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Abstract
Regression models for proportions are frequently encountered in applied work. The
conditional expectation function is bounded between 0 and 1 and therefore must be
nonlinear, requiring nonstandard panel data extensions. One possible approach is the
binomial panel logitmodelwithfixed effects (Machado in JEconom119:73–98, 2004).
We propose a new and simple implementation of this conditional maximum likelihood
estimator for standard software. We investigate the properties of the estimator under
misspecification and derive a new test for overdispersion. Estimator and test are applied
in a study of contracted working volumes, measured as proportion of full-time work,
for women in Switzerland.

Keywords Proportions data · Unobserved heterogeneity · Conditional maximum
likelihood · Overdispersion

JEL Classification C23 · J21

1 Introduction

After half a century of research on econometricmodels for limited dependent variables
(Maddala 1983; Wooldridge 2002), it remains the case that only a small portion of
it deals with proportions data, and even a smaller one with panel models for such
proportions. Machado (2004) proposes the binomial fixed effects logit model, Papke
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and Wooldridge (2008) a correlated random effects probit quasi-likelihood estimator,
and Ramalho et al. (2016) a class of exponential GMM estimators.

And yet, proportions and related types of data are regularly encountered in applied
econometric work. They sometimes correspond to the fraction of “successes” in a
sequence of Bernoulli trials. Examples are the proportion of successful patent appli-
cations (Machado 2004) and the proportion of days absent from work (Barmby et al.
2001). Similarly, variety scores (e.g. the number of applicable items in a general health
questionnaire), bounded count data, as well as ratings, can be re-scaled to the (0, 1)-
interval. For example, the degree of (customer or life) satisfaction in surveys often
has a lower bound of zero (meaning “completely dissatisfied”) and some upper bound
(e.g. 10, meaning “completely satisfied”), which can then be re-coded as 100%. All
these variables share the key features of being discrete and bounded, and the binomial
model with a logit function for the expected proportion provides a natural starting
point for modelling.

For the fixed effects setting, Machado (2004) shows that the incidental parameters
problem can be overcome by a conditional maximum likelihood (CML) estimator,
much like it is the case for the binary response logit model (Chamberlain 1980).
She also provides Monte Carlo evidence indicating that the dummy variables (DV)
approach is subject to an upward bias that is decreasing both in the length of the panel,
T , and in the number of Bernoulli trials, K . For T > 5 and K > 5, CML and DV
approaches yield quite comparable results with minor bias (Machado 2004).

This paper advances the earlier literature in three directions: First, we show how the
binomial logit fixed effects estimator can be implemented in anyoff-the-shelf statistical
software that includes a conditional logit routine, using the idea of cloning, or data
expansion. Second, we study the properties of the CML and DV estimators for the
case where the binomial distributional assumption fails. The leading example is that
of overdispersion, originating from random unobserved heterogeneity or dependence
among the Bernoulli trials. The CML estimator is not a pseudo-ML estimator in the
sense of Gourieroux et al. (1984), and it does not possess formal robustness properties.
We therefore investigate the extent of bias in a series of simulation experiments. Third
and finally, we derive and implement a new test for the binomial assumption, i.e. a
test for the hypothesis of no dispersion, as existing tests (e.g. Dean 1992) cannot be
applied because the fixed effects are not estimated by the CML estimator.

To illustrate the proposed methods, we conduct a study of the determinants of
women’s work behaviour in Switzerland. The outcome variable is the contracted
work-time percentage, where 0 means no work and 1 means full-time work. Data
are extracted from the Swiss Household Panel for the years 2012–2016. The binomial
logit estimates indicate that having children is associated with substantially reduced
work-time percentage, ceteris paribus. Perhaps more surprisingly, having a partner
makes the effect more pronounced, whereas speaking French reduces it.

2 Model and estimation

Aproper panelmodel for proportions yit ∈ [0, 1]must overcome two challenges. First,
the model should observe the restricted support of the outcome, as well as being able
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to handle data clustering at the end points. For instance, the log-odds transformation
log[yit/(1 − yit )] is not defined for yit = 0 or yit = 1. Another method facing the
same limitation is beta regression, which is flexible for fitting continuous proportional
data but cannot give predictions at the boundaries with positive probability. Second,
direct control for unobserved time-invariant individual heterogeneity (that may or may
not be correlated with the regressors), using a dummy for each cross-sectional unit
is subject to the incidental parameters problem, leading to inconsistent estimation of
structural parameters when the length of panel T is fixed.

Machado (2004) addresses these two issues by considering a binomial logit model
with fixed effects. The application she had in mind was using information on the
number of patent applications and patents granted at the firm level to estimate the
probability of obtaining a patent (i.e. proportion of patents granted). She derived a
consistent conditional maximum likelihood estimator based on the following assump-
tions:

Assumption 1 Let Yit = Kyit , where K is a known integer and

yit ∈
{
0,

1

K
,
2

K
, . . . , 1

}

such that

Yit |pit ∼ binomial(K , pit ) , i = 1, . . . , N ; t = 1, . . . , T (1)

Here, K is the number of “trials”, Yit = Kyit is the “number of successes”, and yit
is the proportion, or fraction of successes for observation unit i in period t .

Assumption 2 Let the expected proportion depend on covariates xit , and an individual-
specific effect αi as follows:

E(yit |xit , αi ) = pit = exp(x ′
i tβ + αi )

1 + exp(x ′
i tβ + αi )

≡ �i t (2)

xit and αi can be correlated.

Assumption 3 Observations are independent between individuals and, conditional on
group effects αi , serially uncorrelated.

The objective of the analysis is estimation of β. Under Assumptions 1–3, the joint
binomial density for Yi1,Yi2, . . . ,YiT conditional on

∑
t Yit is given by (seeMachado

2004)

f

(
Yi1,Yi2, . . . ,YiT |

∑
t

Yit

)
= �t

( K
Yit

)
pYiti t (1 − pit )K−Yit

∑
q∈Qi

�t
(K
qt

)
pqti t (1 − pit )K−qt

= exp(
∑

t Yit x
′
i tβ)�t

( K
Yit

)
∑

q∈Qi
exp(

∑
t qt x

′
i tβ)�t

(K
qt

) (3)
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where Qi = {(q1, q2, . . . , qT )|qt ∈ {0, 1, 2, . . . , K },∑t qt = ∑
t Yit }. The con-

ditional binomial approach eliminates the fixed effects αi which appear in the
numerator and denominator with same power. Observations for which

∑
t Yit = 0

or
∑

t Yit = KT have a conditional probability of 1 and do not contribute to estima-
tion of β. For proportion data, such outcomes tend to be much less prevalent than they
are for binary outcomes.

In principle, the Machado (2004) approach solves an important problem in the
analysis of panel data for proportions. In contrast to Papke and Wooldridge (2008),
it is “semi-parametric”, as there is no need to specify the relationship between the
individual effect and the regressors, and also no need to add an assumption on the
distribution of the individual effects. And yet, subsequent applications have been few,
perhaps, because the estimator has a couple of limitations. First, the estimator is not
readily available in standard econometric software packages. We therefore develop
a simple modification that makes it easily implementable in standard software. And
second, the binomial assumption may be violated, and the properties of the estimator
undermisspecification are unknown so far.Weprovide such amisspecification analysis
in Sect. 2.3, and also derive a test for the binomial assumption in Sect. 3. In addition,
it is important to point out that the binomial fixed effects estimator can be applied in
a broader range of situations than hitherto considered, i.e. beyond those relating to
the number (or proportion) of successes in a sequence of K independent Bernoulli
trials. Even in the absence of such a process, the model can be a good starting point
for fractions and shares, as we illustrate in an application to work-time percentages.

2.1 An alternative implementation

To understand, how the binomial logit fixed effects estimator can be implemented
using any off-the-shelf statistical software with a conditional logit routine, note that
the binomial distribution arises as the sumof K independentBernoulli trials. Therefore,
two estimators are equivalent: one based on a binomial log-likelihood function and
the other based on a Bernoulli log-likelihood for an expanded dataset.

For the expanded dataset, one simply generates a sequence of K copies for each i ,
keeping the regressors unchanged, where the proportion yit is replaced by a sequence
of 0/1 indicator variables di j t in arbitrary order such that

K∑
j=1

di j t = Kyit (4)

It follows that di j t and yit have the same CEF:

E(yit |xit ) = E

( ∑K
j=1 di j t

K

∣∣∣∣∣ xit
)

= E(di j t |xit ). (5)
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The logit (Bernoulli) log-likelihood function of the expanded dataset is given by

log L =
T∑
t

N∑
i

⎡
⎣ K∑

j

di j t log(�i t ) + (1 − di j t ) log(1 − �i t )

⎤
⎦

=
T∑
t

N∑
i

Yit log(�i t ) + (K − Yit ) log(1 − �i t ). (6)

This log-likelihood function is equal to the binomial log-likelihood as well as to the
Bernoulli quasi-log-likelihood (Papke and Wooldridge 1996, replacing Yit by yit and
(K − Yit ) by (1 − yit )), up to an additive constant, and the three ML estimators are
therefore identical.

Similarly, the conditional density function for individual i at time t can be written
as:

f

⎛
⎝{di jt }|

∑
t

∑
j

di j t

⎞
⎠ = �t� j p

di j t
i t (1 − pit )1−di jt∑

s∈Si �t� j p
s jt
i t (1 − pit )1−s jt

=
exp

(∑
t
∑

j di j t x
′
i tβ

)
∑

s∈Si exp
(∑

t
∑

j s j t x
′
i tβ

)
(7)

where Si = {(s11, s21, . . . , sK1, s12, . . . , sKT )|s jt ∈ {0, 1},∑t
∑

j s j t= ∑
t
∑

j di j t )}.
Compared with Eq. (3), the number of s such that {s|∑ j si j t = qit } is

( K
qit

)
for

given q. Equation (7) is therefore basically the same as Eq. (3), except for the term
�t

( K
Yit

)
in the numerator of (3). But this term does not depend on any parameter and

thus does not affect the first-order condition for the maximum of the log-likelihood
function. Specifically, the conditional Bernoulli log-likelihood function is given by:

log L =
∑
i

⎡
⎣∑

t

∑
j

di j t x
′
i tβ − log

⎛
⎝∑

s∈Si
exp

⎛
⎝∑

t

∑
j

s j t x
′
i tβ

⎞
⎠

⎞
⎠

⎤
⎦ (8)

with the first derivative

∂ log L

∂β
=

∑
i

⎡
⎣∑

t

K yit x
′
i t −

∑
s∈Si exp

(∑
t
∑

j s j t x
′
i tβ

) ∑
t
∑

j s j t x
′
i t∑

s∈Si exp
(∑

t
∑

j s j t x
′
i tβ

)
⎤
⎦ (9)

which is the same as that of the conditional binomial model and therefore will yield
the same consistent estimator of β, after elimination of the fixed effects. We from
now on refer to this estimator as the Blogit (for binomial logit) conditional maximum
likelihood estimator, or in short, Blogit CML, in contrast to the inconsistent binomial
estimator with dummy variables included for each cross-sectional unit, Blogit DV.

Of course, there canbe situationswhere the expansion approachbecomespractically
infeasible: as K gets large, for instance, because proportions are measured at the
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granularity of percentage points, the size of the set Si of the conditional Bernoulli
log-likelihood expressions is increased from T to 100 × T , at which point one may
run into computational constraints.

2.2 Overdispersion

Departures from the binomial proportions model can take a number of forms. The
first one is a violation of the independence assumption for the underlying Bernoulli
trials. Positive dependence, or contagion, among the sequence ofBernoulli trials causes
overdispersion, a conditional variance exceeding the binomial variance Kpit (1− pit ).
Another violation stems from “random unobserved heterogeneity”. This is in addition
to the time-invariant unobserved heterogeneity αi . Random unobserved heterogeneity
is time- and individual-specific, as well as unrelated to xit . Specifically, it means that
pit is no longer a constant but rather a random variable, say p̃i t . Marginalizing over
p̃i t then leads to a mixture model that is characterized by overdispersion as well.
Depending on the distribution of p̃i t , proportions can, for example, have a u-shaped
probability function even conditional on αi and xit , i.e. probability mass stacked at
the endpoints of 0 and 1, which is never the case for a binomial distribution that has
either a single, or two adjacent modes.

A prominent example for a continuous mixture is the beta-binomial model, where
the conditional probability is

p̃i t ∼ beta(uit , vi t ), (10)

and

uit = φ�(x ′
i tβ + αi ), vi t = φ(1 − �(x ′

i tβ + αi )).

where φ > 0 is a parameter that determines the degree of overdispersion. It is
straightforward to show that a beta-binomial distribution with this parameterization
has expectation K�i t and variance

Var(Yit |K ,�i t , φ) = K�i t (1 − �i t )

(
1 + K − 1

φ + 1

)
(11)

Thus, the variance of the beta-binomial model is proportional to that of the binomial
model. Overdispersion increases in K , the number of trials, and it decreases in the
parameter φ. The binomial variance is obtained for K = 1, or in the limit, for φ → ∞,
which also means that Var( p̃i t ) → 0.

In general, fixed effects conditional maximum likelihood estimators are not consis-
tent if the underlying model is misspecified. The reason is that the first-order condition
is not a moment condition for the mean, but rather a function of the conditional proba-
bilities. However, it might still be the case that the CML estimator works satisfactorily
as long as the degree of overdispersion, in other words, the departure from the binomial
assumption, is not too large. We will explore this type of robustness in a series of sim-
ulation experiments. We thereby extend results by Machado (2004), who considered
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the severity of the incidental parameters problem and the small sample properties of
the CML estimator under the maintained assumption of a correctly specified binomial
model. In our simulations, this assumption is dropped.

2.3 Simulation study

The simulation experiments employ twodifferent data generatingprocesses: onewhere
the binomial assumption is satisfied, and the other, based on the beta-binomial model,
where overdispersion is present. Unobserved time-invariant individual heterogeneity
is positively correlated with the regressor in both cases. The degree of overdispersion
is varied from 10 to 200%.

Both set-ups use the same logit conditional expectation function with a single
regressor

E(yit |xit , αi ) = �(β0 + β1xit + αi ) = exp(β0 + β1xit + αi )

1 + exp(β0 + β1xit + αi )
, (12)

where β0 = 0, β1 = 2 and the size of the cross section is either N = 100 or N = 500.
The time dimension increases from T = 2, T = 5 to T = 10.

The regressor xit is drawn from a uniform distribution with support [−1, 1] and
has therefore a mean of 0 and a variance of 1/3. Draws are independent both across
individuals and over time. We make a correlated random effects assumption:

αi = √
T x̄i + εi , (13)

where εi ∼ N (0, 1). It follows that the correlation between αi and x̄i is 0.5, a sub-
stantial amount.

Once the mean is given, the dependent variable is obtained by generating pseudo-
random numbers from either a binomial or a beta-binomial distribution. Specifically,
we first draw integer random numbers from a (beta) binomial distribution with param-
eters K and �(xitβ1 + αi ) and then divide the result by the number of categories K ,
e.g.

yit = Kyit
K

, Kyit ∼ binomial(K , pit ), pit = �(β0 + β1xit + αi ) (14)

K is exogenously set to 2, 5 or 10. For K = 2, K × yit can be 0, 1, or 2, with
corresponding fractions of yit = 0, 0.5, or 1, respectively; if K = 10, yit takes on
one-digit decimals: 0, 0.1, 0.2,…, 1.

Ignoring the presence of the individual-specific component and estimating the
marginal, pooled model instead has two effects:

• β1 is upward biased due to the positive correlation between xit and αi .
• β1 is downward biased due to omitted heterogeneity. In the probit model, there is
a closed form expression for this bias (Wooldridge 2002). In the logit model, it
needs to be computed numerically, but the direction is the same.
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Which one of the two biases is larger is an empirical matter. The DV estimator, on
the other hand, suffers from the standard incidental parameters bias that is upward
(Abrevaya 1997).

Table 1 shows the simulation results based on 1000 replications, for a sample
size of N = 100. The mean and standard deviation of estimated coefficients across
replications are reported. Three estimators were used: Blogit CML, Blogit DV, and
pooled logit, respectively. Similar to Machado (2004), we find that the Blogit CML
model estimates the true structural slope parameter very well even for small samples.
There is a 2% upward bias for T = K = 2 that vanishes quickly as either T or K
increases. The sampling variability decreases not only in T but also in K , albeit at a
less than

√
K rate. The Blogit DV estimator has a larger bias and a larger standard

error, and hence a higher mean squared error, in all settings. The bias becomes small
as T and K increase. For instance, for T = 10 and K = 10, the mean Blogit DV
estimate is 2.025, whereas the mean Blogit CML estimate is 2.000. On the other hand,
the pooled logit estimator has no tendency to converge to the true parameter β1 = 2,
over- or underestimating it depending on K and T . In the lower panel of Table 1,
simulations are repeated for a larger sample, with N = 500 instead of N = 100. The
qualitative conclusions remain unchanged.

2.4 Beta-binomial DGP

Simulations from the beta-binomial model add a further step: instead of directly
obtaining binomial responses with (conditional on xit and αi ) success probability
pit = �(β0 + β1xit + αi ), p̃i t is now drawn from a beta distribution with mean pit :

p̃i t ∼ beta(φ�(β0 + β1xit + αi ), φ(1 − �(β0 + β1xit + αi ))) (15)

From (11), we know that the multiplicative variance inflation factor depends both
on K and φ. To keep the degree of overdispersion constant for K = 2, 5, 10, we
adjust φ accordingly. For example, for 10% overdispersion and K = 2, we have
1 + (K − 1)/(φ + 1) = 1.1, so φ = 9.

As a practical limitation, common beta random number generators set lower bounds
(above the theoretical ones of 0) for the two parameters. In Stata, for example, these
are given by 0.05 and 0.15, respectively. From (15) we see that attempts to draw from
the beta using arguments violating these bounds aremore likely to arise when themean
is close to zero or one, or when φ is small (and therefore the degree of overdispersion
is large). Since such occurrences only depend on exogenous factors, dropping these
cases does not invalidate the estimation procedure. However, it affects the effective
sample size and thus leads to higher standard errors than would otherwise be the case.

Figures 1 and 2 plot the relative biases of Blogit CML and Blogit DV against the
degree of overdispersion, for N = 100 and N = 500, respectively. Overdispersion
varies from 10% to 200%. (The full results on the means and standard deviations of
the estimators for each DGP are given in Tables 6 and 7 in “Appendix.”)

Three key patterns emerge. First, overdispersion leads to an upward bias of both
the Blogit CML and the Blogit DV estimators. The bias increases in the amount of
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Fig. 1 Relative bias by dispersion degree (N = 100)
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Fig. 2 Relative bias by dispersion degree (N = 500)

123



Testing the binomial fixed effects logit model, with an…

overdispersion. Second, the Blogit CML estimator always dominates the Blogit DV
estimator, both in terms of bias and standard error. The same pattern was already found
for the binomial case, and it persists in the presence of overdispersion. Third, for a
given degree of overdispersion, the bias is decreasing in T as well as in K . However,
increasing K alone not necessarily leads to a reduction in estimation bias, because it
increases the amount of overdispersion, ceteris paribus. Again, results are qualitatively
similar for N = 500 (see Fig. 2).

The overall conclusion is that the Blogit CML estimator maintains a rather good
performance even if the binomial model is misspecified, as long as the degree of
overdispersion is modest, or else, as long as T is large. To take the two extreme cases,
for N = 100 and K = T = 2, the mean estimate with 10% overdispersion is 2.1, a
5% upward bias. For K = T = 10, the mean estimate with 100% overdispersion is
2.049, a 2.45% upward bias.

3 A test for overdispersion

Existing binomial tests for yit , e.g. Dean’s (1992) score test or regression-based tests
regressing squared residuals yit − �̂i t on �̂i t (1− �̂i t ), require estimates �̂i t in order
to obtain conditional variances V̂ar(yit |xit ). However, the Blogit CML approach does
not give us α̂i , so this is not feasible. To ascertain the validity of the Blogit CML
model assumption, i.e. that Kyit is binomial distributed conditional on αi and xit , we
propose an alternative approach that uses β̂ but does not require estimates of αi , based
on taking differences.

To start, consider a binary random variable Mit defined by a draw from a Bernoulli
distribution with mean yit , Mit ∼ Bernoulli(yit ). Clearly, the conditional mean is
E(Mit |yit ) = yit , while the unconditional mean is E(Mit ) = �i t . The conditional
variance isVar(Mit |yit ) = yit (1−yit ), while the unconditional variance isVar(Mit ) =
E[yit (1 − yit )] + Var(yit ) = �i t (1 − �i t ).

The basic idea of the test is to compare the variances of the differences Yit − Yis
and that of the difference Mit − Mis , for pairs of observations where the underlying
probabilities pit = �i t are the same (or similar) for the two periods. For notational
simplicity, let t = 1 and s = 2. In such cases, outcomes Yi1, Yi2 can be regarded under
H0 as random draws from i.i.d. binomial distributions and the variance of Yi1 − Yi2
should be equal to the sum of binomial variances, under assumptions A1 and A3.
On the other hand, the Bernoulli draws from the same distributions have standard
variances. If there is over- or under-dispersion, the variance of Yi1 −Yi2 will be larger
or smaller than the variance calculated from Bernoulli draws.

Specifically, consider the variable

zi = (Yi1 − Yi2)2 − K (Mi1 − Mi2)
2

K (K − 1)
. (16)

Conditional on yi1, yi2,

E[(Mi1 − Mi2)
2|yi1, yi2] = yi1(1 − yi1) + yi2(1 − yi2) + (yi1 − yi2)

2

= yi1 + yi2 − 2yi1yi2.

123



R. Winkelmann, L. Xu

Therefore, under A1, A2 and A3, the expectation of zi is given by

E(zi ) = 1

K (K − 1)

[
Var(Yi1) + Var(Yi2) + (EYi1 − EYi2)

2 − K (�i1 + �i2 − 2�i1�i2)
]
.

Under the binomial assumption, Var(Yit ) = K�i t (1 − �i t ), and it follows that

E(zi ) = 1

K (K − 1)

[
K�i1(1 − �i1) + K�i2(1 − �i2) + K 2(�i1 − �i2)

2

− K [�i1(1 − �i1) + �i2(1 − �i2) + (�i1 − �i2)
2]

]

= (�i1 − �i2)
2.

(17)

Hence, the expected value of zi is zero under the null hypothesis of binomial dispersion
as long as x ′

i1β = x ′
i2β.

One possible alternative to the null of a binomial variance is given by the beta-
binomial model, where the variance is

Var(Yi ) = K�i t (1 − �i t ) (1 + η) (18)

and η is equal to η = K−1
φ+1 > 0. In this case, overdispersion originates from random

unobserved heterogeneity.

3.1 Case I: discrete covariates

Define the set of individuals with the same expectations over time, A = {i : �i1 =
�i2}, for which E(zi |i ∈ A) = 0 holds. With time-invariant fixed effect αi and a
single regressor, the set A is equal to {i : xi1 = xi2}. In general, the set A is broader,
including all cases where x ′

i1β = x ′
i2β. In most cases, it will be possible to find such

a set A if all covariates are finite discrete variables, assuming that the x-values are
drawn from a stationary distribution. The test term for discrete xit is defined as:

τA = Ê(zi |i ∈ A) =
∑

i∈A zi
|A| , (19)

where |A| represents the number of elements in A. Under H0, τA
p−−→ 0. Further, by

the central limit theorem (CLT), the statistic τA converges to a normal distribution,

√|A|(τA − 0)
d−−→ N (0, σ 2

A), (20)

where σ 2
A = Var(zi |i ∈ A). In practice, σ 2

A is replaced by the sample variance σ̂ 2
A.

So we reject the binomial distribution assumption at the α% significance level if∣∣∣ τA
σ̂A/

√|A|
∣∣∣ ≥ c1− α

2
, where the critical value c is the 1− α/2-percentile of the standard

normal distribution.
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Individuals in the set A do not contribute to the estimation of the Blogit CML
model, since xit are cancelled out as fixed effects. Nonetheless, they are needed for
generating our dispersion test. This nonparametric method to build a test is similar
to finding proper cell estimators in matching theory, but likewise faces the curse of
dimensionality. It is hard to find the set A when the dimension of xit becomes larger.
If |A| shrinks, the convergence rate

√|A| will decrease and the estimator τA will
converge more slowly.

3.2 Case II: continuous covariates

The set A = {i : �i1 = �i2} is empty or very small when xi1 and xi2 are continu-
ous. A more general method uses a kernel estimator for the conditional expectation
E(zi |�i1−�i2 = 0). The main idea is to put more weight on individuals with smaller
|�i1 − �i2|. Since we do not observe the underlying expectations�i t directly, we find
the set A by using observables xit . Under the assumption of a single scalar regres-
sor and time-invariant unobserved heterogeneity, we can decompose the conditional
expectation (17) by a Taylor expansion at xi2,

(�i1 − �i2)
2 = [�(xi1β + αi ) − �(xi2β + αi )]2

= [�′(xi2β + αi )β (xi1 − xi2)

+ �′′(xi2β + αi )

2! β2 (xi1 − xi2)
2 + o((xi1 − xi2)

2)]2

= [�′(xi2β + αi )β (xi1 − xi2)]2 + o(β2(xi1 − xi2)
2),

Denote �i = (xi1 − xi2)β,

E(zi |�i1 − �i2) = (�i1 − �i2)
2 = (�′

i2�i )
2 + o(�2

i ).

As the fixed effect αi is cancelled out, an alternative conditional expectation function
is given by �i ,

τ(�) = E(zi |�i = �, Xi ) = (�′
i2�)2.

Then, under the binomial assumption,

E(zi |�i1 − �i2 = 0) = τ(0) = 0.

The result generalizes to a vector-valued x , in which case �i = (xi1 − xi2)′β.
The next step is to build a kernel estimator for τ(0). One conditional moment

estimator for τ(�) is τ̂ (�) =
∑N

i=1 K (
�i−�

h )zi∑N
i=1 K (

�i−�

h )
, where h is the kernel bandwidth for �i

and K (
�i−�

h ) is the kernel function. For a given sample, �i needs to be replaced by

�̂i = (xi1 − xi2)β̂, where β̂ is estimated. We can use the Blogit CML estimator for
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estimation, as it is consistent under the binomial null hypothesis. We construct a local
estimate τ̂ for the object of interest τ(0) (see Pagan and Ullah 1999):

τ̂ =
∑N

i=1 K (
�̂i
h )zi∑N

i=1 K (
�̂i
h )

=
N∑
i=1

wni zi , wni = K (
�̂i
h )∑N

i=1 K (
�̂i
h )

,

The Gaussian function K (
�̂i
h ) = 1√

2π
exp(− (�̂i /h)2

2 ) is chosen for simplicity.

3.3 Asymptotic properties

Let f = f (� = 0) denote the continuous density function of the random variable �

at point 0. The kernel density estimator f̂ for f is

f̂ =
N∑
i=1

K (
�̂i
h )

nh
.

In addition, rewrite zi as the sum of its conditional expectation E(zi |�i ) = τ(�i ) and
an error term ui , such that

zi = τ(�i ) + ui = (�′
i2�i )

2 + ui

where E(ui |�i , Xi ) = 0 and Var(ui |�i , Xi ) = σ 2.
The estimator τ̂ is a combination of f̂ and zi

τ̂ =
∑N

i=1
1
nh K

(
�̂i
h

)
zi

∑N
i=1

1
nh K

(
�̂i
h

) = 1

f̂

N∑
i=1

1

nh
K

(
�̂i

h

)
zi = 1

f̂

N∑
i=1

1

nh
K

(
�̂i

h

)
(�′

i2�i )
2 + ui .

The expectation of τ̂ is

E(τ̂ ) = E

(
1

f̂

N∑
i=1

1

nh
K

(
�̂i

h

) (
�′

i2�i
)2 + 1

f̂

N∑
i=1

1

nh
K

(
�̂i

h

)
ui

)

=
∫ ∫

1

h f̂
K (ν)(�′

i2)
2(hν)2 f (hν,�i2)hdνd�i2

+ Ê(ui |�̂ = 0), where we replace � = hν

= h2
∫ ∫

K (ν)(ν)2(�′
i2)

2 f (ν,�i2)

f̂
dνd�i2

= h2μ2E[(�′
i2)

2|� = 0], where μ2 =
∫

K (ν)(ν)2dν
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We therefore obtain a bias

Bias(τ̂ ) = E(τ̂ ) − τ(0) = E(τ̂ ) = h2μ2E[(�′
i2)

2|� = 0], (21)

that is proportional to h2.
To guarantee consistency of the estimator τ̂n , convergence of the mean square error

to zero is required. The MSE is equal to MSE(τ̂ ) = Bias(τ̂ )2 + Var(τ̂ ). So the bias
for τn should decrease to zero, as n increases:

h2 −→ 0, as n −→ ∞. (22)

Besides the convergence condition for bias, we also consider the asymptotic perfor-
mance of the variance of τ̂ . Using a result on the variance of conditional expectations
from Pagan and Ullah (1999), we obtain:

Var(τ̂ ) = σ 2

nh f

∫
K 2(ν)dν, Var(τ̂ ) ∝ 1

nh
. If n −→ ∞,

1

nh
−→ 0. (23)

To make sure that the MSE converges at the fastest speed, bias2 and variance should
converge at the same rate: h4 ∝ 1

nh . Otherwise, the slower speed dominates the

convergence rate. Thus, h is of order h ∝ n− 1
5 and by the central limit theorem,

√
nh(τ̂ − E(τ̂ ))

d−−→ N (0, f −1σ 2
∫

K 2(ν)dν) (24)

Here, σ 2 = Var(z2i |� = 0), with the same definition as in the discrete case (Eq. 20). In

practice, we standardize �i at first and set bandwidth h′ = 0.9n− 1
5 . The approximate

bias is calculated by Ê(τ̂ ) = ∑N
i=1 wni (yi2(1 − yi2)�̂)2, σ 2 is replaced by σ̂ 2 =∑

wni (zi − τ(�̂i ))
2 and V̂ar(τ̂ ) = σ 2

f̂ 2

∑N
i=1 K

2(ν)

n2h2
. Hence, τ̂−Ê(τ̂ )√

V̂ar(τ̂ )

can be used as a

t-test.

3.4 Multiple periods

The test can be extended to multiple time periods. With T = 2, there is a single
moment condition for E(zi |�i = 0) that can be tested. For T > 2, one possibility is
to combine T − 1 such moment conditions into a single test statistic.

In the discrete case, for set At = {i : xi,t = xi,t+1},

gi,t = (Yi,t − Yi,t+1)
2 − K (Mi,t − Mi,t+1)

2

K (K − 1)
, t = 1, . . . , T − 1.

gi,t is empty if xi,t �= xi,t+1. As we derived before, E(gi,t ) = 0.
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In matrix form,

gi =
⎛
⎝ gi,1

. . .

gi,T−1

⎞
⎠ , and the sample mean is ḡn =

⎛
⎜⎜⎜⎜⎝

1
n1

n1∑
i=1

gi,1

. . .

1
nT−1

nT−1∑
i=1

gi,T−1

⎞
⎟⎟⎟⎟⎠ ,

with nt = |At |, the cardinality of set At . Denote n = (n1, . . . , nT−1)
′.To calculate the

sample variance-covariance matrix Ŝ, we replace off-diagonal elements with pairwise
sample covariances and diagonal ones with gt sample variances. A test statistics can
be derived

J = (
√
n ◦ ḡn)

′ Ŝ−1(
√
n ◦ ḡn).

In the continuous case, moment conditions are

gi,t =
K

(
�̂i,t
h

)
(zi,t − τ(�̂i,t ))

∑N
i=1

1
n K

(
�̂i,t
h

) , t = 1, . . . , T − 1

where �̂i t = (xit − xi,t+1)β̂ and τ(�̂i,t ) = (yi,t+1(1 − yi,t+1)�̂i t )
2. Under the null

hypothesis, E(gi,t ) = 0.
These moment conditions can be written in matrix form for individual i = 1, . . . , N
as:

gi =
⎛
⎝ gi,1

. . .

gi,T−1

⎞
⎠ , and the sample mean is ḡN =

⎛
⎜⎜⎜⎜⎝

1
N

N∑
i=1

gi,1

. . .

1
N

N∑
i=1

gi,T−1

⎞
⎟⎟⎟⎟⎠ .

Let Ŝ denote the sample variance:

Ŝ = 1

N

N∑
i=1

gi g
′
i − ḡn ḡ

′
n,
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Since ḡN
p−−→ E(gi ) = 0, a test statistic is given by

J = N ḡ′
N Ŝ

−1ḡN = (
√
N · ḡN )′ Ŝ−1(

√
N · ḡN )

Therefore,
√
N · ḡN d−−→ N (0, S), Ŝ

p−−→ S, and J
d−−→ χ2

T−1.
TheChi-square test rejects the binomial distribution assumption at theα%significance
level if J ≥ χ2

α(T − 1).

3.5 Simulation study

We conduct a number of simulation experiments to examine the performance of these
tests under two scenarios. In the first setting, explanatory variables are discrete (in
fact, there is a single binary regressor, to keep things as simple as possible), while the
explanatory variable is continuous in the second. The remaining aspects of the DGP
regarding fixed effects, expectation functions and parameters setting are the same as
those in Sect. 2.3.

Table 2 presents rejection rates, i.e. the relative number of times that our test rejects
the binomial assumption over 1000 replications, when x is discrete. xit is either 0 or
1 with equal probability. In this case, Pr(xi1 = xi2) = 50%, and on average half of
the observations will be in the set A of individuals with the same expectations over
time and thus informative for computing the test statistic. As before, the number of
time periods increases from T = 2 to T = 10, and binomial parameter from K = 2
to K = 10.

The first row of each subpanel shows results without overdispersion, i.e. sampling
from a binomial DGP applies. In this case, the rejection rates are equivalent to the
proportion of type-I errors and ideally should be close to the nominal size of the test,
in this case 5%. The lower part of each subpanel shows the rejection rates under H0
when H0 is false, i.e. the power.

When we implemented the multi-period discrete test as described in Sect. 3.4, we
found that the size of the test was seriously distorted when T was large. For T = 10,
the rejection rates under the binomial assumptionwere 44.7% for N = 100, and 12.9%
for N = 500. For larger N , there is a convergence to the nominal size, but it is rather
slow (e.g. 8.5% rejection rate for N = 1000). The reason for this test behaviour is the
poor estimation of the covariance elements of the weighing matrix Ŝ. For example,
when T = 3, the covariance between gi,1 and gi,2 is estimated based on the small
subset of observations for which xi1 = xi2 = xi3. The imprecise estimation of the
covariances for small N leads to a large sampling variability of Ŝ, and this problem
increases with T . As an alternative, we therefore show in Table 2 simulation results,
where all off-diagonal elements of Ŝ were set to zero, leading to a better performance
of the test in small samples. We also note that the continuous, kernel-based test does
not suffer from this problem.

Reassuringly, we find that the test has some power against the alternative of rather
modest overdispersion (10%), in particular for N = 500, K = 2 and T = 10, where
around 36% of wrong null hypotheses are rejected. As the dispersion degree increases,
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the power of the test also grows, and it reaches 100% for DGPs where overdispersion,
the number of observations, and the number of time periods are large.

In Table 3, we show the results for the kernel weighted test statistics for continuous
regressors. xit is drawn from a uniform distribution with positive support between -1
and 1, with mean 0 and variance 1/3. The general patterns regarding type-I errors and
power of the tests are mostly similar to those of Table 2. As in Table 2, the power of
the test tends to decrease in K , for a given overall degree of overdispersion, but this
tendency is more uniform in the continuous version of the test. This indicates that the
power of the test reacts differently to the two parameters driving overdispersion, and in
particular that it is more sensitive to increases in φ rather than K . The combined results
from our simulation experiments are reassuring: on the one hand, modest amounts of
overdispersion cause only minor bias of the Blogit CML estimator; on the other hand,
the test we derive has good power properties against medium- or high-dispersion
alternatives to the binomial assumption.

4 Application to labour supply

In this illustrative application of the binomial estimator and overdispersion test, we
re-consider the association between fertility and female labour supply. Data are from
the Swiss Household Panel (SHP) for the years 2012–2016. The SHP is an ongoing
longitudinal survey of people residing in Switzerland. It collects information on a large
range of topics on living conditions, both objective and subjective, including work,
fertility and health. We restrict the analysis to women aged 25–45, who participated
in the survey at least twice during the 5-year period. This gives us a panel of 5854
person-year observations for 1712 different women.

There exists a huge literature modelling female labour supply, a large part of which
is devoted to the endogeneity of the fertility decision.Wewant to make here a different
point, namely that the labour supply outcome, i.e. the amount of time a women decides
to spend inmarket work, fits in principle into the empirical framework discussed in this
paper and hence can be analysed using themethods proposed in this paper: empirically,
the amount of days or hours worked is discrete, and it has a lower bound of zero, as
well as an upper bound, and can thus be expressed as a proportion.

Modelling labour supply as a fraction of time may be promising in particular in
institutional settings, where employment contracts offer various part-time options. A
case in point is Switzerland, where vacancies are advertised, and work contracts are
written using full-time fractions. For instance, 60% work-time means that the worker
is employed for the equivalent of 3 days per week and also is paid 60% of a full-
time salary. In practice, the large majority of agreed-upon work-time percentages are
multiples of 10%.

Figure 3 shows the distribution of work-time percentages for the sample of women
extracted from theSwissHouseholdPanel.Here, the data are pooled over the five years.
The relative frequency of zeros is 14.4%, meaning that the estimated participation rate
in our sample for this age group is 85.6%, a number very close to the official statistic
published by the Federal Statistical Office (BfS 2016). Although there are peaks for
non-work and for full-time work, all intermediate values are present in the data.
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In particular, Fig. 3 documents that for Switzerland, the vast majority of women
does not work full-time. A question one can then ask is: How does the work-time
percentage vary with the presence of children in the household? Box-plots in Fig. 4
show, for our data, a clear negative association betweenwork and children. Themedian
work-time percentage drops from 80% or higher for those aged 30 or below to 50%
for women in their early 40s. At the same time, older women are more likely to have
children.
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Table 4 Descriptive statistics
(NT = 5854). Source: Swiss
Household Panel 2012–2016,
own calculations

Mean SD

Work-time percentage 0.557 0.346

Age 36.30 6.01

Children (yes = 1) 0.631 0.482

Partner (yes = 1) 0.584 0.492

Self-rated health 3.114 0.610

(0: worst to 4: best)

French speaking (yes = 1) 0.293 0.455

Italian speaking (yes = 1) 0.043 0.204

The key assumption of the following analysis is that we can treat 10-times the
work-time percentage as a binomial variable with outcomes 0, 1, . . . , 10, where the
mean will be modelled as a function of covariates as well as individual-specific time-
invariant fixed effects.

It is of course difficult to imagine the work-time decision as literally arising from
an underlying sequence of K independent Bernoulli trials. Nevertheless, the binomial
model can provide a useful approximation to the distribution of work-time percent-
ages, in particular since it conditions on fixed effects and hence is compatible with an
observed unconditional “W-shaped” outcome distribution as observed in Fig. 3. Our
illustrative application abstracts from additional complexities, such as potential differ-
ences between the participation decision (i.e. the extensive margin) and the intensive
margin, and, beyond the inclusion of individual fixed effects, the endogeneity of the
fertility decision. Clearly, these are important concerns, and they should be addressed
in further extensions of the approach.

Results

Table 4 provides some descriptive statistics (means and standard deviations) for both
the dependent and the explanatory variables used in the estimation. The average
work-time percentage is 56%, with a standard deviation of 0.34. Under the bino-
mial assumption, the standard deviation for a fraction with a mean of 0.56 is equal to√
0.56(1 − 0.56)/10 = 0.157, substantially below the observed standard deviation of

0.346. Hence, there is evidence of overdispersion at the marginal level.
Women have an average age of 36.3 years, and 63.1% report having at least one

child in the year they are surveyed. For 58.4% of person-year observations, there is a
partner present in the household. The health status is captured by a 5-point scale for
self-assessed health, where 0means “not well at all” and 4means “very well”.We treat
it as a cardinal scale for simplicity, and also abstract from its potential endogeneity
to working or having children. Finally, we include information on language region.
There is quite a bit of evidence that work-norms differ between the French and the
German-speaking parts of Switzerland,with some stigma attached toworkingmothers,
in particular during the first years of the child’s life (see Steinhauer 2018). This stigma
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seems to be stronger in the German-speaking part of Switzerland (65% or our sample)
but less so in the French-speaking part (29% of our sample).

Our final estimation model includes four year dummies, age-squared (the linear
age term is dropped; alternatively, one could identify the linear age effect by set-
ting a second year effect equal to zero), indicators for the presence of a child and
partner, and the health variable. Since language region is mostly constant over time,
it is near-collinear with the fixed effects when applying the Blogit CML or Blogit
DV estimators, and we therefore only include its interaction with the child-indicator
variable.

As is the case for the binary logit model with fixed effects, DV estimation of
the binomial model is subject to the perfect prediction problem (see, for example,
Kunz et al. 2018). Outcomes for women, whose work-time percentage is either zero
or one in each year, are perfectly predicted, meaning that the associated dummy
coefficient will tend to minus or plus infinity, respectively. For the Blogit CML, per-
fectly prediction formally does not arise as the αi ’s are not estimated. However, all
such observations have mechanically a log-conditional likelihood value of zero and
thus do not contribute to estimation of β either. To use the same estimation sam-
ple everywhere, we right away drop all perfectly predicted outcomes, leading to
a final sample size of 4661 person-year observations for the work-time percentage
model.

Regression results are given in Table 5. The first column shows the estimated
coefficients from the Blogit CML and the second those from the Blogit DV model.
The last two columns add corresponding (binary) logit models for the extensivemargin
model (work yes/no), again using alternatively the CML or DV estimators. Standard
errors are clustered at the individual level. The linear age term has been dropped due
to collinearity in a model with individual and year fixed effects.

When interpreting magnitudes, we note the recent suggestion by Kemp and Santos
Silva (2016) and focus on expected (semi-) elasticities. These can be estimatedwithout
knowledge of αi and are thus very suitable for our conditional maximum likelihood
approach. For the binomial proportion model with E(yit |xit , αi ) = �i t , we obtain

∂ log E(yit |xit , αi )/∂xit = β(1 − �i t )

A good estimator of the overall mean of �i t is the sample mean of the outcome,
�̄ = ȳ = 0.55, so that the CML estimators β̂ can be multiplied by 0.45 to obtain
an estimate of the population average semi-elasticities with respect to changes in the
associated covariate.

From columns (1) and (2) of Table 5, we find a large negative association between
having a child and the amount of work. The point estimate of the main effect is about
-2, which means that not having a child increases the expected work-time percentage
by about 90 percent. This effect is highly statistically significant, as are two of the three
interaction effects: having a child reduces the work-time percentage more if a partner
is present than otherwise, underlining the relevance of pecuniary motives for work,
and the need to “make ends meet”. The labour supply response of women to having
children is about half as large for French-speaking women as it is for German speak-
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Table 5 Determinants of female labour supply (2012–2016). Source: Swiss Household Panel

Work-time percentage Work (yes/no)

Blogit CML Blogit DV Logit CML Logit DV

Age-squared −0.001 −0.001 0.005 0.007

(0.002) (0.002) (0.005) (0.008)

Self− rated health 0.071 0.073 0.448 0.642

(0.038) (0.039) (0.153) (0.220)

Partner (yes=1) 0.322 0.333 1.371 1.927

(0.253) (0.260) (0.658) (0.952)

Children (yes=1) −2.097 −2.160 −1.975 −2.771

(0.276) (0.286) (0.956) (1.381)

Children × Partner −0.824 −0.848 −2.216 −3.188

(0.260) (0.268) (1.056) (1.510)

Children × French 1.152 1.194 1.876 2.777

(0.405) (0.418) (1.089) (1.619)

Children × Italian −0.247 −0.266

(0.720) (0.754)

Year 2013 0.143 0.147 −0.018 −0.018

(0.147) (0.151) (0.465) (0.647)

Year 2014 0.246 0.253 −0.147 −0.265

(0.278) (0.285) (0.820) (1.143)

Year 2015 0.338 0.347 −0.247 −0.408

(0.412) (0.423) (1.205) (1.677)

Year 2016 0.387 0.397 −0.449 −0.717

(0.545) (0.560) (1.577) (2.204)

Number of person-years 4661 4661 1071 1071

Number of persons 1334 1334 295 295

Log pseudo-likelihood −23,183.6 −1838.3 −358.8 −595.9

Fixed effects Yes Yes Yes Yes

Blogit CML denotes the binomial logit conditionalmaximum likelihood estimator;Blogit DV is the binomial
logit estimator with dummy variables for each individual; Logit CML and Logit DV are the corresponding
estimators for the binary logit model

ers, corroborating the social norm results found in the earlier literature (Steinhauer
2018).

In this application, the Blogit CML and the Blogit DV results are very similar. The
DVresults are always abit larger in absolute value, but the differencenever exceeds 5%.
This resonates with our simulation results, because both T and K are relatively large.
Nevertheless, the joint test for the binomial assumption derived in Sect. 3.3 indicates
a clear rejection (test value of 37.7 with a χ2

0.95 critical value of 9.5). This rejection
result due to overdispersion was already foreshadowed, although not logically implied
because of the conditional nature of the test, by the high proportion of no work (zero)
and full-timework (100%) as evident in Fig. 1. However, we know from the simulation
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results (Tables 1, 2) that even with 50% overdispersion, the bias of the Blogit CML
is small for K = 10 and T = 5, a setting similar to the current application. At the
same time, the probability of rejecting the wrong H0 is very close to 1 (see Table 3).
On a practical note, the CML estimator can be computed much faster than the DV
estimator, by a factor of about 10 in our case. The speed problem of DVmodels would
be exacerbated in applications with more cross-sectional units, to the point where
computation of the Blogit DV estimator may become infeasible in the current Stata/R
setting.

In the last two columns of Table 5, we allow for a comparison with results from a
more conventional binary logit extensive margin estimator. A first point to note is that
the effective sample becomesmuch smaller, since all observations with variation in the
positive range only, i.e. percentages between 10 and 100%, are now coded as “1” and
thus become perfectly predicted. Their variation does not contribute to estimation, the
usable sample size drops by 3/4, and the standard errors of the estimated coefficients
increase accordingly. We had to drop the interaction between speaking Italian and
having children, as it could not be estimated in the reduced sample.

The estimated coefficients tend to be substantially larger, but they are not directly
comparable. To obtain the implied expected semi-elasticities for the probability of
work, coefficients need to be multiplied by the non-participation rate, 0.145 in this
case, compared to a factor of 0.45 applicable in the first two columns. Based on the
CML estimates, some of the extensive margin semi-elasticities are smaller than the
overall semi-elasticities (like the main effect of having a child), and some of them
larger (such as self-rated health). In terms of statistical significance, we find that the
health and partner coefficients were not significant in the work-time percentagemodel,
but they are in the participation model. And in terms of point estimates, the interaction
between speaking French and having children just offsets the main effect of having
at least one child, meaning that there is no difference in participation probabilities for
French-speaking mothers and non-mothers, although some labour supply responsive-
ness was found in the work-time percentage model for the combined extensive and
intensive margin effect. Also, the participation model suffers from a massive inciden-
tal parameters bias, since the point estimates for the DV estimator exceed those of the
CML estimator by 50% on average.

5 Concluding remarks

Although Machado (2004) introduced the fixed effects binomial model as a method
for proportions of successes in a sequence of Bernoulli trials, it can be used for dis-
crete bounded outcomes, or fractions, more generally. However, it remained an open
question whether or not the conditional binomial logit maximum likelihood estimator
is robust to misspecification. In this paper, we focus on the consequences of overdis-
persion as it originates, for instance, from neglected unobserved heterogeneity. We
show in simulation experiments that the Blogit CML estimator maintains a rather
good performance even if the binomial model is misspecified, as long as the length of
the panel T is sufficiently large, or the degree of overdispersion is modest.
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We then derive a test of the null hypothesis that the binomial assumption is valid,
based on departures from the implied binomial variance function. The test computes
the variance of within-individual outcome differences. For the subset of observations
whose regressors do not change over time, the mean difference is zero (and close to
zero if regressors do not differ “too much”) and it is possible to construct and compare
two variance estimates, one with and one without the binomial assumption, that both
do not depend on fixed effects. This is essential, as fixed effects are not estimated by
the Blogit CML estimator. Our simulation experiments show that the test has good
power properties against the alternative of medium or large degrees of overdispersion.
But these are exactly the cases where the bias of the Blogit CML estimator becomes
noticeable.

We study in our empirical application an outcome related to women’s work
behaviour, namely the contracted work-time percentage. In our sample of mid-aged
women obtained from the Swiss Household Panel, 65% of all women report work-
ing part-time, i.e. a percentage between 10 and 90%. The empirical analysis using
the fixed effects binomial logit model predicts substantially different work-time per-
centages for mothers and non-mothers. Having a partner makes the difference more
pronounced, whereas speaking French reduces it. We show how these coefficients
can be interpreted in terms of expected semi-elasticities even if the fixed effects are
not estimated. In comparison with the fixed effects logit estimation for the participa-
tion model, much fewer observations are lost in the work-time percentage model due
to perfect prediction, contributing to a much more precise estimation of the model
parameters.

In future work, we will consider alternative estimators that could be pursued if the
binomial null hypothesis is rejected. If the logit conditional expectation function is to
be kept, a binomial logit correlated random effects model is a possible approach. Such
a model would explicitly account for overdispersion, by assuming for instance that
random, time-varying unobserved heterogeneity follows a normal distribution with
mean depending on the regressors.
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Appendix A

See Table 6.
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