goods into mass products. In the product cycle

first only the rich are served with luxury goods. Later on, mass products are sold to the middle

class and the poor, due to process innovation. A historic example is the Model T from Ford that

made cars available to the middle class. In an unequal society, only the rich can afford the luxuries

and the new technologies reach only this restricted circle. Higher inequality decreases the adoption

lag as they can afford the luxury goods earlier, compared to a more equal society with the same
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average income. In contrast, consider a more equal society where the middle class has a higher

income share compared to the rich. Then, incentives for process innovation are higher, more mass

products are sold and the penetration rate is higher in the long-run.

Our analysis extends the existing literature in at least three dimensions. First, we combine the

literature of within-country income distribution and technology diffusion in order to improve the

understanding of the Great Divergence of Income between Western and non-Western countries.

We do this in order to formulate the relevant channels on how the income distribution affects

the adoption lag and the penetration rate. Second, we are the first who estimate how inequality

affects the two margins of technology adoption. Furthermore, we introduce quantile income shares

into technology diffusion estimations. Third, we evaluate whether within-country inequality is

able to explain part of the convergence and divergence of the two margins between Western and

non-Western countries.

We apply a pooled OLS estimation with a sample of 72 countries and 186 observations. Eight

technologies, which are ships, cars, aviation - freight, blast oxygen steel, cellphones, PCs, MRI

and internet, are included. In our core specifications, we include either the Gini coefficient or

quantile income share dummies to control for inequality. Moreover, GDP p.c., education, trade

openness and institutions are added as covariates. We find that redistribution from the rich to

the poor decreases the adoption lag, while redistribution to the middle class from the rich or the

poor increases the adoption lag. For the penetration rate we find that lower overall inequality

increases the penetration rate. Furthermore, increasing the income share of the middle class at the

expense of the rich or the poor increases the penetration rate as incentives for process innovation

are increased. This stresses the importance of a strong middle class. Due to opposing effects of

inequality on the adoption lag and penetration rate, it is crucial to use quantile income shares.

The remainder of this thesis is organized as follows. The subsequent section reviews the eco-

nomic literature on technology diffusion and income inequality. Including the model of Comin and

Mestieri (2013a) in subsection 2.4 ’Model of Technology Diffusion’, where the micro foundation

for the dependent variables are developed. In section three follows the channels of how inequality

affects technology diffusion we form our hypotheses. Section 4 ’Estimation Method’ presents the

empirical framework of our analysis. In section 5 ’Data’, we describe the identification strategy of

the dependent variables as well as an overview over the data sources and definitions is provided.

Our results are presented in section 6 ’Results’, and section 7 ’Discussion’ summarizes and discusses

the implications of our work.
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2 Literature Review

In the literature review, we first discuss the importance of technology diffusion for an economy.

Then we elaborate the determinants of technology diffusion. In the third part, we discuss channels

of income inequality on economic growth. We argue that these channels are relevant for technology

diffusion as well. Finally, we discuss the model of Comin and Mestieri (2013a) in detail, as it is

relevant for understanding our dependent variables in the estimations.

2.1 Importance of Technology Diffusion

To highlight the importance of investigating the characteristics of the diffusion of technologies

consider the case of general purpose technologies (GPT), such as electricity and IT. Jovanovic

and Rousseau (2005, p. 1185) define three characteristics of GPTs: pervasiveness, improvement

and innovation spawning. Pervasiveness describes the fact that the technologies spread to most

sectors. Improvement stands for the idea that the GPTs improve over time and lower the users

costs. Innovation spawning means that GPTs facilitate the invention and production of products

and processes. Figure 2 shows the share of total horsepower generated by different technologies

in the period between 1869 to 1954. The period covers the decline in the usage of water wheels,

turbines, the increase as well as decrease of steam engines and turbines. Moreover, the symmetry

of the decline of steam and the rise of electricity suggests a replacement. It is noteworthy that

it took several decades until electricity produced 60% of the total horsepower. Which shows the

relevance of investigating the diffusion of technologies additionally to the first time a technology

is available. Jovanovic and Rousseau (2005, p. 1186) state that most technologies have to some

degree the same characteristics as GPTs 1.

Figure 2: Shares of total horsepower generated by the main sources in U.S. manufacturing, 1869-1954

(Jovanovic and Rousseau , 2005, p. 1188)

1In this thesis we do not focus exclusively on GPTs, but our model of technology adoption (described in the

subsection 2.4 ’Model of Technology Diffusion’) features similar characteristics.
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Vernon (1966) developed three stages of a product cycle. First, new products are introduced

in the North due to innovation. Second, with a time lag, the North exports these products to the

South. The time lag of introduction decreases with a rising GDP per capita. Third, the production

migrates from the North to the South due to lower production costs. The North starts as a net

exporter and will become a net importer of a specific good later on. Krugman (1979) and later

Grossman and Helpman (1991) introduced frameworks, which included the product cycle theory

into their theoretical models. However, both models only focus on the supply-side of the product

cycle theory. In this thesis, we use the terms Western, non-Western countries as synonyms for the

terms North-South. In both models the demand patterns are identical in the North and the South

due to homothetic constant-elasticity-of substitution (CES) preferences. However, Vernon (1966)

clearly stresses that goods are not consumed in the South until later in the product cycle. (Föllmi,

Hanslin and Kohler, 2012)

2.2 Determinants of Technology Diffusion

In this section, we highlight factors that influence technology diffusion. We assume that the

channels described here negatively affect the adoption lag and positively the penetration rate.

This review of the determinants of technology diffusion supports the inclusion of trade openness,

institutions, education and GDP p.c. as covariates. First, we describe how trade openness and

institutions affect adoption barriers. Second, we introduce channels of education on technology

diffusion such as skill-biased technical change and the appropriate technology hypothesis. Finally,

we discuss how economic development affects technology diffusion.

We start by giving an overview over the effects of trade openness and institutions on technology

diffusion. Parente and Prescott (1994) develop a model to describe how barriers of technology

adoption matter for the adoption lag of a particular technology. According to their results, the big

income disparity between countries is due to differences in adoption barriers. The lower adoption

barriers in the Western countries allowed them to grow richer. They assume that a firm has to

make an investment in order to upgrade to a higher level of technology. This upgrade depends on

two factors: With a higher level of general scientific knowledge in the world, and lower barriers in

the firm’s country, investments are cheaper. Due to the exogenous growth of the world knowledge,

the amount of necessary investment to achieve a higher technology level decreases over time. This

implies that the level of development in a country will even increase with unchanged adoption

barriers. Hence, Parente and Prescott (1994) point out that greater trade openness can weaken

the forces of resistance to technology adoption and make investment in new technologies cheaper.

Comin and Hobijn (2006, p. 17) mention two possible channels for how trade openness can

affect the technology adoption lag. First, as proposed by Holmes and Schmitz (2001), a higher

foreign competition increases the pressure on domestic firms to adopt technologies faster. Sec-

ond, trade causes knowledge spillovers. Evidence from Coe and Helpman (1995) suggests that
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foreign R&D is beneficial for domestic productivity. Knowledge spillovers reduce adoption costs

and as a consequence the adoption lag. Holmes and Schmitz’s (2001) main result is that lower

tariffs and lower transportation costs shift the relative returns from unproductive to productive

entrepreneurship. They define unproductive entrepreneurship as activities that limit competition

through the regulatory process. With low tariffs, blocking is not rewarding anymore. Hence, in

order to invent or adopt new technologies, firms shift their activities to research. The federalism of

the United States is one example where low tariffs encourage productive entrepreneurship. Special

interest groups are not rewarded if they block the use of new technologies in State A. Due to the

absence of tariffs between different states, firms in the state B can simply use the more productive

technologies to produce more efficiently in Band export the goods to A. Low transportation costs

cause the same effect.

Similar to the findings of Holmes and Schmitz (2001) are those of Comin and Hobijn (2009b).

They find that lobbies and institutions matter for technology diffusion. Comin and Hobijn (2009b)

include into their regression an interaction term of different characteristics of institutions with

a binary dummy variable, whether a technology has a competing predecessor technology. On

the one hand they find a significant negative effect of the dummies with military regime and

legislative flexibility on the speed of technology diffusion. On the other hand, democracy and

judicial effectiveness increase the pace of technology diffusion. As for example in a democracy

lobbying costs are much higher than in a military regime. Thus, lower lobbying costs in these

systems lead to higher institutional barriers towards the adoption of new technologies and therefore

to a slower diffusion of technologies. Hence, different types of institutions can affect the costs of

erecting barriers and thereby influence technology diffusion. From this research we conclude that

trade openness and institutions matter for the diffusion of technologies.

In the following, we continue by analyzing the effects of education on technology adoption. Ac-

cording to a model developed by Kiley (1997), education is crucial to the adoption of technologies.

The model suggests that in the long-run, an increase in skilled labor accelerates the skill-biased

technical change. This implies faster upgrading to new technologies and therefore shorter adop-

tion lags. However, in the short run, an increase of supply in skilled labor may lower the relative

wage of skilled workers. Acemoglu (1998) applies this framework to US data. He argues that the

increase in the relative amount of college graduates in the 1970’s caused a decline in the college

premium in the 1970’s and then increased inequality in the 1980’s. This finding may suggest that

a higher share of educated people attracts complementary technology. Then, the attracted tech-

nologies induce skill-biased technical change and increases the skill premium. This causes higher

inequality. We propose the hypothesis that higher inequality due to education, leads to a decrease

in the technology adoption lag and an increase of the penetration rate. However, this is not our

main hypothesis. We control for this effect by including the education variables.

Caselli (1999) describes how skill-biased and de-skilling technologies influence the wage of slow
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and fast learning workers. Skill-biased technologies shift capital from slow learning workers to fast

learners and therefore raise their absolute and relative wage. In contrast, de-skilling technologies

have the exact opposite effect: They shift capital from fast to slow learning workers and increase

absolute and relative wages of slow learners. Consequently, technology-dependent adverse effects

on wage inequality can be expected. Therefore, we will do an instrumental variable regression as a

robustness check in order to control for the potential endogeneity of technology adoption affecting

inequality. The instrumental variable estimation method and the data will be described in sections

4 ’Estimation Method’ and 5 ’Data’.

Do two countries use the same technology if it is available in both? Basu and Weil (1998)

suggest that this is not the case. In India, a lot of manual work is used for harvesting, while

in the United States farmers ride a combine. Hence, India and the United States use different

combinations of inputs due to differences in factor prices. Do India and the US equally benefit if

the productivity of combines increases? No, as only in the US combines are heavily used. Basu

and Weil (1998) developed a model based on their so-called appropriate technology hypothesis

where technological advances only improve certain types of technologies and not others. They

define that each technology is appropriate for a specific capital-labor ratio only. Adoption barriers

are neglected in this model, and technical improvements made in one country are immediately

available all around the world. As a result, technology leaders benefit less from other countries

improvements than followers do. However, a follower country can only adopt a new technology

after achieving a sufficiently high level of development. The richer and thus closer to the technology

frontier a country is, the lower is the cost of adoption. Hence, this model predicts that the higher

the relative development is, the faster new technologies are adopted and the higher is the diffusion.

There is little empirical work on technology diffusion. One is from Kiiski and Pohjola (2002),

who explore the factors that determine the diffusion of internet across countries. They find that

GDP per capita (positive effect) and internet access costs (negative effect) explain most of the

growth in computer hosts per capita. Surprisingly, they find no significant effect of education on

the diffusion in OECD countries. For an extended sample that also includes developing countries,

education has a positive and significant impact. As data of internet access costs are not available

for non-OECD countries, they use the GINI coefficient as an instrumental variable to determine

access costs. Income inequality has a strong positive impact on the access costs and therefore

increases the adverse effects of high prices on technology diffusion. (Kiiski and Pohjola, 2002, p.

308)
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2.3 Income Inequality

In this section we introduce channels that account for the effects of inequality on economic growth.

Such as the distinction of structural and market inequality, effects of an imperfect credit market

and quantile income shares. We build on the ideas of these channels by applying them to technology

diffusion. Finally, we discuss the Gini coefficient.

First, Easterly (2007, p. 756) makes a distinction between structural and market inequality:

”Structural inequality reflects such historical events as conquest, colonization, slavery, and land

distribution by the state or colonial power; it creates an elite by means of these non-market mech-

anisms. Market forces also lead to inequality, but just because success in free markets is always

very uneven across different individuals, cities, regions, firms, and industries. So the recent rise

in inequality in China is clearly market-based, while high inequality in Brazil or South Africa is

just as clearly structural.” Based on this distinction, Easterly (2007) introduces an instrumental

variable that represents measures of factor endowments. The empirical strategy is based on the

idea introduced by Engerman and Sokoloff (1994) and Sokoloff and Engerman (2000). In these

papers, Engerman and Sokoloff suggest that factor endowments are the main determinant of what

Easterly calls structural inequality. They elaborate a theory, where high inequality, determined

by factor endowments, is the main cause of bad institutions, low human capital investment and

underdevelopment. They argue that a higher share of arable land suitable for products and com-

modities that feature economies of scale, increased the probability that a small elite captured the

political power. The elite then created institutions that helped preserve the unevenly distributed

power. Consequently, the higher for example the suitable arable land for sugar cane production,

which is scalable, is, the higher the scope for structural inequality. (Easterly, 2007, p. 756) As this

measure of factor endowments is exogenously given by the nature, it is well suited for an instru-

mental variable. We apply this IV as a robustness test. A detailed discussion on the construction

of the variable is provided in subsection 5.2.4 ’Instrumental Variable’.

Second, in the literature on income inequality effects on economic growth it is an important

view that high inequality due to an imperfect credit market is bad for subsequent growth. Galor

and Zeira (1993) argue that access to the credit market depends on individual wealth. Therefore,

marginal returns are not equalized across investment opportunities. A distortion-free reduction

of inequality increases economic growth because marginal returns are more equal. Föllmi and

Oechslin (2008) point out that even with credit market imperfections, higher inequality can be

beneficial for the economic performance. Consider a distortion-free redistribution from the richest

to the middle class. This equalizes marginal returns of investment opportunities and thus has a

positive effect on growth. However, it also increases the demand for capital in the economy and

therefore the borrowing rate. With a higher borrowing rate, the poorest suffer from a tighter

borrowing constraint and can borrow less. Hence, they remain with high marginal returns, which

is bad for the economic performance. Therefore, redistribution from the rich to the middle class is
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negative and from the rich to the poor is positive for economic growth. Föllmi, Oechslin and Zah-

ner (2011) disentangle these opposing effects by analyzing quantile share inequality data. Given

these opposing effects, the Gini coefficient may be too imprecise to discover the relevant effects.

In order to see why the Gini coefficient may be too imprecise, consider first how the coefficient

is calculated. The User Guide and Data Sources of the WIID (UNU-WIDER, 2009) states that the

calculation is based on the Lorenz curve. In figure 3, the x-axis shows the cumulative percentage

of the population, starting with the poorest on the left. On the y-axis, the cumulative percentage

of income or expenditure that are related to the units on the x-axis is shown. In case of an equal

income distribution, we would get the dashed 45-degree line. The more unequal, the more the thick

line shifts toward the corner in the bottom-right and area A gets bigger. The Gini coefficient is the

proportion of the area A divided by 1/2, which is the area below the Lorenz curve. The coefficient

is given either in proportion with a maximum of 1 or in percentages. We use percentages. The more

unequal an economy is, the closer to 100% the Gini coefficient approaches. An advantage of this

measure is that neither population size nor GDP matters. A disadvantage is that different Lorenz

curves can intersect and hence different distributions can yield the same coefficient. (Deaton, 1997)

Figure 3: The Lorenz Curve and the Gini coefficient (UNU-WIDER, 2009)

2.4 Model of Technology Diffusion

In the following we start by explaining the shape of diffusion curves, which is relevant for under-

standing the two margins of technology adoption. These two margins are our dependent variables

in the estimation. Secondly, we derive the relevant parts of the model mathematically in order

to understand how the two margins affect the level of TFP. This is crucial to understand as this

connects the two margins and economic growth theoretically.
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2.4.1 The Shape of Diffusion Curves

Now we introduce the model that was developed by Comin and Hobijn (2010), Comin and Mestieri

(2010) and studied in detail by Comin and Mestieri (2013a+b). They identify two margins of

technology adoption. The first margin is the adoption lag (extensive margin) and the second

margin is the penetration rate (intensive margin). The adoption lag is the time that has elapsed

between the invention of a particular technology until the technology arrives in a country. The

penetration rate is measured as the logarithm of the units used of a technology in a country. In

figure 4 we show an illustrative example of the shape and the two possible shifts of the diffusion

curve of a technology.

We measure the diffusion of cars with the log of the number of passenger cars available. We use

technology measures from the Cross-country Historical Adoption of Technology (CHAT) dataset

provided by Comin and Hobijn (2009a). This dataset is particularly useful, as the observed diffusion

curves are embedded in an aggregate model. In contrast to the macroeconomic models of technology

adoption by Parente and Prescott (1994) and Basu and Weil (1998) which are difficult to match

with data. Basu and Weil (1998, p. 1029-1030) for example build on the idea that technologies are

related to a specific capital-labor ratio. For this specific capital-labor ratio new technologies are

developed up to a certain point. Once, this point is reached, no new technologies are developed.

According to Comin and Hobijn (2009a, p. 3) define a technology as mentioned in the Merriam-

Webster’s Collegiate Dictionary: ”a manner of accomplishing a task particularly using technical

processes, methods, or knowledge.” Following this idea the CHAT dataset contains data measuring

either ”(i) the number of capital goods specifically related to accomplishing particular tasks, (ii) the

amounts of particular tasks that have been accomplished, (iii) the number of users of a particular

manner to accomplish a task.” (Comin and Hobijn, 2009a, p. 3). Examples for these three measures

that we use in our dataset are (i) the number of magnetic resonance imaging (MRI) units in place.

An example for (ii) is metric tons of steel produced using blast-oxygen steel furnaces. And for (iii)

the number of people with access to the internet. Then the log of these measures is scaled either by

population or GDP, in order to account for the size of the economy (Comin and Mestieri, 2013b,

p. 8).

In the following section we describe an illustrative example of a diffusion curve of the technology

cars. We measure cars as the number of available cars in a country, which fit in the second definition

described above. In figure 4 the x-axis denotes the time. On the y-axis the log of the technology

τ at time t in country c is denoted by ycτt. Cars were invented in 1885. Country A and C adopted

cars first in 1900, country B adopted them 20 years later. We see that all three countries have

the same concave shape of the diffusion curve. This is a crucial assumption we make. Comin

and Mestieri (2013a) conjecture that the shape of the curve is affected by technology-specific

characteristics which are identical across countries. For each technology the curves look the same

across countries and the country-specific differences are reflected in the two margins of technology
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diffusion. Therefore, this thesis aims at identifying the country-specific characteristics that drive

these two margins. In particular income inequality may play a crucial role in explaining the

technology diffusion patterns among countries. Another feature of the curve is that it is initially

steep and then gets flatter. Country A adopted the technology in the year 1900 and country B in

the year 1920. The only difference between them is the adoption lag of twenty years and hence the

horizontal shift of the curve. The only difference between the countries A and C is the penetration

rate and therefore a vertical shift of the curve. Both, country A and country C, adopted the cars in

the year 1900. Country C has a higher penetration and thus the number of passenger cars is higher

in country C compared to country A. The curves of country B and C are shifted horizontally and

vertically compared to each other.

Figure 4: Illustrative Example of the Diffusion Curve

At this point it is only clear what the difference of the shifts between the diffusion curves

is. But it is not clear how to interpret the horizontal and vertical shift and how they can be

identified in the data. Comin and Hobijn (2010) and Comin and Mestieri (2010), do answer these

questions. Comin and Hobijn (2010) explores the extensive margin and Comin and Mestieri (2010)

the intensive margin. In order to better understand the diffusion curves consider the following

simple equation (1) that describes the shape of the diffusion curve

ycτ,t = βcτ1︸︷︷︸
V tcal Shift

+βτ2t+ βτ3

Concave Shape︷ ︸︸ ︷
ln(t− τ − Dc

τ︸︷︷︸
Hztal Shift

) . (1)

The left hand side is the log-output produced, ycτ,t, with a technology τ at time t in country c. The

variable βcτ1 captures the vertical shift and hence the penetration rate in each technology-country

pair. The βτ2 measures the time trend so that the technology measure behaves asymptotically log-

normal. The term βτ3 captures the concave shape of the diffusion curve with the log function. The
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estimated terms βτ2 and βτ3 are assumed to be constant across countries and are only estimated

for the U.S., where the data is most accurate. The estimation process is explained in detail in

subsection 5.1 ’Identification Strategy of Dependent Variables’. The expression t-τ represents the

time elapsed from the invention date τ to the moment t the technology output is measured. The

variable Dc
τ shifts the curve horizontally and therefore captures the adoption lag. The larger

Dc
τ , the more is the curve shifted to the right. The term ln(t − τ − Dc

τ ) is only well defined if

t−τ−Dc
τ > 0. Note that βcτ1 and Dc

τ are the intensive and extensive margin, which are at the center

of our interest. Hence, they are estimated by this approximation of the diffusion curves. In figure

5 we show an empirical example of the diffusion curve. The technology electricity is measured as

the electricity production in log KwHr for the four countries USA, Japan, Netherlands and Kenya.

This measure fits in the definition (i) described above.

Figure 5: Example of Diffusion Curve (Comin and Mestieri, 2013b, p. 11)

The crucial point for the estimation of the diffusion curves is the following. As the measure

of varieties adopted depends on the adoption lag, Comin and Hobijn (2010) identify the adoption

lag due to the curvature of the diffusion curve. Hence, longer adoption lags imply fewer vintages

and the steepness of the diffusion curve decreases faster. (Comin and Hobijn, 2010, p. 2037-2040)

To make their estimation feasible, Comin and Hobijn (2010) assume that the adoption lags for

each country and technology are constant over time. However, the adoption lags can differ across

countries and technologies. The main prediction of the model is that only the variety effect is

affected by a change of the adoption lag. An increasing variety effect makes the slope of the

diffusion curve diminish. Accordingly, one can conclude that if at a certain point in time the
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diffusion curve is decreasing faster in country A than in country B, this must be due to the fact

that country A adopted the technology earlier than country B. This, in case everything else is

equal. (Comin and Hobijn, 2010, p. 2041-2042)

This approximation of the diffusion curves and interpretation of their shifts is intuitive. Nev-

ertheless, to understand the role of income we require a micro founded model of demand and

production. Therefore, Comin and Mestieri (2013a) developed a model that provides the relevant

mechanisms. Income has two opposite effects on the diffusion measures. First, with a higher GDP,

there is a larger demand for products and services that embody or use technologies. The Engel

curve effect implies a positive effect of income on technology. The Engel curve is a microeconomic

concept, which says that the demand for normal goods increases with income whereas the demand

for inferior goods decreases with income. Here, we assume products produced by technologies we

measure in this thesis to be normal goods. On the other hand, in richer countries wages are higher

and therefore the cost of producing products and services that embody technology increase. The

model described below explains the horizontal and vertical shifts. The extensive margin measures

the average adoption lag at which new vintages of a technology arrive in a country. The inten-

sive margin measures the intensity with which a technology is used, when the technology is fully

diffused in a country. (Comin and Mestieri, 2013b, p. 12)

2.4.2 A Microfoundation for the Diffusion Curve

The model presented in the following is taken from Comin and Mestieri (2013a).

Preferences and Endowments. First, we describe the preferences and endowment in the model.

The economic environment is the following. There is a unit measure of identical households in the

economy. Each household supplies inelastically one unit of labor and earns a wage w. Households

can save in domestic bonds which are in zero net supply. The utility of the representative household

is given by the following equation:

U =

∫ ∞
t0

e−ρt ln(Ct)dt (2)

C is the abbreviation for consumption and ρ for the discount rate. The representative household

maximizes its utility subject to the budget constraint (3) and a no-Ponzi scheme condition (4)

(Comin and Mestieri, 2013b, p. 13-15):

Ḃt + Ct = wt + rtBt (3)

lim
t→∞

Bte
∫ t
t0
−rsds ≥ 0. (4)

Bt denotes the bond holdings of the representative consumer, Ḃ is the increase in bond holdings

over an instant of time and rt is the return on bonds.

World technology frontier. Now consider the world technology frontier. At a given instant

in time, t, it consists of a set of technologies and a set of vintages specific to each technology.
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Each instant, a new technology, τ , appears exogenously. Technology is denoted by the time it

was invented. Consequently, τ represents the invention date and the technology. The range of

invented technologies is (−∞, t]. Every instant a new and more productive vintage appears in the

world frontier for each existing technology. Vintages of technology-τ are denoted by υτ . Vintages

are indexed by the time in which they appear. Therefore, at time t > τ the set of existing

vintages of technology-τ available is [τ, t]. The productivity of a technology-vintage pair consists

of two constituents. First, Z(τ, υτ ) which is a general measure that is equal across countries. It is

determined only by technological attributes

Z(τ, υτ ) = e(χ+γ)τ+γ(υτ−τ)

= eχτ+γυτ (5)

where (χ+ γ)τ represents the productivity level related to the first vintage of technology τ . Pro-

ductivity gains related to the introduction of new vintages, υτ ≥ τ , are captured by γ(υτ − τ).

The second constituent is the technology-country specific productivity term, aτ . This term is dis-

cussed below separately. To make the notation easier in the following, time subscripts, t, and τ

from the vintage notation are omitted, when possible. Hence, we write υ instead of υτ .

Adoption lags. Economies are usually below the world technology frontier. Dc
τ denotes the

age of the best vintage available for production in a country for technology τ . Therefore, Dc
τ

represents the time that elapsed between the invention and the adoption of the best vintage in the

country. Hence, it is the adoption lag. The set of technology-τ vintages available in this economy

is Vτ = [τ, t − Dτ ]. Both, the time it takes for an economy to start using technology τ and the

distance of the country to the technology frontier in technology τ is represented by Dc
τ . This is

the mathematical representation for the assumption that adoption lags are constant over time.

Intensive margin. New intermediate goods embody the new vintages (τ, υ). The intermediate

goods are produced competitively using one unit of final output to produce one unit of intermediate

good. Combining intermediate goods with labor leads to the output related with a given vintage,

Yτ,υ. Xτ,υ denotes the number of units of intermediate good (τ, υ) used in production. Lτ,υ is

the number of workers that use the intermediate goods. Hence, Yτ,υ is given by the Cobb-Douglas

production function in equation (6):

Yτ,υ = aτZ(τ, υ)Xα
τ,υL

1−α
τ,υ (6)

The important value in equation (6) is aτ , which represents factors that reduces the effectiveness of

a technology in a country. The long-run penetration rate of a technology in a country is determined

by aτ . So, it is the measure for the intensive margin of adoption of a technology in the model.

In the estimation strategy the term aτ is denoted as βcτ1. Factors that determine the intensive

margin may be ”differences in the costs of producing the intermediate goods associated with a

technology, taxes, relative abundance of complementary inputs or technologies, frictions in capital,

labor and goods markets, barriers to entry for producers that want to develop new uses for the
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technology, etc.” (Comin and Mestieri, 2013a, p. 7). Comin and Mestieri (2013a) take the intensive

and extensive margin as exogenous variables, as their goal is to study how they affect productivity

growth. In contrast, the goal of this thesis is to examine the determinants of the two margins. In

particular, the effect of within-country inequality on these margins.

Production. We combine the output related to different vintages of the same technology to

produce competitively the sectoral output, Yτ . We use a CES production function of the following

form:

Yτ =

(∫ t−Dτ

τ

Y
1
µ
τ,υ dυ

)µ
, with µ > 1. (7)

Likewise, final output, Y, is the aggregate of of the sectoral outputs, Yτ

Y =

(∫ τ̄

−∞
Y

1
θ
τ dτ

)θ
, with θ > 1 (8)

τ̄ denotes the most advanced technology adopted in the economy. This is the technology τ for

which τ = t−Dc
τ . Furthermore, we define the aggregated productivity of a technology as

Zτ =

(∫ max{t−Dτ ,τ}

τ

aτZ(τ, υ)
1

µ−1 dυ

)µ−1

, (9)

aggregated labor input Lτ in sector τ as

Lτ =

∫ t−Dτ

τ

Lτ,υdυ, (10)

and aggregated intermediate goods Xτ in sector τ as

Xτ =

∫ t−Dτ

τ

Xτ,υdυ. (11)

Factor Demands and Final Output. Now consider the demand factors and final output. The

price of the final output is the numéraire. For the produced output with a particular technology

the demand is

Yτ = Y p
− θ
θ−1

τ (12)

where pτ is the price of the output in sector τ . The output produced with a given technology is

affected by the income level of a country and the price of a technology. Due to the homotheticity of

the production function, the income elasticity of technology τ output is one. Likewise, the demand

for output produced with a given technology vintage is

Yτ,υ = Yτ

(
pτ,υ
pτ

)− µ
µ−1

(13)

where pτ,υ represents the price of the (τ, υ) intermediate good. At the vintage level the demands

for labor and intermediate goods are

(1− α)
pτ,υYτ,υ
Lτ,υ

= w (14)

α
pτ,υYτ,υ
Xτ,υ

= 1. (15)
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The price of intermediate goods equals their marginal cost due to perfect competition in the

production of intermediate goods. We solve the demand for labor and the intermediate goods for

Xτ,υ and Lτ,υ. Then we substitute them into equation (6), solve for pτ,υ and we get the following:

pτ,υ =
w1−α

Z(τ, υ)aτ
(1− α)−(1−α)α−α. (16)

We assume that Zτ =

(∫max{t−Dτ ,τ}
τ

aτZ(τ, υ)
1

µ−1 dυ

)µ−1

and pτ =

(∫ t−Dτ
τ

p
− 1
µ−1

τ,υ dυ

)−(µ−1)

.

Therefore, the price index of technology-τ output is

pτ =

(∫ t−Dτ

τ

p
− 1
µ−1

τ,υ dυ

)−(µ−1)

=
w1−α

Zτ
(1− α)−(1−α)α−α. (17)

By combining (13), (14), (15), we get the following expression for the total output produced with

technology τ :

Yτ = ZτL
1−α
τ Xα

τ . (18)

The model of Comin and Hobijn (2010) includes two mechanisms how adoption lags determine

the level of TFP in the production of the capital good. First, the embodiment effect and second

the variety effect. New adopted production methods, new vintages, allow to produce more effi-

ciently. So, the new vintages embody higher productivity and the level of embodied productivity

increases in the economy. This effect is called embodiment effect. The variety effect represents the

productivity gain due to additional vintages available in the economy. Hence, the range of available

vintages increases the level of embodied productivity of the new technology. An important feature

of the variety effect is that, when the number of available varieties is small, an increase in the

number of available vintages has a relatively large effect on the level of embodied productivity.

However, as the number of adopted vintages increases, the productivity gains from an additional

vintage decline. Therefore, the variety effect leads to a nonlinear evolution of the level of embodied

productivity and hence drives the curvature of the diffusion curve. (Comin and Hobijn, 2010, p.

2039) The productivity of a technology, Zτ related to a technology, is determined by the intensive

and extensive margin. We get the following:

Zτ =

(∫ max{t−Dτ ,τ}

τ

aτZ(τ, υ)
1

µ−1 dυ

)µ−1

=

(
µ− 1

γ

)µ−1

aτ︸︷︷︸
intensive mg.

extensive margin︷ ︸︸ ︷
e(χτ+γ max{t−Dτ ,τ})︸ ︷︷ ︸
embodiment effect

(
1− e

−γ
µ−1 (max{t−Dτ ,τ}−τ)

)µ−1

︸ ︷︷ ︸
variety effect

. (19)

In this model the productivity of a technology, Zτ consists of three main determinants shown in

equation (19). First, the intensive margin. Second, the productivity level of the best vintage

used (embodiment effect). Finally, the productivity gains from using more different vintages (va-

riety effect). The embodiment and variety effect together are the extensive margin of adoption.
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Therefore, the shorter the adoption lag is, the higher is the productivity level of the used vintages

(embodiment effect) and the higher is the variety of the used vintages (variety effect). (Comin and

Mestieri, 2013a, p. 7-9)

The microfoundation allows us to better understand the mechanisms how the extensive and inten-

sive margin work. In subsection 5.1 ’Identification Strategy of Dependent Variables’ this model is

used to measure the adoption lag and the penetration rate in the data.
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3 How does Inequality affect Technology Diffusion?

In the two subsequent subsections, we give an overview over the relevant channels of inequality on

the two margins of technology adoption. These channels are crucial to determine our hypotheses

for the estimation. Our contribution lies not only in the review of the literature, but also in

the application on the two margins. The relevant literature either discusses the relationship of

inequality on technology adoption or on economic growth, but it does not combine the two specific

adoption margins. Hence, our contribution in this section is the application of theoretical inequality

effects on both margins. We start with the channels for the adoption lag and then proceed with

penetration rate.

3.1 Channels of Inequality on the Adoption Lag of a Technology

What is the effect of inequality on the technology adoption lag? On the one hand, consider a

society where one individual owns all the resources and buys a new technology at a given price.

On the other hand, consider a society with the same mean income and but with an even income

distribution. In the latter society, the richest individual’s income is lower than in the first. The

mean is below a certain threshold of the given price and nobody can afford the new technology.

This implies a lower adoption lag in the unequal society and a higher one in the equal society. We

focus here on channels that affect the adoption of a new technology in the short run, while in the

long-run they may be less relevant.

Hyytinen and Toivanen (2011, p. 365-366) describe two main channels how high within-country

income inequality can positively affect the early diffusion of mobile phones. We interpret that our

measure of the technology adoption lag is similar to their measure of the early stage diffusion. The

first channel they describe is that mobile phones can only be afforded and therefore adopted by the

rich, high-earning elite. Hence, increasing the income in the upper end of the income distribution,

while keeping the mean income constant, leads to a higher short-run penetration and therefore to

a shorter adoption lag. Hyytinen and Toivanen (2011) assume taste homogeneity and an initial

price at which nobody adopts. A higher income share of the high income segment, decreases the

adoption lag after a price reduction. In the second channel, they argue that if mobile phones

are an particularly useful production technology for the poor, a higher income in the bottom of

the income distribution decreases the adoption lag. As Hyytinen and Toivanan put forward their

hypothesis based on anecdotal evidence that many poor in developing countries adopted mobile

phones for production purposes and not only consumption purpose like the rich. Assuming that the

poor can borrow against their income generated by the mobile-enabled production. Consequently,

summing up both channels, increasing the income share of either the poor, the middle class or

the rich leads to a lower adoption lag. We may assume taste homogeneity preferences for the first

channel, that the rich increase their income share. The second channel suggests taste heterogeneity

and thus different preferences between the different quantiles in the income distribution. For the
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middle class or the poor, the technology may be more useful than for the rich. Therefore, applying

quantile shares measures for income inequality allows us to disentangle in which quantile of the

distribution inequality matters.

Hyytinen and Toivanen (2011) study the effect of income inequality on technology diffusion

in developing countries. This is the only paper we are aware of, which studies these effects in

developing countries. They investigate the diffusion of mobile phones and use data of market

penetration in a sample of developing countries in the period from 1985 to 1998. The focus lies

on the early stages of the diffusion process. They find a positive impact of inequality, measured

as the income share of the highest earning decile, on mobile phone diffusion. Due to a potential

endogeneity problem, they use an instrumental variable for inequality and find an even stronger

effect. The instrument used is the above mentioned instrument of suitability of arable land applied

by Easterly (2007), which we apply as well as a robustness check.

The crucial difference between Hyytinen and Toivanen (2011) and the estimation in this thesis

is that we calculate the adoption lag differently to their early stage diffusion measure and we

furthermore consider the long-run penetration rate, discussed in the following section.

Based on the previous discussion, we argue that the adoption lag decreases under the following

two conditions:

Hypothesis 1a: First, if the rich increase their income share, the adoption lag decreases, because

they can afford the new technologies earlier, assuming taste homogeneity among all individuals.

Hypothesis 1b: Second, when a new technology is particularly useful to the poor or the middle

class, they have high preferences for new technologies and are willing to spend a high share of their

income on new technologies. In this case, a higher income share of the poor or the middle class

would decrease the adoption lag. A complementary explanation may be credit constraints for the

poor, which do not allow them to purchase productive new technologies.

3.2 Channels of Inequality on the Penetration Rate of a Technology

How does inequality affect the long-run penetration rate? Consider again a society where one

individual holds all the resources. This leads, as explained above, to a fast adoption because the

richest can afford the new technology. In to a society with an equal mean income, but where

income is evenly distributed the long-run penetration is lower. This is because except for the one

rich person, nobody can afford the technology. When lowering the price of the technology due to

mass production, initially, only the middle class is able to afford it. As a consequence, we emphasize

the importance of a strong middle class. In the following section we review the literature on effects

of a strong middle class on a society, as well as characteristics of such a middle class. Subsequently,

we describe how income inequality and a high income share of the middle class affect the long-run

penetration rate of technologies. Hereby, we particularly focus on the model of Föllmi, Würgler

and Zweimüller (2009), which we consider important. Finally, we state some differences between
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the model of Föllmi, Würgler and Zweimüller (2009) and the one of Comin and Mestieri (2013a).

While the first describes the relevant channels of inequality on technology diffusion the latter is

our main model in explaining the two margins and their mechanisms in the economy. We describe

the mechanisms of the two margins in subsection 2.4 ’Model of Technology Diffusion’.

We start with the literature review regarding the middle class. Easterly (2001) puts forward

many positive effects that appear in countries with a strong middle class. He finds that increasing

the income share of the middle class and lowering ethnic divisions is associated with higher educa-

tion, higher income, higher economic growth, better health, better infrastructure, better economic

policies, less political instability, less civil war, less minorities at risk, more democratization and

more democracy. Similar to the argument described above by Easterly (2007) Easterly (2001)

suggests that the main causes for these differences are factor endowment and the subsequent in-

equality due to a small elite capturing the political power.

In an empirical analysis, Banerjee and Duflo (2007) identify characteristics of the middle class.

The most important characteristic is the likelihood to hold a steady job. Further characteristics

are having fewer, healthier and better educated children compared to the poor. Even if they dis-

tinguish clear differences between the poor and the middle class, there are many country-specific

characteristics. These particular characteristics may exist either due to relative prices, which affect

consumption decisions, or due to norms that determine consumption patterns.

Matsuyama (2002) develops a model to understand the mechanisms that allowed mass con-

sumption societies to emerge. He describes that due to an increase in productivity, products can

be sold cheaper and become affordable for a larger share of households. Therefore, these products

are not only available for high-income but also for low-income households. This larger market of

high- and low-income households increases the productivity due to higher incentives of the firms to

innovate by selling to more people. Hence, there is a two-way causality. According to the model,

inequality should neither be too high nor too low. If a society is too unequal, technology diffusion

stops quickly as the poor cannot afford it. If the society is too equal, the diffusion does not even

start because the mean income level is below a certain threshold. Whether redistribution from

the upper middle class to the lower middle class has a positive effect on the diffusion is ambigu-

ous. Redistribution may make the products affordable to the lower middle class, but at the same

time may prevent the upper middle class from buying the good due to the now too low level of

income. Katona (1964) was the first to notice that mass consumption societies are the last stage

of a process. First, only few rich consume luxury goods. Then, these goods get transformed into

mass consumption goods. Many products, such as cars, radios, television sets, washing machines,

refrigerators and recently computers, have made this transformation.

In line with the model of Matsuyama (2002), Föllmi, Würgler and Zweimüller (2009) develop

their own model, which allows to analyze inequality and the transformation of luxury goods to

products of mass consumption. Their model, is motivated by the famous historical example of the
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Ford Model T, the first automobile affordable for a large population. Crucial for the success of

Model T was the process innovation of Ford in the assembly line production, instead of individual

hand crafting. Ford produced over 15 million Model T’s between 1908 and 1927. During this time,

the penetration of car ownership rose impressively in the United States. In 1908, 1% of the house-

holds owned a car. In 1924, already 50% of the households owned a car (Bowden and Offer, 1994).

The mechanism of mass production, described for Ford’s Model T, was an important step in the

history of manufacturing. Since then, mass production can be observed in developed countries for

many products and is getting more important in developing countries in recent years. This example

illustrates that process innovation and mass production go together. Process innovations reduce

the production costs which is crucial in order to make products affordable to the mass consumption

market. (Föllmi, Würgler and Zweimüller, 2009, p. 6-9) We argue that increased incentives for

process innovation, increases mass production and hence increases penetration of technologies in

an economy. Therefore, the redistribution effects discussed in the following with regards to the

incentives of product and process innovations are considered as channels how inequality affect the

penetration rate of a technology.

In the following, we describe the important effects of the model in detail, as they are crucial

in order to form our hypothesis for the penetration of technologies. In the endogenous growth

model of Föllmi, Würgler and Zweimüller (2009) a firm invests in product and process innovation.

Product innovation creates new product lines, which are luxury goods. The luxury god is only

affordable for the rich, as production costs are high. Once a product innovation is successful, the

firm has the option to pursue process innovation. Process innovation reduces cost and quality of

the product Costs are reduced more than quality hence results a higher quality-cost ratio. If a firm

decides to do only product innovation it is called an exclusive producer and sells only high quality

products. In contrast, a firm doing product and process innovation is called a mass producer.

A mass producer has several options, which are combinations of supplying high and low quality

products for high and low prices to either all or only the rich. (Föllmi, Würgler and Zweimüller,

2009, p. 13)

The effects described in the following are summarized in figure 6. Föllmi, Würgler and

Zweimüller (2009, p. 36) conclude in their baseline model with only rich and poor that in a

more unequal economy, incentives for product innovation are strong (a). Vice versa, in a more

egalitarian economy, incentives are high for firms to adopt process innovation and thus mass pro-

duction (b). Thus, in a more equal economy, the penetration of technologies is higher due to

the strong incentives for process innovation. In this model it is important that preferences are

non-homothetic. The rich consume more and higher quality products than the poor. As a conse-

quence, the income distribution in the economy affects the relative incentives of the firms, whether

to pursue product or process innovation. In the extensions of their model, Föllmi, Würgler and

Zweimüller (2009, p. 33-34) include the middle class to discuss the effects of inequality on economic
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growth. In their baseline model only the rich and the poor exist. In forming our hypothesis the

three income classes, including the middle class, are crucial. Therefore, we rely in our analysis on

the extended model. With inequality between the rich and the middle class two types of equilibria

are distinguished. In the first type of equilibrium, the middle class is relatively rich. Hence, the rich

buy all high quality products and the middle class some of them. Consider that redistribution from

the poor to the middle class (c) in the extended model is the same as redistribution from the poor

to the rich in the baseline model. This implies that product innovation incentives are supported,

because more products are bought from the exclusive producers and less from the mass produc-

ers. In this equilibrium, redistribution from the rich to the middle class (d) reduces incentives for

product innovation, as the rich reduce their willingness to pay. Even though the rich still buy all

of these products and the middle class buys more of them. In the second type of equilibrium, the

middle class is less wealthy and cannot afford the goods offered by the exclusive producers. Hence,

redistribution from the poor to the middle class (e) increases the middle class’ willingness to pay

for mass products. As a consequence, the poor buy less of the mass goods, as they have a lower

income and prices have increased due to the increased demand. In total, the incentives change

in favor of process innovation. Finally, redistribution from the rich to the middle class (f) shifts

the innovation incentives in the direction of process innovation as well. Additionally, the increased

income of the middle class increases their willingness to pay and hence the prices. This in turn,

reduces the poor’s demand for these goods. Figure 6 summarizes the effects of redistribution be-

tween income classes, based on the theoretical findings of Föllmi, Würgler and Zweimüller’s (2009)

model. These effects are our hypothesis 2.

Figure 6: Hypothesis 2: Effects of Inequality on Penetration Rate
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Finally, we discuss some differences between the two main models we consider in order to answer

our research question. Both models have included product innovation, with new technologies

appearing. There is one important difference in the understanding of productivity gains due

to new vintages between the models of Föllmi, Würgler and Zweimüller (2009) and Comin and

Mestieri (2013a). On the one hand in the former model higher productivity is due to process

innovation, even though the quality decreases. On the other hand Comin and Mestieri (2013a)

do not explicitly mention process innovation, but they assume continuous reduction in production

costs over time for the same quality. As a consequence, they may imply some sort of process

innovation, which lowers production costs and makes vintages affordable to more people. In their

model, productivity gains stem from the use of more productive vintages and are not necessarily

due to improvement of the production process. Another difference is that Comin and Mestieri

(2013a) assume homothetic preferences. Föllmi, Würgler and Zweimüller (2009), however, do

assume non-homothetic preferences in their model. So, not all individuals in a country have

the same preferences. Finally, Föllmi, Würgler and Zweimüller’s (2009) model does not embody

quality upgrading of existing products. We build our estimation on the model of Comin and

Mestieri (2013a), which includes the embodiment effect. This effect represents the idea that new

vintages of a technology appear at each instant exogenously. The increase of vintages increases the

productivity in a country. We explain this in detail above in subsection 2.4.2 ’A Microfoundation

for the Diffusion Curve’.

Hypothesis 2: The intensive margin is the long-run penetration rate of an economy. We formulate

the hypothesis that higher inequality decreases the penetration rate. In order to achieve a higher

penetration in the long-run, particularly a large middle class compared to the rich and compared

to the poor may be relevant. The effects of a large middle class on the penetration rate are

summarized in figure 6.
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4 Estimation Method

In the following subsection we describe the estimation method for our core specifications. In the

second subsection we describe the estimation method for the instrumental variable estimation we

run as a robustness check of our core specifications.

4.1 Core Specifications

Following the research question and the respective channels in the literature, there are two ap-

proaches to estimate the respective effects on the adoption lags and the penetration rate.

Our core specifications for the first specification, the adoption lag, are based on the estimation

of Comin and Mestieri (2013a) shown in figure 7. The aim is to estimate the effect of within-

country inequality on the technology adoption lag. As explanatory variables we use as Comin and

Hobijn (2006, p. 10) determinants of the size of adoption barriers. In the second approach we

examine how within-country inequality affects the penetration rate of technology. Accordingly, the

dependent variable is the intensive measure, as used in figure 9 and as calculated in Comin and

Mestieri (2010). In conclusion, both estimations (i.e. adoption lag and penetration rate) are rele-

vant and explore interesting effects. In the following section we first describe our core specifications

for the two adoption margins. Then we continue with the necessary assumptions for consistent

and efficient estimates. Finally, we discuss the issue of heteroskedasticity.

We use in our core specifications a pooled ordinary least square (POLS) method. As dependent

variables we include adoption lags and the penetration rates. We have 186 observations for 72

countries and 8 technologies. We choose a pooled OLS with the following specification for the

adoption lag estimation:

ln Dt,c,τ = β0 + β1 INEQUALITYt,c + β2 INSTITUTIONSt,c + β3 GDPt,c + β4 EDUCt,c

+β5 OPENNESSt,c + β6 TDt,c + ut,c,τ (20)

for t=1,...,T, c=1,...,N and τ=1,...,M. Dt,c,τ represents the technology adoption lag at the time of

adoption t, in a particular country c for a particular technology τ . TD stands for the included

time dummy.

As explanatory variables we include the following variables. All these independent variables

help to explain barriers to technology adoption. β0 is the intercept and starting from β1 we

have the coefficients of the covariates which show us the marginal effects of the covariates on

technology diffusion. We expect the following signs of the included covariates. Higher inequality

decreases the technology adoption lag. Accordingly, measuring income inequality with income

shares, implies that a higher share of the middle class compared to the rich, should increase the

technology adoption lag. Better quality of institutions (Marshall and Jaggers, 2011) are expected

to decrease the adoption lag, as they represent lower expropriation risk. The higher the relative

overall advancement of a country (log of real GDP per capita of country (Maddison, 2007)) the more
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likely is a country to have the appropriate resources and endowments to adopt a new technology.

Basu and Weil (1998) propose this in their appropriate technology hypothesis. Human capital

is measured as the fraction of eligible aged children enrolled in primary, secondary or tertiary

school (Barro and Lee (2010)). Nelson and Phelphs (1966) introduce the idea that better educated

people introduce earlier new technologies, and therefore speed up the technology diffusion. Hence,

higher education decreases the technology adoption lag. Higher trade openness, measured as the

sum of imports and exports as a fraction of GDP (Heston, Summers and Aten, 2011), may cause

faster technology adoption through two channels. First, as proposed by Holmes and Schmitz

(2001), increased foreign competition increases the pressure on domestic firms to adopt faster.

Second, trade causes knowledge spillovers. Evidence from Coe and Helpman (1995) suggests that

foreign R&D is beneficial for domestic productivity. Knowledge spillovers reduce adoption costs

and therefore the adoption lag. Additionally, dummies for time are included. These are important

in order to isolate the effect of inequality on technology diffusion, for example to take care of

time-specific effects of time-specific measurement error due different income definitions over time.

(Hyytinen and Toivanen, 2011, p. 372)

To measure inequality we include the Gini coefficient and a quantile shares as measures for

inequality. Q1 is the income share of the poor. The middle class consists of the three quantiles

in between the rich and the poor. The rich are denoted with Q5. To capture all effects, we run

three regressions. In the first regression we include the Gini coefficient, as a general measure of

inequality. In the second and third specifications we include quantile income shares. In the second

specification we exclude the richest quantile (Q5). In the third specification we exclude the poorest

quantile (Q1). Accordingly, the interpretation of the second specifications is that increasing the

income share of the middle class compared to Q5 by 1%, does increase or decrease the adoption lag

respectively the penetration rate by x %. Where x is the value of the coefficient β. As described

in the literature review, redistribution from the rich to the middle class, may give more people the

means to adopt the new technologies, and hence increases the intensive margin.

To estimate the effect of inequality on the intensive margin we consider the following pooled

OLS estimation with the same properties as described above:

ln at,c,τ = β0 + β1 INEQt,c + β2 INSTt,c + β3 GDPt,c + β4 EDUCt,c

+β5 OPENNESSt,c + β6 TDt,c + ut,c,τ (21)

The determinants of the intensive margin are factors that may be ”differences in the costs

of producing the intermediate goods associated with a technology, taxes, relative abundance of

complementary inputs or technologies, frictions in capital, labor and goods markets, barriers to

entry for producers that want to develop new uses for the technology, etc.” (Comin and Mestieri,

2013a, p. 7) We include the same covariates for the penetration rate estimation as for the adoption

lag estimation.

To consistently estimate β we require two assumptions. Assumption POLS.1 is that we im-
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pose exogeneity in the same time period, consequently the error term is not correlated with any

regressor x in the same time period: E(x′t,cut,c,τ ) = 0. However, we do not impose strict ex-

ogeneity. So, x and u can be correlated over time, hence if s 6=t. Assumption POLS.2 is the

full rank condition: rank
[∑T

t=1E(x′t,cxt,c)
]

= K. The rank condition rules out perfect linear de-

pendency among the covariates. If POLS.1 and POLS.2 hold, our estimates are consistent and

asymptotically normal. In addition, we add homoskedasticity and no serial correlation assumption

in order to get additionally to consistent as well efficient results. POLS.3 is the following: (a)

E(u2
t,c,τx

′
t,cxt,c) = σ2E(x′t,cxt,c), t=1,...,T, c=1,...,N and τ=1,...,M, where σ2 = E(u2

t,c,τ ) for all t,

c and τ ; (b) E(ut,c,τus,c,τx
′
t,cxs,c) = 0 where s 6=t and t, s=1,...T. POLS.3a assumption is a strong

homoskedasticity assumption. For this to be fulfilled we require that E(u2
t,c,τ |xt,c) = σ2 for all t.

This implies that not only the conditional variance is not dependent on xt,c but as well that the

unconditional variance is the same in every time period. Finally, the assumption POLS.3b restricts

the conditional covariance of the error terms across time periods to be zero. As a consequence,

we assume no serial correlation. That POLS.3b is fulfilled we require: E(ut,c,τus,c,τ |xt,cxs,c) = 0,

where where s6=t and t, s=1,...T. (Wooldridge, 2002, p. 170-171)

Heteroskedasticity is present if the variance of the error varies with different values of a control

variable. We plot the residual against the fitted values (in the top row) and against inequality

measures (in the bottom row) in figure 11 for the adoption lag and in figure 12 for the penetration

rate. From the left to the right, we do this for each of the three sub specifications. The correspond-

ing estimations are shown in table 4. In the top row in figures 11 and 12, the first graph on the left

shows the first sub specification for the Gini coefficient, the second and third for the quantile income

shares. We discuss the residual plots and heteroskedasticity in detail in subection 6.2 ’Robustness

Checks’. We conclude that our estimation may suffer from heteroskedasticity. Therefore, we apply

heteroskedasticity-robust standard errors. Consequently, if we did not correct the standard errors

for heteroskedasticity we would still get consistent estimates. But the estimates were no longer

BLUE. Hence, POLS is not the estimation method with the smallest variance and hence the most

efficient one among the unbiased methods. Heteroskedasticity causes biased standard errors and

therefore biased test statistics and significance levels. With the heteroskedasticity-robust error

terms, we weight the observations less, which are far away from the regression line. Because we

consider these observations as less relevant to give us information about the true regression line.

Hence, instead of giving equal weight to all observations we give more weight to the observations

that are close to our regression line.
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4.2 Instrumental Variable Estimation

Subsequently, we describe the two-stage least instrumental variable estimation that we run. Our

core specifications may suffer an endogeneity problem. As a consequence, our assumption POLS.2

E(x′t,cut,c,τ ) = 0 may not be valid anymore. If this is the case, our estimates are inconsistent

and hence, we cannot interpret them anymore. In our case we have three different sources that

may cause endogeneity. First, measurements errors in income inequality data. Second, we could

have an omitted variable bias, due to for example different preferences of individuals at different

quantiles of the income distribution. For example, we suggest in our hypothesis 2 that for the poor

or the middle class new technologies are particularly useful. But as we cannot control for different

preferences, we may get biased estimators. Third, we could have the issue of a simultaneity bias.

We suggest that inequality affects technology diffusion. But at the same time there are studies that

suggest that technology diffusion influences the distribution of income. One example is the paper

of Acemoglu (1998). Acemoglu (1998) says that higher educated people attract new technologies

which contribute to increasing the wage premium for their education. To see why the simultaneity

bias causes biased estimates, consider the following two equations, where in our case y1 is technology

diffusion and y2 inequality: y1 = α1y2 + β1x1 +u1 and y2 = α2y1 + β2x2 +u2. Replacing y1 in the

second equation with the y1 from the first one gives us: y2 = α2(α1y2 +β1x1 +u1)+β2x2 +u2. Now

we see that y2 depends on u1, which violates our assumption POLS.2. Hence, we get inconsistent

estimates due to endogeneity.

In order to get consistent estimates and eliminate the potential endogeneity that causes POLS.2

to not hold anymore, we apply a Two-Stage Least Squares (2SLS) approach. To be able to use the

2SLS we need a valid instrument. This instrument has to fulfill the following two requirements:

First, cov(zc, ut,c,τ ) = 0, which means that the instrument is exogenous. Second, θ1 6= 0 in the

first stage, so that the instrument has a significant effect on the endogenous variable. Due to

the channels described above by Easterly (2007), the suitability of land does affect the income

distribution. Furthermore, we assume that instrumental variable has only a causal effect on the

endogenous variable, but not on the dependent variable. In our case we assume that this is given,

as the suitability of land should not affect the adoption lag or the penetration rate, except by

influencing the income inequality.

In the first stage we run a pooled OLS regression of all covariates and the instrument z on the

endogenous variable:

INEQUALITYt,c = δ0 + δ1 INSTITUTIONSt,c + δ2 ln GDPt,c + δ3 EDUCt,c

+δ4 OPENNESSt,c + θ1zc + δ6 TDt,c + rt,c,τ (22)

As the first stage is a pooled OLS regression we assume E(rt,c,τ ) = 0 and rt,c,τ to be uncorrelated

to any covariate. The first stage gives us the fitted value of the endogenous variable which is:

̂INEQUALITY t,c. In the second stage we regress a pooled OLS as in equations (20) and (21).
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Instead of INEQUALITY we include the fitted value obtained from the first stage regression:

ln Dt,c,τ = β0 + β1
̂INEQUALITY t,c + β2 INSTITUTIONSt,c + β3 GDPt,c + β4 EDUCt,c

+β5 OPENNESSt,c + β6 TDt,c + ut,c,τ (23)

ln at,c,τ = β0 + β1
̂INEQUALITY t,c + β2 INSTITUTIONSt,c + β3 GDPt,c + β4 EDUCt,c

+β5 OPENNESSt,c + β6 TDt,c + ut,c,τ (24)

We describe in the following the required assumptions. Assumption 2SLS.1 says that for some

1xL vector z, E(z′cut,c,τ )=0. 2SLS.2 is the rank condition which says that (a) rank E(z′czc) = L;

(b) rank(z′cxt,c) = K. Part (a) is only needed when more than one instrument is used. The rank

condition rules out perfect collinearity. In addition, we require the order condition L ≥ K, which

says that at least as many instruments as endogenous variables are required. Under 2SLS.1 and

2SLS.2 the estimates are consistent. Moreover, we have assumption 2SLS.3 which assumes that

E(u2
t,c,τz

′
czc) = σ2E(z′czc), where σ2 = E(u2

t,c,τ ). For 2SLS.3 to hold we need V ar(ut,c,τ |zc) = σ2

if E(ut,c,τ |zc) = 0 to hold. If furthermore 2SLS.3 holds, we get the most efficient 2SLS estimator

in the class of all instrument variable estimators using instruments linear in zc. (Wooldridge, 2002,

p. 83-95)
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5 Data

5.1 Identification Strategy of Dependent Variables

In the following section, the identification strategy to determine the extensive and intensive margin

in the data is explained. The strategy builds directly on the microfoundation described in subsec-

tion 2.4.2 ’A Microfoundation for the Diffusion Curve’.

Diffusion equation. In order to obtain the diffusion equation, first we combine the demand

for sector τ output (12), the sectoral price deflator (17), the equilibrium wage rate (14) and the

expression for Zτ (19). Logs are denoted as lower-case letters. One obtains the following expression:

yτ = y +
θ

θ − 1
[zτ − (1− α)(y − l) + α ln α] (25)

In equation (19) we can see that, to a first order approximation, γ only affects yτ through the

linear trend. Accordingly, a second-order approximation of log Zτ around the starting adoption

date (τ +Dc
τ ) can be made:

zτ ≈ ln aτ + (χ+ γ)τ + (µ− 1) ln (t−Dτ − τ) +
γ

2
(t−Dτ − τ) (26)

Now, by substituting (26) into (25) derives the estimating equation:

ycτt = βcτ1︸︷︷︸
vertical shift

+yct + βτ2t+ βτ3((µ− 1) ln(t−
horizontal shift︷︸︸︷

Dc
τ −τ)︸ ︷︷ ︸

Concave Shape

−(1− α)(yct − lct ) + εcτt (27)

where ycτt denotes the log of the output produced with technology τ , yct is the log of output, yct -l
c
t

is the log of output per capita and εcτt is an error term. Equation (27) is the equation used to

approximate the diffusion equation and to estimate the variables of interest. As described above,

there are three different technology measures in the CHAT dataset. In contrast to Comin and

Mestieri (2010) in the estimation of equation (27) we do not distinguish between the different

measures.

Calibration. In the following paragraphs, the estimation procedure is explained. The estima-

tion of equation (27) gives us the two important measures βcτ1 and Dc
τ . Where βcτ1 is essential to

calculate the intensive margin and Dc
τ is the extensive margin. For the estimation of equation (27)

we follow exactly Comin and Hobijn (2010). Therefore, we first have to define certain parameters.

The trend-parameter, βτ2 and parameter βτ3 are assumed to be constant across countries. As they

only depend on variables θ and γ. Accordingly, we calibrate our model as in Comin and Hobijn

(2010) with labor income share set at α = 0.3. This is consistent with the postwar US labor share.

After 1765 the technology frontier growth rate equals χ + γ = (1 − α) ∗ 2%, which matches a

balanced growth path of 2%. The literature does not mention how to split up the contribution

of increased productivity between new technologies (χ) and new vintages (γ). Hence, Comin and

Hobijn (2010) divide the contribution evenly and define the productivity due to new vintages as

γ = (1−α)∗1%. To calculate the intensive margin we need to define the elasticities of substitution
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between technologies. As in Comin and Mestieri (2010) we define θ = 1.31, which is calculated as

the average across technologies, implied by the values of βτ3. We need θ for the calculation of the

intensive margin. The value of θ is similar to values implied by the estimates of the price markups

from Basu and Fernald (1997) and Norbin (1993). Based on Basu and Fernald’s (1997) estimates

of the markup in manufacturing, we define µ = 1.3.

Having defined the parameters we now execute a two-step approach following Comin and Hobijn

(2010). In the first step we estimate equation (27) and use only data for the United States. From

this estimation we get values for βτ1 and Dc
τ for the United States. Moreover, we get estimates for

βτ2 and βτ3, which are assumed to be constant across countries. In a second step βτ1 and Dc
τ are

estimated separately for each country. The estimated values of the United States for βτ2 and βτ3

are plugged into equation (27). We apply a two-step procedure because the adoption lag enters

nonlinearly in the estimation equation for each country. This makes a system of equations for all

countries together not feasible. Furthermore, this approach has two advantages over the system es-

timation method. First, we consider the data for the United States to be the most reliable. Hence,

we get the most precise estimates for parameters that are constant across countries. Second, the

model is based on a set of neoclassical assumptions. These assumptions hold most probably in the

United States, where relatively low frictions on capital and product markets exist. (Comin and

Hobijn, 2010, p. 2042-2043).

Estimation with the adoption lag. Equation (27) is estimated by nonlinear least squares. We

estimate βτ3 only for the United States. Therefore, the identifying assumption is that in the United

States, the logarithm of per capita GDP is not correlated with the technology-specific error, εcτ,t.

This assumption is only necessary for the United States, but not for all the other countries, as we

take the value of βτ3 from the United States for all the other countries. Comin and Hobijn (2010)

show that for a large majority of technology-country pairs they cannot reject the null hypothesis

that βτ3 is common across the countries, when estimating βτ3 country by country.

The described estimation yields values for the adoption lag for all technology-country pairs in

the sample. As we approximate the diffusion curves, some values are implausible or imprecise. We

define implausible estimates as if they imply that the adoption date is more than ten years before

the invention date. The ten years are considered in order to allow for inference error. Comin and

Hobijn (2010, p. 2043-2044) identified three main reasons why implausible estimates may occur.

First, for some countries the data is too noisy to capture the curvature. Second, for some countries

the curvature of technology diffusion is convex and not concave as implied by the model. Examples

are African countries that have experienced events such as decolonization or civil wars. Third, for

some countries data is only available a long time after a technology was adopted. We consider es-

timates with high standard errors as imprecise. The cutoff values is chosen at
√

2003− υτ . Comin

and Hobijn conclude that 65% of the technology-country pair estimates are plausible and precise.
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Estimation with the penetration rate. The country-technology specific intercept βcτ1 is cal-

culated for technologies measured by output produced as we show in the following equation:

βcτ1 = βτ3(ln acτ + (χ+
γ

2
)τ − γ

2
Dc
τ + α ln α) (28)

where (χ+ γ)τ is the productivity level of the first vintage of technology τ . Equation (28) shows

that the intensive margin, acτ , is the only driver of cross-country differences in the intercept βcτ1.

The intensive margin is identified in the data relative to a benchmark. The benchmark is the value

for the United States, as in Comin and Hobijn (2010). As a consequence, the intensive margin is

calculated as we show in equation (29):

ln acτ =
βc1,τ − βUS1,τ

β3,τ
+
γ

2
(Dc

τ −DUS
τ ) (29)

Evolution of adoption lags and penetration rates. Comin and Mestieri (2013a, p. 17-18) regress

the intensive and extensive margin on a constant and an independent variable, which represents

the difference between the invention year and the year 1820.

The adoption lag regression is shown in figure 7. The extensive margin decreased in Western

and as well in non-Western countries. Interestingly, the adoption lag decreased faster in non-

Western countries than in Western countries. In figure 8 we have bars showing the median for

each of the 25 technologies at their invention date. The more recent the adoption date, the smaller

is the adoption lag. The fitted lines show the convergence of the adoption lags over time, even

though for both groups the lags are declining.

For the intensive margin, one can see that in the year 1820 the average penetration rate was

negative. The more recent the invention date, the lower is the penetration rate compared to the

benchmark, the United States. By definition the intensive margin of Western countries has not

changed over the years. It is remarkable that the intensive margin of countries of the Rest of the

World decreased relatively to the Western countries. We observe a divergence of the intensive

margin between Western countries and the Rest of the World. This means that on average a

non-Western country compared to a Western country did have a higher penetration rate in 1850

than in 1950. Nonetheless, the absolute level of penetration may be higher. This fact is also shown

in figure 10 graphically. The bars show the median for 25 technologies at the invention date for

Western and non-Western countries. The more recent the date, the longer are the bars. The fitted

lines show clearly a divergence of the median penetration rates between the two country groups.

In order to identify the drivers of the respective divergence and convergence we include covari-

ates into these two regressions. The estimation method is described in the subsequent section.

31



Figure 7: Evolution of the Adoption Lag (Comin and Mestieri, 2013a, p. 17)

Figure 8: Adoption Lag with respect to Invention Year (Comin and Mestieri, 2013a, p. 17)

32



Figure 9: Evolution of the Intensive Margin (Comin and Mestieri, 2013a, p. 18)

Figure 10: Log-Intensive Margin with respect to Invention Year (Comin and Mestieri, 2013a, p. 18)

5.2 Detailed Description of Dataset

To measure technology adoption lag and the penetration rate for each technology-country pair we

build on the model and estimation of Comin and Mestieri (2010). They use the CHAT dataset

compiled by Comin and Hobijn (2009a). This dataset contains information on technology diffusion.

It contains 104 technologies in 161 countries during the last 200 years (Comin and Hobijn, 2009a).
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5.2.1 Technology Diffusion Data

We follow Comin and Hobijn (2010) in the selection of a sub-set of technologies. Technology

diffusion is measured in three possible ways, as already described above in subsection 2.4.1 ’The

Shape of Diffusion Curves’. The selection is based on the coverage over rich and poor countries

and technologies which are available at initial phases of the diffusion. This is in order to maximize

the quality of the included covariates. We are aware that these restrictions may cause a selection

bias. Particularly for older technologies only countries with long adoption lags are included. We

use the publicly available data of Comin and Hobijn (2010) of adoption lags, which contain 830

observations. They could identify 830 plausible and precise observations of adoption dates for 15

technologies. The 15 technologies are described in Appendix ’A Data Descriptidson’. We show

their summary statistics in table 5. This table 5 is identical to table 2 in Comin and Hobijn (2010,

p. 2048). The earliest adoption date is in the year 1817 (ships in the USA), the latest in the

year 1993 (internet in Belgium). After matching additional covariates, we obtain a sample of 186

observations. We show the summary statistics for the adoption lags of this sample in table 6. In

the last column we see that for three technologies with the oldest invention year, ships, cars and

aviation - freight, that the mean of the adoption lag of these three technologies is big compared

to the mean of the same technologies in the initial sample of 830 observations. This is a sample

selection bias, which is intuitive, as only the observations with a recent adoption date are included.

Additionally, they must have a long adoption lag if the invention year is early. We test below in

subsection 6.2 ’Robustness Checks’ whether excluding these observations does affect our results.

In general, the more recent the invention date, the more observations we were able to match.

In total we obtain a dataset of 186 observations, which is 22.41% of the initial 830 observations.

This is mostly due to missing control variables for observations prior to 1960. The matching of

our explanatory variables restricts our sample further.

We start with the dataset of Comin and Hobijn (2010) which includes adoption lags and is

publicly available. We replicate the penetration rate as described in Comin and Mestieri (2010).

Because only the data of the adoption lags but not the penetration rates are publicly available.

The only difference we are aware of is that in the estimation of equation (27) we do not distinguish

between the different measures of technology diffusion as Comin and Mestieri (2010) do. This

distinction caused even larger deviations for our estimates. We show in table 7 our estimates for

the penetration rates for the sample of the 830 observations. In table 8 we show the summary

statistics of our estimation sample of 186 observations. We identify small deviations of the estimates

in our sample compared to the summary statistics of Comin and Mestieri (2010) and show them in

the last column in table 8. We calculate the deviations by taking the exponential function of the

means of the penetration rates in our sample and do the same with the means of table 13 in Comin

and Mestieri (2010, p. 39). This gives us the penetration rate in percentages compared to the

United States. Then we take the difference of the percentage values of our sample and the sample
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of Comin and Mestieri (2010). We note that for the technologies ships, cars and aviation-freight

we get big differences between 13 and up to 50 percentage points. These three technologies sum

up to only six observations in our sample. In subsection 6.2 ’Robustness Checks’ we exlude the

technologies ships, cars and aviation - freight and test whether this affects our results. We think

the deviations of up to 8.1 percentage points for the technologies invented in 1950 or more recently

are acceptable. Furthermore, in the second last column in table 8 we see that the difference of

the means of the 186 matched observations from the 830 initial observations does not exceed 6.1

percentage points for these technologies.

Our sample starts with the first observation in the year 1960 and continues in five year steps

up to the year 1995. Consequently, we end up with a sample of 186 observations. The highest

number of observations is six for South Korea. Hence, we have little within-country variation.

In table 9 we show the 17 Western countries, which sum up to 59 observations in total. The 17

Western countries are defined by Maddison (2004)2. We choose this definition in order to be in

line with Comin and Mestieri (2013a) and therefore be able to build on their result of convergence

and divergence of the two margins between the two country groups. The 55 non-Western countries

are listed in table 10 and sum up to 127 observations. Given the fact that the education control

variable provided by Barro and Lee (2010) is only available every five years and the quantile shares

of income inequality provided by UNU-WIDER (2009) are not available before the year 1960 in

adequate quality, our sample is restricted. Therefore, we have rounded the technology adoption

dates to these five year steps. As one can see in table 1, the observations are unevenly distributed

over the investigated time. Therefore, we will include in our core specification time dummies. This

allows us to control for time-specific differences.

Table 1: Distribution of Observations over Time

Year Frequency Percent Cumulation in % mean LAG mean PEN

1960 2 1 1.08 2.44 -1.04

1965 7 4 4.84 3.46 -0.75

1970 6 3 8.06 3.56 -1.34

1975 7 4 11.83 2.05 -0.70

1980 15 8 19.89 1.91 -0.34

1985 60 32 52.15 2.40 -0.65

1990 77 41 93.55 2.44 -1.16

1995 12 6 100.00 2.49 -1.72

Total 186 100

2The 17 Western countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,

Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom and United States.
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In tables 2 and 3 we show the 8 technologies and the corresponding summary statistics of

the adoption lags and the penetration rates for the in total 186 observations. We sorted the

technologies corresponding to their invention date. In general, the later the invention date, the

more observations are available. In absolute as we as in relative terms. The mean of the adoption

lag decreases over time. For the penetration rate we do not find a decrease over time. This is

in line with the finding of Comin and Mestieri (2013a). They show that the average adoption

lags decreases for all countries over time. Furthermore, no convergence of the penetration rate is

expected. We do not see a decrease in the mean of the penetration rates. On the other hand, by

adoption year we do not observe a decrease of the adoption lag, as shown in table 1. It may be

that the big variation of the convergence and divergence of the two margins has been finished by

1960, when we start our analysis.

To sum up, we base our dataset initially on the 830 precise and plausible estimates of Comin and

Hobijn (2010). By matching them to covariates we generate a balanced dataset of 186 observations.

Table 2: Summary Statistics of ln Adoption Lags by Technologies

Obs mean sd Min Max Invention Year % of C&H (2010) estimates

Ships 3 5.18 0.01 5.17 5.19 1788 5.88%

Cars 1 4.51 . 4.51 4.51 1885 1.37%

Aviation - Freight 2 4.24 0.09 4.17 4.30 1903 6.67%

Blast Oxygen Steel 17 2.97 0.31 2.37 3.43 1950 43.59%

PCs 46 2.60 0.19 1.90 2.94 1973 65.71%

Cellphones 59 2.50 1.09 -5.35 2.98 1973 71.08%

MRI 10 1.47 0.37 0.96 1.97 1977 83.33%

Internet 48 1.97 0.39 0.00 2.39 1983 80.00%

Total 186 22.41%

5.2.2 Income Inequality Variables

The variable of interest is a within-country inequality measure. In order to increase the precision

we choose, additionally to the Gini coefficient, quantile income share data. As described above,

the Gini coefficient is a single inequality statistic with the drawback, that different distributions

yield the same coefficient. As described in the Literature Review we expect different quantiles of

the distribution to be important for technology diffusion.

Deininger and Squire (1996) describe that income inequality data often suffers quality problems.

Furthermore, different definitions cause problems to compare the estimates between countries. In

order to reach the best possible comparability between countries and to the literature, we follow
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Table 3: Summary Statistics of Penetration Rates by Technologies

Obs mean sd Min Max Invention Year % of C&H (2010) estimates

Ships 3 0.07 0.39 -0.17 0.52 1788 5.88%

Cars 1 -2.38 . -2.38 -2.38 1885 1.37%

Aviation - Freight 2 -0.36 0.07 -0.41 -0.31 1903 6.67%

Blast Oxygen Steel 17 -0.99 0.94 -2.79 0.55 1950 43.59%

PCs 46 -0.68 0.55 -1.86 0.06 1973 65.71%

Cellphones 59 -1.20 1.02 -3.84 0.06 1973 71.08%

MRI 10 -0.52 0.49 -1.81 0.00 1977 83.33%

Internet 48 -0.99 0.88 -4.33 0.00 1983 80.00%

Total 186 22.41%

Föllmi, Oechslin and Zahner (2011) in the construction of the dataset.

Föllmi, Oechslin and Zahner (2011) merge the World Income Inequality Database (WIID release

2c, UNU-WIDER (2009)) and the database constructed by Deininger and Squire (1996). The WIID

dataset already contains an update from Deininger and Squire in 2004. Observations which are

not from surveys that cover the whole country and the whole population are excluded. In case

that observations of several datasets are available, observations from the three favored sources

are preferred in the following order. Observations from the Luxembourg Income Study (LIS)

are preferred over observations from Deininger and Squire in 2004 over observations from the

original Deininger and Squire database from 1996. All other sources are ranked lowest and are

only considered if the WIID quality rating is either 1 or 2. Observations with quality ratings 3

and 4 are neglected. From Deininger and Squire (1996) only observations of the quality ”accept”

are included. The three favored sources are preferred even when measured in the previous period

over observations from other sources. The advantage of the Luxembourg Income Study is that it

is comparable across countries and years as it always measures income inequality with the income-

based measure. Furthermore, based on the WIID rating, good quality is preferred over bad quality,

income-based over expenditure-based measures, and net income values over gross income values.

Deininger and Squire (1996) propose to add the value of 6.6 to expenditure-based measures of the

Gini coefficient to decrease the difference between the income-based measure and the expenditure-

based measure. Föllmi, Oechslin and Zahner (2011) apply this idea on the quantile shares. Each

expenditure-based quantile is multiplied by the ratio between the sample mean of quantile share

for the income-based measures and the sample mean of quantile shares for the expenditure-based

measures. They sum over all available countries (i) and time periods (t):

Q̄sinc =

N∑
i=1

T∑
t=1

Qsinc,i,t (30)
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Q̄sexp =

N∑
i=1

T∑
t=1

Qsexp,i,t (31)

Q̄scorr = Qsexp,i,t ∗
Q̄sinc
Q̄sexp

= Qsexp,i,t ∗ x (32)

where s=1,..., 5 represents the 5 quantiles. The corrected quantile shares do not sum up to 100

anymore and rescaling is necessary. The sum of all quantile shares is divided by 100, which gives

us zi. With zi we can then correct the quantile shares:

zi =
Q1
corr,i,t +Q2

corr,i,t +Q3
corr,i,t +Q4

corr,i,t +Q5
corr,i,t

100
(33)

Qsinc,i,t =
Qscorr,i,t
zi

. (34)

This correction allows us to correct for some differences between the expenditure-based and income-

based quantile shares. The Gini coefficient is corrected by 6.6 as done by Deininger and Squire

(1996) in order to make the measure comparable to the literature. (Föllmi, Oechslin, Zahner, 2011,

p. 8-10) Nevertheless, we try to only use data of high quality and make them comparable as possible

among countries, we are aware that income inequality measures still may suffer from measurement

errors. Atkinson and Brandolini (2001) show that only relying on ’high quality’ observations from

the WIID dataset and accounting for the difference between expenditure- and income-inequality

still causes substantial comparability problems between different datasets. Therefore, Atkinson and

Brandolini (2001) state to only use data of the LIS dataset. However, this has the big drawback

to keep only one of ten observations, which reduces the sample even further. Here, we try to get

a as many possible observations of good quality as possible. This may cause measurement error.

Measurement errors in an explanatory variable can cause inconsistent estimates. For example

attenuation bias shrinks the estimate toward zero. A positive estimate will be underestimated and

a negative estimate overestimated. To test this issue we run an IV regression as a robustness check

for our core specifications. (Wooldridge, 2002, p. 73-75)

In table 11 we give an overview over the variables included in the regressions. In tables 12, 13

and 14 we show the summary statistics of all the variables. Table 12 shows the summary statistics

for the full sample, table 13 for the sample of the Western countries and table 14 for the sample

of the non-Western countries. We see clearly that as expected the mean of the penetration rate

is higher and of the adoption lag is lower in the Western countries compared to the non-Western

countries. Furthermore, we see that the Q5, the richest 20%, have a much higher share in non-

Western countries with 48.59% compared to 38.43% in the West. The middle class, which consists

of quantiles Q2, Q3 and Q4, receives 53.82% of income in the West compared to 45.62% in non-

Western countries. Thus, the middle class is strong in the West, as the difference to the rich is

small and the difference to the poor is big. The poorest, Q1, are relatively better off in the West

with an income share of 7.75% compared to 5.79%. We conclude that in our sample, the richest
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20% in a country are relatively better off in non-Western countries, but the middle class and the

poorest are relatively better off in the West. The lower mean of the Gini coefficient in the West

supports this finding. Furthermore, we note that the standard deviation is for all measures much

higher in the non-Western countries. As a consequence, this sample is much more heterogeneous.

5.2.3 Control Variables

In terms of control variables we follow the estimation of Comin and Hobijn (2006). Hence, we

include the percentage of primary, secondary and tertiary schooling attained of the population

over 25 years old by Barro and Lee (2010) as explanatory variables for human capital. To account

for restrictions on the flow of ideas and capital we measure the sum of imports and exports as a

fraction of GDP as trade openness. For the level of economic development we include the log of

real GDP per capita provided by Maddison (2007). As control variable for institutions we take

the polity IV dataset, which combines the score of autocracy and democracy into one measure.

The construction of the polity IV dataset is described in Marshall, Jaggers and Gurr (2011) and

is provided by Marshall and Jaggers (2013). An overview over the variable definitions and sources

is given in table 11.

We compare the summary statistics in tables 13 and 14. As expected, the mean of GDP is

higher in Western countries. We see that the share of primary educated people in the population of

over 25 years is slightly higher in non-Western countries. In line with our expectation, the shares

of secondary and tertiary educated people much higher in the West. On average, are non-Western

countries more open for trade compared to the West. Finally, as expected, institutions are better

in the West.

5.2.4 Instrumental Variable

As in the literature described, we face a potential endogeneity problem. Adopted technologies can

influence the wages and therefore inequality through various channels. A potential instrument is

the variable of agricultural endowment, introduced by Easterly (2007). It is constructed by data

offered by the Food and Agriculture Organization (FAO). The IV measures the relative proportion

of arable land of wheat compared to sugar cane (Easterly, 2007, p. 762):

Lwheatsugarc = log

[
(1 + arable land suitable for wheat)

(1 + arable land suitable for sugar cane)

]
(35)

We use the ratios of Lwheatsugarc published by Easterly (2007, p. 773) and match them to our

data. Note that we require only one observation per country, as we assume that the structural in-

equality is constant over time. Easterly (2007, p. 758) finds that a higher proportion of arable land

suitable for wheat compared to sugar cane is negatively correlated to the Gini coefficient. The two

requirements for an instrumental variable seem to be plausible. First, resource endowment affects
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structural inequality, due to the channels described by Sokoloff and Engerman (2000). Second, the

exogeneity restriction seems reasonable. Hence, we can assume that resource endowment is not

correlated to the error term may hold. Exogeneity is assumed because the suitability of land does

not influence directly the adoption lag or penetration rate of a technology. We are aware that for

agricultural technologies the exogeneity restriction could be violated. In our final sample of 186

observations we do not have any technology, such as tractors, that are intensively used in agricul-

ture industries. Hence, we assume resource endowment cannot affect the adoption of technologies

other than through inequality.

We are able to match 175 of our 186 observations. The countries for which we do not have an

observation of the suitability of arable land are Mauritius, Morocco, Singapore, Slovak Republic

and Taiwan.

40



6 Results

In the following, we first describe our results of the core specifications. Second, we describe some

robustness checks, which we run in order to check how strong our core results are.

6.1 Core Specifications

In table 4 we present our core specifications with pooled OLS, time dummy and heteroskedasticity-

robust standard errors. For each of the two adoption margins, the adoption lag and the penetration

rate, we have three sub specifications. In columns (1) and (4) we include the Gini coefficient as

inequality measure. In columns (2), (3), (5) and (6) we include quantile income shares.

We start by analyzing the effects of inequality on the adoption lag. Our main findings are

that higher inequality, measured by the Gini coefficient, does not have a significant effect on the

adoption lag. The Gini coefficient is positive. This is the opposite of the expected sign, however,

the magnitude of the coefficient is small. The regressions in columns (2) and (3) with quantile

income shares are statistically significant on the 10% level, except for the redistribution from the

rich to the middle class in column (2). However, this effect is borderline significant with 11.4%.

Hence, we reject the Null hypothesis that inequality has no effect on the adoption lag. We find that

distortion-free redistribution from the rich to the poor decreases the adoption lag. This emphasizes

the channel that the poor have different preferences than the rich, which makes new technologies

particularly useful to them. Alternatively, credit constraints prevent them from affording the new

technologies, which is why increasing their income share decreases the adoption lag. These findings

supports hypothesis 1b for the poor but not for the middle class. Moreover, hypothesis 1b as well

is supported for the poor by the results in column (3). Increasing the income share of the rich

compared to the poor increases the adoption lag, and thus the rich can afford the new luxuries

later. Even though the effect in column (2) for redistribution from the rich to the middle class is

only borderline significant, we find that it increases the adoption lag. In column (3), too, we find

that increasing the income share of the middle class compared to the poor increases the adoption

lag. Hence, we find two opposing effects of the income distribution on the adoption lag. On the

one hand, higher top-end inequality decreases the adoption lag. But, on the other hand, higher

overall inequality (between rich and poor) and higher low-end inequality (between middle class and

poor) increases the adoption lag. These opposing effects may be the reason why we do not get a

significant effect of the Gini coefficient on the adoption lag, which only measures overall inequality.

Finally, due to the finding that a strong middle class increases the adoption lag we conclude that

the importance of a strong middle class cannot be supported. A strong middle class even hampers

the arrival of technologies.

We continue by analyzing the effects of inequality on the penetration rate. Again, the Gini

coefficient is not significant and of very small magnitude. The result is shown in column (4). For

the quantile income shares in columns (5) and (6), we find statistically significant effects on the
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5% level. In line with our predictions of hypothesis 2, we see in both columns that redistribution

from the rich to the poor decreases the penetration rate, and redistribution from the poor to the

rich it increases the penetration rate. This finding confirms the predictions of the baseline model

of Föllmi, Würgler and Zweimüller (2009). It supports the channel described by them that lower

(higher) overall inequality increases the incentives for product (process) innovation, which decreases

(increases) the penetration rate. With regards to the middle class, the theoretical model predicts

two different types of equilibria. In the first type of equilibrium, the middle class is relatively rich

and consumes luxury goods. In the second type, it is relatively poor and consumes mass products.

The result in columns (5) and (6) suggest that distortion-free redistribution from the poor or the

rich to the middle class both increases the penetration rate. From that we conclude that on average,

the middle classes are relatively poor, which makes us end up in the second type of equilibrium.

This suggests that increasing the relative income of the middle class increases their willingness

to pay for mass products, and thus increases incentives for process innovation. Interestingly, the

penetration rate increases even though the poor consume less in both cases. Redistribution from

the rich and the poor to the middle class increases prices and hence lowers the demand of the poor.

Again, we find opposing effects. On the one hand, redistributing from the poor to the rich increases

overall inequality. On the other hand redistributing from the rich to the middle class decreases

overall inequality. But both effects increase the penetration rate. Thus, the Gini coefficient seems

to be a too broad measure again. These effects with regards to the penetration rate support the

literature emphasizing the importance of a strong middle class.

Assuming that there is no omitted variable bias, we can interpret all regressors. To answer the

research question, we require only the estimates of inequality to be consistent. We may keep in

mind that there is a potential endogeneity problem of inequality and technology adoption. For the

covariates, there may be other omitted variables, whose discussion would go beyond the scope of

this thesis. For these reasons, all interpretations should be considered cautiously.

In the following, we discuss the covariates in the core specification. In accordance with what the

literature suggested, we find negative effects of GDP p.c. on the adoption lag and positive effects

on the penetration rate. These effects are highly statistically significant on the 5% and 1% level,

respectively. As expected, the high magnitudes indicate the importance of GDP p.c.. Primary

and secondary education is only significant for the penetration rate, but not the adoption lag.

A higher education level increases the penetration level, as expected by the literature reviewed.

Following from the literature review, Acemoglu (1998) states that the educated workers attract

complementary technology, which increases the penetration of the technologies. Interestingly, this

effect is not significant for tertiary education. This may suggest that a secondary education already

enables the operation of all technologies. Openness has no statistically significant effect on any of

the two dependent variables. Institutions are only statistically significant for the adoption lag. As

expected, good institutions decrease the adoption lag.
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The R2 is below 25% for the adoption lag, which is not very high. This means that the

included control variables are able to explain 23% of the variation of the adoption lag. For the

penetration rate, in contrast, we can explain much more, with a R2 of above 78%. By including

time dummies, we account for time-specific effects that otherwise may drive our results. In addition

to time-specific effects, these dummies can account for measurement errors in income inequality

measures resulting from worldwide changes in the calculation of the income share. Interestingly,

time dummies for the adoption lag are only significant in the years 1965 and 1970. This is the

time period we expect to suffer from selection bias. In the estimates for the penetration rate, the

time dummies are significant from 1980 until 1995. The time dummies may even control to some

extent for the selection bias of the observations in the early period, where the bias is most severe.

In conclusion, we find partial support for our hypothesess 1a and 1b. For 1a we find support

with regards to an increased income share of the rich compared to the middle class, which decreases

the adoption lag. However, the lag does not decrease when the rich increase their income share

compared to the poor. From this finding we derive that hypothesis 1b as well is partially true,

because increasing the share of the poor compared to the middle class or the rich decreases the

adoption lag. Hence, new technologies seem particularly useful to the poor, which suggests taste

heterogeneity among the income classes. With regards to the penetration rate, we find support for

our hypothesis 2. Redistribution from the poor to the rich as well as redistribution from the poor

or the rich to the middle class increases the penetration rate. Hence, we end up in the second type

of equilibrium. The Gini coefficient might be too general for both dependent variables, as it is not

able to capture opposing effects within the income distribution.
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Table 4: Core Specifications. Including Time Dummies and Heteroscedasticity-Robust Standard Errors.

(1) (2) (3) (4) (5) (6)

VARIABLES LAG LAG LAG PEN PEN PEN

GINI 0.00226 -0.000721

(0.00532) (0.00381)

Q1 -0.0769* -0.0797**

(0.0459) (0.0322)

MiddleClass 0.0263 0.103* 0.0309** 0.111**

(0.0165) (0.0609) (0.0122) (0.0433)

Q5 0.0769* 0.0797**

(0.0459) (0.0322)

lnGDPpcMAD -2.217** -2.188** -2.188** 6.143*** 6.193*** 6.193***

(0.890) (0.895) (0.895) (0.575) (0.569) (0.569)

primary educ 0.000995 0.00189 0.00189 0.00993*** 0.0108*** 0.0108***

(0.00407) (0.00387) (0.00387) (0.00347) (0.00345) (0.00345)

secondary educ 0.00291 0.00346 0.00346 0.0120*** 0.0128*** 0.0128***

(0.00423) (0.00448) (0.00448) (0.00344) (0.00352) (0.00352)

tertiary educ 0.00338 -0.000252 -0.000252 0.0108** 0.00652 0.00652

(0.00806) (0.00816) (0.00816) (0.00514) (0.00541) (0.00541)

OPENNESS 0.00141 0.00148 0.00148 -0.000335 -0.000281 -0.000281

(0.000977) (0.00102) (0.00102) (0.000573) (0.000560) (0.000560)

INSTITUTIONS -0.0226* -0.0256* -0.0256* -0.00721 -0.0107 -0.0107

(0.0130) (0.0135) (0.0135) (0.00742) (0.00737) (0.00737)

Constant 4.723*** 3.945*** -3.743 -8.554*** -9.671*** -17.64***

(1.013) (0.943) (4.940) (0.673) (0.660) (3.639)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 186 186 186 186 186 186

R2 0.238 0.247 0.247 0.784 0.796 0.796

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: We apply pooled OLS to a sample of 186 observations, including 72 countries and eight technologies. The

dependent variables are ln adoption lag denoted as LAG and ln penetration rate denoted as PEN. The regres-

sors are the Gini coefficient and quantile income shares. The Middle Class consists of the quantiles Q2, Q3 and

Q4. Q1 are the poorest and Q5 are the richest 20% of a country. GDP per capita is measured in logarithms.

Education is measured as the percentage of schooling attained in population of people above 25 years. Open-

ness is the sum of imports and exports as a fraction of GDP. Institutions are measured on a scale of -10 up to

+10. Where -10 is full autocracy and +10 is full democracy.44



6.2 Robustness Checks

In the following section we perform six different robustness checks in order to address the potential

problems of endogeneity and selection bias and to check the validity of our core specifications

results. First, we start by discussing the IV regression to check for potential endogeneity. Second,

we exclude specific observations which may cause a selection bias. Third, we include technology

dummies. Fourth, we include country-group dummies and do separate estimates for Western and

non-Western countries. Fifth, we include the dummy (Invention Year-1820) into the estimation,

these results are shown in figures 7 and 9 in order to see whether we get the same results as Comin

and Mestieri (2013a) and to evaluate whether this effect is still significant after including the

covariates of our core specifications. Sixth, we discuss the residual plots for our core specifications

and the issue of heteroscedasticity.

First, we show the results for the IV estimation in table 15. The instrument for the Gini

coefficient is the suitability of arable land provided by Easterly (2007). In column (1), we show the

first stage regression. Our instrument variable is highly statistically significant on the 1% level,

with a huge magnitude on the Gini coefficient. In column (2), we see that the IV estimate neither

has a significant effect on the adoption lag nor on the penetration rate, like the Gini coefficient

in the core specification in table 4. It might be that the Gini is not significant due to opposing

effects in the income distribution on both dependent variables. Nevertheless and as we expected,

the IV estimate on the adoption lag is negative. Accordingly, it is possible that endogeneity leads

to an upward bias of the adoption lag in the core specification. The magnitude of the IV of both

estimates is more negative than our estimates in the core specification in table 4. Consequently,

if our core estimates are biased due to measurement error, simultaneity bias, or omitted variable

bias due to hidden preferences, this rather causes an upward bias in our coefficients. In case of an

attenuation bias due to measurement error, the estimate is biased towards zero. This may be the

case here for the penetration rate, as the IV estimate is more negative than the Gini coefficient in

our core specification. We cannot reject the Null hypothesis that structural inequality, accounted

for by the IV, is relevant for the adoption lag or the penetration rate. Furthermore, for both the

adoption lag and the penetration rate, there is a potential upward bias.

Second, we check whether our sample suffers from selection bias. Due to the fact that we

restrict our sample to observations made from 1960 onwards, of old technologies with an early

invention year, only observations of countries with a long adoption lag are included. As discussed

in section 5 ’Data’, the technologies for which this selection bias is most severe are cars, ships

and aviation - freight. As a consequence, we exclude these observations, which sum up to only

six. The countries of the excluded observations are China, Mauritius, South Korea, Sri Lanka

and Thailand. Interestingly, China, South Korea and Mauritius are identified as outliers in the

analysis of the residual plots below in the seventh robustness check. In table 16, we show the

estimation output of the smaller sample, finding no significant results of the inequality measures
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on the adoption lag anymore. The standard errors are similar, but the magnitudes drop, while

GDP and institutions remain significant. We conclude that the adoption lag estimation suffers

from a selection bias. Hence, either there is no significant effect of inequality on the dependent

variable or our sample may be too small to measure the effect significantly. For the penetration

rate, we find that the magnitudes for all quantile income estimates drop. Accordingly, we interpret

that there may also be a selection bias for the penetration rate, which triggers an upward bias.

Another possible explanation is that the effects are driven by technology-specific effects. This can

be verified by including technology dummies.

Third, we check for technology-specific effects. Including technology dummies gives us no

significant results for any income inequality measure on adoption lags anymore. For the penetration

rate estimation, we now get statistically significant results for the quantile income shares even on

the 1% level. The signs are equal as in the core estimation, but the magnitudes dropped. The

technology dummies are ordered by invention date and interpreted against the technology Cars. We

see that the two first technologies, Ships and Aviation Freight, significantly increase the penetration

rate compared to the Cars. The technologies from Blast Oxygen Steel to the Internet, which are

all invented from 1950 onwards, have a significant negative effect on the adoption lags. This effect

increases with a more recent invention date. This may account, additional to the time dummies, for

the faster adoption of newer technologies due to globalization. We show these results in table 17.

We conclude that particularly technology-specific factors are important, which we have neglected

in our specification of the adoption lags. For the penetration rate, the technology dummies do not

change our conclusion from the core specification. Overall, we have relatively few observations for

each technology. With a bigger sample it would be interesting to disentangle the different effects.

The small size of our sample is a drawback of our analysis.

Fourth, we investigate whether the results are driven by specific country groups and whether

the marginal effects are different for Western and non-Western samples. We start by including

country group dummies into the core specifications. Following the classification of Comin and

Hobijn (2010), we create five groups: OECD, Latin, Sub Saharan, Tigers and Other Countries.

In table 18, we show the results of the estimation. For both dependent variables, we find the

same effects for quantile income shares as in the core specification. Interestingly, for the adoption

lag, the quantile income shares estimates are much more significant now due to an increase in the

magnitudes of the coefficients. Now, the Gini coefficient has a positive effect on the penetration

rate, which is the opposite of the expected sign. The region dummies are interpreted against OECD,

which is excluded. We observe significant and positive effects in the adoption lag specifications

for all country group dummies. Consequently, these regions have higher adoption lags on average

compared to the OECD countries. For the penetration rates, we find the Tiger countries having

higher penetration rates on average. Consequently, the Tiger countries seem to have longer lags

and higher penetration compared to OECD countries. This is counterintuitive. Analyzing the
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summary statistics of the inequality measures for the Tigers, which are not shown, we find a

smaller income share of Q5 and higher income shares for Q1 and the middle class compared to

non-Western countries. This supports the hypothesis that low income shares for the rich increase

the adoption lag and high income shares for the middle class increase the penetration rate. In

tables 19 and 20, we show the estimations for the samples of Western and non-Western countries

separately. We find the same signs for the inequality measures as in the core estimation. However,

in Western countries, only the estimates for the adoption lag are significant. The magnitudes are

much higher than in the core specification for these results.

The smaller the difference in the income shares of the middle class to the poor or the rich,

the more important is the middle class. We analyze the difference in the summary statistics in

tables in tables 13 and 14. We see that the difference between the average income shares of the

middle class relative to the poor is bigger and to the rich is smaller in Western countries than in

non-Western countries. This suggests that a strong middle class relatively to the poor and the rich.

This hampers the initial adoption and therefore increases the adoption lag in the West. This may

explain part of the convergence in adoption lags. Moreover, the high income share of the middle

class in Western countries increases the penetration rate and leads to divergence of the penetration

rates between the two groups.

We conclude that there is some support for the convergence of adoption lags and divergence

of penetration rates between Western and non-Western countries. Nevertheless, it is possible that

we look at the wrong time period or not at the relevant drivers. A further interesting robustness

test would be including an interaction term of Western countries, in order to check whether the

returns of inequality differ between the two country groups.

Fifth, in table 21 we include a ’difference of years to invention’ dummy, to check how adoption

lags and penetration rates developed over the years. We see that the more recent the invention

year is, the lower the adoption lag and the penetration rate are. In contrast to Comin and Mestieri

(2013a), we do not find convergence in the adoption lag and divergence in the penetration rate in

our sample. The adoption lag decreases faster in Western countries and compared to the US the

penetration rate decreases faster in the West than in non-Western countries. Even when excluding

the possible sample selection bias, we still get the same results. This suggests that convergence and

divergence may not be driven by the specific technologies included in our sample. Alternatively,

we may have too many observations of technologies with a recent and similar invention date. This

may suggest that we look at the wrong point in time to explain convergence and divergence of the

two margins. The dummy coefficients are still highly significant. We therefore include this dummy

into the core specifications, shown in table 22, in order to determine whether we account for the

relevant variables that drive the margins over time. We find highly significant estimates for the

variable ’difference of years to invention year’. However, no inequality measures have a statistically

significant effect on the adoption lag. The quantile income shares have still a statistically significant

47



on the 5% level on the penetration rate.

Finally, we discuss the residual plots and the issue of heteroskedasticity. Heteroskedasticity is

present if the variance of the error varies with different values of a control variable. In figures 11

to 16, we show the residual plots for our core specification estimations. In figures 11 and 12, we

show in the three graphs above the plots of the fitted values of the adoption lag respectively the

penetration rate versus selected inequality measures. The graphs are ordered from left to right the

same way as the core specifications in table 4. Thus, in the top row on the left is the estimation

with the Gini coefficient, in the middle with the exclusion of the rich and on the right the exclusion

of the poor quantile income shares. For both margins we find in the top row the majority along

the linear fit however, there are few observations that have some deviation. In the bottom row

of figures 11 and 12 we show the residual plots for the adoption lag and penetration rate. Again,

from left to the right, are the graphs corresponding to the three rows in the core estimation. In

figure 11 and 12, we find few big deviations for some observations of the fitted values from the

actually observed ones and thus high residual values for the adoption lag. We find China and

Mauritius above a deviation of two and the countries Finland and Switzerland below minus two.

Finland is a huge outlier with a deviation of -6.94. For the penetration rate, the boundary in

which the residuals are distributed around the zero residual line is more narrow. This is intuitive

because the dispersion of the adoption lags is higher as well compared to the penetration rate. In

figure 12, we find in the residual plots in the bottom row four countries that are below or above

one deviation point for the penetration rate estimation. While South Korea is above, Algeria,

Hungary and Colombia are below. In figures 13 to 16, we show the residual plots of the dependent

variables versus the inequality measures. Again, we see a similar picture with the same countries

as outliers. Overall, we find that the outliers for the adoption lag are further away than for the

penetration rate. Consequently, due to some outliers we conclude that there are indications for

heteroskedasticity. Without correcting the standard errors for heteroskedasticity, we would still

have consistent estimates and therefore we could interpret the coefficients. But as the estimates are

no longer BLUE, POLS is not the estimation method with the smallest variance and therefore not

the most efficient method among the unbiased methods. With heteroskedasticity, we get biased

standard errors and therefore biased test statistics and significance levels. We know that POLS

minimizes the squared residuals, and thereby gives the highest weight to the observations with the

largest error terms. With the heteroskedasticity-robust error terms, we weight the observations far

away from the regression line less, because we consider them less relevant to give us information

about the true regression line. Hence, instead of equally weighting all observations, we give more

weight to those close to our regression line.
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7 Discussion

In this section, we present a short overview of our core findings and discuss their robustness, the

strengths and weaknesses and what further research opportunities we identify.

Altogether, we find support for our hypotheses. Our core specifications provide evidence that

increasing the income share of the rich at the expense of the poor increases the adoption lag. In

contrast, increasing the income share of the rich at the expense of the middle class decreases the

adoption lag. However, we cannot reject the Null hypothesis that a higher Gini coefficient decreases

the adoption lag. Due to opposite effects in the quantile income shares, this overall inequality

measure may be too broad to be significant. For the penetration rate we find as well opposite

effects. Redistribution from the poor to the rich and from the rich to the middle class increases

the penetration rate, even though the former increases and the latter decreases overall inequality.

Hence, the Gini coefficient is too general again. Furthermore, we find that redistribution from the

poor to the middle class increases the penetration rate. These findings stress the importance of a

strong middle class with regards to the penetration rate.

We perform six different robustness checks to examine whether our core specifications suffer

from a bias. First, from our IV estimation we find no support that overall inequality affects

the adoption lag or the penetration rate. If our core estimates are biased due to measurement

error, simultaneity bias, or omitted variable bias due to hidden preferences, this rather causes

an upward bias in our coefficients. The sample may suffer from a selection bias which causes

upward biased estimates, particularly for the adoption lag estimation. For the penetration rate,

may as well contain a selection bias. This may be an upward bias and is rather small. Including

technology-dummies results in non-significant estimates for the adoption lags. As there may be

some underlying factors, we cannot observe, we should be cautious about our findings. Omitted

variables may cause our estimates to be biased or the marginal effects for the technologies to

be different. For the penetration rate, the results are robust to the inclusion of the technology

dummies. Moreover, we also control for country groups and find robust effects for quantile income

shares on both dependent variables. In particular for the adoption lags, we find that all included

regions (Latin, Sub Saharan, Tigers and Other Groups) have higher adoption lags compared to the

OECD countries. We find support for the convergence of the adoption lags and divergence of the

penetration rates between Western and non-Western countries by analyzing the summary statistics.

The relatively high income share of the middle class in Western countries increases the adoption

lag and the penetration rate in Western countries. Nevertheless, it is possible that investigating

an earlier time period for this pattern would be more relevant. In contrast to Comin and Mestieri

(2013a), when estimating for the two country groups separately we only find support for increasing

penetration in Western countries due to the relatively strong middle class. Furthermore, the

’difference of years to invention year’ dummy is highly significant and causes the quantile income

share dummies to be insignificant for the adoption lag. This suggests that we have not controlled
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for some hidden but relevant factors and hence suffer from omitted variable bias. Finally, in the

residual plots we observe some outliers. By applying heteroskedasticy-robust standard errors we

get correct standard errors and therefore, more efficient results. In conclusion, we find support

for our two hypotheses. Nevertheless, some findings of our robustness checks call for a cautious

interpretation of our results. Particularly the results for the adoption lags seem not to be very

robust. More precisely, we cannot rule out simultaneity bias, and there remain doubts about

measurement error and omitted variable bias. Measurement error may arise due to bad quality of

inequality data while omitted variable bias may be caused by a selection bias or technology-specific

factors.

In conclusion, the robustness of our estimations can be confirmed. We highlight the importance

of applying quantile income shares. Without such a detailed inequality measure, we would not be

able to detect the relevant effects on both dependent variables. Furthermore, our results may only

be relevant for the eight technologies we were able to match to our covariates. These technologies

are ships, cars, aviation - freight, blast oxgen steel, cellphones, PCs, MRI and the internet. Further

research may investigate whether the effects are equal for the diffusion of other technologies.

Further research could address various aspects, such as improving the dataset or controlling

for further channels that compete with our hypotheses or including an additional variable we

have not controlled for. The dataset could be improved with regard to technology data. By

including more technologies, it may be possible to control better for technology-specific effects or

to discover different marginal returns of the covariates on the diffusion of different technologies.

For example by Caselli (1999), proposes that different kinds of technologies have different effects on

the wage. Accordingly, the simultaneity bias may be hidden due to these possibly opposing effects.

Furthermore, it would be important to investigate a longer time period, rather than the relatively

short period from 1960 to 1995. It is possible that this period is either too short or not relevant

determining the long-run drivers. The fact that we do not observe any convergence or divergence

of the two margins by adoption year in table 1, suggests that either our specification suffer from

a selection bias or convergence and divergence have already happened before that period of time.

Moreover, controlling for longer time periods reduces the issue of selection bias. By using the

top income share as inequality proxies, longer time periods could be investigated. Leigh (2007)

provides evidence that this measure is as well suited to track other measures of inequality.

Another possible extension is the inclusion of a measure of general purpose technologies (GPT),

such as electricity of the early twentieth century or internet diffusion later on. Availability of GPTs

may facilitate the diffusion of other technologies. A possibly competing channel to inequality af-

fecting the adoption lag are government services. If the government supplies GPTs and other

complementary technologies as public goods, income inequality may be less important. This chan-

nel could be controlled for by an interaction term of GPT diffusion and government spending,

through taking government spending as a proxy for services provided by the government.
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Furthermore, an interesting channel worth investigating is the influence of politics. Possibly,

it is not the income of the middle class that directly increases penetration rate through incentives

for process innovation. A stronger middle class may as well demand more services from their

politicians, who then facilitate the diffusion of technologies.
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8 Conclusions

In this thesis, we aim to shed light upon the drivers behind the two margins of technology adoption:

the adoption lag and the penetration rate. Finding the drivers is relevant because these two margins

are crucial for explaining the dynamics of the Great Divergence between Western and non-Western

countries. In particular, we investigate whether within-country inequality can explain some of the

differences of the two adoption margins.

Our hypothesis 1a suggests that the adoption lag decreases when the rich have a high share

of the income and therefore can afford the new luxury products. Hypothesis 1b states that new

technologies are particularly useful to the poor or the middle class and hence if they increase their

income the adoption lag decreases.

The model of Föllmi, Würgler and Zweimüller (2009) suggests that in the long-run, luxury

goods are transformed into mass products and sold for a lower price to the middle class and

poor. Hence, with a high income share of the poor, the penetration rate is higher as incentives

for process innovation are increased. Therefore, redistribution from the rich to the poor decreases

overall inequality and increases the penetration rate. With regards to the middle class we find two

theoretically possible equilibria. Our hypothesis depends on whether the middle class is relatively

rich or relatively poor. In case that the middle class is relatively rich we are in the first type of

equilibrium. Then redistribution from the poor to the middle class increases product innovation as

the relatively rich buy high quality products. In the second type of equilibrium the redistribution

from the poor to the middle class increases process innovation as they cannot afford the high

quality products and buy the mass products. In both equilibria redistribution from the rich to

the middle class reduces product innovation incentives and hence increases incentives for process

innovations. Therefore, this leads to a higher penetration rate.

The estimation of the adoption lag and the penetration rate is built upon the theoretical model

and estimation strategy of Comin and Mestieri (2010) and Comin and Mestieri (2013a). We do this

by approximating the diffusion curves and assuming that they are only horizontally and vertically

shifted across countries. These two shifts are the two adoption margins.

We apply a pooled OLS to our sample of 72 countries with 186 observations between 1960 and

1995. Our core specifications may potentially suffer from biased results due to various sources.

Potential sources are simultaneity bias, omitted variable bias, measurement error, selection bias,

technology specific effects or different returns of inequality on technology diffusion by country

groups.

We can confirm both, hypothesis 1a and 1b, to some extent. We find that the adoption lag is

decreased by distortion-free redistribution of income from the middle class to the poor as well as

to the rich. Hence, this confirms partially hypotheses 1a and 1b. As the rich and poor buy earlier

the new goods. Hence, for the poor new technologies seem to be particularly useful but not for

the middle class. The effect that new technologies are more useful to the poor seems to dominate
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the income effect of the rich. As redistribution from the rich to the poor decreases the adoption

lag, too.

For the penetration rate the results suggest, as predicted by hypothesis 2, that lower overall

inequality increases the penetration rate. Furthermore, the importance of the middle class is

stressed by the results. Our estimation results suggest a relatively rich middle class and hence the

second type of equilibrium. As a strong middle class compared to the rich as well as compared to

the poor is important for a high penetration rate.

Moreover, for both the adoption lag and the penetration rate opposite effects within the income

distribution are relevant. A weak middle class but high income shares for the poor and the rich

decrease he adoption lag. For the penetration rate a strong middle class compared to the poor and

rich increases the penetration rate. As a consequence, disentangling the effects by quantile income

shares is crucial, which is not possible with the broad Gini coefficient. We may stress that we

only analyze how distortion-free redistribution affects our dependent variables. But not how this

redistribution is applicable in practice. As probably any intervention will distort some incentives.

These findings may help to explain to some extent why the Great Divergence declined, yet still

remains. In our dataset, the income share of the middle class compared to the rich is smaller and

compared to the poor is bigger in Western than in non-Western countries. Our estimation results

suggest that this leads to a higher adoption lag and a higher penetration rate. We conclude that a

strong middle explains some of the convergence of adoption lags and divergence of penetration rates

between Western and non-Western countries. In addition to the higher GDP and more openness

is important in order to decrease adoption lags. For the penetration rate GDP and education are

relevant.

We are not able to rule out simultaneity bias, measurement error and omitted variable bias, due

to our IV estimation, which is not significant for both dependent variables. The issue of selection

bias remains and could cause inconsistent estimates. Additionally, our results are not robust for

adoption lags if we control for technology-specific effects. Furthermore, the identified effects may

be applicable only to the eight investigated technologies and the examined time period between

1960 and 1995. Further research may be able to show, whether these findings hold for a broader set

of technologies and a longer period of time. We find non conclusive results for income inequality

on the two margins when separating Western and non-Western countries. Finally, we allow for

heteroskedasticity in our estimation.

In conclusion, the findings of this thesis support our two hypotheses. Even though our esti-

mation may suffer from several biases. Further investigating the past 200 years is of particular

interest, although the quality of data may be an issue. This interest is based on the fact that much

of the variation of the convergence and divergence of the two adoption margins observed by Comin

and Mestieri (2013a) stems from that period of time. Nevertheless, our findings may imply fruitful

further research in determining income dynamics between countries.
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Föllmi, R., Hanslin, S., & Kohler, A. (2012) A Dynamic North-South Model of Demand-Induced

Product Cycles. Annual Conference 2012 (Goettingen): New Approaches and Challenges for the

Labor Market of the 21st Century 62023, Verein fr Socialpolitik / German Economic Association.

Galor, O., & Zeira, J. (1993). Income Distribution and Macroeconomics. The Review of

Economic Studies 60(1), 3552.

Grossman, G. M., & Helpman, E. (1991). Endogenous Product Cycles. The Economic Journal

101(408), 1214-1229.

Heston, A., Summers R., & Aten B. (2011). Penn World Table Version 7.0. Center for Inter-

national Comparisons of Production, Income and Prices at the University of Pennsylvania.

Holmes, T. J. & Schmitz Jr, J. A. (2001). A Gain from Trade: From Unproductive to Productive

Entrepreneurship. Journal of Monetary Economics, Elsevier, vol. 47(2), pages 417-446, April.

Hyytinen, A., & Toivanen, O. (2011). Income Inequality and Technology Diffusion: Evidence

from Developing Countries. The Scandinavian Journal of Economics 113(2), 364-387.

Jovanovic, B., & Rousseau, P. L. (2005). General Purpose Technologies. Handbook of economic

growth. 1, 1181-1224.

Katona, G. (1964). The Mass Consumption Society. New York: McGraw-Hill.

Kiiski, S., & Pohjola, M. (2002). Cross-Country Diffusion of the Internet. Information Eco-

nomics and Policy, 14(2), 297-310.

Kiley, M. T. (1999). The Supply of Skilled Labour and Skill-biased Technological Progress.

The Economic Journal, 109(458), 708-724.

Klenow, P. & Rodriguez-Clare, A. (1997). The Neoclassical Revival in Growth Economics: Has

it Gone too Far? In NBER Macroeconomics Annual 1997, Volume 12, NBER Chapters, National

Bureau of Economic Research, Inc, pp. 73114.

Krugman, P. (1979). A Model of Innovation, Technology Transfer, and the World Distribution

of Income. the Journal of Political Economy 253-266.

56



Leigh, A. (2007). How Closely Do Top Income Shares Track Other Measures of Inequality?.

The Economic Journal 117(524), F619-F633.

Maddison, A. (2004). Contours of the World Economy and the Art of Macro-measurement

1500-2001. In Ruggles Lecture, IARIW 28th General Conference, Cork, Ireland August.

Maddison, A. (2007). Contours of the World Economy 1-2030 AD. Essays in Macroeconomic

History. Oxford University Press.

Marshall, M. G., & Jaggers, K. (2013). Polity IV Dataset. Center for International Develop-

ment and Conflict Management, University of Maryland.

Marshall, M. G., Jaggers, K. & Gurr, T. R. (2011). Polity IV Project: Dataset Users Manual.

Political Regime Characteristics and Transitions, 1800-2010.

Matsuyama, K. (2002). The Rise of Mass Consumption Societies. Journal of Political Economy

110(5), 1035-1070.

Nelson, R. R., & Phelps, E. S. (1966). Investment in Humans, Technological diffusion, and

Economic growth. The American Economic Review 56(1/2), 69-75.

Norbin, S. (1993). The Relation between Price and Marginal Cost in U.S. Industry: A Con-

tradiction. Journal of Political Economy 101 (6), 114964.

Sokoloff, K. L., & Engerman, S. L. (2000). History Lessons: Institutions, Factors endowments,

and Paths of Development in the New World. The Journal of Economic Perspectives 14(3), 217-

232.

UNU-WIDER (2009). World Income Inequality Database. UNU-WIDER World Institute for

Development Economics Research, Release 2c.

Vernon, R. (1966). International Investment and International Trade in the Product Cycle.

The quarterly journal of economics 190-207.

Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data. London, Eng-

land: The MIT Press.

57



A Data Description

The technology diffusion data is taken from Comin and Hobijn (2009a), which is the Cross-Country

Historical Adoption of Technology (CHAT) dataset. The fifteen technology measures used are de-

scribed in the following as in Comin and Hobijn (2010):

Transportation

1. Steam and motor ships: Gross tonnage (above a minimum weight) of steam and motor ships

in use at midyear. Invention year: 1788; the year the first (U.S.) patent was issued for a steam

boat design.

2. Railways - Passengers: Passenger journeys by railway in passenger-KM. Invention year:

1825; the year of the first regularly schedule railroad service to carry both goods and passengers.

3. Railways - Freight: Metric tons of freight carried on railways (excluding livestock and

passenger baggage). Invention year: 1825; same as passenger railways.

4. Cars: Number of passenger cars (excluding tractors and similar vehicles) in use. Invention

year: 1885; the year Gottlieb Daimler built the first vehicle powered by an internal combustion

engine.

5. Trucks: Number of commercial vehicles, typically including buses and taxis (excluding tractors

and similar vehicles), in use. Invention year: 1885; same as cars.

6. Aviation - Passengers: Civil aviation passenger-KM traveled on scheduled services by com-

panies registered in the country concerned. Invention year: 1903; The year the Wright brothers

managed the first successful flight.

7. Aviation - Freight: Civil aviation ton-kilometers of cargo carried on scheduled services by

companies registered in the country concerned. Invention year: 1903; same as aviation - passengers.

Communication and IT

8. Telegraph: Number of telegrams sent. Invention year: 1835; year of invention of telegraph by

Samuel Morse at New York University.

9. Telephone: Number of mainline telephone lines connecting a customers equipment to the

public switched telephone network as of year end. Invention year: 1876; year of invention of tele-

phone by Alexander Graham Bell.
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10. Cellphones: Number of users of portable cell phones. Invention year: 1973; first call from a

portable cellphone.

11. Personal computers: Number of self-contained computers designed for use by one per-

son. Invention year: 1973; first computer based on a microprocessor.

12. Internet users: Number of people with access to the worldwide network. Invention year:

1983; introduction of TCP/IP protocol.

Industrial

13. Blast Oxygen Steel: Crude steel production (in metric tons) in blast oxygen furnaces (a

process that replaced Bessemer and OHF processes). Invention year: 1950; invention of Blast

Oxygen Furnace.

14. Electricity: Gross output of electric energy (inclusive of electricity consumed in power sta-

tions) in KwHr. Invention year: 1882; first commercial power-station on Pearl Street in New York

City.

Medical

15. MRIs: Number of magnetic resonance imaging (MRI) units in place. Invention year: 1977;

first MRI-scanner built.
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Table 5: Summary Statistics of Adoption Lag of Initial Sample by Comin and Hobijn (2010)

Technologyname Invention Year Obs mean sd p1 p10 p50 p90 p99

Ships 1788 51 120.45 51.07 29.71 56.95 122.53 178.78 179.72

Rail - Freight 1825 42 79.59 32.67 24.92 30.93 78.99 122.95 134.54

Rail - Passenger 1825 60 97.32 26.43 24.98 59.90 100.96 124.70 137.29

Telegraph 1835 44 45.61 31.06 -4.17 16.94 32.93 98.27 109.20

Telephone 1876 64 51.54 32.44 -7.20 7.85 57.42 94.62 113.39

Electricity 1882 94 56.37 19.91 13.00 20.30 65.82 73.92 106.54

Cars 1885 73 43.68 19.09 9.66 18.78 44.19 64.68 101.85

Trucks 1885 58 39.13 19.77 4.12 16.03 35.21 64.43 89.18

Aviation - Freight 1903 30 43.49 13.53 11.96 24.45 41.79 60.81 73.95

Aviation - Passenger 1903 50 33.90 12.27 16.81 21.12 29.24 52.88 71.59

Blast Oxygen Steel 1950 39 16.31 7.25 2.05 8.78 15.64 27.99 32.99

Cellphones 1973 83 14.61 3.92 0.00 9.96 15.55 18.76 19.78

PCs 1973 70 13.96 2.93 3.32 10.22 14.18 17.03 19.30

MRI 1977 12 5.30 2.29 2.62 2.87 4.68 7.38 10.14

Internet 1983 60 7.80 2.17 -0.13 5.01 7.77 10.72 10.94

Total 830 45.48 38.54 2.62 9.00 32.50 99.26 178.15
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Table 6: Adoption Lag of 186 Observations Sample. Adoption Lags in Years.

Technologyname Invention Year Obs mean sd p1 p10 p50 p90 p99 difference of lag to 830 obs sample 3

Ships 1788 3 177.97 1.92 175.82 175.82 178.59 179.51 179.51 57.52

Cars 1885 1 90.63 . 90.63 90.63 90.63 90.63 90.63 46.94

Aviation - Freight 1903 2 69.39 6.45 64.83 64.83 69.39 73.95 73.95 25.90

Blast Oxygen Steel 1950 17 20.28 5.99 10.70 12.19 18.99 29.07 30.81 3.97

Cellphones 1973 59 14.37 4.16 0.00 9.81 15.46 19.10 19.78 -0.24

PCs 1973 46 13.64 2.36 6.71 10.84 13.91 16.28 18.88 -0.32

MRI 1977 10 4.61 1.68 2.62 2.75 4.37 7.03 7.17 -0.69

Internet 1983 48 7.57 2.09 1.00 4.53 7.72 9.96 10.87 -0.23

Total 186 16.09 22.96 1.00 5.85 12.79 19.28 178.59

3 Difference of adoption lag in 186 sample and initial sample of 830 observations by Comin and Hobijn (2010)
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Table 7: Summary Statistics of Penetration Rate of own calculations based on Initial Sample by Comin

and Hobijn (2010)

Technologyname Invention Year Obs mean sd p1 p10 p50 p90 p99

Ships 1788 51 0.03 0.62 -1.44 -0.65 -0.02 0.72 1.46

Rail - Freight 1825 42 -0.59 0.34 -1.22 -0.99 -0.63 -0.03 0.12

Rail - Passenger 1825 60 0.07 0.30 -0.53 -0.32 0.06 0.53 0.71

Telegraph 1835 44 -0.47 0.51 -1.70 -1.24 -0.38 0.08 0.70

Telephone 1876 64 -0.96 0.82 -4.35 -2.02 -0.79 -0.10 0.07

Electricity 1882 94 -0.51 0.39 -1.78 -1.02 -0.45 -0.06 0.26

Cars 1885 73 -1.78 1.26 -7.01 -3.05 -1.68 -0.37 0.30

Trucks 1885 58 -1.60 1.25 -7.16 -2.55 -1.57 -0.41 0.44

Aviation - Freight 1903 30 -0.62 0.81 -2.82 -1.62 -0.42 0.31 0.41

Aviation - Passenger 1903 50 -0.84 0.62 -2.61 -1.56 -0.78 -0.11 0.35

Blast Oxygen Steel 1950 39 -0.84 0.90 -2.79 -2.30 -0.42 0.00 0.55

Cellphones 1973 83 -1.37 1.09 -3.84 -3.06 -1.09 -0.22 0.06

PCs 1973 70 -0.78 0.64 -2.40 -1.56 -0.73 -0.06 0.06

MRI 1977 12 -0.54 0.49 -1.81 -1.14 -0.37 -0.11 0.00

Internet 1983 60 -1.05 0.88 -4.33 -2.01 -0.89 -0.18 0.00

Total 830 -0.85 0.97 -3.84 -2.13 -0.60 0.03 0.70
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Table 8: Penetration Rate of the 186 Observations Sample. Penetration Rate in Logarithms.

difference to difference to

Technologyname Invention Year Obs mean4 sd p1 p10 p50 p90 p99 830 obs sample 5 CM 2010 sample 6

Ships 1788 3 0.07 0.39 -0.17 -0.17 -0.14 0.52 0.52 3.63 -49.70

Cars 1885 1 -2.38 . -2.38 -2.38 -2.38 -2.38 -2.38 -7.58 -22.07

Aviation - Freight 1903 2 -0.36 0.07 -0.41 -0.41 -0.36 -0.31 -0.31 16.27 13.26

Blast Oxygen Steel 1950 17 -0.99 0.94 -2.79 -2.13 -0.89 0.03 0.55 -6.10 -8.10

Cellphones 1973 59 -1.20 1.02 -3.84 -2.81 -0.98 -0.07 0.06 4.82 7.92

PCs 1973 46 -0.68 0.55 -1.86 -1.52 -0.69 -0.05 0.06 4.83 -2.69

MRI 1977 10 -0.52 0.49 -1.81 -1.22 -0.37 -0.15 0.00 1.03 -5.07

Internet 1983 48 -0.99 0.88 -4.33 -2.01 -0.77 -0.18 0.00 2.23 0.35

Total 186 -0.94 0.87 -3.84 -2.13 -0.70 -0.07 0.52

4 The means are in logarithms. We take the exponential function of the mean and get the % of penetration compared to the United States.

5 This is the difference of the mean penetration rate in % in our 186 sample and the mean of our sample with the 830 observations.

6 This is the difference of the mean penetration rate in % in our 186 sample and the mean of the sample from Comin and Mestieri (2010).
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Table 9: Overview Technology Diffusion Observations of Western Countries

Countryname Freq. Percent Cum.

Australia 4 6.78 6.78

Austria 2 3.39 10.17

Belgium 3 5.08 15.25

Canada 5 8.47 23.73

Denmark 4 6.78 30.51

Finland 5 8.47 38.98

France 4 6.78 45.76

Germany 3 5.08 50.85

Italy 4 6.78 57.63

Japan 2 3.39 61.02

Netherlands 3 5.08 66.10

New Zealand 4 6.78 72.88

Norway 3 5.08 77.97

Sweden 4 6.78 84.75

Switzerland 2 3.39 88.14

United Kingdom 3 5.08 93.22

United States 4 6.78 100.00

Total 59 100
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Table 10: Overview Technology Diffusion Observations of non-Western Countries

Countryname Freq. Percent Cum. Countryname Freq. Percent Cum.

Algeria 2 1.57 1.57 Mexico 4 3.15 51.18

Bangladesh 1 0.79 2.36 Moldova 1 0.79 51.97

Bolivia 1 0.79 3.15 Morocco 1 0.79 52.76

Brazil 4 3.15 6.30 Nicaragua 1 0.79 53.54

Bulgaria 3 2.36 8.66 Panama 1 0.79 54.33

Cambodia 1 0.79 9.45 Paraguay 1 0.79 55.12

Chile 4 3.15 12.60 Peru 2 1.57 56.69

China 4 3.15 15.75 Philippines 2 1.57 58.27

Colombia 3 2.36 18.11 Poland 3 2.36 60.63

Costa Rica 2 1.57 19.69 Portugal 3 2.36 62.99

Czech Republic 1 0.79 20.47 Romania 3 2.36 65.35

Dominican Republic 1 0.79 21.26 Russia 1 0.79 66.14

Ecuador 1 0.79 22.05 Singapore 3 2.36 68.50

Egypt 1 0.79 22.83 Slovak Republic 1 0.79 69.29

El Salvador 1 0.79 23.62 Slovenia 2 1.57 70.87

Estonia 2 1.57 25.20 South Korea 6 4.72 75.59

Ghana 1 0.79 25.98 Spain 5 3.94 79.53

Greece 3 2.36 28.35 Sri Lanka 3 2.36 81.89

Guatemala 1 0.79 29.13 Taiwan 3 2.36 84.25

Hungary 5 3.94 33.07 Thailand 4 3.15 87.40

India 3 2.36 35.43 Tunisia 3 2.36 89.76

Indonesia 3 2.36 37.80 Turkey 4 3.15 92.91

Ireland 2 1.57 39.37 Ukraine 2 1.57 94.49

Israel 2 1.57 40.94 Venezuela 3 2.36 96.85

Jordan 1 0.79 41.73 Vietnam 2 1.57 98.43

Laos 1 0.79 42.52 Zambia 1 0.79 99.21

Malaysia 4 3.15 45.67 Zimbabwe 1 0.79 100.00

Mauritius 3 2.36 48.03

Total 127 100
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Table 11: Data Description and Sources

variables Description Source

penetration rate ln of percentage of penetration compared to the United States own calculation based on Comin and Mestieri (2010)

adoption lag ln of difference of invention year and adoption year of a technology Comin and Hobijn (2010)

GINI 0: equal distribution of income, 100: one person owns everything UNU-WIDER (2009)

Q1 income share of poorest 20% UNU-WIDER (2009)

MiddleClass income share of 2nd, 3rd and 4th quantile UNU-WIDER (2009)

Q5 income share of richest 20% UNU-WIDER (2009)

lnGDPpcMAD ln of GDP per capita Maddison (2007)

primary educ percentage of Primary Schooling Attained in Population age 25+ Barro and Lee (2013)

secondary educ percentage of Secondary Schooling Attained in Population age 25+ Barro and Lee (2013)

tertiary educ percentage of Tertiary Schooling Attained in Population age 25+ Barro and Lee (2013)

OPENNESS sum of imports and exports as a fraction of GDP, PWT 7.0 Heston, Summers & Aten (2011)

INSTITUTIONS polity IV dataset: from -10 full autocracy to +10 full democracy Marshall & Jaggers (2013)

Lwheatsugar Ratio of arable land of wheat compared to sugar cane Easterly (2007), FAO
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Table 12: Summary Statistics. Full Sample.

Observations mean sd Min Max

penetration rate 186 -0.94 0.87 -4.33 0.55

adoption lag 186 2.45 0.87 -5.35 5.19

GINI 186 37.64 10.35 20.00 64.70

Q1 186 6.41 2.31 1.86 11.69

MiddleClass 186 48.22 6.93 29.58 57.67

Q5 186 45.37 8.97 31.43 68.56

lnGDPpcMAD 186 1.19 0.10 0.81 1.39

primary educ 186 40.46 16.24 4.05 79.54

secondary educ 186 31.29 16.64 2.50 69.00

tertiary educ 186 10.75 8.30 0.33 39.07

OPENNESS 186 62.21 47.61 6.58 344.77

INSTITUTIONS 186 5.02 6.41 -9.00 10.00

Lwheatsugar 175 0.16 0.20 -0.33 0.54
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Table 13: Summary Statistics. Western Countries

Observations mean sd Min Max

penetration rate 59 -0.21 0.19 -0.57 0.55

adoption lag 59 1.95 1.13 -5.35 3.43

GINI 59 30.68 4.75 20.70 40.21

Q1 59 7.75 1.70 4.58 10.90

MiddleClass 59 53.82 1.96 49.34 57.67

Q5 59 38.43 3.32 31.43 44.73

lnGDPpc 59 1.28 0.04 1.22 1.35

primary educ 59 39.33 18.80 6.30 79.54

secondary educ 59 41.82 13.41 14.44 65.38

tertiary educ 59 16.30 9.11 4.28 39.07

OPENNESS 59 57.02 26.24 17.27 135.44

INSTITUTIONS 59 9.88 0.46 8.00 10.00

Lwheatsugar 59 .27 0.16 0.02 0.54

Table 14: Summary Statistics. Non-Western Countries

Observations mean sd Min Max

penetration rate 127 -1.27 0.86 -4.33 0.52

adoption lag 127 2.68 0.60 0.96 5.19

GINI 127 40.87 10.66 20.00 64.70

Q1 127 5.79 2.29 1.86 11.69

MiddleClass 127 45.62 6.88 29.58 56.86

Q5 127 48.59 8.95 31.62 68.56

lnGDPpc 127 1.15 0.10 0.81 1.24

primary educ 127 40.98 14.95 4.05 70.84

secondary educ 127 26.40 15.74 2.50 69.00

tertiary educ 127 8.17 6.47 0.33 34.05

OPENNESS 127 64.62 54.71 6.58 344.77

INSTITUTIONS 127 2.76 6.63 -9.00 10.00

Lwheatsugar 116 0.10 0.19 -0.33 0.47
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Table 15: Two Stage Least Squares. Instrumenting GINI by Lwheatsugar.

(1) (2) (3)

VARIABLES GINI LAG PEN

lwheatsugar -20.34***

(3.475)

GINI -0.00977 -0.0112

(0.0189) (0.00954)

lnGDPpcMAD -20.84** -2.819** 5.532***

(9.548) (1.168) (0.614)

primary educ 0.0637 0.00403 0.0127***

(0.0645) (0.00358) (0.00331)

secondary educ -0.135** 0.00307 0.0122***

(0.0529) (0.00551) (0.00420)

tertiary educ 0.303*** 0.0124 0.0153***

(0.0901) (0.00989) (0.00560)

OPENNESS -0.0170 0.000781 -0.00234**

(0.0199) (0.00147) (0.00113)

INSTITUTIONS 0.00958 -0.0294** -0.00249

(0.146) (0.0124) (0.00762)

Constant 62.31*** 5.729*** -7.521***

(11.26) (1.901) (0.956)

Time Dummy Yes Yes Yes

Observations 175 175 175

R2 0.445 0.284 0.787

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: We apply a 2SLS instrumental variable approach to a sample

of 175 observations, including 67 countries and eight technologies.

The instrument is Lwheatsugar, which is the ratio of arable land of

wheat compared to sugar cane, applied by Easterly (2007).
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Table 16: Robustness Check. Exluding Observations of Cars, Ships and Aviation-Freight.

(1) (2) (3) (4) (5) (6)

VARIABLES LAG LAG LAG PEN PEN PEN

GINI 0.00396 0.00116

(0.00461) (0.00332)

Q1 -0.0398 -0.0545**

(0.0408) (0.0244)

MiddleClass 0.00521 0.0451 0.0196** 0.0740**

(0.0117) (0.0509) (0.00831) (0.0313)

Q5 0.0398 0.0545**

(0.0408) (0.0244)

lnGDPpcMAD -1.337** -1.269* -1.269* 6.718*** 6.704*** 6.704***

(0.648) (0.657) (0.657) (0.482) (0.486) (0.486)

primary educ 0.00121 0.00188 0.00188 0.00815** 0.00875*** 0.00875***

(0.00295) (0.00288) (0.00288) (0.00327) (0.00325) (0.00325)

secondary educ 0.00115 0.00229 0.00229 0.00933*** 0.00975*** 0.00975***

(0.00387) (0.00419) (0.00419) (0.00310) (0.00316) (0.00316)

tertiary educ 0.00440 0.00261 0.00261 0.00830* 0.00575 0.00575

(0.00692) (0.00709) (0.00709) (0.00498) (0.00522) (0.00522)

OPENNESS 0.000796 0.000825 0.000825 -0.000669 -0.000616 -0.000616

(0.000801) (0.000815) (0.000815) (0.000488) (0.000486) (0.000486)

INSTITUTIONS -0.0288** -0.0301** -0.0301** -0.00782 -0.00998 -0.00998

(0.0126) (0.0130) (0.0130) (0.00664) (0.00664) (0.00664)

Constant 3.708*** 3.729*** -0.256 -9.145*** -9.720*** -15.17***

(0.770) (0.766) (4.403) (0.561) (0.556) (2.783)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 180 180 180 180 180 180

R2 0.236 0.239 0.239 0.834 0.839 0.839

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 17: Robustness Check. Including Technology Dummies.

(1) (2) (3) (4) (5) (6)

VARIABLES LAG LAG LAG PEN PEN PEN

GINI 0.00413 0.000701

(0.00307) (0.00292)

Q1 -0.0253 -0.0602***

(0.0262) (0.0226)

MiddleClass 0.00241 0.0277 0.0217*** 0.0819***

(0.00643) (0.0318) (0.00726) (0.0288)

Q5 0.0253 0.0602***

(0.0262) (0.0226)

lnGDPpcMAD -0.546* -0.535* -0.535* 6.801*** 6.794*** 6.794***

(0.294) (0.303) (0.303) (0.420) (0.418) (0.418)

primary educ -0.00162 -0.00117 -0.00117 0.00725*** 0.00799*** 0.00799***

(0.00195) (0.00175) (0.00175) (0.00249) (0.00245) (0.00245)

secondary educ -0.000926 -0.000501 -0.000501 0.00837*** 0.00906*** 0.00906***

(0.00195) (0.00222) (0.00222) (0.00254) (0.00263) (0.00263)

tertiary educ -0.000522 -0.00128 -0.00128 0.00894* 0.00596 0.00596

(0.00332) (0.00355) (0.00355) (0.00509) (0.00516) (0.00516)

OPENNESS 0.000693** 0.000723** 0.000723** -0.000689 -0.000625 -0.000625

(0.000301) (0.000309) (0.000309) (0.000573) (0.000567) (0.000567)

INSTITUTIONS -0.00127 -0.00195 -0.00195 -0.00287 -0.00535 -0.00535

(0.00485) (0.00505) (0.00505) (0.00623) (0.00610) (0.00610)

Ships 0.264 0.239 0.239 2.165*** 2.139*** 2.139***

(0.672) (0.684) (0.684) (0.374) (0.347) (0.347)

Aviation - Freight -0.455 -0.438 -0.438 1.001** 1.027** 1.027**

(0.371) (0.375) (0.375) (0.469) (0.462) (0.462)

Blast Oxygen Steel -2.083*** -2.081*** -2.081*** 0.394 0.468 0.468

(0.695) (0.692) (0.692) (0.278) (0.287) (0.287)

Cellphones -4.933*** -4.936*** -4.936*** -0.186 -0.114 -0.114

(1.610) (1.610) (1.610) (0.210) (0.212) (0.212)

PCs -4.835*** -4.838*** -4.838*** 0.258 0.332 0.332

(1.576) (1.576) (1.576) (0.208) (0.209) (0.209)

MRI -5.187*** -5.186*** -5.186*** -0.0253 0.0558 0.0558

(1.396) (1.394) (1.394) (0.261) (0.258) (0.258)

Internet -5.764*** -5.761*** -5.761*** -0.102 -0.0243 -0.0243

(1.580) (1.577) (1.577) (0.226) (0.225) (0.225)

Constant 5.029*** 5.181*** 2.652 -9.580*** -10.33*** -16.35***

(0.794) (0.842) (2.515) (0.482) (0.517) (2.543)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 186 186 186 186 186 186

R2 0.734 0.734 0.734 0.873 0.879 0.879

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 18: Robustness Check. Including Country Group Dummies.

(1) (2) (3) (4) (5) (6)

VARIABLES LAG LAG LAG PEN PEN PEN

GINI -0.00945 0.00859*

(0.00625) (0.00465)

Q1 -0.0977** -0.0815***

(0.0468) (0.0296)

MiddleClass 0.0625** 0.160** 0.0216* 0.103**

(0.0245) (0.0678) (0.0123) (0.0399)

Q5 0.0977** 0.0815***

(0.0468) (0.0296)

lnGDPpcMAD -1.689** -1.559** -1.559** 6.216*** 6.319*** 6.319***

(0.797) (0.780) (0.780) (0.484) (0.491) (0.491)

primary educ 0.00265 0.00300 0.00300 0.0109*** 0.0118*** 0.0118***

(0.00380) (0.00368) (0.00368) (0.00335) (0.00339) (0.00339)

secondary educ 0.00258 0.00288 0.00288 0.0128*** 0.0136*** 0.0136***

(0.00417) (0.00435) (0.00435) (0.00335) (0.00344) (0.00344)

tertiary educ 0.00855 0.00295 0.00295 0.00470 0.00198 0.00198

(0.00724) (0.00740) (0.00740) (0.00486) (0.00515) (0.00515)

OPENNESS 5.94e-05 0.000167 0.000167 -0.00233*** -0.00222*** -0.00222***

(0.000962) (0.000972) (0.000972) (0.000618) (0.000628) (0.000628)

INSTITUTIONS -0.00790 -0.00991 -0.00991 -0.00310 -0.00393 -0.00393

(0.0114) (0.0114) (0.0114) (0.00807) (0.00806) (0.00806)

Latin 0.620*** 0.925*** 0.925*** -0.337** -0.162 -0.162

(0.230) (0.335) (0.335) (0.136) (0.141) (0.141)

Sub Saharan 1.092** 1.302** 1.302** -0.263 -0.136 -0.136

(0.508) (0.562) (0.562) (0.212) (0.229) (0.229)

Tigers 0.750** 0.847** 0.847** 0.704*** 0.765*** 0.765***

(0.356) (0.361) (0.361) (0.189) (0.176) (0.176)

Other Groups 0.521*** 0.684*** 0.684*** -0.136 -0.0517 -0.0517

(0.157) (0.196) (0.196) (0.0880) (0.0961) (0.0961)

Constant 4.260*** 1.263 -8.505 -8.848*** -9.282*** -17.44***

(0.970) (1.111) (5.375) (0.584) (0.672) (3.413)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 186 186 186 186 186 186

R2 0.284 0.315 0.315 0.828 0.834 0.834

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1 72



Table 19: Adoption Lag. Separate Estimation with Western and non-Western Samples

(1) (2) (3) (4) (5) (6)

VARIABLES Western non-Western Western non-Western Western non-Western

GINI 0.0230 -0.00263

(0.0311) (0.00420)

Q1 -0.289** -0.0503

(0.129) (0.0428)

MiddleClass 0.192* 0.0195 0.482** 0.0697

(0.114) (0.0163) (0.225) (0.0580)

Q5 0.289** 0.0503

(0.129) (0.0428)

lnGDPpcMAD 0.381 -1.351** 3.489 -1.379** 3.489 -1.379**

(4.497) (0.629) (4.311) (0.648) (4.312) (0.648)

primary educ 0.0211 0.00215 -0.00508 0.00255 -0.00508 0.00255

(0.0301) (0.00314) (0.0276) (0.00317) (0.0276) (0.00317)

secondary educ 0.0158 0.00526 -0.00452 0.00644 -0.00452 0.00644

(0.0292) (0.00409) (0.0264) (0.00422) (0.0264) (0.00422)

tertiary educ 0.0194 0.00357 -0.0149 0.00199 -0.0149 0.00199

(0.0353) (0.00858) (0.0330) (0.00835) (0.0330) (0.00835)

OPENNESS 0.00493** 0.000150 0.00431** 0.000155 0.00431** 0.000155

(0.00207) (0.000683) (0.00198) (0.000710) (0.00198) (0.000710)

INSTITUTIONS 0.0108 -0.00555 -0.0729 -0.00736 -0.0729 -0.00736

(0.151) (0.00727) (0.104) (0.00747) (0.104) (0.00747)

Constant -0.826 3.807*** -8.982 3.112*** -37.91** -1.915

(5.610) (0.684) (5.761) (0.819) (18.05) (4.710)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 59 127 59 127 59 127

R2 0.501 0.420 0.542 0.429 0.542 0.429

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 20: Penetration Rate. Separate Estimation with Western and non-Western Samples

(1) (2) (3) (4) (5) (6)

VARIABLES Western non-Western Western non-Western Western non-Western

GINI -0.00459 -0.00522

(0.00759) (0.00435)

Q1 -0.0170 -0.0520

(0.0450) (0.0526)

MiddleClass 0.0245 0.0268 0.0415 0.0788

(0.0298) (0.0179) (0.0722) (0.0695)

Q5 0.0170 0.0520

(0.0450) (0.0526)

lnGDPpcMAD 1.548 6.717*** 1.863 6.667*** 1.863 6.667***

(0.929) (0.572) (1.241) (0.589) (1.241) (0.589)

primary educ 0.00242 0.0126*** 0.00154 0.0131*** 0.00154 0.0131***

(0.00778) (0.00433) (0.00818) (0.00431) (0.00818) (0.00431)

secondary educ 0.00302 0.0105** 0.00280 0.0112** 0.00280 0.0112**

(0.00799) (0.00418) (0.00810) (0.00441) (0.00810) (0.00441)

tertiary educ 0.00750 0.00934 0.00554 0.00763 0.00554 0.00763

(0.00679) (0.00702) (0.00893) (0.00714) (0.00893) (0.00714)

OPENNESS -0.000844 -0.000323 -0.000834 -0.000340 -0.000834 -0.000340

(0.000841) (0.000530) (0.000817) (0.000545) (0.000817) (0.000545)

INSTITUTIONS 0.0218 -0.00772 0.0116 -0.00984 0.0116 -0.00984

(0.0444) (0.00812) (0.0361) (0.00827) (0.0361) (0.00827)

Constant -2.270 -9.041*** -3.833* -10.12*** -5.532 -15.32***

(1.571) (0.677) (2.101) (0.736) (6.500) (5.696)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 59 127 59 127 59 127

R2 0.318 0.728 0.332 0.737 0.332 0.737

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 21: Robustness Check. Dummy Invention minus year 1820.

(1) (2) (3) (4) (5) (6)

Lag Lag Lag PEN PEN PEN

VARIABLES Full Sample Western non-Western Full Sample Western non-Western

yearminus1820 -0.0184*** -0.0464*** -0.0162*** -0.00381** -0.0123*** -0.00614***

(0.00160) (0.00782) (0.00114) (0.00181) (0.00372) (0.00170)

Constant 5.192*** 9.129*** 5.056*** -0.368 1.690*** -0.371

(0.241) (1.262) (0.172) (0.274) (0.580) (0.253)

Observations 186 59 127 186 59 127

R2 0.318 0.105 0.738 0.014 0.270 0.051

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 22: Robustness Check. Including Inventionyear Dummy.

(1) (2) (3) (4) (5) (6)

VARIABLES LAG LAG LAG PEN PEN PEN

yearminus1820 -0.0227*** -0.0225*** -0.0225*** -0.0103*** -0.00967*** -0.00967***

(0.00463) (0.00455) (0.00455) (0.00161) (0.00138) (0.00138)

GINI 0.00526 0.000633

(0.00435) (0.00333)

Q1 -0.0219 -0.0561**

(0.0338) (0.0244)

MiddleClass 0.00115 0.0231 0.0201** 0.0763**

(0.0106) (0.0432) (0.00842) (0.0315)

Q5 0.0219 0.0561**

(0.0338) (0.0244)

lnGDPpcMAD -0.797 -0.814 -0.814 6.785*** 6.782*** 6.782***

(0.521) (0.529) (0.529) (0.479) (0.484) (0.484)

primary educ -0.00198 -0.00159 -0.00159 0.00858*** 0.00930*** 0.00930***

(0.00341) (0.00326) (0.00326) (0.00315) (0.00314) (0.00314)

secondary educ -0.00231 -0.00228 -0.00228 0.00963*** 0.0103*** 0.0103***

(0.00307) (0.00328) (0.00328) (0.00304) (0.00309) (0.00309)

tertiary educ -0.000339 -0.000589 -0.000589 0.00917* 0.00637 0.00637

(0.00589) (0.00596) (0.00596) (0.00502) (0.00524) (0.00524)

OPENNESS 0.000760 0.000801 0.000801 -0.000629 -0.000570 -0.000570

(0.000661) (0.000675) (0.000675) (0.000497) (0.000488) (0.000488)

INSTITUTIONS -0.0187* -0.0191* -0.0191* -0.00543 -0.00784 -0.00784

(0.0101) (0.0105) (0.0105) (0.00640) (0.00643) (0.00643)

Constant 6.181*** 6.437*** 4.247 -7.895*** -8.602*** -14.22***

(0.861) (0.887) (3.561) (0.580) (0.558) (2.789)

Time Dummy Yes Yes Yes Yes Yes Yes

Observations 186 186 186 186 186 186

R2 0.479 0.478 0.478 0.833 0.838 0.838

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Figure 11: Adoption Lags. Above: Fitted Adoption Lags versus Inequality Measures. Below: Residuals

versus Fitted Adoption Lags. For sub specifications 1-3 in table 4.
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Figure 12: Penetration Rates. Above: Fitted Penetration Rates versus Inequality Measures. Below:

Residuals versus Fitted Penetration Rates. For sub specifications 4-6 in table 4.
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Figure 13: Residuals of Adoption Lags versus Predictor Gini. Based on sub specification 1 in table 4.

Figure 14: Residuals of Adoption Lags versus Predictor Middle Class. Based on sub specification 2 in

table 4.
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Figure 15: Residuals of Penetration Rates versus Predictor Gini. Based on sub specification 4 in table 4.

Figure 16: Residuals of Penetration Rates versus Predictor Middle Class. Based on sub specification 5

in table 4.
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B Solving the Model

In this appendix, we solve the important steps of the model and spell out the steps in more detail.

The goal is to understand how productivity levels of the first and the subsequent vintages affect

the productivity on the aggregate total output level. Furthermore, we show the derivation of the

intensive and the extensive margin and finally the derivation of our identification strategy.

Derivation of equation (16):

By solving equation (14), (1− α)
pτ,υYτ,υ
Lτ,υ

= w, for Lτ,υ and equation (15), α
pτ,υYτ,υ
Xτ,υ

= 1, for Xτ,υ

we get

Lτ,υ = (1− α)
pτ,υYτ,υ

w

and

Xτ,υ = α pτ,υYτ,υ.

Now we plug Lτ,υ and Xτ,υ into equation (6) which equals Yτ,υ = aτZ(τ, υ)Xα
τ,υL

1−α
τ,υ . This yields

Yτ,υ = aτZ(τ, υ)(α pτ,υYτ,υ)α((1− α)
pτ,υYτ,υ

w
)1−α.

First, we simplify to

w1−α = aτZ(τ, υ)αα(1− α)1−αpτ,υ.

After rearranging, we get

pτ,υ =
w1−α

aτZ(τ, υ)(1− α)1−ααα
. (16)

Derivation of equation (17):

We start with the following definition

pτ =

(∫ t−Dτ

τ

p
− 1
µ−1

τ,υ dυ

)−(µ−1)

.

We continue by replacing pτ,υ with (16) pτ,υ = w1−α

aτZ(τ,υ)(1−α)1−ααα and get

pτ =

(∫ t−Dτ

τ

( w1−α

aτZ(τ, υ)
(1− α)−(1−α)α−α

)− 1
µ−1

dυ

)−(µ−1)

.

Now we simplify

pτ = w1−α(1− α)−(1−α)α−α
(∫ t−Dτ

τ

aτZ(τ, υ)
1

µ−1 dυ

)−(µ−1)

.

Finally, we know from equation (9) that Zτ =

(∫max{t−Dτ ,τ}
τ

aτZ(τ, υ)
1

µ−1 dυ

)µ−1

. Thus, we get

pτ =
w1−α

Zτ
(1− α)−(1−α)α−α. (17)
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Derivation of equation (18):

We know from equation (13) that Yτ,υ = Yτ

(
pτ,υ
pτ

)− µ
µ−1

. We rearrange the equation and get

pτ,υ
pτ

=

(
Yτ,υ
Yτ

) 1−µ
µ

.

Now we multiply on both sides by
Yτ,υ
Yτ

and receive

pτ,υYτ,υ
pτYτ

=

(
Yτ,υ
Yτ

) 1
µ

.

We know from equations (14) and (15) that the demands for labor and intermediate goods are

(1 − α)
pτ,υYτ,υ
Lτ,υ

= w and α
pτ,υYτ,υ
Xτ,υ

= 1. We rewrite these demands and assume as optimality

condition that they are equal. As a consequence, we get

pτ,υYτ,υ =
wLτ,υ
1− α

=
Xτ,υ

α
.

On the aggregate level the demands for labor and goods are as well equal due to the optimal

condition:

pτYτ =
wLτ
1− α

=
Xτ

α
.

Now we put together what we derived above and get an important expression, showing the rela-

tionship between vintage level and aggregate level:

pτ,υYτ,υ
pτYτ

=

(
Yτ,υ
Yτ

) 1
µ

=
Lτ,υ
Lτ

=
Xτ,υ

Xτ
.

Now we use the production function of the technology vintages:

Yτ,υ = aτZ(τ, υ)Xα
τ,υL

1−α
τ,υ .

We expand this equation on the right hand side by the fraction
ZτX

α
τ L

1−α
τ

ZτXατ L
1−α
τ

:

Yτ,υ =
aτZ(τ, υ)Xα

τ,υL
1−α
τ,υ

ZτXα
τ L

1−α
τ

ZτX
α
τ L

1−α
τ .

As we know the relationship between the vintage and the aggregate level we can replace
Lτ,υ
Lτ

and

Xτ,υ
Xτ

and get

Y
µ−1
µ

τ,υ = aτZ(τ, υ)

(
1

Yτ

) 1
µ

Xα
τ L

1−α
τ .

Now we simplify

Yτ,υ =

(
aτZ(τ, υ)Xα

τ L
1−α
τ

) µ
µ−1
(

1

Yτ

) 1
µ−1

.
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We take the definition of equation (7), which is Yτ =

(∫ t−Dτ
τ

Y
1
µ
τ,υ dυ

)µ
, withµ > 1. Here we plug

in our expression from above and get

Yτ =

(∫ t−Dτ

τ

((
aτZ(τ, υ)Xα

τ L
1−α
τ

) µ
µ−1
(

1

Yτ

) 1
µ−1
) 1
µ

dυ

)µ
Simplifying gives us first

Y
µ
µ−1
τ =

(∫ t−Dτ

τ

((
aτZ(τ, υ)Xα

τ L
1−α
τ

) µ
µ−1
) 1
µ

dυ

)µ
and then

Yτ =

(∫ t−Dτ

τ

((
aτZ(τ, υ)Xα

τ L
1−α
τ

) µ
µ−1
) 1
µ

dυ

)µ−1

.

By definition from equation (9) we know that Zτ =

(∫max{t−Dτ ,τ}
τ

aτZ(τ, υ)
1

µ−1 dυ

)µ−1

. Hence,

we take the constants Xα
τ and L1−α

τ out of the integral, integrate Z(τ, υ) and get equation (18)

Yτ = ZτL
1−α
τ Xα

τ . (18)

Derivation of equation (19):

We define that

Zτ =

(∫ max{t−Dτ ,τ}

τ

aτZ(τ, υ)
1

µ−1 dυ

)µ−1

.

We know that productivity of a technology-vintage pair consists of two constituents. First, Z(τ, υ)

and second aτ . Furthermore, we defined in equation (5) that Z(τ, υ) = e(χ+γ)τ+γ(υτ−τ). Hence,

we substitute Z(τ, υ) in and get

Zτ =

(∫ max{t−Dτ ,τ}

τ

aτe
((χ+γ)τ+γ(υ−τ)) 1

µ−1 dυ

)µ−1

.

We take out the constant. Moreover, as the constant is the productivity of the first vintage, the

integral of the productivity of the new vintages is always bigger than the invention date. Hence,

we take away the max and rewrite as

Zτ = aτe
(χ+γ)τ

(∫ t−Dτ

τ

e
γ
µ−1 (υ−τ)dυ

)µ−1

.

Now, we integrate and get

Zτ =

(
µ− 1

γ

)µ−1

aτe
(χ+γ)τ

(
e

γ
µ−1 (t−Dτ−τ) − 1

)µ−1

.

In the last step we multiply one part of the equation by an exponential term and another part by

the exponential term’s inverse. It follows

Zτ =

(
µ− 1

γ

)µ−1

aτe
(χτ+γ max{t−Dτ ,τ})

(
1− e

−γ
µ−1 (max{t−Dτ ,τ}−τ)

)µ−1

. (19)
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Derivation of equation (25):

We know from equation (17) that pτ = w1−α

Zτ
(1−α)−(1−α)α−α. Moreover, the labor market clears

at L = (
∫ τ̄
−∞

∫ ῡτ
τ

Lτ,υdυdτ)). Combining the market clearing condition and the wage rate of

equation (14), which equals (1−α)
pτ,υYτ,υ
Lτ,υ

= w, gives us the aggregate wage rate w = (1−α)Y
L . We

put the wage rate into pτ and take logarithms

pτ = −zτ + (1− α)(y − l)− α ln α

Equation (12) equals Yτ = Y p
− θ
θ−1

τ . First we take logarithms, then we replace pτ

yτ = y − θ

θ − 1

[
− zτ + (1− α)(y − l)− α ln α

]
which is equal to

yτ = y +
θ

θ − 1

[
zτ − (1− α)(y − l) + α ln α

]
. (20)

Derivation of equation (26):

We consider a second order approximation of Zτ around ∆t ≡ t−Dτ − τ = 0. We start with

Zτ =

(
µ− 1

γ

)µ−1

aτe
(χ+γ)τ

(
e

γ
µ−1 ∆t − 1

)µ−1

which we derived above. Consequently, we consider the limit of the function, where ∆t ≡ t−Dτ −

τ = 0:

lim
γ→0

[(
µ− 1

γ

)µ−1

aτe
(χ+γ)τ

(
e

γ
µ−1 ∆t − 1

)µ−1]
.

Next we apply the l’Hôpital’s Rule to show that

aτe
(χ+γ)τ

(
lim
γ→0

(
µ− 1

γ

)(
e

γ
µ−1 ∆t − 1

))µ−1

= aτe
(χ+γ)τ γ

µ− 1
∆tµ−1.

In the next step we take the first order Taylor approximation around ∆t=0 and get:

Zτ ' aτe(χ+γ)τ

[
∆t

(
1 +

1

2

γ

µ− 1
∆t

)]µ−1

.

Then we simplify the expression of ln Zτ . To do this we apply the first order Taylor approximation

of ln(1+x) ' x, for small x. Therefore, we get

ln Zτ ' ln aτ + (χ+ γ)τ + (µ− 1)ln∆t+
γ

2
∆t.

From substituting back for ∆t follows

ln Zτ ' ln aτ + (χ+ γ)τ + (µ− 1)ln (t−Dτ − τ) +
γ

2
(t−Dτ − τ). (21)

Derivation of equation (27):

We plug equation (26) into equation (25) and get

yτ = y +
θ

θ − 1

[[
ln aτ + (χ+ γ)τ + (µ− 1)ln(t−Dτ − τ) +

γ

2
(t−Dτ − τ)

]
− (1− α)(y − l) + α ln α

]
.
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Next we rearrange

yτ = y +
θ

θ − 1

[
ln a+ (χ+ γ)τ +

γ

2
(t−Dτ − τ)

]
+

θ

θ − 1
((µ− 1)ln(t−Dτ − τ)− (1− α)(y − l) + α ln α).

To simplify and to close the gap between the theorical model and the empirical estimation, we

define the coefficients. We denote βτ3 = θ
θ−1 and βτ1 = βτ3

(
ln a + (χ + γ

2 + α ln α)τ − γ
2Dτ

)
.

Furthermore, βτ2 = θ
θ−1

γ
2 . Hence, we get the following estimating equation

ycτt = βcτ1 + yct + βτ2t+ βτ3((µ− 1)ln(t−Dc
τ − τ)− (1− α)(yct − lct ) + εcτt. (22)
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