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Abstract

We extend the swaps index of rationality, introduced by Apesteguia and Ballester

(2015) for a finite set of alternatives, to the standard consumer choice setting with

infinite commodity spaces. Applications include consumer demand from competitive

budget sets and the state-space approach to choice under uncertainty. We are interested

in Apesteguia and Ballester’s result that the swaps index recovers the decision-maker’s

true preference from choice data for a large class of boundedly rational behavioral

models. We show that this result still holds in the consumer choice setting under a

suitably defined monotonicity condition. This condition is satisfied for various models

of interest but violated for others.
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1 Introduction

Measuring the degree of rationality of choices has a long tradition in economics. The early

literature on revealed preference theory (Samuelson, 1938; Houthakker, 1950; Arrow, 1959)

provided conditions under which choices can or cannot be classified as perfectly rational.

Subsequent authors have acknowledged that human decision-makers often deviate from per-

fect rationality, if only by mistake or by lapse of attention, and have proposed measures that

quantify these deviations. The most prominent examples of rationality measures are Afriat’s

efficiency index (Afriat, 1973) and Varian’s goodness-of-fit index (Varian, 1990), which mea-

sure how much a decision-maker’s monetary budget would have to be reduced to rule out

contradictory choices.1 These measures have been applied in various empirical studies and

have facilitated important insights, for example on the development of rationality during

childhood (Harbaugh et al., 2001), the correlation between rationality and wealth (Choi

et al., 2014), and the causal impact of education on rationality (Kim et al., 2018).

Recently, Apesteguia and Ballester (2015, henceforth AB) have proposed the swaps index

of rationality, which is based on counting the minimal number of choices that would have to

be swapped to reconcile behavior with the maximization of a preference. This approach not

only quantifies deviations from rationality but additionally delivers a revealed preference,

like the original revealed preference literature mentioned above. The swaps preference is the

one closest to the observed behavior in terms of the number of required swaps. AB have

shown that this approach recovers the decision-maker’s true preference from choice data for a

large class of boundedly rational behavioral models.2 The swaps preference can thus be used

as a welfare measure, connecting the literature on measuring rationality with the literature

on behavioral welfare economics (e.g. Kőszegi and Rabin, 2007; Bernheim and Rangel, 2009;

Rubinstein and Salant, 2012; Benkert and Netzer, 2018).

AB obtained their results in an abstract choice setting with a finite number of alterna-

tives. In this paper, we extend the swaps approach to the standard consumer choice setting

with infinite commodity spaces. This is the canonical setting in which the most common

rationality measures have been defined and thus allows for a better comparison between

1Other rationality measures have been proposed, among others, by Echenique et al. (2011), Dean and
Martin (2016), and Echenique et al. (2018). Mononen (2022) develops computational methods to calculate
different measures of rationality, studies their properties and mutual relationships, and proposes using the
measures for statistical tests of the hypothesis that agents are rational.

2Halevy et al. (2018) have shown that the indices of Afriat and Varian can also be given an interpretation
as a distance between observed behavior and preferences, for suitably defined distance measures. However,
they do not provide analogous recoverability results based on boundedly rational behavioral models. In
particular, the indices of Afriat and Varian hinge on the monetary structure of the choice problem which
does not have to be aligned with the true preferences (see Apesteguia and Ballester, 2015, who also argue
why other common rationality indices do not satisfy recovery properties).
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the swaps index and other measures. Applications include consumer demand from compet-

itive budget sets and the state-space approach to choice under uncertainty (for example,

where consumers purchase Arrow-Debreu securities at state-contingent prices). We show

that the swaps approach still recovers the true preference in this setting under a suitably

defined monotonicity condition. We discuss the plausibility of the monotonicity condition

by showing that it is satisfied for various models of interest but violated for others.

The swaps approach rests on the definition of a swaps distance between observed behavior

and any candidate preference. In the finite case, if alternative x was chosen from budget set

B and the candidate preference is ⪰, then the number of swaps required to reconcile this

behavior with the maximization of ⪰ is simply the number of alternatives in B which are

strictly preferred by ⪰ over x. This is the number of alternatives which a decision-maker

with preference ⪰ must have “overlooked” when choosing x. The swaps distance between

a stochastic choice function and a preference is the probability-weighted average of these

numbers across all observations. A swaps preference is a strict preference minimizing the

swaps distance to the stochastic choice function, and the swaps index is the minimum swaps

distance.

For the infinite case, Apesteguia and Ballester (2015, Online Appendix D.3) proposed

replacing the number of preferred alternatives in a budget set by their Lebesgue measure.

We implement this proposal. Our approach is more general than the proposal by AB in two

dimensions. First, we allow for arbitrary stochastic choice from a budget set, formalized by a

probability measure on that set, not only finite randomization. Special cases are deterministic

choice or finite randomization, but also continuous distributions like uniform trembles over

the entire budget set or more complex singular distributions like continuous trembles on the

budget frontier. Second, we allow for arbitrary collections of choice situations, not only finite

collections of competitive budget sets. This allows us to embed conventional, deterministic

Walrasian demand functions for all prices as a special case, and additionally is flexible enough

to model non-linear prices, endowment points, and even frames which affect behavior without

affecting the budget set.

The central property for the recoverability of preferences from choice data is monotonicity.

For the finite case, AB define a stochastic choice function to be monotone with respect to a

preference ⪰ if x ⪰ y implies that the probability of choosing x is larger than the probability

of choosing y, on average across all budget sets in which both x and y are available. Several

behavioral models generate choice data which satisfy ⪰-monotonicity with respect to the

decision-maker’s true preference, for example a simple trembles model in which uniform

choice mistakes happen with small probability. AB show that ⪰-monotonicity implies that

⪰ is a swaps preference.
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For our definition of monotonicity in the consumer choice setting, we first apply a

Lebesgue decomposition of the choice probability measure on each budget set into its ab-

solutely continuous and its singular component. Then we require that x ⪰ y implies that

the density of the absolutely continuous component is weakly larger for x than for y. We

furthermore require that all bundles in the support of the singular component are optimal

with respect to ⪰. Based on this definition, we show that ⪰-monotonicity implies that ⪰
is a swaps preference. The proof technique for the infinite case is very different from the

finite case. We first approximate the absolutely continuous component of the choice data by

a weighted sum of uniform distributions on the upper contour sets of ⪰. We then derive a

lower bound on the swaps index for the absolutely continuous component and show that this

lower bound is attained by ⪰. Using that the singular component is optimal with respect to

⪰ implies that ⪰ also explains the singular component best and hence is a swaps preference.

We then study examples of boundedly rational behavioral models. Like in the finite case,

many of them generate data satisfying monotonicity. The first example is a uniform trembles

model in which the decision-maker chooses optimally from a budget set with probability 1−ϵ

and randomizes uniformly over the entire budget set with probability ϵ. The true preference

is a swaps preference whenever choice mistakes take this form. Furthermore, and again in

analogy to AB, the swaps preference becomes unique when the data are sufficiently rich.

To establish this result, we exploit a connection to the problem of unique recoverability of

preferences from conventional, deterministic Walrasian demand functions (Mas-Colell, 1977).

A second example for which monotonicity obtains is a continuous version of the multinomial

logit model. A third example is a model of framing, in which choice is influenced by defaults

or presentation effects more generally. As long as this affects only the absolutely continuous

component of choice and averages out across frames, a weaker but still sufficient version of

monotonicity is satisfied.

There are more intricate models of choice in which monotonicity is less straightforward.

For example, even a trembling decision-maker may understand that consumption bundles

in the interior of the budget set are dominated and may randomize over the budget frontier

instead of the entire budget set. As we will show, monotonicity with respect to the true

preference breaks down in that case. Swaps preferences will be systematically distorted by

the need to explain the choices on the budget frontier. However, even in that case there

may be a solution based on reducing the dimensionality of the commodity space, so that the

singular randomization on the budget frontier becomes absolutely continuous in the lower

dimension. Not too surprisingly, there are also models in which monotonicity plainly fails,

like a limited attention version of the logit model (Matejka and McKay, 2015) or a random

parameter model in the context of choice under uncertainty (Apesteguia and Ballester, 2018).
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To summarize, the swaps approach by AB is a bridge between the literatures on measuring

rationality and on behavioral welfare economics. We show that this bridge is valid in the

conventional consumer choice setting in which measures of rationality are typically defined.

In empirical studies like Kim et al. (2018), experimental treatments will often have effects on

both rationality and preferences simultaneously. The swaps approach is able to disentangle

these separate effects.

2 Theoretical Framework

Consider the standard consumer choice setting. We assume that a decision-maker has con-

ventional preferences but sometimes chooses differently from her most preferred option, for

example due to random stochastic errors or lack of attention. We observe her choice behavior

for a collection of budget sets, but not her preference.

Formally, the choice set is X = RL
+, where L denotes the number of commodities. The

commodities could be different consumption goods, or they could refer to states of the world.

Budget sets Bδ ⊆ X are parameterized by δ ∈ ∆ ⊆ RK , where K denotes the number of

parameters. The budget sets are assumed to be bounded and Lebesgue measurable, for each

δ ∈ ∆. In the standard setting, δ ∈ ∆ ⊆ RL
++ is a price vector and Bδ = {x ∈ X : δ · x ≤ 1}

is the competitive budget set.3 Our approach is more general and δ could, for example,

also encode kinks in the budget line generated by endowment points in an insurance setting,

other non-linear budget lines as generated by non-linear screening mechanisms, and even

frames which affect choice without affecting the budget set.

The observed behavior of the decision-maker is summarized by her choice data, here

defined as a collection D of probability measures, D = (ν, (µδ)δ∈∆). First, ν is a full support

probability measure on the sample space ∆, representing how often the decision-maker faces

a choice situation indexed by δ.4 We think of this as exogenous to the decision-maker; for

example, the measure ν could describe the frequency of budget problems as determined

by an experimenter. Since ∆ can be finite or infinite, this encompasses the case of choice

from finitely many different budget sets but also allows observation of a demand function

for all prices, like in the conventional Walrasian approach to consumer demand. Second,

the choice behavior of the decision-maker for any choice situation δ ∈ ∆ is captured by

a probability measure µδ on the sample space Bδ. That is, for a measurable subset of

3The implicit assumption then is that the decision-maker’s demand satisfies homogeneity of degree zero.
Hence we do not need to distinguish between demand on {x : δ · x ≤ w} and {x : (δ/w) · x ≤ 1} and can
normalize wealth to 1.

4Throughout, all probability measures are defined on the Borel algebra. Expressions like “absolutely
continuous” or “singular” refer to the Lebesgue measure, if not mentioned otherwise.
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alternatives A ⊆ Bδ, µδ(A) is the probability that the decision-maker chooses a consumption

bundle in the subset A conditional on facing the choice situation δ. Again, we consider

general probability measures here. This includes the cases of deterministic choice, discrete

randomization, and stochastic choice described by a density function.

Unlike in the finite case, indifferences cannot be assumed away in the consumer choice

setting with infinite commodity spaces. Instead, we only impose two weak regularity con-

ditions on the decision-maker’s preferences. First, we assume that her (complete and tran-

sitive) preference relation ⪰ on X can be represented by some (Borel) measurable util-

ity function u : X → R. A sufficient condition for this would be the conventional as-

sumption of continuity of ⪰. Second, we assume that ⪰ has thin level sets, i.e., the sets

L(z) = {x ∈ X : u(x) = z} have Lebesgue measure zero for all z ∈ R. One consequence

is that we can use λ({y ∈ A : y ⪰ x}) and λ({y ∈ A : y ≻ x}) interchangeably, where λ

denotes the Lebesgue measure and ≻ the strict relation associated with ⪰. Denote the set of

preference relations that have thin level sets and for which measurable utility representations

exist by R.

We can now define the swaps index in this setting. This is a natural extension of the

swaps index for finite sets, and it has been proposed by Apesteguia and Ballester (2015,

Online Appendix D.3). We generalize it here by allowing for infinite collections of observed

choice situations and for unconstrained stochastic choice in each of those situations.5 The

swaps distance between preference ⪰ and choice data D is defined as

W (⪰, D) =

∫
∆

∫
Bδ

λ({y ∈ Bδ : y ≻ x})dµδ(x)dν(δ).

It measures the inconsistency of the given choice data D with the given preference ⪰. For

any chosen bundle x in a budget set Bδ, inconsistency with ⪰ is measured by the (Lebesgue)

volume of the upper contour set of x in Bδ with respect to ⪰. That is, the inconsistency

is captured by how many available alternative bundles were strictly preferred to x but not

chosen, and which would thus have to be “swapped” with x to make choice consistent with

the maximization of preference ⪰. The overall inconsistency of D with ⪰ is then computed

by first taking the weighted average of this volume over all bundles in the budget set, and

then taking the weighted average over all choice situations, where the respective weights are

5Our approach is also more general than Apesteguia and Ballester (2015, Online Appendix D.3) because
we assume neither strict monotonicity nor convexity of preferences.
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the observed frequencies in the data.6,7

The swaps index for the given choice data D is defined as

I(D) = inf
⪰∈R

W (⪰, D).

If a preference attains the infimum, we refer to it as a swaps preference. A swaps preference

is a preference with the smallest possible inconsistency with the choice data. Note that,

unlike in the finite case in AB, existence of a swaps preference is not always guaranteed.

However, the monotonicity condition we establish below implies existence.

3 Main Result

We will now show that the true preference is a swaps preference as long as the choice data

satisfy a monotonicity condition with respect to the true preference. We begin by providing

a general technical result.

Lemma 1. For any bounded set B ⊆ X, the unweighted average volume of the upper contour

sets is the same for all preferences ⪰∈ R. More specifically:∫
B

λ({y ∈ B : y ≻ x})dx =
λ(B)2

2
∀ ⪰∈ R. (1)

Consider bundle x in Figure 1. Obviously, the upper contour set of x within the depicted

budget set is smaller for the Leontief preference (blue indifference curve) than for a preference

where the commodities are not perfect complements (green indifference curve). This could

lead to the conjecture that Leontief preferences generate smaller average volumes of the

upper contour sets than other preferences. However, for a bundle like y in Figure 1, the

ranking is reversed for the same two preferences, with the Leontief preference generating the

larger upper contour set. Maybe surprisingly, on average across all consumption bundles in

a budget set, the size of the upper contour sets is the same for all preferences.

The result is best understood by considering an arbitrary preference which partitions B

6The fact that u is a measurable function implies that all upper contour sets are Lebesgue measurable
and their weighted average volume within each budget set is well-defined. In our definition of the swaps
distance, we implicitly restrict attention to choice data sets for which the weighted average over all choice
situations is also well-defined (and are not aware of any plausible example in which that is not the case).

7A similar measure was proposed by Heufer (2008). The main difference is that Heufer (2008) does not
use the Lebesgue measure of the upper contour set of a chosen bundle with respect to a candidate preference,
but instead uses the Lebesgue measure of the bundles which are revealed to be preferred over the chosen
bundle by the decision-maker’s other choices (and monotonicity). This generates a measure of rationality
but not a complete welfare preference.
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Figure 1: Volume of Upper Contour Sets.

into n indifference classes of equal volume λ(B)/n. While such a preference is not in R,

it can be used to approximate preferences in R for large n. The average size of the upper

contour sets for this preference is

n∑
i=1

λ(B)

n

n∑
j=i+1

λ(B)

n
=

λ(B)2

n2

n∑
i=1

(n− i) = λ(B)2
(
1− n+ 1

2n

)
.

Equation (1) can be seen as the limit of such a summation formula for n → ∞. On a

more intuitive level, the Lebesgue measure of the upper contour set of x within a budget

set gives the probability (up to a normalizing constant) that a uniformly drawn bundle from

that budget set is preferred over x. Averaging over all x in the budget set then gives the

probability that among two bundles that are sequentially drawn uniformly and independently

from the budget set, the second is preferred over the first. This probability is independent

of the preference and equals 1/2.

Lemma 1 implies that if the decision-maker randomizes uniformly over all bundles in a

budget set, then all preferences in R are equally distant to the choices in that budget set as

measured by the swaps distance. Note that the statement holds for general bounded subsets

of X, in particular also for subsets of budget sets.

Recall that our goal is to establish a condition which ensures that the true preference

is a swaps preference. To this end, we decompose each probability measure µδ into two

components. By Lebesgue’s Decomposition Theorem, we can always decompose µδ into an
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absolutely continuous measure µc
δ and a singular measure µs

δ such that

µδ = µc
δ + µs

δ.

Moreover, this decomposition is always unique. Due to the absolute continuity, we can then

write the measure µc
δ in terms of a density fδ, such that

µc
δ(A) =

∫
A

fδ(x)dx

for every measurable subset A ⊆ Bδ.
8 The singular measure µs

δ captures the possibility of

deterministic choice, discrete randomization, or stochastic choice on other subsets of Bδ that

have Lebesgue measure zero.

We can now introduce our monotonicity property. Informally speaking, it requires that

more preferred bundles (with respect to the true preference generating the data) are chosen

more often.

Definition 1. Let D = (ν, (µδ)δ∈∆) be some choice data and ⪰∗ ∈ R be some preference.

We say that D is ⪰∗-monotone if it satisfies the following two conditions for every δ ∈ ∆:

(i) The absolutely continuous component has a density fδ that is monotone in ⪰∗:

∀x, y ∈ Bδ : x ⪰∗ y =⇒ fδ(x) ≥ fδ(y).

(ii) The support of the singular component is optimal with respect to ⪰∗:

∀x ∈ supp(µs
δ) : x ⪰∗ y ∀y ∈ Bδ.

Condition (i) requires that more preferred bundles according to ⪰∗ have higher density

in the absolutely continuous component of the data, and in this sense are observed more

frequently. Bundles in the support of the singular component (e.g., mass points) are observed

even “more frequently,” so condition (ii) requires them to be optimal with respect to ⪰∗.
9

8Note that, while µδ is a probability measure, µc
δ and µs

δ are generally not probability measures, unless
µδ itself is already absolutely continuous or singular. Hence fδ is not a probability density function, because∫
Bδ

fδ(x)dx = µc
δ(Bδ) can be smaller than one. This does not have to concern us in the following.

9We could relax Definition 1 in two ways but refrain from doing so for ease of notation. First, we could
replace condition (ii) by the weaker requirement that λ({y ∈ Bδ : y ≻∗ x}) = 0 for all x ∈ supp(µs

δ), thus
allowing for non-optimal bundles in the support of µs

δ provided that the Lebesgue measure of better bundles
is zero. This would give some additional degrees of freedom when ⪰∗ is not a continuous preference. Second,
we could relax the requirements in Definition 1 on null sets of the product measures ν × µδ.
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We will discuss the plausibility of the monotonicity property in the next subsection. Here,

we only point out that ⪰∗-monotonicity is conceptually stronger than AB’s monotonicity for

the finite case, because the conditions in Definition 1 have to hold for each choice situation

δ ∈ ∆ separately, not just on average across all choice situations. We can now state our

main result.

Proposition 1. If D satisfies ⪰∗-monotonicity, then ⪰∗ is a swaps preference:

⪰∗ ∈ argmin
⪰∈R

W (⪰, D).

The intuition for Proposition 1 is that ⪰∗-monotonicity ensures that the choice data are

sufficiently informative about the true preference ⪰∗. The true preference then minimizes

the weighted inconsistency with the data and is a swaps preference. In the proof of the

proposition, we first approximate the absolutely continuous component of the choice data

by a weighted sum of uniform distributions on the upper contour sets of the true preference.

We can then use Lemma 1 for the absolutely continuous part to derive a lower bound on

W (⪰, D) and show that this lower bound is attained by ⪰∗. Second, using that the singular

component of the choice data is optimal with respect to the true preference yields directly

that ⪰∗ explains the singular component best.

Monotonicity implies the existence of a swaps preference. However, the swaps preference

is not necessarily unique, so the true preference cannot necessarily be recovered uniquely

from the data. We will return to this issue in the next section, where we will illustrate that

uniqueness can be achieved with sufficiently rich data sets.

4 Applications

To illustrate the plausibility of the monotonicity condition and to elaborate on the unique

recoverability of the true preference, we now discuss several examples of behavioral models

for which monotonicity is satisfied or violated.10

10We will discuss an example where condition (i) of monotonicity is violated but condition (ii) is satisfied
in Subsection 4.2. There are easy examples for the reverse case where condition (i) is satisfied but condition
(ii) is violated. Just consider a variant of the uniform trembles model like in Subsection 4.1 where, instead
of making the optimal choice with probability 1 − ϵ, the decision-maker makes a suboptimal choice with
probability 1 − ϵ, for instance by choosing a fixed default option in each budget set. In this case, the true
preference will not be a swaps preference.
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4.1 Uniform Trembles

A first example satisfying ⪰∗-monotonicity is a uniform trembles model, which AB have

studied for the finite case. In choice situation δ ∈ ∆, the decision-maker chooses optimally

in budget set Bδ according to her true preference ⪰∗ with probability 1−ϵ > 0. For example,

Figure 2 illustrates a case where the unique optimal bundle is x∗. With probability ϵ ≥ 0,

she trembles uniformly over all bundles in Bδ, as indicated by the red area in Figure 2.

Figure 2: Uniform Trembles.

Formally, the choice data D = (ν, (µδ)δ∈∆) are given by an exogenous distribution ν over

choice situations and, for each δ ∈ ∆, a probability measure µδ that can be decomposed

into an absolutely continuous component µc
δ with constant density fδ(x) = ϵ/λ(Bδ) and a

singular component µs
δ that satisfies µ

s
δ(A) = 1− ϵ if x∗

δ ∈ A and µs
δ(A) = 0 if x∗

δ /∈ A, where

x∗
δ denotes the optimal bundle in Bδ according to ⪰∗ (assumed to be unique for simplicity).

It is easy to see that these data satisfy ⪰∗-monotonicity. It follows from Proposition 1 that

the true preference ⪰∗ is a swaps preference for D.

The swaps preference will generally not be unique. For example, if only a single budget

set B is observed, like in Figure 2, then any preference for which bundle x∗ is optimal is

a swaps preference (the same would be true in a finite setting). Observing choice from

additional budget sets puts more constraints on the set of swaps preferences, because all

mass points have to be explained as optimal to achieve the same minimum swaps index as

the true preference ⪰∗. Our next result gives conditions under which the swaps preference

becomes unique when the data set becomes complete.
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We make use of an existing recoverability result for conventional, deterministic Walrasian

demand functions by Mas-Colell (1977). We restrict attention to preferences ⪰ that are

continuous, monotone, and strictly convex. As defined in Mas-Colell (1977, p. 1411), such

a preference is lipschitzian if, for every 0 < r < ∞, the function V⪰,r : Kr → C given by

V⪰,r(x) = {y ∈ Kr : y ⪰ x} is Lipschitz continuous, where Kr = {y ∈ RL
+ : 1/(1 + r) ≤ yi ≤

1 + r,∀i = 1, . . . , L} and C is the set of non-empty, compact, and convex subsets of RL
+.

Proposition 2. Let ∆ = RL
++ and Bδ = {x ∈ X : δ · x ≤ 1}. Let D = (ν, (µδ)δ∈∆) be choice

data generated by a uniform trembles model with a true preference ⪰∗ that is continuous,

monotone, and strictly convex. If ⪰∗ is additionally lipschitzian, then it is the unique swaps

preference in the class of continuous, monotone, and strictly convex preferences.

Under the assumptions of the proposition, minimizing the swaps distance to the data

yields the true preference as a unique solution. This way, the true preference can be recovered

from the noisy data. To understand the logic of the result, it is instructive to consider

the conventional, deterministic Walrasian demand function x∗ generated by preference ⪰∗.

Under the lipschitzian assumption, Mas-Colell (1977) has shown that any other preference

⪰ ≠⪰∗ generates a Walrasian demand function x that differs from x∗ for at least once price

vector δ0. Continuity of Walrasian demand then implies that x∗ and x must differ on an

open set of prices. Furthermore, the set of bundles that ⪰ prefers strictly over x∗ has strictly

positive Lebesgue measure on that open set of prices. Since the singular part of the choice

data generated by the uniform trembles model is described by x∗, its swaps distance to ⪰∗ is

zero but strictly positive to ⪰. Since both ⪰∗ and ⪰ explain the absolutely continuous part

of the choice data equally well, by Lemma 1, it follows that ⪰ is not a swaps preference.

Using Lemma 1, we can also calculate the value of the swaps index for the data generated

by a uniform trembles model:

I(D) =

∫
∆

∫
Bδ

λ({y ∈ Bδ : y ≻∗ x})dµδ(x)dν(δ)

=

∫
∆

ϵ

λ(Bδ)

∫
Bδ

λ({y ∈ Bδ : y ≻∗ x})dxdν(δ)

=

∫
∆

ϵ

λ(Bδ)

λ(Bδ)
2

2
dν(δ)

= ϵ

∫
∆

λ(Bδ)

2
dν(δ).

The degree of irrationality is increasing linearly in the noise parameter ϵ. It also depends on

the decision-maker’s environment described by ν. If she is confronted with larger budget sets

on average, then her uniform trembles over those sets imply a larger degree of irrationality.
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4.2 Uniform Trembles on the Budget Frontier

Now consider a variant of the uniform trembles model. With probability 1 − ϵ1 − ϵ2 > 0,

the decision-maker chooses optimally in budget set Bδ according to ⪰∗. With probability

ϵ1 ≥ 0, she trembles uniformly over all bundles in Bδ. With probability ϵ2 > 0, she trembles

uniformly over all bundles on the frontier of Bδ. For example, the decision-maker may find

it easier to understand that bundles in the interior of the budget set are dominated than to

determine the exact location of the optimal bundle on the budget frontier. Trembles on the

frontier would then arise when the decision-maker is mildly distracted, while trembles on the

entire budget set would arise if distraction is strong.

Formally, the measure µδ is decomposed into the absolutely continuous component µc
δ

that captures trembles on the entire budget set and the singular component µs
δ that captures

trembles on the budget frontier and the optimal choice. A simple case is illustrated in Figure

3, where the optimal bundle is x∗ and trembles take place sometimes on the budget line and

sometimes on the entire budget set (as indicated in red).

Figure 3: Uniform Trembles on Budget Frontier.

Suppose for simplicity that we only observe one budget set B, like in Figure 3. It follows

immediately that the choice data are best explained by an indifference between all bundles

on the budget line. With an indifference curve like the red line, all singular choices are

perfectly explained. Since all preferences explain the uniform trembles on the entire budget

set equally well, by Lemma 1, it follows that some perfect-substitutes preference is a swaps

preference. In fact, the choice data are monotone with respect to that perfect-substitutes
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preference. Whenever the true preference is different, like the green indifferences curves

depicted in Figure 3, its swaps distance to the data is strictly larger, because it generates

upper contour sets with strictly positive volume for all non-optimal choices on the budget

line. Hence, the true preference is not a swaps preference and recoverability fails. The value

of the swaps index is I(D) = ϵ1λ(B)/2, missing the trembles that arise with probability ϵ2.

Indifferences cannot be ruled out in the consumer choice setting, in contrast to the finite

setting. The red indifference curve in Figure 3 is also compatible with strictly monotone

preferences, a restriction proposed by Apesteguia and Ballester (2015, Online Appendix

D.2) to deal with indifferences. Note furthermore that the recoverability problem would

not disappear when imposing the additional restriction of strictly convex preferences, such

that an indifference among all bundles on the budget line is no longer possible. Preferences

with indifference curves closer to the red line still perform better than the true preference.

The problem is also not due to the assumption of observing only one budget set. Figuring

out the swaps preference is more difficult when the environment is richer, but the previous

arguments imply that preference elicitation will be systematically distorted by the need to

explain the singular choices on the budget frontiers.

An interesting special case arises when ϵ1 = 0, so that trembles take place entirely on the

budget frontier. We can now attempt to solve the problem by reducing the dimensionality

of the commodity space. Consider again an example with two commodities, x = (x1, x2),

and a single budget set, as in Figure 3. Write the decision-maker’s problem as a choice

of x1 ∈ B = [0, xmax
1 ] and determine x2 as a residual on the budget line. The data are

then given by the choice of x∗
1 with probability 1 − ϵ2 (singular component) and a uniform

distribution on [0, xmax
1 ] with probability ϵ2 (now the absolutely continuous component). We

can look for a swaps preference on B = [0, xmax
1 ]. Note that R now excludes the complete

indifference, which would not have thin level sets. Since Lemma 1 holds regardless of the

number of dimensions, and hence also for L = 1, we obtain that all preferences in R explain

the uniform randomization equally well. The same arguments as in Subsection 4.1 then imply

that any preference for which x∗
1 is optimal in B is a swaps preference, generating a swaps

index of I(D) = ϵ2x
max
1 /2. In particular, the decision-maker’s true preference on B induced

by her true preference ⪰∗ on R2
+ satisfies that condition. Hence, reducing the dimensionality

of the commodity space solves the problem when the observed choice is entirely singular.

We conclude this subsection by showing that there are also behavioral models for which

recoverability fails even after a reduction of the dimensionality of the commodity space. The

following example is a random parameter model in the context of choice under uncertainty.

Example 1. Let x = (x1, x2) ∈ X = R2
+ denote consumption in two states of the world. The

decision-maker is endowed with bundle (w,w − d) ∈ X, reflecting that her wealth is w if
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no accident occurs (state 1) but is reduced by d > 0 if an accident occurs (state 2). The

probability of an accident is 0 < p < 1. The decision-maker can buy insurance. Each unit of

insurance costs q, to be paid in both states of the world, and pays 1 in case of an accident.

We assume q > p so that the insurance company earns profits. The resulting budget set B

is illustrated in Figure 4. The 45-degree line indicates perfect insurance bundles.

Figure 4: Random Parameter Model.

The decision-maker is an expected utility maximizer with CARA utility u(xi) = −e−βxi

where β > 0. It is an easy exercise to show that the optimal bundle is

(x1, x2) =

(
w − qd+

qδ

β
, w − qd− (1− q)δ

β

)
,

where

δ = ln

(
1− p

p

)
− ln

(
1− q

q

)
> 0,

if we assume β > δ/d to rule out corner solutions in the endowment point.

Suppose the true risk aversion coefficient is β∗ but choice is governed by a uniform

distribution of β on [β∗ − ϵ/2, β∗ + ϵ/2] for some ϵ > 0, i.e., trembles arise due to a noisy

preference parameter. This model generates singular stochastic choice on the budget line,

as indicated by the red line segment in Figure 4. Hence, by our previous arguments, the

swaps approach applied in R2
+ does not recover the true preference correctly but predicts an
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indifference among all chosen bundles.11

Reducing the dimensionality of the commodity space does not solve that problem. The

decision-maker can be conceptualized as choosing x1 from B = [xmin
1 , xmax

1 ], where

xmin
1 = w − qd+

qδ

β∗ + ϵ/2
and xmax

1 = w − qd+
qδ

β∗ − ϵ/2
.

Due to non-linearity in the risk aversion coefficient, choice is not uniform on B. It is described

by the density

f(x1) =
qδ

ϵ (x1 − w + qd)2
,

which is strictly decreasing in x1. These data are monotone with respect to preferences that

always favor smaller values of x1 in B = [xmin
1 , xmax

1 ], i.e., higher levels of insurance. The

decision-maker’s true preference on B, induced by risk aversion coefficient β∗, is unimodal

with interior peak at x∗
1 = w−qd+qδ/β∗ and therefore does not satisfy that condition. Within

the parametric class of CARA utility functions, swaps preferences are the preferences with

β ≥ β∗ + ϵ/2. The swaps approach therefore overestimates risk aversion systematically.

4.3 Logit Models

In a conventional multinomial logit model (or Luce model) for a finite set of alternatives,

the probability of choosing an alternative x from a set B is given by

p(x,B) =
eu(x)/γ∑
y∈B eu(y)/γ

, (2)

where γ > 0 is a noise parameter. As γ → 0, choice concentrates on the utility maximizing

alternatives in B. As γ → ∞, choice converges to uniform randomization. The model can be

given a justification as a random utility model with Gumbel error terms (see e.g. Anderson

et al., 1992).12

We can translate this idea to our consumer choice setting by postulating that each µδ

is absolutely continuous and the decision-maker chooses from Bδ in choice situation δ ∈ ∆

11This is compatible with subjective expected utility theory, predicting that the decision-maker is risk
neutral and entertains a subjective accident probability equal to q.

12See Alós-Ferrer et al. (2021) for a critique of the distributional assumptions made in conventional random
utility models like the multinomial logit, and for a constructive way how to get rid of these assumptions by
using response time data.
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according to density

fδ(x) =
eu(x)/γ∫

Bδ
eu(y)/γdy

.

It is immediate that the resulting data D are monotone with respect to the preference

represented by the utility function u, which is hence a swaps preference.

There are modifications of the logit model for which monotonicity fails. Matejka and

McKay (2015) study a rational inattention model in which the decision-maker has to learn

about her true utility function and pays an entropy-based cost of information. Consider their

setting with a finite set of alternatives and assume that utility function ui arises with prior

probability qi, where i = 1, . . . ,m. Matejka and McKay (2015) show that the rationally

inattentive decision-maker chooses stochastically according to a modified multinomial logit

formula. When the true utility function is ui, her conditional choice probabilities are

p(x,B|ui) =
p(x,B)eui(x)/γ∑
y∈B p(y,B)eui(y)/γ

, (3)

where

p(y,B) =
m∑
i=1

qip(y,B|ui)

are the unconditional choice probabilities. When all alternatives are ex-ante homogeneous,

this simultaneous system of equations yields the conventional logit formula (2) from above for

the conditional choice probabilities. Otherwise, conditional choice probabilities are distorted

towards unconditional choice probabilities. We show in the Appendix that the conditional

choice probabilities are not always monotone with respect to the preference ⪰i represented

by ui; if p(x,B) is larger than p(y,B), we can have that p(x,B|ui) is larger than p(y,B|ui)

even though ui(x) < ui(y). We also show that the unconditional choice probabilities are not

always monotone with respect to the prior expected preference; we can have p(x,B) > p(y,B)

even though
∑m

i=1 qiui(x) <
∑m

i=1 qiui(y). It follows that there is not necessarily a plausible

relation between swaps preferences and true preferences for data generated by the rational

inattention model of Matejka and McKay (2015).

4.4 Framing

Consider finally a situation in which choice can be affected by frames (Salant and Rubinstein,

2008). For example, one of the bundles in a budget set could be marked as the default
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choice, and different defaults could lead to different choice behaviors. A choice situation

could then be described by δ = (p, d) ∈ ∆, where p ∈ RL
++ are the commodity prices and

d ∈ {x ∈ X : p ·x ≤ 1} is the default bundle. More generally, we can always combine budget

sets with different frames that describe the way in which the budget set is presented to the

decision-maker, or that encode other relevant features of the environment such as the level

of distraction for the decision-maker.

Formally, given an arbitrary set of choice situations ∆, we can define an equivalence

relation ≃ on ∆ by letting δ ≃ δ′ if and only if Bδ = Bδ′ . In words, δ ≃ δ′ means that the

two choice situations δ and δ′ involve the same budget set and hence can differ only in their

framing. In our introductory example, we would have δ = (p, d) ≃ (p′, d′) = δ′ if and only if

p = p′. Denote the equivalence class of δ by [δ] and the quotient set of all equivalence classes

by ∆/≃.

We could proceed like before and ignore the specific structure of frames. There are

applications in which this comes without loss. For example, if we have a uniform trembles

model like in Subsection 4.1 and different frames only affect the level of noise ϵ, because

they encode different levels of distraction, then the data still satisfy ⪰∗-monotonicity for the

true preference ⪰∗, and the true preference can be recovered from the data just like before.

In other applications, like the one with defaults, frames may have a systematic directional

effect on choices and destroy ⪰∗-monotonicity. We will now show that monotonicity can be

weakened to allow for such systematic effects, as long as they arise only in the absolutely

continuous part of the data and average out across frames.

We say that D = (ν, (µδ)δ∈∆) is weakly ⪰∗-monotone if it satisfies Definition 1 but with

property (i) replaced by the weaker requirement that for every equivalence class [δ] ∈ ∆/≃:

(i)′ ∀x, y ∈ Bδ : x ⪰∗ y =⇒
∫
[δ]

fδ′(x)dν(δ
′) ≥

∫
[δ]

fδ′(y)dν(δ
′).

It is no longer required that the density is larger for x than for y in every choice situation,

only on average across all choice situations that share the same budget set (in which both

x and y are available). While ⪰∗-monotonicity clearly implies weak ⪰∗-monotonicity, the

weaker property can be satisfied even if some frames induce an opposite ranking of the

densities. The following result is therefore a generalization of Proposition 1.

Proposition 3. If D satisfies weak ⪰∗-monotonicity, then ⪰∗ is a swaps preference.

This result may be useful for the analysis of nudging (Thaler and Sunstein, 2008). In

the spirit of the behavioral welfare approach by Benkert and Netzer (2018), one could first

check weak monotonicity of frame-dependent stochastic choice data and then evaluate the

quality of choices under different frames using as a welfare criterion the respective preference
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for which monotonicity obtains, with the goal of ranking frames according to their induced

decision quality. We leave such an approach to future research.

5 Conclusions

We have studied the swaps index by Apesteguia and Ballester (2015) in a consumer choice

setting with infinite commodity spaces. We have shown that the swaps approach has a solid

foundation in that setting, because many (but not all) plausible boundedly rational models

of behavior generate choice data for which the true preference of the decision-maker is a

swaps preference.

Our “data sets” are assumed to be ideal, in the sense that all probability measures are

perfectly observed. We share this admittedly heroic assumption with the textbook analysis of

Walrasian demand or the theory of stochastic choice which assumes that exact probabilities

are observable. Real-world data is necessarily finite. However, there are cases in which

it can be beneficial for practitioners to choose the continuous modelling approach over the

discrete modelling approach. Parametric assumptions on utility functions are often desirable

and commonly used in practice (see e.g. Halevy et al., 2018). Unlike in the discrete case,

additional information in the form of parametric assumptions can easily be incorporated in

our setting. This simplifies the computation of the index dramatically and can make it more

tractable than in the discrete setting, especially for very large choice sets. Additionally, the

computation typically yields unique parameters in our setting, whereas the solution for each

parameter in the discrete case would typically be an interval.
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A Appendix

A.1 Proof of Lemma 1

Consider a bounded set B ⊂ X and a preference relation ⪰∈ R. Represent ⪰ on B by a

utility function u : B → [0, 1]. We denote by

U(x) = {y ∈ B | u(y) ≥ u(x)}

the upper contour set of x in B, and by V (x) = λ(U(x)) the Lebesgue measure of the upper

contour set.13 We are interested in the average measure of these sets,

V̄ =

∫
B

V (x) dx.

We approximate function u from below by a sequence of step functions (un)n∈N given by

un(x) =
⌊nu(x)⌋

n
.

Since 0 ≤ u(x)− un(x) ≤ 1/n for all x ∈ B, it holds that un → u uniformly as n → ∞. Let

Un(x) = {y ∈ B | un(y) ≥ un(x)}

be the upper contour set based on un. Observe that U(x) ⊆ Un(x) for all x ∈ B and n ∈ N.
Observe also that, if y /∈ U(x), there exists N ∈ N such that y /∈ Un(x) for all n > N ,

because un(y) < un(x) must hold for sufficiently large n. Hence we obtain the set-theoretic

limit Un(x) → U(x). For Vn(x) = λ(Un(x)), continuity of the Lebesgue measure then implies

limn→∞ Vn(x) = V (x) for all x ∈ B, i.e., pointwise convergence of Vn to V .

Let us examine

V̄n =

∫
B

Vn(x) dx.

For each k ∈ {0, 1, . . . , n}, define

Bk
n = {x ∈ B | un(x) = k/n},

so that (Bk
n)k forms a partition of B. For any x ∈ Bk

n we obtain Un(x) =
⋃n

j=k B
j
n and

13Note again that it does not matter for V (x) whether we use u(y) ≥ u(x) or u(y) > u(x) in the definition
of U(x), because the level sets of u have Lebesgue measure zero.
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Vn(x) =
∑n

j=k λ(B
j
n). By definition of the Lebesgue integral we can then write

V̄n =
n∑

k=0

λ(Bk
n)

n∑
j=k

λ(Bj
n)

=
n∑

k=0

λ(Bk
n)

[
λ(B)−

k−1∑
j=0

λ(Bj
n)

]

= λ(B)2 −
n∑

k=0

k−1∑
j=0

λ(Bk
n)λ(B

j
n).

To derive a lower bound on this expression, consider the auxiliary optimization problem

max
a0,...,an∈R+

n∑
k=0

k−1∑
j=0

akaj subject to
n∑

k=0

ak = λ(B).

The first-order condition of the Lagrangian

L =
n∑

k=0

k−1∑
j=0

akaj + γ

(
λ(B)−

n∑
k=0

ak

)

with respect to ai is
∑i−1

j=0 aj +
∑n

k=i+1 ak = γ, or
∑

k ̸=i ak = γ, where γ is the multiplier

of the constraint. Since this has to hold for all i, we obtain that ai = λ(B)/(n + 1) in the

optimum. (Verifying a second-order condition yields that this is indeed the unique local

constrained maximum in the interior. By computing the maxima on the boundary of the

constraint set, it can be shown that this is also the global constrained maximum.) Hence we

know that

V̄n ≥ λ(B)2 −
n∑

k=0

k−1∑
j=0

(
λ(B)

n+ 1

)2

= λ(B)2

[
1−

n∑
k=0

k−1∑
j=0

1

(n+ 1)2

]

= λ(B)2

[
1−

n∑
k=0

k

(n+ 1)2

]

= λ(B)2
[
1− n(n+ 1)

2(n+ 1)2

]
= λ(B)2

[
1− 1

2

(
n

n+ 1

)]
.
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To derive an upper bound, note that

V̄n = λ(B)2 −
n∑

k=0

k∑
j=0

λ(Bk
n)λ(B

j
n) +

n∑
k=0

λ(Bk
n)

2.

Let us assume that the regularity condition

lim
n→∞

n∑
k=0

λ(Bk
n)

2 = 0 (4)

holds. We will show below that this condition holds because the level sets of u have Lebesgue

measure zero. For the limiting behavior of V̄n we can then equivalently study the limiting

behavior of

Ṽn = λ(B)2 −
n∑

k=0

k∑
j=0

λ(Bk
n)λ(B

j
n).

Analogously to above, the auxiliary problem

min
a0,...,an∈R+

n∑
k=0

k∑
j=0

akaj subject to
n∑

k=0

ak = λ(B)

has the solution ai = λ(B)/(n + 1) for all i. (For the second-order condition, note that the

Lagrangian is convex in (ao, . . . , an).) Hence we obtain

Ṽn ≤ λ(B)2 −
n∑

k=0

k∑
j=0

(
λ(B)

n+ 1

)2

= λ(B)2
[
1− 1

2

(
n

n+ 1

)
− 1

n+ 1

]
.

Putting the upper and the lower bound together, we obtain that limn→∞ V̄n = λ(B)2/2.

We can now apply the Dominated Convergence Theorem to obtain

V̄ =

∫
B

V (x)dx =

∫
B

lim
n→∞

Vn(x) dx = lim
n→∞

∫
B

Vn(x)dx = lim
n→∞

V̄n =
λ(B)2

2
.

Note that this depends on u only to the extent that regularity condition (4) is satisfied.

We now show that this condition holds because the level sets L(z) = {x ∈ B | u(x) = z}
have Lebesgue measure zero, for all z ∈ [0, 1]. Letting h(n) ∈ argmaxk∈{0,...,n} λ(B

k
n), we
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obtain

n∑
k=0

λ(Bk
n)

2 =
n∑

k=0

λ(Bk
n)λ(B

k
n) ≤

n∑
k=0

λ(Bk
n)λ(B

h(n)
n ) = λ(B)λ(Bh(n)

n ).

Therefore, if (4) does not hold, there exists ϵ > 0 such that for each N ∈ N there exists n > N

for which λ(B
h(n)
n ) ≥ ϵ. Given the sequence (B

h(n)
n )n, consider a subsequence (B

h(nm)
nm )m with

the properties that λ(B
h(nm)
nm ) ≥ ϵ for all m and limm→∞ h(nm)/nm = z for some z ∈ [0, 1];

such a subsequence exists because h(n)/n ∈ [0, 1] for all n and thus a converging subsequence

exists.

For each m we have, by definition,

Bh(nm)
nm

= {x ∈ B | unm(x) = h(nm)/nm}

= {x ∈ B | h(nm)/nm ≤ u(x) < h(nm)/nm + 1/nm}.

Partition the set B
h(nm)
nm into three subsets Sm, Em and Gm, so that each x ∈ Sm satisfies

u(x) < z, each x ∈ Em satisfies u(x) = z, and each x ∈ Gm satisfies u(x) > z. It follows

that λ(B
h(nm)
nm ) = λ(Sm) + λ(Em) + λ(Gm). Since limm→∞ h(nm)/nm = z, we obtain the

set-theoretic limits Sm → ∅ and Gm → ∅, implying limm→∞ λ(Sm) = limm→∞ λ(Gm) = 0

by continuity of the Lebesgue measure. Now fix any ϵ′ with 0 < ϵ′ < ϵ. It follows that there

exists M ∈ N such that for all m > M we have λ(Em) ≥ ϵ′. From this we can conclude

that h(nm)/nm ≤ z < h(nm)/nm + 1/nm must be satisfied for each m > M , which in turn

implies Em = L(z) for all those m. It follows that λ(L(z)) ≥ ϵ′ > 0, so the level set L(z) has

a strictly positive Lebesgue measure.

A.2 Proof of Proposition 1

Note that it is sufficient to show the claim for the case that the choice data D consist of only

one budget set (i.e., ∆ is a singleton). Since the conditions in the monotonicity definition

hold for every choice situation individually, the proof then immediately extends to the general

case.

For ease of notation, we omit the subscripts from now on. Let B ⊆ X be the budget set.

Let µ describe the choice on B, decomposed as µ = µc+µs, with density f of the absolutely

continuous component. Suppose D is ⪰∗-monotone. Let ⪰ be an arbitrary preference in R.

The swaps distance between ⪰ and D can then be decomposed as

W (⪰, D) =

∫
B

λ({y ∈ B : y ≻ x})dµs(x) +

∫
B

λ({y ∈ B : y ≻ x})f(x)dx. (5)
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For the first summand in (5) we have∫
B

λ({y ∈ B : y ≻∗ x})dµs(x) = 0 ≤
∫
B

λ({y ∈ B : y ≻ x})dµs(x),

as the singular component µs is rationalized by ⪰∗ per definition of ⪰∗-monotonicity.

We will now show that for the second summand in (5) it holds that

⪰∗ ∈ argmin
⪰∈R

∫
B

λ({y ∈ B : y ≻ x})f(x)dx.

The statement of the proposition then immediately follows.

Approximate the density f by a sequence of simple functions given by

fn(x) = min

{
⌊nf(x)⌋

n
, n

}
,

so that 0 ≤ fn(x) ≤ f(x) and fn → f pointwise as n → ∞.14 As fn is a simple function, we

can rewrite it as

fn(x) =
Nn∑
i=1

f
(n)
i 1

B
(n)
i
(x)

for some f
(n)
i ≥ 0 and B

(n)
i ⊆ B, i = 1, . . . , Nn, chosen such that f

(n)
1 > . . . > f

(n)
Nn

and

(B
(n)
i )i forms a partition of B. Note that ⪰∗-monotonicity and monotonicity of the floor

function imply that, for all x, y ∈ B and any n ∈ N,

x ⪰∗ y =⇒ f(x) ≥ f(y) =⇒ fn(x) ≥ fn(y). (6)

We now show an auxiliary result.

Lemma 2. For all n ∈ N, ⪰∗ is a solution of

min
⪰∈R

∫
B

λ({y ∈ B : y ≻ x})fn(x)dx.

Proof (Lemma). Let ⪰ be some preference relation. We have∫
B

λ({y ∈ B : y ≻ x})fn(x)dx

14Using the minimum of ⌊nf(x)⌋/n and n implies that fn is a simple function with finitely many different
values even when f is unbounded.

25



=

∫
B

λ({y ∈ B : y ≻ x})

(
Nn∑
i=1

f
(n)
i 1

B
(n)
i
(x)

)
dx

=
Nn∑
i=1

f
(n)
i

∫
B

(n)
i

λ({y ∈ B : y ≻ x})dx

=

(∫
B

(n)
Nn

. . . dx

)
f
(n)
Nn

+

(∫
B

(n)
Nn−1

. . . dx

)
(f

(n)
Nn

+ (f
(n)
Nn−1 − f

(n)
Nn

))︸ ︷︷ ︸
=f

(n)
Nn−1

+ . . .+

(∫
B

(n)
1

. . . dx

)
(f

(n)
Nn

+ (f
(n)
Nn−1 − f

(n)
Nn

) + . . .+ (f
(n)
1 − f

(n)
2 ))︸ ︷︷ ︸

=f
(n)
1

=f
(n)
Nn

(∫
B

(n)
Nn

. . . dx+ . . .+

∫
B

(n)
1

. . . dx

)
+ (f

(n)
Nn−1 − f

(n)
Nn

)

(∫
B

(n)
Nn−1

. . . dx+ . . .+

∫
B

(n)
1

. . . dx

)

+ . . .+ (f
(n)
1 − f

(n)
2 )

(∫
B

(n)
1

. . . dx

)

=
Nn∑
i=1

c
(n)
i

∫
U

(n)
i

λ({y ∈ B : y ≻ x})dx, (7)

where we define c
(n)
i = f

(n)
i −f

(n)
i+1 for i = 1, . . . , Nn−1 and c

(n)
Nn

= f
(n)
Nn

, and U
(n)
i =

⋃i
j=1B

(n)
j =

{y ∈ B : fn(y) ≥ f
(n)
i }. Note that c

(n)
i ≥ 0 by construction and

∫
U

(n)
i

λ({y ∈ B : y ≻ x})dx ≥
∫
U

(n)
i

λ({y ∈ U
(n)
i : y ≻ x})dx =

λ(U
(n)
i )2

2
,

where the last equality follows from Lemma 1. This lower bound is constant in ⪰. Moreover,

it is attained by the preference ⪰∗,∫
U

(n)
i

λ({y ∈ B : y ≻∗ x})dx =

∫
U

(n)
i

λ({y ∈ U
(n)
i : y ≻∗ x})dx

because

y ∈ B \ U (n)
i =⇒ fn(y) < f

(n)
i =⇒ x ≻∗ y ∀x ∈ U

(n)
i ,

where the last implication follows from (6). Thus, ⪰∗ minimizes each summand of (7) and

hence also the whole sum. ⋄

Recall that f is integrable and, for all n ∈ N and all x ∈ B, it holds that limn→∞ fn(x) =

f(x) and |fn(x)| = fn(x) ≤ f(x). Since λ({y ∈ B : y ≻ x}) is constant in n, the Dominated
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Convergence Theorem implies, for any ⪰,

lim
n→∞

∫
B

λ({y ∈ B : y ≻ x})fn(x)dx =

∫
A

λ({y ∈ B : y ≻ x})f(x)dx.

Therefore, for all ⪰,∫
B

λ({y ∈ B : y ≻∗ x})f(x)dx

= lim
n→∞

∫
B

λ({y ∈ B : y ≻∗ x})fn(x)dx

≤ lim
n→∞

∫
B

λ({y ∈ B : y ≻ x})fn(x)dx

=

∫
B

λ({y ∈ B : y ≻ x})f(x)dx,

where the inequality follows from Lemma 2. Taking all results together we get

⪰∗ ∈ argmin
⪰∈R

∫
B

λ({y ∈ B : y ≻ x})dx.

A.3 Proof of Proposition 2

Let ⪰ ≠⪰∗ be any continuous, monotone, and strictly convex preference. For each price

vector δ ∈ ∆ = RL
++, the optimal bundles in Bδ are unique so we can represent them by

a Walrasian demand function, denoted by x∗(δ) for ⪰∗ and by x(δ) for ⪰. It follows from

Berge’s maximum principle that x∗(δ) and x(δ) are continuous functions.

As in the proof of Proposition 1, we can decompose the swaps distance into a singular

part and an absolutely continuous part,

W (⪰, D) =

∫
∆

λ({y ∈ Bδ : y ≻ x∗(δ)})(1− ϵ)dν(δ)︸ ︷︷ ︸
=:W s(⪰,D)

+

∫
∆

∫
Bδ

λ({y ∈ Bδ : y ≻ x}) ϵ

λ(Bδ)
dxdν(δ)︸ ︷︷ ︸

=:W c(⪰,D)

,

where the definition of the uniform trembles model with true preference ⪰∗ has already been

used. For uniqueness we need to show that W (⪰, D) > W (⪰∗, D). It suffices to show that

W s(⪰, D) > 0, as W s(⪰∗, D) = 0 and W c(⪰, D) = W c(⪰∗, D) by definition of the uniform

trembles model and Lemma 1.

Since ⪰ ≠⪰∗, it follows from Theorem 2 in Mas-Colell (1977) – using that ⪰∗ is lip-

schitzian – that there exists a price vector δ0 such that x(δ0) ̸= x∗(δ0). Continuity of x and

x∗ then implies that there exists an open ball U(δ0) around δ0 such that x(δ) ̸= x∗(δ) and

in particular x(δ) ≻ x∗(δ) for all δ ∈ U(δ0). Let u be a continuous utility representation of
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⪰. Then u(x(δ)) > u(x∗(δ)) for all δ ∈ U(δ0).

It follows that u−1((u(x∗(δ)), u(x(δ)))) ⊂ RL
+ is open and non-empty for all δ ∈ U(δ0).

It furthermore follows that u−1((u(x∗(δ)), u(x(δ)))) ∩ Int(Bδ) is open and non-empty. Non-

emptiness holds because u(αx(δ) + (1 − α)x∗(δ)) ∈ (u(x∗(δ)), u(x(δ))) for all α ∈ (0, 1), by

strict convexity and the fact that x(δ) uniquely maximizes u on Bδ. Thus by continuity there

exists γ ∈ (0, 1) such that u(γ(αx(δ) + (1 − α)x∗(δ))) ∈ (u(x∗(δ)), u(x(δ))) and γ(αx(δ) +

(1− α)x∗(δ)) ∈ Int(Bδ).

Therefore

W s(⪰, D) =

∫
∆

λ({y ∈ Bδ : y ≻ x∗(δ)})(1− ϵ)dν(δ)

≥
∫
U(δ0)

λ(u−1((u(x∗(δ)), u(x(δ)))) ∩ Int(Bδ))(1− ϵ)dν(δ) > 0.

A.4 Non-Monotonicity of Rational Inattention

Consider an example in the finite setting of Matejka and McKay (2015) with B = {x, y}.
Suppose the decision-maker has one of two possible utility functions. Utility function u1

with u1(x) = 2 and u1(y) = 0 has prior probability q. Utility function u2 with u2(x) = 0

and u2(y) = 1 has prior probability 1 − q. Setting γ = 1 without loss of generality, the

normalization condition (17) in Matejka and McKay (2015) becomes

q

p(x,B) + (1− p(x,B))e−2
+

1− q

p(x,B) + (1− p(x,B))e1
= 1,

from which the unconditional choice probability p(x,B) can be obtained. The two conditional

choice probabilities p(x,B|u1) and p(x,B|u2) then follow from (3).

For q = 0.35, we obtain the numerical solution p(x,B) ≈ 0.45. Hence p(x,B) < p(y,B)

even though q2 + (1− q)0 = 0.7 > 0.65 = q0 + (1− q)1, showing that unconditional choice

probabilities are not monotone with respect to the prior preference.

For q = 0.6, we obtain p(x,B) ≈ 0.89, from which it follows that p(x,B|u1) ≈ 0.98

and p(x,B|u2) ≈ 0.74. Hence p(x,B|u2) > p(y,B|u2) even though u2(x) = 0 < 1 = u2(y),

showing that conditional choice probabilities are not monotone with respect to the true

preference.
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A.5 Proof of Proposition 3

As in the proof of Proposition 1, we can decompose the swaps distance into a singular part

and an absolutely continuous part,

W (⪰, D) =

∫
∆

∫
Bδ

λ({y ∈ Bδ : y ≻ x})dµs
δ(x)dν(δ)

+

∫
∆

∫
Bδ

λ({y ∈ Bδ : y ≻ x})fδ(x)dxdν(δ).

For the singular part (first line), it follows like in the proof of Proposition 1 that ⪰∗ achieves

the minimum of 0 under weak ⪰∗-monotonicity (because weak monotonicity coincides with

monotonicity concerning the singular part).

Now consider the absolutely continuous part (second line). As in the proof of Proposition

1, it is sufficient to show that ⪰∗ minimizes this expression in the case that the choice data

D has only one equivalence class [δ] = ∆ (i.e., ∆/ ≃ is a singleton). Since condition (i)′

in the weak monotonicity definition holds for every equivalence class individually, the proof

then immediately extends to the general case.

Denote the unique budget set by B, i.e., we have that Bδ = B for all δ ∈ ∆. We can

then rewrite the absolutely continuous part as∫
∆

∫
Bδ

λ({y ∈ Bδ : y ≻ x})fδ(x)dxdν(δ) =
∫
[δ]

∫
B

λ({y ∈ B : y ≻ x})fδ′(x)dxdν(δ′)

=

∫
B

∫
[δ]

λ({y ∈ B : y ≻ x})fδ′(x)dν(δ′)dx

=

∫
B

λ({y ∈ B : y ≻ x})
∫
[δ]

fδ′(x)dν(δ
′)dx

=

∫
B

λ({y ∈ B : y ≻ x})g(x)dx,

where g(x) :=
∫
[δ]
fδ′(x)dν(δ

′). Weak ⪰∗-monotonicity implies g(x) ≥ g(y) whenever x ⪰∗ y.

The result now follows exactly like in the proof of Proposition 1.
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