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Abstract

The potential benefits and mechanistic effects of working memory training (WMT) in

children are the subject of much research and debate. We show that after five weeks

of school-based, adaptive WMT 6–9 year-old primary school children had greater

activity in prefrontal and striatal brain regions, higher task accuracy, and reduced

intra-individual variability in response times compared to controls. Using a sequential

sampling decision model, we demonstrate that this reduction in intra-individual vari-

ability can be explained by changes to the evidence accumulation rates and thresholds.

Critically, intra-individual variability is useful in quantifying the immediate impact

of cognitive training interventions, being a better predictor of academic skills and

well-being 6–12 months after the end of training than task accuracy. Taken together,

our results suggest that attention control is the initial mechanism that leads to the

long-run benefits from adaptive WMT. Selective and sustained attention abilities may

serve as a scaffold for subsequent changes in higher cognitive processes, academic

skills, and general well-being. Furthermore, these results highlight that the selection

of outcomemeasures and the timing of the assessments play a crucial role in detecting

training efficacy. Thus, evaluating intra-individual variability, during or directly after

training could allow for the early tailoring of training interventions in terms of duration

or content tomaximise their impact.
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1 INTRODUCTION

Cognitive training programs have received considerable attention over

the years given their potential to improve cognitive abilities in healthy

and clinical populations. However, the effectiveness and persistence

of benefits from cognitive training programs are still being closely

examined and vigorously debated (Au et al., 2015; Bogg & Lasecki,
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2014; Cortese et al., 2015; Karbach & Verhaeghen, 2014; Melby-

Lervag et al., 2016; Sala&Gobet, 2020; Schwaighofer et al., 2015; Smid

et al., 2020; Wass et al., 2012). Although cognitive training programs

have been shown to improve performance on similar untrained tasks

(near-transfer), the evidence for transfer to cognitive skills in other

domains (far-transfer) remainsmore sparse and controversial (Auet al.,

2015; Cortese et al., 2015; Delalande et al., 2020; Gilligan et al., 2020;
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Jones et al., 2020; Karbach & Verhaeghen, 2014; Melby-Lervag et al.,

2016; Sala &Gobet, 2020; Schwaighofer et al., 2015; Smid et al., 2020).

We still lack sufficient understanding of the types of cognitive skills and

abilities that aremost beneficial to train, types of trainingmethods and

dosages thatwork best for particular skills, and the types of individuals

that can reap sufficient benefits to justify the time andmonetary costs

of cognitive training interventions.

As with many aspects of cognitive training, the extent of far-

transfer effects to academic achievements is subject to intense debate.

Improvements in academic performance seem to be stronger for the

language and reading domain and less consistent in mathematics,

although this varies depending on the type of training regime and study

sample (see Sala & Gobet, 2020 and Titz & Karbach, 2014 for review

and meta-analysis). For example, there are reports that initial trans-

fer effects to mathematics do not persist three months later (Jones

et al., 2020) and that children with low working memory ability show

worse math skills than a normal classroom instruction control group

2 years after working memory training (WMT) (Roberts et al., 2016).

On the other hand, a recent study found that the effects of training

can emerge and increase over time in a cohort of over 500 first-grade

children that were not preselected based on working memory abilities

(Berger et al., 2020). This study found that the far-transfer benefits

from adaptiveWMT to academic skills were only evident 6–12months

after the end of training. Moreover, this work showed that five weeks

of adaptiveWMTduring the first-grade year led to an increased proba-

bility of entering the highest academic track of the German secondary

school system 3–4 years later. Given the aggregate results across mul-

tiple studies, it is clear that longitudinal study designs that include

follow-upmeasures overmultiple yearswill be important for determin-

ing the potential effectiveness of different types and/or doses of cogni-

tive training, especially for children.

It is important to understand the cognitive and neurobiological

changes that take place during or just after training. Presumably, these

proximal effects allow for the eventual emergence of wide-ranging

benefits in the future. The level of attention can determine how well

information is remembered (Gazzaley & Nobre, 2012). Working mem-

ory processes, defined as the temporary storage and manipulation of

information that allows for the performance of complex cognitive tasks

(Baddeley, 1996; Baddeley, 2010), are therefore closely inter-related

with attention control.We refer to the capacity to coordinate and allo-

cate attention to the relevant stimuli in the environment regardless

of distractions and fatigue as attention control (Cartwright, 2012; Cor-

betta & Shulman, 2002; Norman & Shallice, 1983). Working memory

requires attention control tomaintain and reassess task-relevant infor-

mation while blocking interference from task-irrelevant information

(Engle, 2018; Fukuda & Vogel, 2011; Kane et al., 2008; Mcnab & Kling-

berg, 2008). Both working memory and attention control processes

rely on fronto-parietal and striatal brain networks (Klingberg, 2010).

Cognitive training has been reported to alter brain structure and func-

tion, with induced changes often observed in prefrontal, parietal, and

striatal regions (Astle et al., 2015; Buschkuehl et al., 2012; Flegal et al.,

2019; Klingberg, 2010; McNab et al., 2009; Salmi et al., 2018; Schnei-

ders et al., 2012). These are crucial regions supporting executive func-

ResearchHighlights

∙ Response time variability in traditional working memory

and selective attention tasks successfully detects immedi-

ate training effects

∙ Measures of intra-individual response time variability are

closely associated with current and future academic per-

formance andwell-being.

∙ Attention control abilities may serve as a mechanism

underlying working memory cognitive training effects,

supporting the development of later benefits in other

areas of cognition.

∙ The types of outcome measures investigated and the tim-

ing of assessments relative to the training period are criti-

cal aspects in determining training efficacy.

tions such asworkingmemory and attention control (D’Esposito&Pos-

tle, 2015; Frank et al., 2001; Mcnab & Klingberg, 2008; Owen et al.,

2005; Wager & Smith, 2003). Brain imaging studies suggest that suc-

cessful transfer from trained to untrained skills requires that both cog-

nitive processes engage at least partially overlapping structural and

functional brain systems (Dahlin et al., 2008;Morrison & Chein, 2011).

Thus, to be most beneficial cognitive training programs should facili-

tate neural developments that allow for more effective and efficient

engagement of such shared neural systems.

Sensitive and reliable measures of changes in mental and neural

functions are necessary to detect the immediate effects of training

interventions and to forecast long-term benefits of training. In the cur-

rent work, we test the hypothesis that intra-individual variability in

response times may be useful in this regard. Intra-individual variabil-

ity measures based on either accuracy or response times have been

shown to bemore informative than averaged accuracymeasures when

trying to understand the mechanisms by which beneficial effects of

cognitive trainings might transfer to academic skills (Karbach & Unger,

2014; Könen&Karbach, 2015), to anticipate long-termbenefits in aca-

demic performance (Judd et al., 2021), and to facilitate the identifi-

cation of those individuals that would benefit most from the training

intervention (Karbach & Unger, 2014; Könen & Karbach, 2015; Mac-

Donald et al., 2009; Saville et al., 2011).

Several methods have been used to quantify and distinguish

between different cognitive processes that may give rise to intra-

individual variability in response times. The individual coefficient of

variation (ICV) is a common measure, computed as a straightforward

ratio of the standard deviation relative to the mean. In addition, the

shape of the response time distribution can be parameterized by fitting

ex-gaussian models (Geurts et al., 2008; Hervey et al., 2006; van Belle

et al., 2015), and potential sources of variability can be distinguished

by fitting Diffusion Decision Models (DDM) (Forstmann et al., 2016;

Karalunas & Huang-Pollock, 2013; Ratcliff et al., 2016; Schmiedek

et al., 2009). Furthermore, DDMs can also be used to measure and
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understand the effects of attention on task performance and decision

making (Cavanagh et al., 2014; Krajbich & Rangel, 2011; Krajbich et al.,

2015).

Intra-individual variability in performance is associated with the

cognitive abilities and brain functions targeted by cognitive training

interventions (Castellanos et al., 2005; Geurts et al., 2008; Judd et al.,

2021; Kofler et al., 2013;MacDonald et al., 2006). Intra-individual vari-

ability is also associated with prefrontal brain function and dopamin-

ergic neuromodulation (Ilg et al., 2018; Johnson et al., 2015; MacDon-

ald et al., 2006, 2009; Papenberg et al., 2013; Tamnes et al., 2012;

van Belle et al., 2015), especially the inhibitory and cognitive control

abilities mediated by frontal and subcortical dopaminergic brain sys-

tems (Bellgrove et al., 2004; Isbell et al., 2018; Montez et al., 2017;

van Belle et al., 2015). Measures of intra-individual variability may be

especially useful when comparing across heterogeneous groups, such

as children and adolescents whose cognitive development is still ongo-

ing or populations with cognitive difficulties such as ADHD or Autism

(Castellanos et al., 2005; Dirk & Schmiedek, 2016; Geurts et al., 2008;

Karalunas et al., 2014; Könen & Karbach, 2015). Consistent with the

well-establishedpattern of brain and cognitive development across the

lifespan, intra-individual variability shows an inverted-U shaped asso-

ciation with age, decreasing from childhood through adolescence until

young adulthood, and increasing again in old age (Montez et al., 2017;

Papenberg et al., 2013;Williams et al., 2005).

An advantage of intra-individual variability measures is that they

capture not just the outcome, but also the efficiency of cognitive pro-

cesses. Increased variability in response times is associated with dif-

ficulties in attention control or the ability to maintain attention and

goals (Unsworth, 2015). Improved cognitive capacity, enhanced effi-

ciency, or stability of cognitive processes have all been hypothesized

as potential mechanisms underlying the impact of training interven-

tions (von Bastian &Oberauer, 2014). Failures of attention during task

performance might indicate inconsistent implementation rather than

reduced capacity or abnormal function. Such inconsistency in imple-

menting the relevant cognitive systems may not be associated with

reduced accuracy if the task or test is not difficult enough and/or yields

only coarsemeasures of accuracy, butmay still significantly impair aca-

demic performance in children (Judd et al., 2021). Inconsistent imple-

mentation of behaviorally relevant cognitive processes can change the

response time distribution. These effects will not necessarily lead to

differences in average response times, but can be quantified through

various metrics of intra-individual response time variability (Ali et al.,

2019; Geurts et al., 2008; van Belle et al., 2015).

Intra-individual variability has indeed been associated with atten-

tional lapses. This has been shown in children with ADHD who often

show abnormally long RTs on a subset of trials (Hervey et al., 2006;

van Belle et al., 2015). Compared tomeasures of central tendency (e.g.,

mean or median), intra-individual variability measures have shown

to be more sensitive to fatigue in young adults (Wang et al., 2014),

or to externally rated attention problems (Gómez-Guerrero et al.,

2011), and to correctly classify patientswith ADHD (Klein et al., 2006).

Therefore, intra-individual variability metrics could plausibly detect

changes caused by training interventions that cannot (yet) be captured

by mean performance measures because performance variability

measures aremore sensitive to the efficiency of cognitive processes.

Recent work has shown that performance variability is related to

working memory abilities, training, and transfer to academic skills.

Intra-individual variability in accuracy within and between sessions

in working memory tasks has been associated with academic perfor-

mance in 3rd and 4th grade school children (Dirk & Schmiedek, 2016),

and a recent study in 6-year-old children showed that intra-individual

variability after working memory cognitive training was associated

with performance in mathematics 3 years later (Judd et al., 2021).

Given the predictive association between academic performance at

school and well-being in adulthood (Tomasik et al., 2019), it is impor-

tant to investigate the impact of any cognitive training on academic

performance.

In summary, there is sufficient reason to hypothesize that intra-

individual response time variability metrics can detect short-term

training effects andmay be useful in predicting the degree of long-term

benefits. Here, we test the hypothesis that intra-individual variability

in task performance—quantified via response times—can be used to

assess training efficacy in the short term and is correlated with future

far-transfer effects. We use a combination of cognitive tasks (N-Back

and Flanker), functional magnetic resonance imaging (fMRI), and Dif-

fusion Decision Modelling of individual performance to examine the

effects of five weeks of adaptiveWMT on brain and cognitive function

in first-grade children. Our specific hypotheses were thatWMTwould

benefit performance on the N-Back and Flanker tasks in the short

term, increasing accuracy and reducing intra-individual variability in

response times. We also hypothesized that decreased response time

variability following WMT would be associated with brain activation

in key working memory regions such as dorsolateral prefrontal cortex

and the striatum. Furthermore, we hypothesized that, if WMT influ-

enced the ability or motivation to selectively attend to task relevant

information, thenwe should see differences in the estimated drift rates

for theDDMbetween the training and control groups. Lastly, given the

existing evidence for associations between intra-individual variability

and cognitive function across different psychiatric and ageing popula-

tions, we hypothesised that intra-individual variabilitymeasureswould

be indicative of future outcomes at the subsequent 6 and 12-month

follow-up assessments.We test these hypotheses using three indepen-

dent data sets.

2 METHOD

2.1 Participants

For this paper, we analysed data from three separate samples of chil-

dren (N = 28, 572, and 11,878). We describe the participants and

tasks used in the two larger conceptual replication samples in sub-

section 2.7 below. The initial fMRI sample included 28 typically devel-

oping 7–9 year-old primary school children (mean age = 93 months,

SD = 5 months, 14 females, working memory training group [WMT] =

16, comparison group [CMP] = 12). These children were recruited out
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of an ongoing intervention study of over 500 children and 29 different

classrooms. The local ethics committee (Kantonale Ethikkommission

Zürich) approved all procedures andmethods used during this study.

2.2 Cognitive training program

The training procedures consisted of a five-week intervention and four

assessment waves, one pre-intervention (baseline), one immediately

after the end of the five-week intervention, and two follow-up waves

at 6 and 12–13months, respectively. The assessment battery included

tests of working memory and IQ (digit span, location span, object span,

Raven’s test), educational outcomes (math numeracy andmath geome-

try, reading abilities) and concentration tests (Go/NoGo and bp task).

The working memory training program implemented was Cogmed’s

RoboMemo1. It is a computerized program, highly adaptive to indi-

vidual performance, implemented via notebook computers includ-

ing headphones for the spoken instructions and an external mouse.

The intervention consisted of a daily WMT session per day (duration

∼30 min), over a period of 5 weeks (25 sessions). Each training ses-

sion included six adaptive modules (working memory tasks), including

each 12 trials (75 trials in total). During the intervention, therewas one

specifically trained student coach in each class.

We compare the WMT group to children that either received stan-

dard classroom instruction (N= 3) or a self-regulation training over six

school lessons (N = 9). In these lessons, the teacher taught a version

of the mental contrasting with implementation intentions (MCII) tech-

nique (Duckworth et al., 2013) that was adapted to the relevant age

group and the classroom context.

2.3 Post-training cognitive and decision tasks

Working memory (N-Back) task: The 11-min block design working

memory task consists of four conditions (Figure S1a). In the ‘0-Back’

condition, they have to respondwhenever they see the picture of a sun

on the screen. In the ‘1-Back’, ‘2-Back’, and ‘3-Back’ conditions, they

have to respond whenever the picture on the screen is the same as 1,

2, or 3 before it, respectively. Performance data were recorded dur-

ing scanning. The main performance variables are the d-prime index

(d’= z(HitRate) – z(FalseAlarms)) and the intra-individual coefficient of

variation (ICV= SDRT/MRT) for eachworkingmemory condition.

Flanker task: The 11-min event-related task was designed based

on Rueda et al. (2004). Participants were presented with 240 trials

(Figure S1b). Each trial consisted in a central row of five yellow fishes

over a blue background. They were instructed to ‘feed’ the fish located

in the centre of the screen. To do so, the child had to press the right/left

button on the button box, depending on the direction of the central fish

and ignoring the direction of the flankers. The main performance vari-

ables are the % of correct responses, and intra-individual coefficient

of variation in response times. Furthermore, we fit a decision diffusion

model to the response outcomes and times to determine the source(s)

of differential variability in performance (see Section 2.4.2). Lastly, for

comparison with previously published papers, we also conducted a

post-hoc analysis of the RT data using the ex-gaussian approach. Based

on previous studies (Geurts et al., 2008; Hervey et al., 2006; van Belle

et al., 2015),weexpecteddifferencesbetween thegroups in theparam-

eters of the exponential component of the ex-gaussian distribution

of RTs.

For completeness, we note that the children also completed an

intertemporal choice task similar to one in Steinbeis et al. (2014) while

in the scanner, which was administered to test a separate hypothesis

from the one that we focus on in this paper.

Furtherdetails on the three tasks canbe found in theSupplementary

Methods.

2.4 Behaviour data analyses

Two of the 28 children from the fMRI sample withdrew from the study

after the first task (in both cases, the intertemporal choice task). For

three participants there were technical failures collecting the perfor-

mance data during the Flanker task, which resulted in one participant

being excluded due to the complete loss of performance data, and for

two participants only one run of the task could be used in the analysis.

2.4.1 Regressions on behavioural performance

Statistical analyses were conducted using RStudio (Version 1.1.442)

(RStudio Team 2020).

We investigated differences between the trained and untrained

groups on the main performance variables of the tasks right after the

WMT. To do so, we conducted a general linear model (GLM) for the N-

Back and Flanker tasks with training group (WMT vs. CMP) as fixed-

effects factor and task condition (N-Back: high vs. low working mem-

ory; Flanker: congruent vs. incongruent) as random-effects factors.

2.4.2 Decision Diffusion Modelling analyses

We used a Bayesian hierarchical approach to fit the parameters of the

decision diffusion model (DDM) to the Flanker task using JAGS (Plum-

mer, 2003) and the JAGS-Wiener module (Wabersich & Vandekerck-

hove, 2014) together with the rjags package (Plummer, 2018) in R. We

used the priors recommend for hierarchical diffusion decision mod-

elling in Wiecki et al. (2013). The fitting was run with three chains,

100,000 burn-in samples, and 10,000 posterior samples with a thin-

ning rate of 10 samples. Convergencewas assessed using visual inspec-

tion, and by ensuring psrf measures were below 1.05 for all parame-

ters. Drift rates were calculated as a weighted linear combination of

the target and non-target stimuli to distinguish the relative contribu-

tion of each to the evidence accumulation rate. Here, we fit the DDM

to children’s behaviour in the Flanker task.We did not fit data from the

N-Back task because it required responses only on target trials, which

were a small minority (25%) of all trials.
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In our specificationof theDDM, themagnitudeof thedrift rate coef-

ficients informs us about how strongly each stimulus influences the

evidence accumulation processes. In the flanker task, children should

focus on the target fish because it alone provides evidence for the cor-

rect response in each trial. The direction the flanking distractor fish are

facing is irrelevant and should be ignored. Thus, we specified the drift

rate according to equation (1) below.We hypothesized that β1–β2 (i.e.,
theweight on relevantminus irrelevant information) should be greater

in theWMT than the CMP group.

Drift = 𝛽1 ∗ Target_Direction + 𝛽2 ∗ Distractor_Direction (1)

2.5 fMRI data collection and analysis

Detailed descriptions of the fMRI preprocessing, scanning parameters

and fMRI GLM can be found in the SupplementaryMethods.

2.6 Associations between post-training cognitive
task performance and follow-up measures in the
fMRI sample

We investigated if intra-individual variability measures computed

immediately after the training could serve as indicators of relevant

future outcomes at the subsequent follow-up assessments. Specifi-

cally, we examined the total score in the SDQ (Woerner et al., 2002),

a behaviour and psychological well-being screening measure typically

administered in clinical settings to identify potential problematic areas

in a child that merit further assessment by a specialist. The SDQ was

filled out by parents 6 months after training. We also examined tests

of academic performance in reading and two mathematics subscales

(geometry and arithmetic) conducted 12 months after training. We

focused on these specific academic skills because of the results from

the independent sample in Berger et al. (2020), which show thatWMT

improved geometry and reading scores, but not arithmetic.

In order to investigatewhether intra-individual variabilitymeasures

could be indicative of future outcomes at the subsequent follow-up

assessments across all intervention groups, we conducted Bayesian

robust linear regression analyses. These analyses tested whether

changes in SDQand academic skills (i.e., controlling for baseline scores)

could be explained by children’s accuracy (d-prime) or response time

variability in cognitive tasks performed at the end of the training

period. Specifically, we used the coefficient of variation in response

times and d-prime scores from the N-Back task and the estimates of

DDMdrift rates from the flanker task to explain future outcomes. Cer-

tain follow-up or intra-individual variability measures weremissing for

some children (maximum number of missing values for any measure

was 4). In order to use as much of the data from our small fMRI sam-

ple as possible, we imputed the missing values using the ‘mice’ pack-

age (vanBuuren&Groothuis-Oudshoorn, 2011) in R.We generated 10

different imputed datasets and fit Bayesian linear regressions to each

of them using the R package, ‘brms’ (Bürkner, 2018) as an interface to

STAN (Stan Development Team, 2020). We drew our final inferences

from the combined posterior distributions of all ten robust regression

models to reduce the influence of any one set of imputed values on our

results. Each of the 10 models used z-scored dependent and indepen-

dent variables and student-t priors for all fixed effects (mean= 0, SD=

1, degrees of freedom = 10). Each model used 6000 MCMC samples

across three independent chains after 1000 warmup samples for each

chain and a thinning step = 5. The full set of regressor variables and

results from these regressions are reported in Table S7. All regressions

controlled for the baseline performance for each dependent variable,

which effectively estimates changes in the outcomes.

2.7 Conceptual replication and generalization
using independent samples

We tested whether the core aspects would replicate or generalize in

two independent, larger samples. The conceptual replication involved

novel analyses of the data from Berger et al. (2020), henceforth

referred to as the BFHSW study. The BFHSW study was conducted

in a separate sample of 1st-grade children (age = 6–7 years, mean =

6.8 years, SD = 4.3 months) than the one from which our fMRI sam-

ple was drawn. However, the two studies used the same WMT proce-

dures, as well as many of the same assessment instruments at baseline

and follow up. These overlaps allow us to test the association between

changes in response-time ICVs after the training and their associa-

tion with academic skills at the 12-month follow-up in a manner simi-

lar to our fMRI sample, although computing response-time ICVs from

a response inhibition rather than a working memory task (see 2.7.1

for details). We also tested whether the association between intra-

individual variability in task performance and measures of current and

future well-being we found in our small fMRI sample would generalize

to the much larger set of children taking part in the Adolescent Brain

and Cognitive Development (ABCD) study (Casey et al., 2018).

2.7.1 BFHSW sample

Berger et al. (2020) implemented the sameWMT intervention and the

same pre- and post-training assessments at the same follow up time

points (6 and 12 months after the end of the training) used in our

fMRI sample in a separate set of 572 children (6–7 years of age). In

this sample, theWMT group included 279 participants who performed

the same WMT as in our initial sample. The control groups received

either standard school instruction, the self-regulation training similar

to our initial sample, or a learning software training. Following the pro-

cedures established in Berger et al. (2020), we compared the change

in ICV in response times after WMT to the 101 children that received

standard school instruction. However, our primary tests of the associ-

ation between changes in ICV over the five-week intervention period

and improvements in reading or geometry score 1 year after training

were conducted across the 521–565 children for whom we have all of

the relevantmeasures at each timepoint (seeTables1and2 fordetails).
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TABLE 1 Regression analyses testing for an association between intra-individual variability and academic performance in the BFHSW study

A Dependent variable: Geometry Scores at 12-month follow up

Coefficient Robust Std error t-Value p-Value

Go/NoGo ICV after training −0.1351 0.0619 −2.18 0.0185

Go/NoGo ICV baseline −0.1254 0.0393 −3.19 0.0015

Baseline Geometry score 0.3429 0.5478 6.26 <0.001

WMT group 0.3569 0.1068 3.34 0.001

B Dependent variable: Reading Scores at 12-month follow up

Coefficient Robust Std error t-Value p-Value

Go/NoGo ICV after training −0.0847 0.0441 −1.92 0.032

Go/NoGo ICV baseline −0.0301 0.0367 −0.82 0.209

Baseline Reading score 0.5532 0.0528 10.48 <0.001

WMT group 0.2288 0.1064 2.15 0.020

Note: This table shows the relationship between the change in the intra-individual coefficient of variation in response times during the Go/NoGo task (ICV)

after the five-week intervention period and improvements in academic performance at the 12-month followup assessment inBFHSWsample. The results are

derived from linear least squares regression models including fixed effect control covariates for the child’s age, sex, school site, and other treatment groups

(omitted here for brevity and clarity). All outcome scores are standardized to mean = 0 and SD = 1. The robust standard errors are based on clustering at

the classroom level. The coefficient for Go/NoGo ICV after training tests for the relationship between post-training changes in ICV and improvement in the

academic skills at the 12-month follow up relative to baseline in both regressions.A) Changes in Go/Nogo ICV after training are significantly associated with

improvements in geometry 12 months later (N = 521). B) Changes in Go/Nogo ICV after training show a similar relationship with improvements in reading

12 months later (N = 522), but the significance of this effect does not survive correction for multiple comparisons. Note that the p-values in the 4th column

represent uncorrectedone-sided tests of theapriori hypothesis that improvements (decreases) inGo/Nogo ICVwouldbeassociatedwith increasedacademic

performance and that the threshold for Bonferroni correction 0.05/2= is 0.025.

We computed intra-individual variability in response times from

a response inhibition task instead of a working memory task in the

BFHSW study. That study did not include a working memory task

with enough speeded responses from each child to reliably compute

intra-individual variability in response times. It did, however, include

a Go/Nogo task, which measures response inhibition, at all assess-

ment waves that we could use to compute intra-individual variability

in response times. Therefore, to test the association between improve-

ments in intra-individual variability after training and long-term, far

transfer to academic skills,we computed the ICVas the standarddevia-

tion of go-trial RTs dividedby themeanof the go-trial RTs.Note thatwe

compute the ICV from correct trials only just as we did for all tasks in

the initial sample and consistentwith the standard procedure in the lit-

erature (Bellgrove et al., 2004; Bos et al., 2020; Fagot et al., 2018;Mar-

ciano & Yeshurun, 2017). We refer to these analyses as a conceptual

replication because we use the Go/Nogo task instead of the N-back.

Lastly, we only tested academic skills in the BFHSW sample because

many of the parents did not complete the SDQ for their children in that

study.

We fit linear regression models using Stata (StataCorp 2015).

Specifically, we followed the methods reported in Berger et al. (2020)

and estimated ordinary least squares regressionswith robust standard

errors clustered at the classroom level. All regression models included

control covariates for treatment type, school, sex, age, and baseline

performance in both the dependent variables (geometry or reading

scores) and ICV from the Go/Nogo task.

2.7.2 Adolescent Brain and Cognitive
Development (ABCD) study

The ABCD study (https://abcdstudy.org, data release version 3.0) is a

longitudinal, multicentre study of children’s cognitive and neurobiolog-

ical development starting from age 10, with data on 11,878 children.

This study includes a wide range of standardized questionnaires and

interviews covering both general well-being and clinical measures. In

addition, participants perform several cognitive tasks, including an N-

back task (Casey et al., 2018). We tested if intra-individual variabil-

ity, once again quantified as the coefficient of variation in response

times, during the N-Back task was associated with scores on the Child

Behavioural Checklist (CBCL, Achenbach, 1991). The CBCL is a mea-

sure of current behavioural and psychopathological symptoms with

high correspondence to the SDQ when both scales are applied to the

same individuals. The ABCD study includes the CBCL, but not SDQ.

We also tested for potential relationships between intra-individual

variability and body mass index (BMI) scores. We chose BMI as an

additional translational measure because it is robustly associated with

physical, cognitive, and socioeconomic well-being. We used only those

participants whose performance in the N-Back task was deemed ade-

quateby theABCDstudy’s establishedQAprocedure (overall response

accuracy for 0-back or 2-back >60%) at all three currently available

time points, and whose BMI fell between the 1st and 99th percentile

(BMI percentiles = 13.3 and 35.0, respectively). We restricted the

range for BMI because there were a small minority (<2%) of children
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TABLE 2 Regression analyses testing for a decrease in Go/Nogo
ICV after workingmemory training in the BFHSW sample

A Dependent variable: Go/NoGo ICV right after

training

Coefficient

Robust Std

Error t-Value p-Value

Go/NoGo ICV

baseline

0.3775 0.0293 12.90 <0.001

WMT group 0.0115 0.1134 0.10 0.460

B Dependent variable: Go/NoGo ICV at 12-month

follow up

Coefficient

Robust Std

Error t-Value p-Value

Go/NoGo ICV

baseline

0.2989 0.0386 7.75 <0.001

WMT group −0.2960 0.1007 −2.94 0.003

Note: This table shows effects of 5 weeks of working memory training on

the intra-individual coefficient of variation in response times (ICV) in the

Go/NoGo task in the BFHSW sample. The results are derived from linear

least squares regression models including fixed effect control covariates

for the child’s age, sex, school site, and other treatment groups (omitted

here for brevity and clarity). All outcome scores are standardized to mean

= 0 and SD = 1. The robust standard errors are based on clustering at the

classroom level. A) Go/NoGo ICV measures do not yet show a significant

decrease just after the working memory training (N = 565). B) Improve-

ments (i.e., decreases) in Go/NoGo ICV in the working memory training

group (WMT group) have emerged by the 12-month follow up assessment

(N = 527). Note that the p-values in the 4th column represent uncorrected

one-sided tests of the a priori hypothesis that working memory training

would decrease response-time ICV and that the threshold for Bonferroni

correction is 0.05/2= 0.025.

with extremely low or high BMI values; however, robustness checks

including all BMI values yielded similar results. The final sample size for

our analyses was 8,522 children.

We computed Hierarchical Bayesian regression models estimating

association between ICV and concurrent as well as future BMI and

CBCL scores using theRpackagebrmsandMCMCsamplingwith STAN

(Bürkner, 2018; Bürkner, 2017; Core Team, 2018; Stan Development

Team, 2020). We fit and compared regression models that 1) assumed

the association between ICVmeasured at baseline and baseline scores

on CBCL or BMI would remain constant for CBCL or BMI values mea-

sured at the 1 or 2-year follow-up assessments, or 2) allowed for the

explanatory power of baseline ICV to decrease in future assessment

waves (i.e., these models included an interaction between ICV and

assessment wave). All models controlled for potential effects of age,

N-back accuracy, sex, race and parental education. We used a linear

model that assumed a gaussian distribution for CBCL scores. However,

the BMI scores did not follow a gaussian distribution. Therefore, we

use a modified link function for the BMI regressions based on a com-

bination of a gaussian and exponential distributions. To facilitate inter-

pretability and comparison across dependent variables, we restricted

the influence of ICV and all control variables to the mean parameter

of the gaussian portion of the distribution in the BMI regressions. All

models used z-scored dependent and independent variables as well as

weakly regularizing priors for all fixed effects (gaussianswithmean= 0

and SD=1). Posterior distributionswere estimated using 3000MCMC

samples across 3 independent chains after 1000 warmup samples for

each chain and thinning step = 1. Convergence was assessed using

visual inspection, and by ensuring psrf measures were below 1.05 for

all parameters.

3 RESULTS

3.1 Behavioural results

Children in theWMT did not differ from those in the CMP at baseline.

Before the start of any training program, all participants were assessed

using a battery of tests that included general intelligence (a modified

version of the Raven Matrices), working memory (visual, spatial), inhi-

bition (Go-NoGo task), school performance (including reading, arith-

metic, geometry, etc) and psychological well-being screeningmeasures

(SDQ). Statistical comparisons between the two groups show that they

did not differ in any of these baseline measures (Table S1). While the

twogroups showednodifferences in anymeasureat baseline, including

cognitive tasks measuring working memory and attention skills, we do

not have baseline measures on the N-Back and Flanker tasks reported

in the following section.

3.2 Accuracy and response-time variability
findings

Overall, the group of children randomly assigned to undergo adaptive

WMT performedmore accurately and with less trial-to-trial variability

in response timesduring theN-BackandFlanker tasks than those in the

CMP (see Supplementary Tables S2 and S3 for the full set of descriptive

statistics and results). The WMT group responded more accurately in

the Flanker task across both the congruent and incongruent trials. In

the N-Back task, children in theWMT group were more accurate than

those in the CMP on low working memory trials (0-1 back), but the

two groups did not significantly differ on high working memory trials

(2-3 back).

In addition to better accuracy, children that received adaptiveWMT

also showed less intra-individual variability in response times than chil-

dren in the CMP group (Supplementary Tables S2 and S3). We com-

puted the intra-ICV as intra-individual RT standard deviation/intra-

individual RT mean. Children in theWMT group used external mouses

during the training intervention rather than the MRI-compatible

button-box used during both the Flanker and N-back tasks, and thus

familiarity with the response device cannot be a source for differences

in ICV across groups.

3.3 Diffusion Decision Model analyses

We fit a DDM model to the children’s behaviour in the Flanker task

to determine the mechanisms leading to differences in response time
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8 of 16 CUBILLO ET AL.

TABLE 3 Diffusion DecisionModel parameters for the Flanker task

WMT CMP WMT–CMP

DDMparameter m HDI m HDI m HDI

Target drift coef. 2.84 2.30 3.38 1.99 1.65 2.37 0.84* 0.20 1.49

Distractor drift coef. 0.20 0.03 0.38 0.25 0.00 0.51 −0.05 −0.36 0.25

Target – Distractor 2.64 2.06 3.20 1.75 1.31 2.19 0.89* 0.14 1.57

Boundary 2.53 2.13 2.96 2.09 1.75 2.42 0.45* − 0.08 0.98

Non-decision time 0.30 0.22 0.37 0.24 0.14 0.35 0.05 − 0.07 0.18

Note: This table lists themean (m) aswell as the lower andupper boundsof the95%highest density interval (HDI) of theposterior distributions for parameters

or parameter differences from the decision diffusionmodel (DDM) fit to the Flanker task. TheDDMwas fit to the Flanker task data separately for the children

in the group that received working memory training (WMT) and those in the comparison group (CMP). The asterisks next to the mean differences between

WMT and CMP denote those means that are significantly different based on a one-sided test of posterior probability of the mean for WMT being greater

than the CMP group.

variability between the treatment groups. Using the DDM, we can

determine if response time variability is driven by (1) differences in the

non-decision time; (2) differences in the boundary or threshold deter-

mining when there is sufficient evidence to make one response versus

the other (often interpreted as response caution); and/or (3) the drift

rates (i.e., how quickly and robustly evidence is accumulated). We sep-

arated the drift rate into two components to measure children’s sen-

sitivity to the relevant information from the target compared to the

irrelevant information from the flankers. The fits are summarized in

Table 3 and show that children in theWMT group were more sensitive

to the information carried by the target fish (i.e., its direction) relative

to distractor fish (posterior probability = 0.992) and utilized a higher

response threshold (posterior probability= 0.952) than children in the

CMP. These DDM results are consistent with better attention to task-

relevant features followingWMT.

We also simulated responses from the fitted diffusion decision

model to test if it could reproduce the patterns of response time vari-

ability observed in theFlanker task. To generate simulated responses in

the Flanker task, we used each participant’s best-fitting DDMparame-

ters. We then compared the simulated response times across groups

and found that the RTs were less variable for simulated agents using

parameters from the WMT participants than for simulated agents

based on CMP children’s parameters (Table S4). Thus, the fitted DDM

can both explain and generate different levels of response time vari-

ability in the two groups.

In addition to fitting the DDM, we also conducted a post-hoc test

fitting the ex-gaussian distribution to each child’s response times.

Although the ex-gaussian model does not allow for the same type

of mechanistic inferences as the DDM, we fit and report it to facili-

tate comparison with previously published papers using this method

to quantify intra-individual variability in RT. These ex-gaussian results

are consistent with the ICV and DDM results and indicated that the

standard deviation (sigma) and exponential (tau) parameters differed

between the working memory trained and CMP, but there was no sig-

nificant difference in themeans (mu) of the response time distributions

(Table S5). In other words, more variable individuals were not reliably

faster or slower to respond overall. Rather they were more inconsis-

tent in theway they executed their responses. Intra-individual variabil-

ity was highly correlated across theN-Back and Flanker tasks (r= 0.65,

p= 0.0008, 95%CI [0.32, 0.84]).

Together, the pattern of behavioural results across both cogni-

tive tasks and several complementary forms of analysis suggest that

the adaptive WMT intervention may have increased children’s abil-

ity to engage and maintain attention on task-relevant information in

a domain-general manner soon after the five weeks of training were

complete.

3.4 fMRI results

Along with better accuracy, the WMT group showed increased acti-

vation compared to the CMP in brain regions that are part of atten-

tion and control networks during the lowworkingmemory trials. These

included portions of fronto-striatal-thalamic systems such as the right

caudate, putamen, pallidum, thalamus, inferior middle and superior

frontal gyri, the dorsal anterior cingulate and the supplementarymotor

cortex (Table S6, Figure 1). Consistent with the behavioural findings of

similar accuracy in the high working memory condition, there were no

significant differences in theBOLDsignal across groupsduring thehigh

workingmemory trials.We did not detect any significant differences in

activity as a function ofWMT during the Flanker task.

In addition, we found that task-related BOLD signal levels in regions

that showedgreater activity in theWMTgroup (seeFigure S2) also cor-

related with the intra-individual coefficients of variation and/or accu-

racy on the N-back task across all participants (Figure 1, bottom row).

Some relation to accuracy and the intra-ICV in these regions is to be

expected given that there are groupdifferences in intra-individual vari-

ability. However, activity in the dorsal striatal functional ROI, encom-

passing dorsal caudate and putamen, was significantly associated with

intra-individual variability even after accounting for the effects of

WMT condition (coef = −0.25, p = 0.004; Table 4). There were simi-

lar, though not significant, trends in the dorsolateral prefrontal cortex

(dlPFC) for intra-individual variability, and in the anterior cingulate cor-

tex/supplementary motor area for accuracy (Table 4).

 14677687, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13252 by U

niversitätsbibliothek Z
uerich, W

iley O
nline L

ibrary on [10/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CUBILLO ET AL. 9 of 16

F IGURE 1 Group differences on brain activation. TheWMT group had greater activity in frontostrial regions than the CMP group in N-Back
tasks. Consistent with the behavioural results, these differences were specific to the lowworkingmemory condition. The bar graphs show the
average BOLD signal in each group, in the two clusters circled in yellow, a) right dorsolateral prefrontal cortex (left panel) and b) right putamen
(right panel). The scatter plots in the bottom row show the association between BOLD signal and individual differences in the coefficient of
variation across all trials. Children in theWMT group are shown in redwhile those in the CMP group are shown in blue.
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TABLE 4 Associations between BOLD signal in ROIs where group
differences were identified in the LWMcontrasts and intra-individual
coefficient of variation and d-prime across all trials

Dorsal striatum

Estimate (se) t-Value p-Value

Group 0.17 (0.15) 1.16 −

ICV −0.25 (0.08) −3.26 0.004

d-prime 0.12 (0.06) 2.10 0.049

dlPFC

Estimate (se) t-Value p-Value

Group 0.56 (0.31) 1.782 −

ICV −0.32 (0.16) −1.978 0.0619

d-prime 0.09 (0.13) 0.689 0.4989

dACC-SMA

Estimate (se) t-Value p-Value

Group 0.50 (0.20) 2.497 −

ICV −0.13 (0.10) −1.249 0.2260

d-prime 0.14 (0.08) 1.794 0.0879

Note: The table reports the results from three linear regressionmodels test-

ing the association between the intra-individual coefficient of variation and

d-prime during the N-Back task and BOLD signal after accounting for the

effects of training condition (Group). The linear model in each region was

computed as BOLD signal∼Group+ ICV+ d-prime+Delay, whereDelay is

a control variable that accounts for the delay between the end of the inter-

vention and the scanning session (omitted from the table for conciseness).

We list the T-values for the binary regressor indicating training group for

comparison with the linear regressor for ICV. However, we do not report

p-values for the Group regressor because the functional ROIs were origi-

nally identified with this contrast, making the analysis circular. The point of

these regressions is to test if differences in ICV provide additional explana-

tory power in the region where activity differed between training groups.

se = standard error; ICV = Individual Coefficient of Variation; dlPFC =

dorsolateral prefrontal cortex; dACC = dorsal anterior cingulate; SMA =

supplementary motor area. Note that the fourth column reports uncor-

rected, two-tailed p-values and that the threshold for Bonferroni correction
across the three ROIs is 0.0167.

3.5 Associations between post-training cognitive
task performance and follow-up measures in the
fMRI sample

Response time variability explained significant additional variance in

future SDQ scores (standardized coef. = 0.32 ± 0.14), geometry (stan-

dardized coef. = −0.66 ± 0.23), and reading (standardized coef. =

−0.32 ± 0.14), after accounting for baseline scores in those measures

and IQ (Table S7). Thus, response time variability after 5weeks of train-

ing was associated with future improvement in SDQ scores and aca-

demic skills that were not yet evident in direct tests of those skills at

the same time point. In contrast, no post-training cognitive task perfor-

mance or baseline measures were significantly associated with future

arithmetic scores. Thus, in our sample, the intra-individual variability in

response times measured right after the intervention correlated with

future performance in the same academic domains that Berger and col-

leagues previously found to be improved 1 year afterWMT in an inde-

pendent sample.

3.6 Conceptual replication of the association
between post-training ICV and follow-up measures in
the BFHSW sample

Consistent with our results in the fMRI sample, changes in ICV (post-

versus pre-intervention) during theGo/Nogo taskwere also associated

with improvement in geometry and reading skills 1 year after WMT in

the independent BFHSW sample (Tables 1 and 2), although the effect

for reading does not survive Bonferroni correction for multiple com-

parisons. Note that our regression specification includes regressors

for both baseline (W1) and post-training (W2) Go/Nogo ICV, and in

this specification, the coefficient for W2 Go/Nogo ICV represents the

effect of the change in performance between W1 and W2. The same

holds for the use of the future academic skill scores as the dependent

variable when including the baseline score as an independent variable

in the regression.

Interestingly, while N-back ICV was significantly different between

WMT and control groups just after training, significant differences in

Go/Nogo ICV did not appear until 12 months after training (Table 2).

This delayed emergenceof significant improvements inGo/Nogo ICV is

consistent with the delayed emergence of Go/Nogo accuracy improve-

ments reported in Berger et al. (2020). Even though they did not yet

significantly differ across treatments, changes in Go/Nogo ICV from

baseline to post-training still predicted future improvements in perfor-

mance. A relevant question for future research is to determine which

typesof cognitive tasks (e.g.,workingmemory, response inhibition, etc.)

are best suited to evaluate intra-individual variability in response time

or accuracy in order to forecast the emergence of far transfer benefits

following workingmemory or other training regimes.

3.7 The association between ICV and measures
of well-being generalizes to the ABCD study

We used data from the first three waves of the longitudinal ABCD

study to test whether the relationship we observed in our fMRI sam-

ple between response-time variability during theN-back task andmea-

sures ofwell-being generalized to an independent and larger set of chil-

dren. We used the data on BMI and scores on the Child Behavioral

Checklist (CBCL) as our measures of well-being in the ABCD study.

Unlike our fMRI and the BFHSW studies, the ABCD study does not

include aWMT intervention. Therefore,we used theABCDdata to test

if there was a significant association between N-back ICV and current

well-being and, if so, whether this relationship holds over the first- and

second-year follow-ups in this longitudinal study.

We fit and compared Hierarchical Bayesian regression models

that assumed the association between N-back ICV at baseline and

BMI, or CBCL, at baseline, 1- and 2-year follow-up was either sta-

ble or decreased over time. Concretely, we tested whether regression
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TABLE 5 Results of the regression analyses testing the association
between Go/Nogo ICV and BMI or CBCL scores in the ABCD data

Dependent variable: BMI

Mean SD HDI

Post.

Prob.

Go/Nogo ICV 0.024 0.004 0.016 0.032 0.999

Go/Nogo Accuracy −0.011 0.005 −0.02 −0.002 0.992

Year 1 0.04 0.011 0.019 0.061 0.999

Year 2 0.083 0.016 0.05 0.115 0.999

Sex −0.011 0.008 −0.027 0.005 0.901

Age 0.085 0.006 0.073 0.098 0.999

Dependent variable: CBCL

Mean SD HDI

Post.

Prob.

Go/Nogo ICV 0.028 0.007 0.014 0.042 0.999

Go/Nogo Accuracy −0.092 0.008 −0.106 −0.077 0.999

Year 1 −0.026 0.019 −0.063 0.012 0.908

Year 2 −0.074 0.028 −0.129 −0.018 0.996

Sex 0.175 0.013 0.149 0.202 0.999

Age 0.003 0.011 −0.018 0.024 0.616

Note: This table reports hierarchical Bayesian linear regressions testing

for relationships between N-Back ICV and body mass index (BMI) or

behavioural difficulties (CBCL) in 8,522 children from the ABCD study. In

addition to the fixed effects reported here, themodels included grouping or

random effects for race and parental education level. The columns labelled

mean and SD list the mean and standard deviation of the posterior distri-

bution for each coefficient. All independent variables in these models were

standardized using the z-score transformation. The two columns labelled

HDI give the lower andupper bounds of the95%highest density interval for

the posterior distributions of each coefficient. Post. Prob.= posterior prob-

ability that the estimated regression coefficient is greater or less than zero.

The coefficient forGo/Nogo ICVmeasures theaverageassociationbetween

response time variability during the N-back task at the initial baseline visit

(age 10 years) and BMI or CBCL at ages 10, 11, and 12 years. Model com-

parisons showed that the relationship between baseline Go/Nogo ICV and

BMI or CBCL is stable over this time period (see text for details).

models allowing for an interaction between baseline N-back ICV val-

ues and assessment wave (i.e., the explanatory power of ICV could

decrease or increase) were better thanmodels assuming a fixed associ-

ation between baseline N-back ICV values and well-being at all waves.

The baseline coefficients were the same in both the fixed and interac-

tion models (Table 5) and indicated that greater variability in response

times during the N-back at baseline was associated with decreased

well-being in terms of both baseline BMI (standardized coefficient =

0.02, posterior probability>0.999) andCBCL (standardized coefficient

= 0.03, posterior probability >0.999) scores, consistent with the find-

ings in the fMRI sample.

We compared the fixed and interaction models using leave-one-out

cross-validation with pareto-smoothed importance sampling (PSIS-

LOO, Vehtari et al., 2017). The model comparisons modestly favoured

the simpler fixed model without follow-up wave interactions when

explaining both BMI (difference in expected log pointwise predictive

density (elpd) for the interaction model = −2.3, standard error (SE)

of the difference = 1.6) and CBCL (elpd difference = −2.6, SE =

1.9). Moreover, neither interaction model suggested a decrease in the

explanatory power of baseline N-back ICV for well-being at 1- or 2-

year follow-up visits relative to baseline. If anything, there was a slight

increase in the regression coefficient for ICV between baseline and

year 2 when seeking to explain BMI. Thus, the results from the ABCD

data show that the relationship between N-back ICV and children’s

well-being generalizes across measures of well-being (SDQ, CBCL,

BMI), and the explanatory power of N-back ICV persists through at

least 2 years of experience and development in the absence of any cog-

nitive training intervention.

4 DISCUSSION

The present study examined how the neurocognitive mechanisms

underlying the short-term impact of adaptive WMT in primary school

children relate to training benefits that emerge months or years after

training. Overall, our results suggest that in addition to working mem-

ory itself, there may be concurrent benefits to selective and sustained

attention during or directly after five weeks of training. We show that

intra-individual variability in response times during several different

cognitive tasks can be used to detect short-term training effects in

children, and that such measures may be indicative of the persistence

and/or emergence of far-transfer benefits months to years after train-

ing is completed.

Our findings indicate that better attention is among the immedi-

ate results of adaptive WMT. Working memory and attention pro-

cesses are thought to be closely linked and interdependent (Astle &

Scerif, 2011; D’Esposito & Postle, 2015; Engle, 2018; Eriksson et al.,

2015; Gazzaley & Nobre, 2012; Unsworth & Robison, 2017; Wass

et al., 2012). Although they have different primary targets, the Flanker,

Go/Nogo, and N-Back tasks require the ability to maintain attentional

focus throughout the duration of the task (sustained attention), and

to identify the target stimuli and filter out or inhibit responses to

non-target stimuli (selective attention). At the neural level, differences

between the WMT and CMP groups were found in striatum as well as

the lateral andmedial prefrontal cortices, which are brain regions that,

among other things, support selective and sustained attention func-

tions (Frank et al., 2001; Mcnab & Klingberg, 2008; Zanto et al., 2011).

These neural differences were accompanied by better signal detection

performance (i.e., higher d-prime), reduced intra-individual variability

in response times, and more efficient accumulation of relevant infor-

mation (i.e., higher DDM drift rates) in children that received adaptive

WMT. All of these behavioural measures are related to and dependent

on attention. Therefore, taken together, our neural and behavioural

results suggest that thebenefits of theWMTprogramused in this study

are at least partially mediated by more effective attention processes

leading to consistent and effective responses to task-relevant informa-

tion and reduced processing of irrelevant, distracting stimuli.

These results lend further support to theories of the mechanisms

underlying training benefits. A meta-analysis of previous training
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studies concluded that the Cogmed-RM adaptive WMT program has

effects on attention in daily life (Spencer-Smith&Klingberg, 2015). The

more effective attention processeswe detected at the end of the train-

ing are consistent with previous results and theories about the basis

of far-transfer effects following cognitive training as well (Dahlin et al.,

2008; Greenwood & Parasuraman, 2016; Morrison & Chein, 2011).

Specifically, these far-transfer benefits occur when the trained and

transfer skills share common fundamental cognitive processes. Given

the important role of attention as a prerequisite tomany cognitive pro-

cesses, it could serve as a basis for far-transfer effects followingWMT.

Recently, benefits of the adaptive WMT in school-age children, rel-

ative to standard classroom instruction, have been shown to emerge

over 6–12 months (Berger et al., 2020). Initial improvements in atten-

tion may serve as a scaffold for later changes in higher cognitive pro-

cesses that facilitate better school performance. Our current results

suggest that attention functions might be among the first to improve

from this type of training, and that later emerging benefits to academic

skills and general well-being are associated with immediate improve-

ments in attention processes. It is not surprising thatWMTwould also

influence attention control (e.g., selective attention, sustained atten-

tion, or goal-directedattention reallocation) given that theseprocesses

are postulated to be pre-requisites for the successful implementation

of working memory (Astle & Scerif, 2011; D’Esposito & Postle, 2015;

Eriksson et al., 2015; Gazzaley & Nobre, 2012; Unsworth & Robison,

2017; Wass et al., 2012). There is also evidence that the associations

betweenworkingmemory capacity andvarious cognitive andacademic

skills are partially mediated by a common reliance on attention con-

trol (Engle, 2018; Fukuda & Vogel, 2011; Unsworth & Robison, 2017).

Given the apparent role of attention processes in mediating the far-

transfer of training effects, it is important to measure these processes

when assessing the efficacy ofWMTandother formsof cognitive train-

ing. It will also be important for future studies to directly compare

adaptive WMT versus interventions that use adaptive mechanisms

to train attention, inhibition, or other cognitive abilities. Our current

results indicate that metrics quantifying intra-individual variability in

response timewill be useful in determining the relative short and long-

term efficacy of different training regimes.

The ability of intra-individual variability metrics to detect individual

differences in attention control could explain the association we find

between ICV and the future emergence of benefits to academic skills

and general well-being afterWMT. Intra-individual response time vari-

ability metrics are sensitive and reliable measures of individual differ-

ences in attention control processes (MacDonald et al., 2009; Saville

et al., 2011). They are often used as an index of an individual’s attention

allocationefficiencyordegreeof fluctuation in attention control during

task performance (Bellgrove et al., 2004; Isbell et al., 2018; Kelly et al.,

2008; Stuss et al., 2003; Unsworth, 2015). Intra-individual variability

has been linkedwith cognitive controlmeasures in healthy children and

adults, and thevariability in response timesmeasured inone task is cor-

related with working and long-term memory or intelligence measured

in separate tasks (Bellgroveet al., 2004; Isbell et al., 2018; Larson&Sac-

cuzzo, 1989; Montez et al., 2017; van Belle et al., 2015). It also differs

between healthy individuals and those with attention deficit hyperac-

tivity disorder (ADHD) (Castellanos et al., 2005; Geurts et al., 2008;

Karalunas et al., 2014; Kofler et al., 2013; van Belle et al., 2015). How-

ever, increased response time variability is not unique to ADHD and is

seen in various psychiatric and neurological disorders (e.g., traumatic

brain injury, dementia, and schizophrenia), in which attention deficits

may play an important, though less prominent, role (Geurts et al., 2008;

Haynes et al., 2017; Ilg et al., 2018;Kofler et al., 2013;MacDonald et al.,

2006). Increased intra-individual variability is commonly observed in

non-affected relatives aswell as patients, indicating that itmay capture

shared genetic or environmental risk factors for current and future

psychopathologies (Adleman et al., 2014; Ilg et al., 2018; Karalunas

et al., 2014; Kuntsi et al., 2010; Stuss et al., 2003). In fact, a recent

review by Haynes et al. highlights several longitudinal studies in older

adults that have shown that the intra-individual variability in response

times is associatedwith future levels of cognitive impairment andmor-

tality (Haynes et al., 2017). Thus, our current results, together with

the existing body of work indicate that intra-individual variability mea-

sures are sensitive to not only to current cognitive and neurological

function, but also associated with the future stability, improvement, or

decline of those functions.

We found that intra-individual variability metrics can detect the

short-term efficacy and are indicative of the emergence of longer-term

benefits of working memory interventions aimed at improving cogni-

tive skills and academic performance in children. We could detect sig-

nificant differences between trained and untrained groups in intra-

individual response time variability during cognitive tasks probing

workingmemory and attention (N-Back and Flanker) directly after five

weeks of WMT, while significant improvements in variability during a

response inhibition task (Go/Nogo) did not emerge until months later.

Nevertheless, consistent with their ability to forecast cognitive decline

in the elderly, we found that measures of the intra-individual variabil-

ity in the N-back and Go/Nogo tasks computed at the end of train-

ing were associated with improvements in academic skills and general

well-being in children up to 1 year after training. Across both tasks,

lower post-training variability was related to better future scores on

tests of academic skills and strengths/weaknesses in classroom and

social behaviour. The results from the ABCD data are also consistent

with the idea that measures of performance variability are associated

with both current and future well-being, specifically behavioural prob-

lems and BMI.

Our results suggest that measures of intra-individual variability are

useful in evaluating intervention efficacy. However, there are several

important questions that still need to be addressed. For example, can

we use intra-individual variability metrics to determine when an indi-

vidual has received a sufficient dose of the training intervention? If so,

then we could tailor the amount of training to each person in order

to improve the cost benefit trade-offs inherent in any training pro-

gram. Another key question our findings raise is what types of tasks

(e.g., those targeting working memory, attention, task-switching, etc)

and measures of intra-individual variability are best suited to assess-

ing the short and long-term outcomes of cognitive training. Previous

work has quantified intra-individual variability in response times in

several different ways (Geurts et al., 2008; Karalunas et al., 2014;
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van Ravenzwaaij et al., 2011). We found significant differences in

response time variability between training groups in selective atten-

tion (Flanker), workingmemory (N-Back) tasks, and response inhibition

tasks (Go/Nogo) using several complementary measures of variability.

However, there may be differences in howwell the different measures

of variability and/or task designs predict the emergence of benefits to

specific areas of academic performance or general well-being in the

longer term. This question will be important to address in future stud-

ies that collect and compute multiple longitudinal measures in large

samples of participants.

We note a few potential limitations of this work. One potential limi-

tation is that familiarity with the use of computer devices may under-

lie the differences in response time variability between control and

training groups. However, we think this is unlikely given that in the

fMRI study the training group implemented the responses during the

training with a mouse whereas inside the scanner children responded

using anMRI-adapted button box.Moreover, significant improvements

in performance variability in the Go/Nogo task did not emerge until

months after training suggesting the difference was due to further

development in cognitive skills rather than simple action familiarity

or motor skills. Secondly, our initial fMRI study did not include the N-

Back or Flanker at baseline so we could not control for baseline per-

formance in those exact tasks. The lack of between-group differences

in any other pre-intervention measures of working memory or atten-

tion suggests that the probability of randomization failures leading to

training-independent differences in working memory or attention is

very low. The fact that we can replicate our results from the fMRI sam-

ple in the BFHSW sample using a Go/Nogo task measured at baseline

andpost-intervention further indicates that randomization failure is an

unlikely cause for our original results. Lastly, an important limitation is

that our current data cannot tell us whether these effects are specific

to adaptive WMT per se or if other forms of cognitive training might

lead to similar benefits. Our results on RT variability suggest that some

of the initial training benefits are mediated by improvements in atten-

tion control. While attention control and working memory are inter-

related, it should be possible to train attention control using cognitive

tasks that make limited demands on working memory in order to bet-

ter distinguish between the two skills. Determining the best types and

forms of cognitive training, and potentially how to customize the train-

ing for individuals of different ages or abilities is an important goal for

future research.

5 CONCLUSION

Effective means of enhancing cognitive abilities have been a long-

standing goal inmanydisciplines.Our currentwork adds to the existing

evidence that adaptiveWMTcan significantly benefit school-aged chil-

dren (Berger et al., 2020; Jones et al., 2020; Karbach et al., 2015; Titz

& Karbach, 2014; Wass et al., 2012). Moreover, it provides additional

insights into the mechanisms underlying these benefits. Together with

the recent findings of Berger et al. (2020), it also highlights the impor-

tance of including long-term follow-ups in any evaluation of training

efficacy. In addition to long-term follow-up data, we demonstrate the

utility of using response time variability metrics as an immediate indi-

cator of intervention success. The practical relevance of such an imme-

diate assessment tool should not be overlooked, as it could potentially

allow for tailoring training interventions in terms of duration or con-

tent without needing to wait for years for follow-up data to determine

whether long-term benefits will emerge.
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