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Received 24 August 2004; received in revised form 23 March 2005; accepted 31 March 2005
Available online 22 June 2005

Abstract

I consider the problem of estimating the effect of a health care reform on the frequency of individual
doctor visits when the reform effect is potentially different in different parts of the outcome distribution.
Quantile regression is a powerful method for studying such heterogeneous treatment effects. Only
recently has this method been extended to situations where the dependent variable is a (non-negative
integer) count. An analysis of a 1997 health care reform in Germany shows that lower quantiles, such
as the first quartile, fell by substantially larger amounts than what would have been predicted based
on Poisson or negative binomial models.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose survey data are available to estimate the effect of a health care reform, such as an
increase in the out-of-pocket expense for prescription drugs, on an individual’s utilization of
health services. Typical empirical strategies include pre-reform/post-reform comparisons or
differences-in-differences where one compares the changes in utilization between affected
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and unaffected sub-populations. Whether the “treatment effect” is assumed constant or
heterogeneous, it is typically defined as the change in expected utilization that can be
attributed to the reform.

Alternatively, one can explore a broader view, going beyond the first moments, by study-
ing the effect of the reform on the whole outcome distribution. The novelty of this paper is
to conduct such an analysis, where the reform effect is potentially different in different parts
of the distribution of the outcome of interest, within the context of count data modelling.
This becomes necessary since the outcome variable considered in this paper is a count—the
number of doctor visits during the 3 months period prior to the interview. By comparing the
distribution of visits with and without reform, we can for example determine whether the
policy response is relatively larger among low users than among high users. In this case,
the policy effect differs depending on the realization of thedependent variable.

The two benchmark count data models are the Poisson and negative binomial regression
models with log-linear conditional expectation function. These models, and their two-part
counterparts, have been used quite extensively in the analysis of health care utilization
(Cameron and Trivedi, 1986; Deb and Trivedi, 2002; Gerdtham, 1997; Riphahn et al.,
2003; Jimenez-Martin et al., 2000; Santos Silva and Windmeijer, 2001; Schellhorn, 2000;
Windmeijer and Santos Silva, 1997; Winkelmann, 2004a). However, these previous appli-
cations have been concerned with estimating mean effects rather than full distributional
responses. When it comes to estimating distributional responses, the standard models are
of little use since the distributional response is determined entirely by functional form once
the conditional mean response is known.

Given this problem, there are a couple of ways to proceed and analyse the data using
more general models. The approach pursued in this paper is based on quantile regression
methods for count data, applying a recently developed method byMachado and Santos Silva
(in press). Basically, the approach transforms the discrete data problem into a continuous
data problem by adding a random uniform variable to each count. The quantile regres-
sion functions of the transformed variable can then be estimated using standard quantile
regression software. To interpret the results, one can compare the freely estimated quantile
functions to those implied by the respective Poisson or negative binomial estimates in order
to detect excess sensitivity in specific parts of the distribution, such as the lower or upper
tails.

This methodology is applied to an evaluation of a German health care reform in 1997,
using data from theGerman Socio-Economic Panel. The main result is that the reform
effect was relatively more pronounced in the left part of the distribution: lower quantiles,
such as the 25% quantile, fell by substantially larger amounts than what would have been
predicted based on Poisson or negative binomial models. This finding has important policy
implications. It is compatible with the notion that the demand for more frequent users of
health services, among them the chronically sick, is relatively inelastic.

2. The German health care reform of 1997

The German health care sector is largely public. More than 90% of the German population
is covered by a statutory health insurance system that is funded through mandatory payroll
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deductions. Naturally, the sector is highly regulated. What services are offered, by whom
and for what price, and how much the user pays are all questions subject to periodic review
and adaptation. A change in 1997 dealt specifically with co-payments for prescription
drugs.

Prescription drugs are dispensed by retail pharmacies which charge the insurance com-
panies for the uniform price of the prescription, minus a co-payment that is required of the
patient. The amount of the co-payment varies by package size. It increased substantially on
1 July 1997, by a fixed amount of DM 6 relative to a year earlier. Since the absolute amount
of the co-payment is a function of the package size, after the reform DM 9 for small, DM
11 for medium and DM 13 for large sizes, the relative effect of the 1997 reform was largest
for small sizes, where it amounted to a 200% increase.

How large was the effect of the increased co-payment on the demand for prescription
drugs and other aspects of medical care utilization? In assessing the effects of the reform on
the demand for health services, one can usefully distinguish between a direct and an indirect
effect. The direct effect is a movement up the demand curve for prescription drugs, i.e., a
reduced number of drug purchases after the reform, as the increased co-payment directly
increased the patient’s out-of-pocket expenses for drug purchases. The indirect effect is a
potential inward shift of the demand curve for doctor visits. Since prescriptions have to be
issued by physicians, the demand for doctor visits and the demand for prescription drugs
are close complements and one can expect a negative cross-price elasticity.

Alternatively, one can think of the problem as demand for medical care in general. A
potential patient may not know whether or not the doctor will issue a prescription. Raising
the price of pharmaceuticals therefore raises the total expected price of a treatment for
some condition, when the total price includes costs for the doctor visit plus costs for any
pharmaceuticals.

The main idea of the paper is that the response to the reform may be different for different
types of people. Specifically, I am interested in the hypothesis that the reform effect differs
between frequent users and occasional users. The next section demonstrates that the existing
econometric models are ill suited to address this specific question. The limitation of these
models can be overcome by using quantile regression methods instead, as demonstrated in
the following sections of the paper.

3. Marginal probability effects

The starting point of this paper is the recognition that regression models based on a single
parameter Poisson distribution imply very restrictive probability changes in response to a
change in a regressor. The log-linear Poisson regression model has probability function

f (y; λ) = exp(−λ)λy

y!
(1)

whereλ = exp(x′β).
Now consider the change in the probabilityf(y;λ), y = 0, 1,. . . induced by an infinitesimal

change in thejth regressorxj, keeping all other regressor constant. This is the marginal
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probability effect which, for the Poisson model, can be written as

∂f (y; λ)

∂xj

= ∂f (y; λ)

∂λ

∂λ

∂xj

= f (y; λ)(y − λ)βj (2)

It follows that

sgn
∂f (y; λ)

∂xj

= −sgn(βj) iff y < λ, sgn
∂f (y; λ)

∂xj

= −sgn(βj) iff y > λ

Fig. 1 illustrates the situation. It is based on the conditional expectation function
λ = exp(0.5 + 0.1x) and shows the probability changes asx increases from 1 to 2.

We notice the “single crossing” property of the probability changes. Based on the Poisson
probability distribution, only a single switch between positive and negative marginal effects
is possible as the counts increase from 0 to 1, from 1 to 2 and soforth. Also, the relative
magnitudes of the effects are fully determined by functional form. We have to conclude
that the Poisson model is not very well suited when the interest lies in modelling the full
probability response to a change in a regressor. Note that this isnot a problem of the
particular conditional expectation function.

One could choose the most general parameterization ofλ possible, such as a generalized
additive model, any arbitrary link function, or even a fully saturated model, and the problem
would remain the same. All these approaches will translate into a specific response∂λ/∂x,
which in turn will induce the very restrictive probability changes of the Poisson distribution
(1).

The situation would also not improve if one were to choose the negative binomial model
rather than the Poisson model as the basis for analysis. In fact, the sign rule and the single
crossing property remain exactly the same as in the Poisson case. For example, for the

Fig. 1. Example for marginal probability effects in Poisson regression model.
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Negbin model with quadratic variance function (see e.g.Winkelmann, 2003) we obtain

∂fNB(y; λ, ξ)

∂xj

= fNB(y; λ, ξ)

(
ξ

ξ + λ

)
(y − λ)βj (3)

where

fNB(y; λ, ξ) = Γ (ξ + y)

Γ (ξ)Γ (y + 1)

(
ξ

ξ + λ

)ξ(
λ

ξ + λ

)y

(4)

ξ is a positive dispersion parameter, andλ is the conditional expectation as before. Again,
the marginal probability effects have opposing signs toβj for all realizations below the
mean, and equal signs for all realizations above it.

To summarize, if one wants to model the probability response of a counted outcome more
flexibly, and in particular allow for different responses in different parts of the distribution
(relative to the benchmark Poisson or negative binomial models) one needs to turn to
alternative modelling approaches. A first possibility is to abandon the rigid single index
structure of the conventional approaches. The prime example is the hurdle model (Mullahy,
1986). In most applications, the hurdle is set at zero. In such models, the probability response
of the zero outcome is entirely unrelated to the probability response in the strictly positive
part of the distribution.Winkelmann (2004a)has applied such models in an evaluation of
the effect of the aforementioned reform. He found that the response to the reform was
significantly stronger in the left tail of the distribution (relative to the Poisson or negative
binomial benchmarks) than elsewhere.

Here, I will analyse the same issue using a different approach that, rather than focussing
on the probability function, concentrates on the dual problem of modelling the distribution
function through quantile regression. This approach is developed in the next section.

4. Quantile regression for counts

The use of quantile regression for continuous random variables is by now quite standard.
Since such regressions can be performed for arbitrary quantiles of a distribution, they provide
a flexible tool for modelling the effect of regressors on the full distribution of the outcome
variable.

In the context of count data, the main problem is that the distribution function of a
discrete random variable is not continuous. Hence, the quantiles are not continuous either,
and they cannot be modelled directly as a continuous function of the regressors. However,
this difficulty can be overcome, as shown byMachado and Santos Silva (in press). Let y be
the count variable. Theα-quantile ofy is defined by

Qy(α) = min(η|P(y ≤ η) ≥ α) (5)

where 0≤ α < 1. The object of interest is the conditional quantileQy(α|x). SinceQy(α|x)
has the same support asy, it is discrete and cannot be a continuous function ofx (such as
exp(x′β)). Therefore, Machado and Santos Silva suggest to introduce “jittering”: consider
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a new variablez, obtained by adding a uniform random variable to the count variable

z = y + u, u ∼ uniform[0, 1) (6)

wherey andu are independent. Hence,z has density function

f (z) =


p0 for 0 ≤ z < 1

p1 for 1 ≤ z < 2
...

...

(7)

(using notationP(Y = k) = pk). Moreover, the distribution function ofz can be written as

f (z) =


p0z for 0 ≤ z < 1

p0 + p1(z − 1) for 1 ≤ z < 2
...

...

(8)

The quantiles ofz are continuous. For example,

Qz(α) = α

p0
for α < p0 (9)

Qz(α) = 1 + α − p0

p1
for p0 ≤ α < p0 + p1 (10)

From(9), we see that thezα-quantiles can never be smaller thanα. This needs to be taken
into account in the econometric specification below. If the underlying count variable has
either a Poisson or a negative binomial distribution, thezα-quantiles can be easily computed
and plotted as a function of the parameters. In the Poisson case,Qz(α) depends onλ only
whereas in the negative binomial case, it depends onλ andξ. Fig. 2displays thez0.25 and
thez0.75quantiles for the Poisson and negative binomial distributions as a function ofλ (for
ξ = 1). We find that the negative binomial distribution is more spread out than the Poisson
distribution (overdispersion) and that the difference between the two distributions is an
increasing function of the mean.

Of course, the main advantage of this approach is that the quantiles can now be esti-
mated freely, without imposing any arbitrary and restrictive distributional form assumption.
FollowingMachado and Santos Silva (in press), let

Qz(α|x) = α + exp(x′γα), α ∈ (0, 1) (11)

whereα is added on the right side in order to impose the aforementioned lower bound
of Qz(α|x). Next, transformz such that the transformed quantile function is linear in the
parameters:

QT (z;α)(α|x) = x′γα

where

T (z; α) =
{

log(z − α) for z > α

log(ζ) for z ≤ α
(12)
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Fig. 2. Quantiles of Poisson and negative binomial distributions with continuity correction.

and 0 <ζ <α. This can be done, since quantiles are invariant both to monotonic transforma-
tions and to censoring from below up to the quantile of interest. The censoring is required
whenevery = 0 and the added uniform random variableu is smaller thanα.

The model suggests the following empirical implementation. First, one adds uniformly
distributed pseudo random numbers to the observed counts. Second, one transforms the
resulting data. Third and finally, the parameter estimates are obtained as solution to

min
n∑

i=1

ρα(T (zi; α) − x′
iγα)

whereρα(ν) = ν(α − I(ν < 0)).
Although the quantile function is not differentiable everywhere (the distribution function

has corners), these corner points have measure zero as long as there is at least one continuous
regressor.Machado and Santos Silva (in press)prove consistency and asymptotic normality
of this estimator. Therefore, inferences aboutQz(α|x) can be based on conventional methods.
For example, a Wald-test can be used to test the hypothesis that a regressor has no effect on
a selected quantile.

Of course, thezα-quantiles are only a means to an end, and we ultimately want to
learn about theyα-quantiles and the conditional distribution of the counts. The following
considerations apply. First, theyα-quantiles can be recovered from thezα-quantiles based
on the relation

Qy(α|x) =
{

int[Qz(α|x)] if Qz(α|x) is not an integer

Qz(α|x) − 1 if Qz(α|x) is an integer
(13)
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For example, ifα = p0 then, from Eqs.(4) and (11)we obtain thatQz(α) = 1 andQy(α) = 0.
However, this situation occurs with probability zero, and in all other cases, theyα-quantiles
are simply the integer part of thezα-quantiles.

Second, therefore, if a variable is found to have no effect onQz(α|x), then we can conclude
that it has also no effect onQy(α|x). If an effect for thezα-quantile is observed, a given
change in a regressor may or may not be sufficient to also change theyα-quantile. This
needs to be evaluated on a case by case basis.

Third, a direct analysis of thezα-quantiles is informative, when one wants to study how
the freely estimated quantiles differ from those implied by standard count data models. For
example, in the context of evaluating the effect of the health reform on the distribution
of the number of doctor visits per quarter, one can estimate a Negbin model and predict
selected quantiles before and after the reform, separately for treatment and control group
if available, where all other variables are held constant at their mean values. From these
predictions, the relative response of the various quantiles can be computed and compared
to those from the freely estimates quantile regressions. The comparison shows whether the
reform had unusual effects in selected parts of the distribution, relative to what would have
been predicted on the basis of the Negbin benchmark estimates.

Finally, there is the problem of how to choose the quantilesα. In theory, the number
of quantiles that one could consider is unlimited. In practice, one needs to select a few
quantiles of interest. An intelligent choice depends both on the type of question one wants
to address, and on the data at hand. For example, if the marginal distribution of the data
has 33% zeros so that the marginal quantiles are zero for allα < 0.33, as will be the case
in the present application, it makes little sense to compute conditional quantile functions
for values as low asα = 0.1. The variation in the conditionalzα is then mostly due to the
random noise that has been added, and the quantiles will be flat and not vary as a function
of the regressors. In the following application, we therefore look at four quantiles,α = 0.25,
0.50, 0.75, and 0.90.

5. Data and empirical strategy

The analysis is based on data from theGerman Socio-Economic Panel (SOEP). The
SOEP was initiated in 1984 (SOEP Group, 2001). It is an annual survey that is ongoing.
For the purpose of this study, I selected data for men and women from the so-called Sample
A, which includes persons with non-guestworker status from the territory of former West
Germany, for the 2 years centered around the year of the reform, i.e., 1996 and 1998.
Moreover, I distinguish between treatment and control group. The control group includes
all individuals with private insurance (mostly the self-employed plus workers with earnings
above a certain threshold) plus those covered by statutory health insurance but explicitly
exempt from co-payments (the youth and low income families, identified here by the receipt
of welfare payments in the current year). Deleting observations with missing values on any
of the dependent or independent variables, the sample comprises 18,683 observations.

The full descriptive statistics for the dependent and independent variables that are used
in the analysis are given inTable 1. As the table shows, the majority of observations (90%)
are for the treatment group. The dependent variable is the utilization of health services, as
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measured by the individual number of visits to a doctor during the 3 months prior to the
interview. Thus, for the treatment group, we observe the utilization in a low co-payment
regime in 1996, whereas the 1998 survey provides information on utilization in the high
co-payment regime. The average number of visits dropped by about 10%, from 2.96 to 2.66
visits per quarter. The control group has fewer visits overall, and the decline between pre-
and post-reform period is much smaller (by 2% from 2.51 to 2.46).Table 1also shows for
the selected quantiles (the 25, 50, 75, and 90% quantiles) that there is some movement for
the treatment group, but no change for the control group. Specifically, the median of the
number of visits in the treatment group drops from 2 to 1, and the 90% quantile from 7 to
6.

As far as the explanatory variables are concerned, we find that an individual from the
treatment group is on average about 7 years older than an individual from the control group.
The health status from a subjective self-assessment is somewhat worse in the treatment
group, and the employment and marital rates are higher than in the control group. There are
some minor differences in the pre- and post-reform periods, but they tend to be insignificant.

The basic empirical strategy is to implement a differences-in-differences estimator by
pooling the data over the two observation points and groups. We know from an earlier
study (Winkelmann, 2004b) that the change in the expected demand for doctor visits, con-
ditional on covariates, before and after the reform was practically zero for the control group,
vindicating the use of simple pre–post comparisons. However, it is unclear whether such
a result also holds for the conditional quantile functions considered here. Therefore, we
retain the full differences-in-differences specification. In standard notation, define a linear

Table 1
Descriptive statistics (N = 18,683)

Treatment group Control group

Pre-reform Post-reform Pre-reform Post-reform

Doctor consultations 2.96 (4.74) 2.66 (4.17) 2.51 (4.06) 2.46 (4.30)
0.25 quantile 0 0 0 0
0.50 quantile 2 1 1 1
0.75 quantile 3 3 3 3
0.90 quantile 7 6 6 6
Age 43.7 (16.4) 45.0 (16.5) 36.1 (17.0) 38.7 (16.8)
Male 0.48 (0.50) 0.48 (0.50) 0.52 (0.50) 0.59 (0.49)
Years of schooling 11.1 (2.4) 11.3 (2.4) 11.1 (3.3) 11.6 (3.0)
Married 0.66 (0.47) 0.66 (0.47) 0.42 (0.49) 0.47 (0.50)
Household size 2.97 (1.38) 2.88 (1.33) 3.32 (1.49) 3.19 (1.47)
Active sport 0.23 (0.42) 0.28 (0.45) 0.32 (0.47) 0.33 (0.47)
Good health 0.51 (0.50) 0.53 (0.50) 0.62 (0.49) 0.62 (0.49)
Bad health 0.17 (0.38) 0.16 (0.37) 0.12 (0.33) 0.13 (0.34)
Logarithmic income 7.52 (0.44) 7.54 (0.42) 7.50 (0.61) 7.49 (0.61)
Full-time employed 0.46 (0.50) 0.44 (0.50) 0.36 (0.48) 0.44 (0.50)
Part-time employed 0.09 (0.29) 0.09 (0.29) 0.04 (0.20) 0.04 (0.19)
Unemployed 0.06 (0.24) 0.06 (0.24) 0.11 (0.31) 0.10 (0.30)
Observations 8130 8666 1002 885

Notes. Standard deviations in parentheses.
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index variableηit as follows:

ηit = β0 + β1 treati + β2 postt + β3 treati × postt + z′
itγ, t = 96, 98 (14)

Here, postt is an indicator for the post-reform period, treati is an indicator whether person
i is subject to the increased co-payment, and the interaction between treati and postt marks
an observation of a treated person after the reform,zit includes a constant and all other
characteristics controlled for in the regression, among the, a second order polynomial in age,
three indicators for the quarter of the interview, three indicators of employment status (full-
time, part-time, unemployed) plus the variablesyears of education, married, logarithmic
income, household size, active sport, good health, bad health. In this set-up,β3 measures
the ceteris paribus change in the index between the two period in the treatment group above
and beyond the change in the control group, for otherwise similar individuals.

As laid out in the previous section, we are interested in a comparison of two types of
approaches to estimate the effect of the 1997 health care reform on the demand for health
services. In a first approach, we estimate standard count data models, the Poisson and
the Negbin model, withE(yit|ηit) =λit = exp(ηit). In a second approach, we freely estimate
selected conditional quantiles of the continuity corrected counts by using the specification
Qz(α|ηit) =α + exp(ηit) for α = 0.25, 0.50, 0.75, 0.90.

The interpretation of differences-in-differences estimators in such non-linear models is
not entirely straightforward. In count data models with log-linear conditional expectation
function, [exp(β2) − 1] × 100 gives the 96–98 ceteris paribus percentage change in the
expected number of doctor visits for the control group. [exp(β2 +β3) − 1] × 100 gives the
corresponding change for the treatment group. Ifβ3 is negative, the demand for doctor visits
fell in the treatment group relative to the control group after the imposition of the increased
co-payments. Absolute changes depend on the value of the covariates at which the effect is
evaluated, as do the effects on the various quantiles of the standard count data models.

In the quantile regression models, the interpretation is more complicated because the
additive constantα means that regression parameters do not give proportional effects. Let
η̃i denote the value of the index function for given covariates ˜zi before the reform for the
control group. The double difference for theα-quantile is then

ddi = [exp(η̃i + β1 + β2 + β3) − exp(η̃i + β1)] − [exp(η̃i + β2) − exp(η̃i)]

An estimate of the conditional reform effect̂ddi is obtained by replacing the parameters by
their estimates. Finally, to obtain the marginal reform effect, we can estimate the uncondi-
tional expected value by averaging over the individual effects:

d̂d = 1

n

n∑
i=1

d̂di

These estimates are directly comparable to the marginal differences-in-differences quantile
effects from the Negbin model. In this way, we can assess whether or not the distributional
impact of the reform differed in any systematic way from what would have been expected
from using a standard Negbin model.
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6. Results

The Poisson and Negbin estimates are displayed inTable 2. In addition to the differences-
in-differences (dd) results, the table also shows the results from the simple pre–post-reform
comparisons using a reduced sample of observations on the treatment group only. A com-
parison of the Poisson and negative binomial models confirms the superiority of the latter, as
expected. The estimated dispersion parameter in the Negbin model is about 1, with standard
error 0.02—it is zero under the Poisson restriction. Wald and likelihood ratio tests lead to
a clear rejection of the Poisson model. The estimated effects of the control variables are
very similar across the specifications and they agree with those reported in the previous
literature (see e.g.Cameron and Trivedi, 1986). For example, the number of visits is inverse
u-shaped in age. Men have fewer doctor visits than women. Labor market participants have
fewer visits than non-participants. The number of visits is higher for married people and
those with a poor self-assessed health status, and lower for those in good health and with
lower income, ceteris paribus.

The point estimate of the treatment effect, a 10% reduction in the number of visits, is the
same regardless of whether the Poisson of Negbin model is used and regardless of whether
single or double differences are taken. The only change is that in the dd model, the effect
for the control group (a relatively small and heterogeneous group) is measured with low
precision, which translates into an imprecise estimate of the dd estimator. Nevertheless,
we retain the dd formulation for the quantile regressions, as we cannot exclude that the

Table 2
Results for Poisson and negative binomial regressions

Simple differences (N = 16,796) Differences-in-differences (N = 18,683)

Poisson Negbin Poisson Negbin

Age/10 0.035 (0.044) −0.030 (0.044) 0.039 (0.041) −0.028 (0.042)
Age squared/1000 −0.036 (0.043) 0.032 (0.044) −0.040 (0.041) 0.031 (0.042)
Male −0.142† (0.028) −0.199† (0.026) −0.159† (0.027) −0.226† (0.025)
Married 0.090† (0.032) 0.112† (0.030) 0.083† (0.030) 0.104† (0.028)
Active sport 0.079† (0.027) 0.099† (0.026) 0.090† (0.026) 0.115† (0.025)
Good health −0.628† (0.027) −0.633† (0.027) −0.628† (0.026) −0.636† (0.026)
Bad health 0.780† (0.029) 0.794† (0.030) 0.785† (0.028) 0.797† (0.029)
Logarithmic income 0.124† (0.029) 0.135† (0.028) 0.095† (0.027) 0.096† (0.027)
Full-time employed −0.278† (0.034) −0.281† (0.032) −0.278† (0.033) −0.276† (0.031)
Part-time employed −0.251† (0.045) −0.253† (0.043) −0.258† (0.043) −0.258† (0.041)
Unemployed −0.142† (0.052) −0.143† (0.049) −0.132† (0.048) −0.125† (0.045)
Post-reform −0.101† (0.020) −0.100† (0.020) −0.005 (0.065) −0.002 (0.065)
Treatment 0.030 (0.049) 0.050 (0.049)
Post× treatment −0.096 (0.069) −0.098 (0.069)
α 0.992 (0.023) 1.012 (0.022)
Log-likelihood −45659.5 −34364.5 −50583.9 −38024.2

Notes. Source:German Socio-Economic Panel, years 1996 and 1998. Dependent variable: number of doctor visits
during previous quarter. Models include furthermore a constant, three indicator variable for the quarter of the
interview (winter, spring, fall) and the variablesYears of schooling andHousehold size. Robust standard errors
adjusted for heteroscedasticity and for clustering observations over 2 years in parentheses. Coefficients marked
with † are significant at the 10% level.
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simple differences estimator may not work well for some quantiles. Therefore, the Negbin
estimates in the fourth column ofTable 2will be the benchmark, on which the simulation
and comparison of quantiles are based.

Table 3shows the results for the quantile regressions. The regressors that are significant
in the Negbin model also tend to be significant in the quantile regressions. It is possible
that the signs of the effects differ at the different quantiles and this happens indeed in two
instances: The effect of age at the 90% quantile is u-shaped rather than inverse u-shaped
(albeit insignificant), and years of schooling has a positive effect at the two lower quantiles
and a negative effect at the two upper quantiles. In all other cases, the signs do not switch.
For example, all four estimatedzα-quantiles are lower for men than for women. While
the point estimates decrease with increasing quantiles, a direct comparison is misleading.
Instead, we can use the estimates to predict quantiles for men and women, ceteris paribus.
For example, if all other variables are set to their sample means, the 90 %zα-quantile is 5.39
for men and 6.44 for women. By contrast, the 25 %zα-quantile is 0.73 for men and 1.01
for women. Thus, while the relative effect of being male – a change of−28% – is larger at
the 0.25 quantile, the absolute effect – a change of−1.05 – is larger at the 0.90 quantile.

The last row ofTable 3shows the parameters associated with the treatment effect.
They are negative for all quantiles, but statistically significant only for the 75 and the 25%
quantiles. The relative low precision induced by the small and heterogeneous control group
was mentioned before. How should the point estimates be interpreted? First, we use the point
estimates to predict theyα-quantiles for each person in the treatment group, with and without
reform, using Eq.(13). In this simulation, all explanatory variables are set to their actual
values, except for thepost-reform andpost × treatment indicators that are either zero or one
for all individuals.Table 4shows the relative frequencies of the thus obtained estimated
quantiles for the 16,796 observations in the treatment group. The change in the distribution

Table 3
Count data quantile regressions

Qz(0.25|x) Qz(0.50|x) Qz(0.75|x) Qz(0.90|x)

Age/10 −0.171† (0.080) −0.169† (0.060) −0.092† (0.037) 0.026 (0.051)
Age squared/1000 0.206† (0.083) 0.182† (0.062) 0.097† (0.038) −0.029 (0.052)
Male −0.427† (0.043) −0.414† (0.033) −0.280† (0.021) −0.192† (0.029)
Years of schooling/10 0.261† (0.087) 0.134† (0.066) −0.041 (0.041) −0.115† (0.055)
Married 0.245† (0.050) 0.229† (0.038) 0.103† (0.024) 0.098† (0.033)
Household size −0.072† (0.016) −0.074† (0.013) −0.052† (0.008) −0.041† (0.011)
Active sport 0.342† (0.047) 0.217† (0.036) 0.119† (0.023) 0.089† (0.030)
Good health −0.853† (0.047) −0.838† (0.036) −0.640† (0.023) −0.614† (0.030)
Bad health 1.035† (0.061) 0.795† (0.047) 0.818† (0.029) 0.725† (0.040)
Logarithmic income 0.139† (0.051) 0.147† (0.038) 0.095† (0.024) 0.120† (0.031)
Full-time employed −0.377† (0.055) −0.373† (0.042) −0.260† (0.027) −0.265† (0.036)
Part-time employed −0.316† (0.079) −0.228† (0.060) −0.210† (0.038) −0.337† (0.051)
Unemployed −0.323† (0.087) −0.194† (0.066) −0.094† (0.042) −0.004 (0.056)
Post-reform 0.221† (0.092) 0.109 (0.070) 0.102† (0.044) 0.008 (0.059)
Treatment 0.068 (0.125) −0.016 (0.095) 0.061 (0.060) 0.006 (0.080)
Post× treatment −0.231† (0.132) −0.127 (0.101) −0.145† (0.064) −0.081 (0.085)

Notes. SeeTable 2.
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Table 4
Relative frequencies of estimatedyα-quantiles for treatment group before and after reform

0 1 2 3 4 5 6 7 8 >9

Before reform
Q̂y(0.25|x) 67.54 21.50 10.70 0.26 0 0 0 0 0 0
Q̂y(0.50|x) 0.89 57.85 19.77 7.12 4.38 5.03 4.38 0.55 0.02 0
Q̂y(0.75|x) 0.89 36.23 21.62 10.81 8.96 5.07 2.05 2.00 2.39 12.36
Q̂y(0.90|x) 0.17 14.30 23.04 14.45 9.50 6.05 6.95 4.13 3.96 25.55

After reform
Q̂y(0.25|x) 72.77 18.95 8.26 0.02 0 0 0 0 0 0
Q̂y(0.50|x) 3.62 59.39 19.29 4.88 5.80 4.94 2.04 0.05 0 0
Q̂y(0.75|x) 3.62 41.07 18.32 11.79 7.50 2.62 2.26 2.52 3.28 10.31
Q̂y(0.90|x) 0.50 22.11 22.34 12.74 7.57 7.50 5.33 4.32 1.69 21.92

– the simple difference – is one indication of the effect of the reform on the distribution of
demand for health services. For example, we see that the proportion of individuals with a
predicted 0.25-quantile of zero increased from 68 to 73%. Similarly, the relative frequencies
at which the quantiles fall in the higher counts, such as 9 or above, decreased, in the case
for the 0.90-quantile from 26 to 22%.

Of course, a more comprehensive analysis of the results has to take the distributional
effects for the control group into account. Moreover, we want to compare the quantile
effects ofTable 3with those implied by the Negbin estimates inTable 2. Table 5pro-
vides the relevant information. The first two columns display the absolute and relative
effects for the quantile regression, respectively. The effects are computed as dd(α) =
[Q̂z(α|treat, post)− Q̂z(α|treat, pre)]− [Q̂z(α|control, post)− Q̂z(α|control, pre)] where
Q̂z(α|·) is the average quantile over all individuals with appropriately recoded treatment and
reform indicator variables. For example,Q̂z(0.25|treat, post)= 1.04,Q̂z(0.25|treat, pre)=
1.18, Q̂z(0.25|control, post)= 1.05, and Q̂z(0.25|control, pre)= 1.00. From this, we
obtain a double difference of−0.19, or 16.3% of 1.18. Importantly, we see, fromTable 5,
that the estimated relative reform effect is largest for the 0.25 quantile and smallest for the
0.9 quantile.

Table 5
Predicted average treatment effects (differences-in-differences) at variouszα-quantiles for quantile regressions
and Negbin model

Quantile Quantile regression Negbin model

Absolute Relative Absolute Relative

25% −0.194 −16.34% −0.075 −7.40%
50% −0.230 −9.51% −0.193 −8.06%
75% −0.507 −11.45% −0.383 −8.06%
90% −0.487 −6.87% −0.633 −8.05%

Notes. The effects are computed as dd(α) = [Q̂z(α|treat, post)− Q̂z(α|treat, pre)]− [Q̂z(α|control,
post)− Q̂z(α|control, pre)], wherêQz(α|·) is the average predicted quantile over all individuals.
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This evidence can now be contrasted with the results from the Negbin model in columns
3 and 4 ofTable 5. For each individual, a linear predictor was computed based on the four
possible combinations of treatment and pre-/post-reform status. This was converted to the
corresponding quantiles, using the Negin probability function(4) and the definition of the
distribution function in(8), and then averaged. The results show that the effect in the Negbin
model is approximately proportional. The double difference of the quantiles amount to a
7–8% decrease in the number of doctor visits due to the reform.

The results are thus unequivocal. A comparison of the Negbin quantiles and the freely
estimated quantiles reveals the following patterns: in the Negbin model, the relative reform
effect does not depend onα; the relative reform effect implicit in the freely estimated
quantiles, on the other hand, is a decreasing function ofα: the largest effect is recorded for
the smallest quantile, here the 25% quantile. Hence, the quantile regression result show what
an analysis based on conventional count data models would definitely miss, namely that the
sensitivity of the demand for health services to the reform of 1997 was disproportionately
high in the left part of the distribution. The drop in demand for health services at the
25% quantile that is attributable to the reform amounts to more than 16%, whereas the
90% quantile, representing individuals who are relatively frequent users, decreased by only
6.9%. In other words, the demand for more frequent users of health services, among them
the chronically sick, reacted relatively inelastically.

7. Discussion

The German health care reform of 1997 was associated with an average decline in the
number of doctor visits by 10%. In this paper it was shown that a sole focus on averages
misses an important part of the story. A more detailed analysis using a novel quantile regres-
sion method for count data confirmed that the reform effect was quite heterogenous indeed,
defined here as being different in different parts of the distribution of the outcome of inter-
est. Rare users responded more to the increased co-payment than frequent users, in relative
terms. This finding corroborates an earlier analysis based on generalized parametric count
data models, such as hurdle Poisson, hurdle Negbin and finite mixture models (Winkelmann,
2004a). However, the present approach based on quantiles provides a more robust tool for
detecting departures from the benchmark models. It has the great advantage that it does not
require the estimation of an alternative parametric, and possibly misspecified, generalized
count data model.

An interesting substantive result of this paper is that it helps reconciling the present
findings from theGerman Socio-Economic Panel with those reported in an earlier study of
the same reform byLauterbach et al. (2000), using a different survey. In that earlier study,
the estimated reduction in the average number of doctor visits was just 4.4%, falling short
of the 10% found here. The likely explanation for this discrepancy is that Lauterbach et al.
based their analysis on a survey of pharmacy customers. Clearly, this approach produces
a heavily selected sample in which frequent users of health services are overrepresented.
Hence, a relatively small response is to be expected. However, as has been demonstrated in
this paper, such a pharmacy-based survey is inappropriate to predict the effect of the reform
on rare visitors and, by implication, on the population at large.
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