
Appendix: Supplementary Material

A Mathematical Proofs

A.1 Preliminaries

We shall use the notations Re(z) and Im(z) for the real and imaginary parts of a complex

number z, so that

∀z ∈ C z = Re(z) + i · Im(z) .

For any increasing function G on the real line, sG denotes the Stieltjes transform of G:

∀z ∈ C
+ sG(z) ..=

∫
1

λ− z
dG(λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im
[
sG(ξ + iη)

]
dξ , (A.1)

as long as G is continuous at both a and b. Bai and Silverstein (2010, p.112) give the following

version for the equation that relates F to H and c. The quantity s =.. sF (z) is the unique

solution in the set {
s ∈ C : −

1− c

z
+ cs ∈ C

+

}
(A.2)

to the equation

∀z ∈ C
+ s =

∫
1

τ
[
1− c− c z s

]
− z

dH(τ) . (A.3)

Although the Stieltjes transform of F , sF , is a function whose domain is the upper half of the

complex plane, it admits an extension to the real line ∀x ∈ R \ {0} s̆F (x) ..= limz∈C+→x sF (z)

which is continuous over x ∈ R− {0}. When c < 1, s̆F (0) also exists and F has a continuous

derivative F ′ = π−1Im [s̆F ] on all of R with F ′ ≡ 0 on (−∞, 0]. (One should remember that,

although the argument of s̆F is real-valued now, the output of the function is still a complex

number.)

Recall that the limiting e.d.f. of the eigenvalues of n−1Y ′
nYn = n−1Σ1/2

n X ′
nXnΣ

1/2
n was

defined as F . In addition, define the limiting e.d.f. of the eigenvalues of n−1YnY ′
n =

n−1XnΣnX ′
n as F ; note that the eigenvalues of n−1Y ′

nYn and n−1YnY ′
n only differ by |n − p|

zero eigenvalues. It then holds:

∀x ∈ R F (x) = (1− c) [0,∞)(x) + c F (x) (A.4)

∀x ∈ R F (x) =
c− 1

c [0,∞)(x) +
1

c
F (x) (A.5)

∀z ∈ C
+ sF (z) =

c− 1

z
+ c sF (z) (A.6)

∀z ∈ C
+ sF (z) =

1− c

c z
+

1

c
sF (z) . (A.7)
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Although the Stieltjes transform of F , sF , is again a function whose domain is the upper

half of the complex plane, it also admits an extension to the real line (except at zero):

∀x ∈ R \ {0}, s̆F (x) ..= limz∈C+→x sF (z) exists. Furthermore, the function s̆F is continuous

over R\{0}. When c > 1, s̆F (0) also exists and F has a continuous derivative F ′ = π−1Im
[
s̆F
]

on all of R with F ′ ≡ 0 on (−∞, 0].

It can easily be verified that the function s(x) defined in Equation (MP) is in fact none other

than s̆F (x). Equation (4.2.2) of Bai and Silverstein (2010), for example, gives an expression

analogous to Equation (MP). Based on the right-hand side of Equation (2.3), we can rewrite

the function d∗(·) introduced in Theorem 3.1 as:

∀x ∈
κ⋃

k=1

[ak, bk] d∗(x) =
1

x
∣∣s̆F (x)

∣∣2
=

x

|1− c− c x s̆F (x)|
2 . (A.8)

A.2 Proof of Theorem 2.1

Given that it is only the normalized quantity (m′

TmT )−1/2mT that appears in this proposition,

the parametric form of the distribution of the underlying quantity mT is irrelevant, as long

as (m′

TmT )−1/2mT is uniformly distributed on the unit sphere. Thus, we can assume without

loss of generality that mT is normally distributed with mean zero and covariance matrix the

identity.

In this case, the assumptions of Lemma 1 of Ledoit and Péché (2011) are satisfied. This

implies that there exists a constant K1 independent of T , Σ̂T and mT such that

E

[(
1

N
m′

T Σ̂
−1
T mT −

1

N
Tr
(
Σ̂−1

T

))6
]

≤
K1

∥∥∥Σ̂−1
T

∥∥∥

N3
.

Note that
∥∥∥Σ̂−1

T

∥∥∥ ≤ K̂/h a.s. for large enough T by Assumption 2.4. Therefore,

1

N
m′

T Σ̂
−1
T mT −

1

N
Tr
(
Σ̂−1

T

)
a.s.
−→ 0 .

In addition, we have

1

N
Tr
(
Σ̂−1

T

)
=

1

N

N∑

i=1

1

δ̂T (λT,i)
=

∫
1

δ̂T (x)
dFT (x)

a.s.
−→

∫
1

δ̂(x)
dF (x) .

Therefore,
1

N
m′

T Σ̂
−1
T mT

a.s.
−→

∫
1

δ̂(x)
dF (x) . (A.9)

A similar line of reasoning leads to

1

N
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT −

1

N
Tr
(
Σ̂−1

T ΣT Σ̂
−1
T

)
a.s.
−→ 0 .

Notice that

1

N
Tr
(
Σ̂−1

T ΣT Σ̂
−1
T

)
=

1

N
Tr
(
U ′

TΣTUT ∆̂
−2
T

)
=

1

N

N∑

i=1

u′T,iΣTuT,i

δ̂T (λT,i)2
.
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Using Theorem 4 of Ledoit and Péché (2011), we obtain that

1

N

N∑

i=1

u′T,iΣTuT,i

δ̂T (λT,i)2
a.s.
−→

∫
d∗(x)

δ̂(x)2
dF (x) ,

with the function d∗(·) defined by Equation (3.1). Thus,

1

N
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT

a.s.
−→

∫
d∗(x)

δ̂(x)2
dF (x) . (A.10)

Putting Equations (A.9) and (A.10) together yields

N
m′

T Σ̂
−1
T ΣT Σ̂

−1
T mT

(
m′

T Σ̂
−1
T mT

)2
a.s.
−→

∫
d∗(x)

δ̂(x)2
dF (x)

(∫
1

δ̂(x)
dF (x)

)2 .

Theorem 2.1 then follows from noticing that N−1m′

TmT
a.s.
−→ 1.

A.3 Proof of Theorem 3.1

Differentiating the right-hand side of Equation (2.3) with respect to δ̂(x) for x ∈ Supp(F )

yields the first-order condition

−2
d∗(x)F ′(x)

δ̂(x)3

[∫
dF (y)

δ̂(y)

]−2

+ 2

[∫
dF (y)

δ̂(y)2

]−3
F ′(x)

δ̂(x)

[∫
d∗(y)dF (y)

δ̂(y)2

]

= 0 ,

which is verified if and only if δ̂(x)/d∗(x) is a constant independent of x. The proportionality

constant must be strictly positive because the covariance matrix estimator Σ̂T is positive

definite, as stated in Assumption 2.4.

A.4 Proof of Proposition 3.1

Theorem 4 of Ledoit and Péché (2011) and the paragraphs immediately above it imply that

1

N

N∑

i=1

u′T,iΣTuT,i
a.s.
−→

∫
d∗(x) dF (x) . (A.11)

It can be seen that the left-hand side of Equation (A.11) is none other than N−1Tr(ΣT ). In

addition, note that

1

N
Tr
(
Σ̂T

)
=

1

N

N∑

i=1

δ̂T (λT,i) =

∫
δ̂T (x) dFT (x)

a.s.
−→

∫
δ̂(x) dF (x) = α

∫
d∗(x) dF (x) .

(A.12)

Comparing Equations (A.11) and (A.12) yields the desired result.
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B Consistent Estimator of the Stieltjes Transform s(x)

The estimation method developed by Ledoit and Wolf (2015) is reproduced below solely for

the sake of convenience. Interested readers are invited to consult the original paper for details.

Note that Ledoit and Wolf (2015) denote the number of variables by p rather than by N and

the sample size by n rather than by T .

The key idea is to introduce a nonrandom multivariate function, called the Quantized

Eigenvalues Sampling Transform — or QuEST for short — which discretizes, or quantizes,

the relationship between F , H, and c defined in Equations (A.2) and (A.3). For any positive

integers T and N , the QuEST function QT,N is defined as

QT,N : [0,∞)N −→ [0,∞)N

v ..= (v1, . . . , vN )′ (−→ QT,N (v) ..=
(
q1T,N (v), . . . , qNT,N (v)

)′
,

where

∀i = 1, . . . , N qiT,N (v) ..= N

∫ i/N

(i−1)/N

(
Fv
T,N

)−1
(u) du , (B.1)

∀u ∈ [0, 1]
(
Fv
T,N

)−1
(u) ..= sup{x ∈ R : Fv

T,N (x) ≤ u} , (B.2)

∀x ∈ R Fv
T,N (x) ..= lim

η→0+

1

π

∫ x

−∞

Im
[
svT,N (ξ + iη)

]
dξ , (B.3)

and ∀z ∈ C+ s ..= svT,N (z) is the unique solution in the set

{
s ∈ C : −

T −N

Tz
+

N

T
s ∈ C

+

}
(B.4)

to the equation

s =
1

N

N∑

i=1

1

vi

(
1−

N

T
−

N

T
z s

)
− z

. (B.5)

It can be seen that Equation (B.3) quantizes Equation (A.1), that Equation (B.4)

quantizes Equation (A.2), and that Equation (B.5) quantizes Equation (A.3). Thus, Fv
T,N

is the limiting distribution (function) of sample eigenvalues corresponding to the population

spectral distribution (function) N−1∑N
i=1 [vi,∞). Furthermore, by Equation (B.2),

(
Fv
T,N

)−1

represents the inverse spectral distribution function, also known as the quantile function. By

Equation (B.1), qiT,N (v) can be interpreted as a smoothed version of the (i− 0.5)/N quantile

of Fv
T,N . Ledoit and Wolf (2015) estimate the eigenvalues of the population covariance matrix

simply by inverting the QuEST function numerically:

τ̂T
..= argmin

v∈(0,∞)N

1

N

N∑

i=1

[
qiT,N (v)− λT,i

]2
. (B.6)

From this estimator of the population eigenvalues, Ledoit and Wolf (2015) deduce an estimator

of the Stieltjes transform s(x) as follows: for all x ∈ (0,∞), and also for x = 0 in the case
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c > 1, ŝ(x) is defined as the unique solution ŝ ∈ R ∪ C+ to the equation

ŝ = −

[

x−
1

T

N∑

i=1

τ̂T,i
1 + τ̂T,i ŝ

]−1

. (B.7)

C Winsorization of Past Returns

Unusually large returns (in absolute value) can have undesirable impacts if such data are used

to estimate a covariance matrix. We migitate this problem by properly truncating very small

and very large observations in any cross-sectional data set. Such truncation is commonly

referred to as Winsorization, a method that is widely used by quantitative portfolio managers;

for example, see Chincarini and Kim (2006, p.180).

Consider a set of numbers a1, . . . , aN . We first compute a robust measure of location that

is not (heavily) affected by potential outliers. To this end, we use the trimmed mean of the

data with trimming fraction η ∈ (0, 0.5) on the left and on the right. This number is simply

the mean of the middle (1− 2η) · 100% of the data. More specifically, let

a(1) ≤ a(2) ≤ . . . ≤ a(N) (C.1)

be the ordered data (from smallest to largest) and let

M ..= ⌊η ·N⌋ (C.2)

be the smallest integer less than or equal to η · N . Then the trimmed mean with trimming

fraction η is defined as

aη ..=
1

N − 2M

N−M∑

i=M+1

a(i) . (C.3)

We employ the value of η = 0.1 in practice.

We next compute a robust measure of spread. To this end, we use the mean absolute

deviation (MAD) given by

MAD(a) ..=
1

N

N∑

i=1

|ai −med(a)| , (C.4)

where med(a) denotes the sample median of a1, . . . , aN .

We finally compute upper and lower bounds defined by

alo ..= a0.1 − 5 ·MAD(a) and aup ..= a0.1 + 5 ·MAD(a) . (C.5)

The motivation here is that for a normally distributed sample, it will hold that a ≈ a0.1 and

s(a) ≈ 1.5 · MAD(a), where a and s(a) denote the sample mean and the sample median of

a1, . . . , aN , respectively. As a result, for a well-behaved sample, there will usually be no points

below alo or above aup. Our truncation rule is then that any data point ai below alo will be

changed to alo and that any data point ai above aup will be changed to aup. We apply this

truncation rule, one day at a time, to the past stock return data used to estimate a covariance

matrix. (Of course, we do not apply this truncation rule to future stock return data used to

compute portfolio out-of-sample returns.)
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D Markowitz Portfolio with Momentum Signal

We now turn attention to a full Markowitz portfolio with a signal, thereby augmenting the

empirical results of Section 4.3 for the global mininum-variance portfolio.

As discussed at the beginning of Section 1, by now a large number of variables have

been documented that can be used to construct a signal in practice. For simplicity and

reproducibility, we use the well-known momentum factor — or simply momentum for short —

of Jegadeesh and Titman (1993). For a given period investment period h and a given stock,

momentum is the geometric average of the previous 12 monthly returns on the stock but

excluding the most recent month. Collecting the individual momentums of all the N stocks

contained in the portfolio universe yields the return predictive signal m.

In the absence of short-sales constraints, the investment problem is formulated as

min
w

w′Σw (D.1)

subject to w′m = b and w′1 = 1 , (D.2)

where b is a selected target expected return. The analytical solution of the problem is given in

Sections 3.8 and 3.9 of the textbook by Huang and Litzenberger (1988). The natural strategy

in practice is to replace the unknown Σ by an estimator Σ̂, yielding a feasible portfolio

ŵ ..=
Cb−A

BC −A2
Σ̂−1m+

B −Ab

BC −A2
Σ̂−11 , (D.3)

where A ..= m′Σ̂−11 , B ..= m′Σ̂−1m , and C ..= 1′Σ̂−11 . (D.4)

The following 12 portfolios are included in the study.

• EW-TQ: The equal-weighted portfolio of the top-quintile stocks according to momen-

tum m. This strategy does not make use of the momentum signal beyond sorting of the

stocks in quintiles.

The value of the target expected return b for portfolios listed below is then given by the

arithmetic average of the momentums of the stocks included in this portfolio (i.e., the

expected return of EW-TQ according to the signal m).

• BSV: The portfolio (D.3)–(D.4) where Σ̂ is given by the identity matrix of dimension

N ×N . This portfolio corresponds to the proposal of Brandt et al. (2009).

• Sample: The portfolio (D.3)–(D.4) where Σ̂ is given by the sample covariance matrix;

note that this portfolio is not available when N > T , since the sample covariance matrix

is not invertible in this case.

• KZ: The three-fund portfolio described by Equation (68) of Kan and Zhou (2007); note

that this portfolio is not available when N ≥ T − 4.

This portfolio uses the vector of sample means as signal. For a fair comparison with

other portfolios, we also compute alternative performance measures where the vector of

sample means is replaced by the momentum signal.1

1As the mathematical derivation of the KZ portfolio is based on the vector of sample means as signal, the

modification using the momentum signal is of purely heuristic nature.
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• TZ: The three-fund portfolio KZ combined with the equal-weighted portfolio as proposed

in Section 2.3 of Tu and Zhou (2011); note that this portfolio is not available when

N ≥ T − 4.

This portfolio uses the vector of sample means as signal. For a fair comparison with

other portfolios, we also compute alternative performance measures where the vector of

sample means is replaced by the momentum signal.2

• Lin: The portfolio (D.3)–(D.4) where Σ̂ is given by the linear shrinkage estimator of

Ledoit and Wolf (2004).

• NonLin: The portfolio (D.3)–(D.4) where Σ̂ is given by the estimator Ŝ of Corollary 3.1.

• NL-Inv: The portfolio (D.3)–(D.4) where Σ̂−1 is given by the direct nonlinear shrinkage

estimator of Σ−1 based on generic a Frobenius-norm loss. This estimator was first

suggested by Ledoit and Wolf (2012) for the case N < T ; the extension to the case

T ≥ N can be found in Ledoit and Wolf (2018).

• SF: The portfolio (D.3)–(D.4) where Σ̂ is given by the single-factor covariance matrix

Σ̂F used in the construction of the single-factor-preconditioned nonlinear shrinkage

estimator (4.1).

• FF: The portfolio (D.3)–(D.4) where Σ̂ is given by the covariance matrix estimator based

on the (exact) three-factor model of Fama and French (1993).3

• POET: The portfolio (D.3)–(D.4) where Σ̂ is given by the POET covariance matrix

estimator of Fan et al. (2013). This method uses an approximate factor model where the

factors are taken to be the principal components of the sample covariance matrix and

thresholding is applied to covariance matrix of the principal orthogonal complements.4

• NL-SF The portfolio (D.3)–(D.4) where Σ̂ is given by the single-factor-preconditioned

nonlinear shrinkage estimator (4.1).

Remark D.1 (KZ and TZ Portfolios). The two portfolios KZ and TZ are not directly

comparable to the other nine portfolios, since they are not fully invested in stocks; instead

they are partly invested in the risk-free rate.

A further issue is that the original proposals for KZ and TZ use the vector of sample

means as the signal unlike the other nine portfolios which use the momentum signal. This

discrepancy might result in an unfair comparison. Therefore, we always present two numbers

for the portfolios KZ and TZ: The first number is based on the vector of sample means as

signal and the second number is based on the momentum signal (i.e., the same signal as used

by the other nine portfolios). Note that there is no theoretical justification for the second set

of numbers and it is purely heuristic approach on our part in the interest of fairness in the

sense of using a shared signal across all portfolios.

2As the mathematical derivation of the TZ portfolio is based on the vector of sample means as signal, the

modification using the momentum signal is purely heuristic.
3Data on the three Fama-French factors were downloaded from Ken French’s Data Library.
4In particular, we use K = 5 factors, soft thresholding, and the value of C = 1.0 for the thresholding

parameter. Among several specifications we tried, this one appeared to work best on average.
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Our stance is that in the context of a full Markowitz portfolio, the most important

performance measure is the out-of-sample Sharpe ratio, SR. In the ideal investment problem

(D.1)–(D.2), minimizing the variance (for a fixed target expected return b) is equivalent to

maximizing the Sharpe ratio (for a fixed target expected return b). In practice, because of

estimation error in the signal, the various strategies do not have the same expected return;

thus, focusing on the out-of-sample standard deviation is inappropriate.

We also consider the question whether one portfolio delivers a higher out-of-sample Sharpe

ratio than another portfolio at a level that is statistically significant. Since we consider 12

portfolios, there are 66 pairwise comparisons. To avoid a multiple-testing problem and since

a major goal of this paper is to show that nonlinear shrinkage improves upon linear shrinkage

in portfolio selection, we restrict attention to the single comparison between the two portfolios

Lin and NonLin. For a given scenario, a two-sided p-value for the null hypothesis of equal

Sharpe ratios is obtained by the prewhitened HACPW method described in Ledoit and Wolf

(2008, Section 3.1).5

Table D.1 reports the results, which can be summarized as follows.

• We again observe that Sample breaks down for N = 250, when the sample covariance

matrix is close to singular.

• KZ and TZ have the lowest Sharpe ratios throughout and some of the numbers are even

negative.

• The overall order, from worst to best, of the remaining five rotation-equivariant portfolios

is EW-TQ, BSV, Lin, NL-Inv, and NonLin.

• NonLin has the uniformly best performance among the rotation-equivariant portfolios

and the outperformance over Lin is statistically significant at the 0.05 level for N =

250, 500.

• The outperformance is also economically significant for N = 250 and 500, as it is of the

order of a 0.15 increase in the Sharpe ratio. This means the Sharpe ratio goes up by

about one-fifth of its original level, which in the industry would be considered a valuable

improvement.

• Among the four factor-based portfolios, NL-SF is best in four out of the five cases and

FF best in one case (for N = 250). Comparing NonLin to NL-SF, there is no winner:

out of the five cases, NonLin is better two times, worse two times, and equally good one

time.

Summing up, in a full Markowitz problem with momentum signal, NonLin dominates the

remaining seven rotation-equivariant portfolios in terms of the Sharpe ratio. On balance, its

performance can be considered equally as good compared to the factor-based portfolio NL-SF

(which is overall the best among the four factor-based portfolios).

5Since the out-of-sample size is very large at 10,080, there is no need to use the computationally more

expensive bootstrap method described in Ledoit and Wolf (2008, Section 3.2), which is preferred for small

sample sizes.
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Remark D.2. It should be pointed out that for all shrinkage estimators of the covariance

matrix (i.e., Lin, NonLin, NL-Inv, and NL-SF), the Sharpe ratios here are higher compared to

the GMV portfolios for all N . Therefore, using a return predictive signal can really pay off, if

done properly.

D.1 Analysis of weights

We also provide some summary statistics on the vectors of portfolio weights ŵ over time. In

each month, we compute the following four characteristics:

• Min: Minimum weight.

• Max: Maximum weight.

• SD: Standard deviation of weights.

• MAD-EW: Mean absolute deviation from equal-weighted portfolio computed as

1

N

N∑

i=1

∣∣∣ŵi −
1

N

∣∣∣ .

For each characteristic, we then report the average outcome over the 480 portfolio formations.

Table D.2 reports the results. Not surprisingly, the most dispersed weights are found for

Sample, followed by three shrinkage methods, EW-TQ, and BSV. The least dispersed weights

are always found for KZ and TZ, which is owed to the fact that these two portfolios are not

fully invested in the N stocks but also invest (generally to a large extent) in the risk-free rate.

NonLin and NL-Inv are comparably dispersed to Lin for N = 30, 50 but less dispersed than

Lin for N = 100, 250, 500.

There is no clear ordering among the four factor-based portfolios and the dispersion of their

weights is comparable to the rotation-equivariant shrinkage portfolios.

D.2 Robustness checks

The goal of this section is to examine whether the outperformance of NonLin over Lin is robust

to various changes in the empirical analysis.

Subperiod analysis

The out-of-sample period comprises 480 months (or 10,080 days). It might be possible

that the outperformance of NonLin over Lin is driven by certain subperiods but does not hold

universally. We address this concern by dividing the out-of-sample period into three subperiods

of 160 months (or 3,360 days) each and repeating the above exercises in each subperiod.

Tables D.3–D.5 report the results. It can be seen that NonLin is better than Lin in terms

of the Sharpe ratio in 14 out of the 15 cases; though statistical significance only obtains in the

first subperiod for N = 250, 500.

Therefore, this analysis demonstrates that the outperformance of NonLin over Lin is

consistent over time and not due to a subperiod artifact. On balance, NonLin can be considered

equally as good as NL-SF.
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Longer estimation window

Generally, at any investment date h, a covariance matrix is estimated using the most recent

T = 250 daily returns, corresponding roughly to one year of past data. As a robustness check,

we alternatively use the most recent T = 500 daily returns, corresponding roughly to two years

of past data.

Table D.6 reports the results, which are similar to the results in Table D.1. In particular,

NonLin has the uniformly best performance in terms of the Sharpe ratio, though the

outperformance over Lin is not statistically significant. Again, on balance, NonLin and NL-SF

are equally good.

Winsorization of past returns

Financial return data frequently contain unusually large (in absolute value) observations.

In order to mitigate the effect of such observations on an estimated covariance matrix, we

employ a winsorization technique, as is standard with quantitative portfolio managers; the

details can be found in Appendix C. Of course, we always use the actual, non-winsorized data

in computing the out-of-sample portfolio returns.

Table D.7 reports the results, which are similar to the results in Table D.1. In particular,

NonLin has the uniformly best performance among the rotation-equivariant portfolios in terms

of the Sharpe ratio, though the outperformance over Lin is not statistically significant. Again,

on balance, NonLin and NL-SF are equally good.

No-short-sales constraint

Since some fund managers face a no-short-sales constraint, we now impose a lower bound

of zero on all portfolio weights.

Table D.8 reports the results. Note that Sample is now available for all N , whereas KZ

and TZ are not available at all. In contrast to the previous results for the global mininum-

variance portfolio under a no-short-sales constraint in Section 4.5, improved estimation of the

covariance matrix still pays off, even if to a lesser extent compared to allowing short sales.

In particular — comparing the results for the rotation-equivariant portfolios — Lin, NonLin,

and NL-Inv improve upon Sample in terms of the Sharpe ratio for all N . Although BSV has

the best performance for N = 30, NonLin has the best performance for N = 50, 100, 250, 500.

In particular, NonLin always outperforms Lin, though no longer with statistical significance.

There is no clear winner among the factor-based portfolios: FF is best twice, POET is best

once, and NL-SF is best twice. (On the other hand, there is a clear loser, namely SF which is

always worst.) Overall, the factor-based portfolios have a somewhat worse performance than

the rotation-equivariant portfolios, which is in contrast to the results for the global minimum-

variance portfolio under a no-short-sales constraint in Section 4.5.

Transaction costs

Again, a detailed empirical study of real-life constrained portfolio selection that actively

limits portfolio turnover (and thus transaction costs) from one month to the next is beyond

the scope of the present paper.
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Instead, we provide some limited results for unconstrained portfolio selection with N = 500

only (to limit the contribution due to cause (1), changing investment universes). We assume

a bid-ask spread ranging from three to fifty basis points. This number three is rather low by

academic standards but can actually be considered an upper bound for liquid stocks nowadays;

for example, see Avramovic and Mackintosh (2013) and Webster et al. (2015, p.33).

Table D.9 reports the results. It can be seen that the performance of all portfolios suffers

in absolute terms, with EW-TQ and BSV affected the least. For a bid-ask-spread of three

basis points, the ranking of the various portfolios is the same compared to that for N = 500 in

Table D.1. But as the bid-ask-spread increases, the ranking changes. In particular, for a bid-

ask-spread of fifty basis points, only EW-TQ and BSV achieve a positive average return and

a positive Sharpe ratio. Furthermore, it is noteworthy that the nonlinear shrinkage portfolios

NonLin, NL-Inv, and NL-SF all have lower average turnover than the linear shrinkage portfolio

Lin, and are therefore less affected by trading costs.

Different return frequency

We change the return frequency from daily to monthly. As there is a longer history

available for monthly returns, we download data from CRSP from January 1945 through

December 2011. We use the T = 120 most recent months of previous data to estimate a

covariance matrix. Consequently, the out-of-sample investment period ranges from January

1955 through December 2011, yielding 684 out-of-sample returns. The remaining details are

as before.

Table D.10 reports the results, which are qualitatively similar to the results for daily data

in Table D.1. In particular, among the rotation-equivariant portfolios, NonLin is uniformly

best and better than Lin with statistical significance for N = 250 and N = 500. Furthermore,

among the factor-based portfolios, NL-SF is the best overall (now best in three out of five

cases whereas before best in four out of five cases). Finally, NonLin has somewhat better

performance on balance compared to NL-SF.

Different data sets

So far, we have focused on individual stocks as assets, since we believe this is the most

relevant case for fund managers. On the other hand, many academics also consider the case

where the assets are portfolios.

To check the robustness of our findings in this regard, we consider three universes of size

N = 100 from Ken French’s Data Library:

• 100 portfolios formed on size and book-to-market

• 100 Portfolios formed on size and operating profitability

• 100 Portfolios formed on size and investment

We use daily data. The out-of-sample period ranges for 13 December 1965 through

31 December 2015, resulting in a total of 600 months (or 12,600 days). At any investment

date, a covariance matrix is estimated using the most recent T = 250 daily returns.
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Table D.11 reports the results, which are similar to the results in Table D.1 in a relative

sense, though they are better in an absolute sense. Among the rotation-equivariant portfolios,

NonLin is best twice and Lin is best once (though the differences are not statistically significant).

Among the factor-based portfolios, POET is best twice and NL-SF is best once. Finally,

for these data sets, NL-SF is uniformly better than NonLin (though not with statistical

significance).

Remark D.3 (Optimal versus Näıve Diversification). DeMiguel et al. (2009) claim that it is

very difficult to outperform the näıve equal-weighted portfolio with sophisticated Markowitz

portfolios due to the estimation error in the inputs required by Markowitz portfolios; their

claim is concerning outperformance in terms of the Sharpe ratio and certainty equivalents.

In contrast, we find that shrinkage estimation of the covariance matrix combined with the

momentum signal results in consistently higher Sharpe ratios compared to the equal-weighted

portfolio.6 In particular, this outperformance also holds in the recent past, when the

momentum signal was not as strong anymore compared to the more distant past; see Tables 5

and D.5. This finding is encouraging to sophisticated investment managers: If they can come

up with a good signal and combine it with nonlinear shrinkage estimation of the covariance

matrix, outperforming the equal-weighted portfolio is far from a hopeless task.

D.3 Summary of results

We have carried out an extensive backtest analysis, evaluating the out-of-sample performance

of our nonlinear shrinkage estimator when used to estimate a full Markowitz portfolio with

momentum signal; in this setting, the primary performance criterion is the Sharpe ratio of

realized out-of-sample returns (in excess of the risk-free rate). We have compared nonlinear

shrinkage to a number of other strategies to estimate the global mininum-variance portfolio,

most of them proposed in the last decade in leading finance and econometrics journals. The

portfolios considered can be classified into rotation-equivariant portfolios and portfolios based

on factor models.

Our main analysis is based on daily data with an out-of-sample investment period ranging

from 1973 throughout 2011. We have added a large number of robustness checks to study the

sensitivity of our findings. Such robustness checks include a subsample analysis, changing the

length of the estimation window of past data to estimate a covariance matrix, winsorization

of past returns to estimate a covariance matrix, imposing a no-short-sales constraint, and

changing the return frequency from daily data to monthly data (where the beginning of the

out-of-sample investment period is moved back to 1955).

Among the rotation-equivariant portfolios, nonlinear shrinkage is the clear winner; in

particular, it consistently outperforms linear shrinkage. Among the factor-based portfolios,

6Of the many scenarios considered, there is a single one in which the equal-weighted portfolio has a higher

Sharpe ratio than linear shrinkage combined with the momentum signal, namely with monthly data for N = 30;

see Tables 10 and D.10. On the other hand, the equal-weighted portfolio always has a lower Sharpe ratio than

nonlinear shrinkage combined with the momentum signal.
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applying nonlinear shrinkage after preconditioning the data using a single-factor model is the

overall the best. When comparing this hybrid method to linear shrinkage, there is no winner;

on balance, the two methods perform about equally well.

The statements of the previous paragraph only apply to unrestricted estimation of the

Markowitz portfolio when short sales (i.e., negative portfolio weights) are allowed. Consistent

with the findings of Jagannathan and Ma (2003), the relative performances change when short

sales are not allowed (i.e., when portfolio weights are constrained to be non-negative). In this

case, sophisticated portfolios still outperform the sample covariance matrix, though to a lesser

extent compared to unrestricted estimation. Moreover, nonlinear shrinkage is overall best,

outperforming all factor-based portfolios in particular.
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Period: 19 January 1973 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 11.22 4.14/0.83 2.38/0.72 11.29 11.87 11.87 11.76 11.87 10.82 11.83

SD 25.77 23.15 18.86 16.31/1.58 19.64/1.84 18.58 18.57 18.57 18.76 18.47 18.80 18.16

SR 0.48 0.58 0.60 0.25/0.52 0.12/0.39 0.61 0.64 0.64 0.48 0.64 0.58 0.65

N = 50

AV 16.26 14.90 10.32 0.13/− 0.02 0.50/− 0.89 11.70 12.12 12.04 11.08 11.35 10.77 11.43

SD 24.60 22.18 16.86 2.66/8.83 2.25/6.57 16.30 16.23 16.24 16.34 15.99 16.15 15.80

SR 0.66 0.67 0.61 0.05/− 0.07 −0.00/− 0.14 0.72 0.75 0.74 0.68 0.71 0.67 0.72

N = 100

AV 15.74 14.98 10.93 −4.70/− 0.56 1.23/1.88 11.97 12.31 12.31 10.67 11.86 10.66 11.00

SD 22.44 20.32 16.00 25.34/15.41 1.85/2.48 14.68 14.30 14.30 14.68 14.16 14.04 13.82

SR 0.70 0.74 0.68 −0.19/− 0.04 0.66/0.76 0.82 0.86 0.86 0.73 0.84 0.76 0.80

N = 250

AV 14.17 13.03 275.01 NA NA 10.04 11.12 11.38 10.80 11.45 10.32 10.36

SD 21.77 19.86 3, 542.92 NA NA 12.82 12.14 12.32 13.20 12.33 11.74 11.26

SR 0.65 0.66 0.08 NA NA 0.78 0.92∗∗ 0.92 0.82 0.93 0.88 0.92

N = 500

AV 14.67 13.58 NA NA NA 8.92 9.94 9.87 9.86 10.62 9.37 9.85

SD 21.54 19.63 NA NA NA 11.82 11.09 11.26 12.77 11.68 10.69 10.10

SR 0.68 0.69 NA NA NA 0.75 0.90∗∗ 0.88 0.77 0.91 0.88 0.97

Table D.1: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not available.

All measures are based on 10,080 daily out-of-sample returns in excess of the risk-free rate.

In the rows labeled SR, the largest number in each division appears in bold. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.
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Period: 19 January 1973 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 50

Min 0.0000 −0.0687 −0.1371 −0.0098 −0.0092 −0.1095 −0.1164 −0.1165 −0.1026 −0.1108 −0.1191 −0.1109

Max 0.1667 0.1287 0.3173 0.0136 0.0139 0.2344 0.2612 0.2629 0.2792 0.2904 0.2757 0.2908

SD 0.0678 0.0452 0.0988 0.0051 0.0051 0.0805 0.0853 0.0854 0.0877 0.0896 0.0900 0.0899

MAD-EW 0.0533 0.0343 0.0722 0.0326 0.0321 0.0618 0.0642 0.0642 0.0656 0.0659 0.0677 0.0664

N = 50

Min 0.0000 −0.0466 −0.1198 −0.0118 −0.0110 −0.0895 −0.0883 −0.0886 −0.0763 −0.0879 −0.0847 −0.0848

Max 0.1000 0.0823 0.2588 0.0143 0.0144 0.1733 0.1838 0.1873 0.2117 0.2244 0.2088 0.2242

SD 0.0404 0.0271 0.0716 0.0051 0.0049 0.0554 0.0558 0.0561 0.0582 0.0607 0.0588 0.0604

MAD-EW 0.0320 0.0206 0.0519 0.0196 0.0191 0.0428 0.0425 0.0426 0.0431 0.0440 0.0437 0.0441

N = 100

Min 0.0000 −0.0257 −0.1105 −0.0130 −0.0120 −0.0682 −0.0591 −0.0594 −0.0478 −0.0583 −0.0542 −0.0575

Max 0.0500 0.0446 0.2027 0.0144 0.0141 0.1148 0.0986 0.1032 0.1368 0.1483 0.1373 0.1515

SD 0.0201 0.0135 0.0501 0.0045 0.0043 0.0343 0.0301 0.0305 0.0321 0.0342 0.0326 0.0344

MAD-EW 0.0160 0.0102 0.0362 0.0100 0.0096 0.0265 0.0236 0.0237 0.0234 0.0245 0.0239 0.0247

N = 250

Min 0.0000 −0.0110 −7.2457 NA NA −0.0452 −0.0334 −0.0338 −0.0242 −0.0314 −0.0297 −0.0330

Max 0.0200 0.0187 6.7088 NA NA 0.0620 0.0426 0.0433 0.0711 0.0807 0.0774 0.0875

SD 0.0080 0.0054 1.9294 NA NA 0.0182 0.0133 0.0134 0.0139 0.0153 0.0148 0.0160

MAD-EW 0.0064 0.0041 1.4157 NA NA 0.0144 0.0105 0.0106 0.0100 0.0108 0.0107 0.0114

N = 500

Min 0.0000 −0.0056 NA NA NA −0.0285 −0.0209 −0.0207 −0.0137 −0.0187 −0.0216 −0.0208

Max 0.0100 0.0095 NA NA NA 0.0342 0.0239 0.0243 0.0406 0.0476 0.0494 0.0551

SD 0.0040 0.0027 NA NA NA 0.0099 0.0071 0.0071 0.0071 0.0081 0.0082 0.0088

MAD-EW 0.0032 0.0020 NA NA NA 0.0079 0.0056 0.0056 0.0051 0.0057 0.0058 0.0062

Table D.2: Average characteristics of the weight vectors of various estimators of the Markowitz

portfolio with momentum signal. Min, mininum weight; Max, maximum weight; SD, standard

deviation of the weights; MAD-EW, mean absolute deviation from the equal-weighted portfolio

(i.e., from 1/N); NA, not available. All measures reported are the averages of the corresponding

characteristic over the 480 portfolio formations.
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Period: 19 January 1973 through 8 May 1986

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.84 12.15 8.05 7.29/0.82 7.65/0.95 8.93 8.74 8.73 8.99 8.99 7.67 9.25

SD 21.37 18.79 15.33 22.12/1.12 33.77/1.12 15.03 15.05 15.04 14.83 14.79 15.07 14.81

SR 0.55 0.65 0.53 0.33/0.73 0.23/0.85 0.59 0.58 0.58 0.61 0.61 0.51 0.62

N = 50

AV 13.62 12.02 6.97 −0.25/1.13 0.27/− 2.72 8.28 9.02 8.89 8.40 7.70 8.59 8.00

SD 19.50 17.66 13.52 2.61/1.73 1.49/10.30 13.14 13.05 13.06 12.80 12.66 12.95 12.64

SR 0.70 0.68 0.52 −0.10/0.65 0.18/− 0.26 0.63 0.69 0.68 0.66 0.61 0.66 0.63

N = 100

AV 12.64 13.77 9.51 0.86/1.32 1.27/2.27 10.16 10.38 10.36 9.04 8.59 8.96 9.55

SD 17.77 16.20 12.74 1.69/14.10 1.91/2.54 11.58 11.32 11.33 10.96 10.73 10.79 10.71

SR 0.71 0.85 0.75 0.51/0.09 0.67/0.89 0.88 0.92 0.91 0.82 0.80 0.83 0.89

N = 250

AV 11.90 12.32 −527.28 NA NA 7.99 10.02 9.96 10.05 8.10 8.65 8.82

SD 16.88 15.55 2, 009.60 NA NA 10.21 9.31 9.39 9.42 8.95 8.91 8.66

SR 0.70 0.79 −0.26 NA NA 0.78 1.08∗∗∗ 1.06 1.07 0.90 0.97 1.02

N = 500

AV 12.35 12.73 NA NA NA 6.86 9.65 9.48 10.21 8.34 8.47 9.03

SD 16.59 15.32 NA NA NA 8.73 8.12 8.29 8.83 8.09 7.89 7.60

SR 0.74 0.83 NA NA NA 0.79 1.19∗∗∗ 1.14 1.16 1.03 1.07 1.19

Table D.3: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not available.

All measures are based on 3,360 daily out-of-sample returns in excess of the risk-free rate. In

the rows labeled SR, the largest number in each division appears in bold. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.
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Period: 9 May 1986 through 25 August 1999

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 14.06 11.89 12.27 −1.04/0.64 0.56/1.17 12.21 12.36 12.36 12.18 10.67 11.61 11.84

SD 23.70 21.94 19.13 3.66/1.34 1.29/2.44 18.68 18.55 18.55 18.42 18.48 19.00 18.19

SR 0.59 0.54 0.64 −0.28/0.48 0.43/0.48 0.65 0.67 0.67 0.66 0.58 0.61 0.65

N = 50

AV 19.81 18.06 10.08 0.70/0.48 1.47/0.01 11.46 11.74 11.73 10.82 11.29 10.31 11.40

SD 22.96 20.48 16.65 1.36/1.38 2.84/3.91 16.19 16.16 16.17 16.01 15.92 15.97 15.71

SR 0.86 0.88 0.61 0.52/0.34 0.52/0.00 0.71 0.73 0.73 0.68 0.71 0.65 0.73

N = 100

AV 20.25 18.20 12.63 0.64/2.44 1.34/2.19 13.20 14.00 14.07 9.79 11.48 11.06 11.65

SD 20.42 18.33 15.59 2.91/3.35 1.97/2.76 14.38 14.30 14.28 14.64 14.36 14.20 13.92

SR 0.99 0.99 0.81 0.22/0.73 0.68/0.79 0.92 0.98 0.99 0.67 0.80 0.78 0.84

N = 250

AV 18.12 15.08 652.50 NA NA 11.74 12.44 12.51 9.48 11.38 10.61 12.55

SD 19.57 17.78 2127.18 NA NA 11.95 11.86 12.01 12.24 11.65 11.60 11.00

SR 0.93 0.85 0.31 NA NA 0.98 1.05 1.04 0.78 0.98 0.91 1.14

N = 500

AV 18.95 16.35 NA NA NA 12.19 12.67 12.71 8.53 10.95 10.54 12.23

SD 19.39 17.62 NA NA NA 11.05 10.82 11.03 11.65 10.75 10.37 9.82

SR 0.98 0.93 NA NA NA 1.10 1.17 1.15 0.73 1.02 1.02 1.24

Table D.4: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not available.

All measures are based on 3,360 daily out-of-sample returns in excess of the risk-free rate. In

the rows labeled SR, the largest number in each division appears in bold. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.
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Period: 26 August 1999 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 11.50 16.05 13.34 6.16/1.02 −1.08/0.02 12.71 14.54 14.52 14.11 15.95 13.16 14.40

SD 31.21 27.82 21.58 17.20/2.11 3.99/1.71 21.47 21.54 21.54 22.28 21.53 21.72 20.96

SR 0.37 0.58 0.62 0.36/0.48 −0.27/0.01 0.59 0.68 0.67 0.63 0.74 0.61 0.69

N = 50

AV 15.35 14.63 13.91 −0.06/− 1.66 −0.23/0.04 15.35 15.59 15.50 14.01 15.07 13.41 14.88

SD 30.15 27.29 19.82 3.54/15.14 2.22/2.84 19.03 18.95 18.97 19.50 18.80 18.96 18.51

SR 0.51 0.54 0.70 −0.02/− 0.11 −0.10/0.01 0.81 0.82 0.82 0.72 0.80 0.71 0.80

N = 100

AV 14.33 12.97 10.65 −15.61/− 5.45 1.06/1.19 12.54 12.52 12.53 13.17 15.51 11.96 11.80

SD 27.89 25.30 19.06 43.75/22.42 1.65/2.10 17.49 16.76 16.78 17.67 16.75 16.53 16.28

SR 0.51 0.51 0.56 −0.36/− 0.24 0.65/0.57 0.72 0.75 0.75 0.75 0.93 0.72 0.73

N = 250

AV 12.51 11.68 699.80 NA NA 10.40 10.92 11.67 12.87 14.88 11.69 9.72

SD 27.45 25.02 5, 394.16 NA NA 15.69 14.67 14.93 16.87 15.51 14.13 13.57

SR 0.46 0.47 0.13 NA NA 0.66 0.74 0.78 0.77 0.96 0.83 0.72

N = 500

AV 12.71 11.67 NA NA NA 7.70 7.51 7.42 10.84 12.59 9.11 8.30

SD 27.22 24.71 NA NA NA 14.84 13.63 13.78 16.60 15.10 13.16 12.33

SR 0.47 0.47 NA NA NA 0.52 0.55 0.54 0.65 0.83 0.69 0.67

Table D.5: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not available.

All measures are based on 3,360 daily out-of-sample returns in excess of the risk-free rate. In

the rows labeled SR, the largest number in each division appears in bold. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.
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Period: 19 January 1973 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 11.32 0.29/0.52 0.15/− 0.42 11.51 11.55 11.54 11.88 12.06 10.81 11.68

SD 25.77 23.15 18.44 0.93/2.61 1.22/5.76 18.32 18.33 18.33 18.90 18.51 18.76 18.25

SR 0.48 0.58 0.61 0.31/0.20 0.13/− 0.07 0.63 0.63 0.63 0.63 0.65 0.58 0.64

N = 50

AV 16.26 14.90 11.58 1.91/1.18 2.23/− 51.96 12.17 12.38 12.35 11.24 11.69 10.96 11.77

SD 24.60 22.18 16.25 7.52/3.12 10.80/326.59 16.12 16.11 16.11 16.50 16.16 16.31 15.91

SR 0.66 0.67 0.71 0.25/0.38 0.21/− 0.16 0.76 0.77 0.77 0.68 0.72 0.67 0.74

N = 100

AV 15.74 14.98 11.07 0.53/− 3.97 4.11/0.34 11.88 11.77 11.75 11.58 12.45 11.24 11.28

SD 22.44 20.32 14.54 2.29/26.46 22.56/5.34 14.15 14.03 14.04 14.62 14.15 13.86 13.64

SR 0.70 0.74 0.76 0.23/− 0.15 0.18/0.06 0.84 0.84 0.84 0.79 0.88 0.81 0.83

N = 250

AV 14.17 13.03 11.25 3.28/− 4.26 0.60/− 2.04 10.72 11.05 11.16 11.27 11.54 9.87 10.64

SD 21.77 19.86 13.70 9.44/30.63 5.76/42.38 12.26 11.85 11.88 13.41 12.66 11.82 11.28

SR 0.65 0.66 0.82 0.35/− 0.14 0.10/− 0.05 0.87 0.93 0.94 0.84 0.91 0.83 0.94

N = 500

AV 14.67 13.58 1, 205.18 NA NA 10.53 10.57 10.55 10.52 10.97 9.51 10.36

SD 21.54 19.63 8, 551.62 NA NA 11.95 10.89 11.33 12.99 12.11 10.77 10.09

SR 0.68 0.69 0.14 NA NA 0.88 0.97 0.93 0.81 0.91 0.88 1.03

Table D.6: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. The past window to estimate the covariance matrix is taken to be of

length T = 500 days instead of T = 250 days. AV, average; SD, standard deviation; SR,

Sharpe ratio; NA, not available. All measures are based on 10,080 daily out-of-sample returns

in excess of the risk-free rate. In the rows labeled SR, the largest number in each division

appears in bold. In the columns labeled Lin and NonLin, significant outperformance of one of

the two portfolios over the other in terms of SR is denoted by asterisks: *, **, and *** indicate

significance at the 10%, 5%, and 1% level, respectively.
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Period: 19 January 1973 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 11.27 0.82/− 0.54 2.08/0.59 11.38 11.87 11.89 11.89 12.23 12.19 11.99

SD 25.77 23.15 19.16 3.61/3.67 4.68/3.02 18.83 18.77 18.77 19.06 18.66 19.28 18.46

SR 0.48 0.58 0.59 0.23/− 0.15 0.45/0.19 0.60 0.63 0.63 0.62 0.66 0.63 0.65

N = 50

AV 16.26 14.90 10.71 1.62/2.54 −5.88/− 2.19 11.46 12.11 12.04 11.30 11.68 10.24 11.69

SD 24.60 22.18 17.12 8.05/7.80 32.69/18.76 16.65 16.55 16.55 16.61 16.10 16.54 15.97

SR 0.66 0.67 0.63 0.20/0.33 −0.18/− 0.12 0.69 0.73 0.73 0.68 0.73 0.62 0.73

N = 100

AV 15.74 14.98 10.47 0.52/− 0.98 1.12/2.72 11.39 11.81 11.78 10.84 12.07 10.07 10.75

SD 22.44 20.32 16.39 18.21/15.78 6.16/16.12 15.05 14.74 14.70 14.93 14.24 14.29 13.98

SR 0.70 0.74 0.64 0.03/− 0.06 0.18/0.18 0.76 0.80 0.80 0.73 0.85 0.70 0.77

N = 250

AV 14.17 13.03 −2, 498.52 NA NA 10.70 11.36 11.37 10.87 11.67 10.24 10.56

SD 21.77 19.86 12, 130.23 NA NA 13.82 12.46 12.48 13.38 12.38 11.56 11.35

SR 0.65 0.66 −0.21 NA NA 0.77 0.91∗ 0.91 0.81 0.94 0.89 0.93

N = 500

AV 14.67 13.58 NA NA NA 9.16 10.43 10.35 10.05 10.99 9.76 10.16

SD 21.54 19.63 NA NA NA 12.59 11.33 11.45 12.91 11.69 10.28 10.16

SR 0.68 0.69 NA NA NA 0.73 0.92∗∗ 0.90 0.78 0.94 0.95 1.00

Table D.7: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. In the estimation of a covariance matrix, the past returns are winsorized

as described in Appendix C. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not

available. All measures are based on 10,080 daily out-of-sample returns in excess of the risk-

free rate. In the rows labeled SR, the largest number in each division appears in bold. In the

columns labeled Lin and NonLin, significant outperformance of one of the two portfolios over

the other in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the

10%, 5%, and 1% level, respectively.
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Period: 19 January 1973 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 12.47 13.37 12.06 NA NA 12.12 12.42 12.40 11.65 12.06 11.93 11.88

SD 25.77 23.15 23.07 NA NA 23.05 23.01 23.00 23.30 23.17 23.09 23.06

SR 0.48 0.58 0.52 NA NA 0.53 0.54 0.54 0.50 0.52 0.52 0.51

N = 50

AV 16.26 14.90 13.16 NA NA 13.65 13.93 13.91 12.98 12.95 13.13 13.16

SD 24.60 22.18 20.93 NA NA 20.84 20.88 20.99 21.06 20.96 20.93 20.94

SR 0.66 0.67 0.63 NA NA 0.65 0.67 0.67 0.61 0.62 0.63 0.63

N = 100

AV 15.74 14.98 14.50 NA NA 14.85 14.90 14.87 14.06 14.19 14.30 4.14

SD 22.44 20.32 18.63 NA NA 18.59 18.62 18.60 18.71 18.61 18.57 18.59

SR 0.70 0.74 0.78 NA NA 0.80 0.80 0.80 0.75 0.76 0.77 0.76

N = 250

AV 14.17 13.03 12.57 NA NA 13.04 13.58 13.59 12.53 13.06 12.64 12.57

SD 21.77 19.86 16.60 NA NA 16.57 16.65 16.67 16.78 16.56 16.47 16.44

SR 0.65 0.66 0.76 NA NA 0.79 0.82 0.82 0.75 0.79 0.77 0.76

N = 500

AV 14.67 13.58 13.66 NA NA 13.82 14.41 14.19 13.53 13.96 13.74 13.76

SD 21.54 19.63 15.26 NA NA 15.26 15.40 15.48 15.64 15.39 15.17 15.19

SR 0.68 0.69 0.90 NA NA 0.91 0.94 0.92 0.87 0.91 0.91 0.91

Table D.8: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. A lower bound of zero is imposed on all portfolio weights, so that short sales

are not allowed. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not available.

All measures are based on 10,080 daily out-of-sample returns in excess of the risk-free rate.

In the rows labeled SR, the largest number in each division appears in bold. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.
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Period: 19 January 1973 through 31 December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 500, BAS = 3 basis points

AV 14.30 13.15 NA NA NA 7.28 9.03 8.90 9.03 9.69 8.36 8.78

SD 21.54 19.63 NA NA NA 11.82 11.16 11.30 12.77 11.68 10.69 10.11

SR 0.66 0.67 NA NA NA 0.62 0.81∗∗∗ 0.79 0.71 0.83 0.78 0.87

N = 500

AT 1.03 1.20 NA NA NA 4.58 2.93 3.04 2.32 2.60 2.84 3.01

N = 500, BAS = 5 basis points

AV 14.06 12.87 NA NA NA 6.19 8.33 8.17 8.48 9.08 7.68 8.06

SD 21.54 19.63 NA NA NA 11.84 11.17 11.31 12.78 11.69 10.70 10.11

SR 0.65 0.66 NA NA NA 0.52 0.75∗∗∗ 0.72 0.66 0.78 0.72 0.80

N = 500, BAS = 10 basis points

AV 13.44 12.16 NA NA NA 3.47 6.58 6.37 7.09 7.53 5.99 6.27

SD 21.54 19.63 NA NA NA 11.92 11.20 11.35 12.80 11.71 10.73 10.15

SR 0.62 0.62 NA NA NA 0.29 0.59∗∗∗ 0.56 0.55 0.64 0.56 0.62

N = 500, BAS = 20 basis points

AV 12.22 10.73 NA NA NA −1.98 3.09 2.75 4.33 4.43 2.62 2.70

SD 21.55 19.64 NA NA NA 12.23 11.33 11.49 12.88 11.82 10.86 10.30

SR 0.57 0.55 NA NA NA −0.16 0.27∗∗∗ 0.24 0.34 0.38 0.24 0.26

N = 500, BAS = 50 basis points

AV 8.54 6.44 NA NA NA −18.31 −7.37 −8.09 −3.96 −4.86 −7.52 −8.03

SD 21.60 19.73 NA NA NA 14.23 12.22 12.44 13.41 12.51 11.76 11.33

SR 0.40 0.33 NA NA NA −1.29 −0.60∗∗∗ −0.65 −0.29 −0.39 −0.64 −0.71

N = 500

AT 1.03 1.20 NA NA NA 4.58 2.93 3.04 2.32 2.60 2.84 3.01

Table D.9: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio; AT, average

turnover (from one month to the next); NA, not available. All measures are based on

10,080 daily out-of-sample returns in excess of the risk-free rate. The returns are adjusted

for transaction costs assuming a bid-ask-spread (BAS) that ranges from three to fifty basis

points. In the rows labeled SR, the largest number in each division appears in bold. In the

columns labeled Lin and NonLin, significant outperformance of one of the two portfolios over

the other in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the

10%, 5%, and 1% level, respectively.
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Period: January 1955 through December 2011

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N = 30

AV 7.87 7.03 6.29 7.50/33.63 8.06/24.99 6.55 7.05 7.08 7.56 6.79 5.32 6.42

SD 19.90 18.08 17.49 40.55/174.90 22.41/127.33 16.31 16.16 16.15 16.35 16.34 16.51 16.01

SR 0.40 0.39 0.36 0.18/0.19 0.36/0.20 0.40 0.44∗ 0.44 0.46 0.42 0.32 0.40

N = 50

AV 8.94 9.58 5.57 2.48/46.82 6.00/31.48 6.71 7.77 7.77 8.00 7.54 7.28 7.43

SD 19.32 17.88 17.82 40.80/168.54 20.95/107.86 15.24 14.60 14.63 15.31 14.99 14.75 14.55

SR 0.46 0.54 0.31 0.06/0.28 0.29/0.29 0.44 0.53∗∗ 0.53 0.52 0.50 0.49 0.51

N = 100

AV 9.32 9.74 4.03 −1.87/5.41 3.18/6.09 8.16 8.55 8.63 7.81 7.50 7.63 7.62

SD 18.47 16.95 28.82 36.16/57.59 19.80/30.45 14.50 12.99 13.09 14.09 13.79 12.67 12.68

SR 0.50 0.57 0.14 −0.05/0.09 0.16/0.20 0.56 0.66∗ 0.66 0.55 0.54 0.60 0.61

N = 250

AV 10.88 10.62 NA NA NA 5.52 8.22 8.50 8.86 8.61 7.79 7.82

SD 17.91 16.58 NA NA NA 13.98 11.85 11.83 13.87 12.94 11.52 11.37

SR 0.61 0.64 NA NA NA 0.39 0.69∗∗ 0.72 0.64 0.67 0.67 0.69

N = 500

AV 10.17 10.21 NA NA NA 5.44 7.82 7.53 9.10 8.64 7.69 7.27

SD 17.70 16.41 NA NA NA 12.90 11.06 11.54 13.51 12.55 10.68 10.69

SR 0.57 0.62 NA NA NA 0.42 0.71∗∗∗ 0.65 0.67 0.68 0.72 0.68

Table D.10: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio; NA, not available.

All measures are based on 684 monthly out-of-sample returns in excess of the risk-free rate.

In the rows labeled SR, the largest number in each division appears in bold. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of SR is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.
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Period: 13 December 1965 through 31 December 2015

EW-TQ BSV Sample KZ TZ Lin NonLin NL-Inv SF FF POET NL-SF

N =100 portfolios formed on size and book-to-market

AV 9.97 10.15 11.90 3.19/8.01 4.08/2/24 12.23 12.07 12.01 12.45 11.91 12.77 11.97

SD 16.81 16.40 9.70 6.01/33.10 2.88/11.88 9.06 8.81 8.83 11.35 9.23 8.83 8.57

SR 0.59 0.62 1.23 0.53/0.24 1.42/0.19 1.35 1.37 1.36 1.10 1.29 1.45 1.40

N =100 portfolios formed on size and operating profitability

AV 9.83 10.15 12.75 4.59/2.38 3.42/2.47 12.20 11.45 11.42 11.25 11.34 11.45 11.55

SD 16.74 16.47 10.18 7.29/3.71 2.65/6.11 9.47 8.97 9.00 11.170 9.27 8.96 8.82

SR 0.59 0.62 1.25 0.63/0.64 1.29/0.40 1.29 1.28 1.27 1.01 1.22 1.28 1.31

N =100 portfolios formed on size and investment

AV 10.05 10.23 13.02 5.04/3.77 4.68/3.52 12.41 12.15 12.05 12.33 11.67 12.67 12.29

SD 16.75 16.42 9.76 7.97/3.66 6.21/3.33 9.09 8.65 8.67 11.04 9.07 8.66 8.55

SR 0.60 0.62 1.33 0.63/1.03 0.75/1.06 1.37 1.40 1.39 1.12 1.29 1.46 1.44

Table D.11: Performance measures for various estimators of the Markowitz portfolio with

momentum signal. AV, average; SD, standard deviation; SR, Sharpe ratio. All measures are

based on 12,600 daily out-of-sample returns in excess of the risk-free rate. In the rows labeled

SR, the largest number in each division appears in bold. In the columns labeled Lin and

NonLin, significant outperformance of one of the two portfolios over the other in terms of SR

is denoted by asterisks: *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.
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