
Supplementary Material

For notational simplicity, the proofs below assume that in the case p < n, the support of F is

a single compact interval [a, b] ⊂ (0,+∞). But they generalize easily to the case where Supp(F )

is the union of a finite number κ of such intervals, as maintained in Assumptions 3.2 and 3.4.

On the same grounds, we make a similar assumption on the support of F in the case p > n; see

Section 6.

When there is no ambiguity, the first subscript, n, can be dropped from the notation of the

eigenvalues and eigenvectors.

11 Proofs of Mathematical Results in Section 3.2

11.1 Proof of Theorem 3.1

Definition 11.1. For any integer k, define ∀x ∈ R, ∆
(k)
n (x) ..= p−1

∑p
i=1 u

′
iΣ

k
nui ×1[λi,+∞)(x).

Lemma 11.1. Under Assumptions 3.1–3.3, there exists a nonrandom function ∆(−1) defined

on R such that ∆
(−1)
n (x) converges almost surely to ∆(−1)(x), for all x ∈ R. Furthermore, ∆(−1)

is continuously differentiable on R and satisfies ∀x ∈ R, ∆(−1)(x) =
∫ x
−∞ δ(−1)(λ)dF (λ), where

∀λ ∈ R δ(−1)(λ) ..=




0 if λ ≤ 0,

1− c− 2 c λRe[m̆F (λ)]

λ
if λ > 0 .

Proof of Lemma 11.1. The proof of Lemma 11.1 follows directly from Ledoit and Péché

(2011, Theorem 5) and the corresponding proof, bearing in mind that we are in the case c < 1

because of Assumption 3.1.

Lemma 11.2. Under Assumptions 3.1–3.4,

1

p
Tr
(
Σ−1
n S̃n

) a.s.−→
∫ b

a
ϕ̃(x) d∆(−1)(x) .

Proof of Lemma 11.2. Restrict attention to the set Ω1 of probability one on which ∆
(−1)
n (x)

converges to ∆(−1)(x), for all x, and on which also the almost sure uniform convergence and the

uniform boundedness of Assumption 3.4 hold for all rational, small η > 0. Wherever necessary,

the results in the proof are understood to hold true on this set Ω1.

Note that

1

p
Tr
(
Σ−1
n S̃n

)
=

1

p

p∑

i=1

(
u′iΣ

−1
n ui

)
ϕ̃n(λi) =

∫
ϕ̃n(x) d∆

(−1)
n (x) . (11.1)

Since ϕ̃ is continuous and ∆
(−1)
n converges weakly to ∆(−1),

∫ b

a
ϕ̃(x) d∆(−1)

n (x)−→
∫ b

a
ϕ̃(x) d∆(−1)(x) . (11.2)
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Since
∣∣ϕ̃
∣∣ is continuous on [a, b], it is bounded above by a finite constant K̃1. Fix ε > 0. Since

∆(−1) is continuous, there exists a rational η1 > 0 such that

∣∣∆(−1)(a+ η1)−∆(−1)(a)
∣∣+
∣∣∆(−1)(b)−∆(−1)(b− η1)

∣∣ ≤ ε

6 K̃1

. (11.3)

Since ∆
(−1)
n (x)−→∆(−1)(x), for all x ∈ R, there exists N1 ∈ N such that

∀n ≥ N1 max
x∈{a,a+η1,b−η1,b}

∣∣∆(−1)
n (x)−∆(−1)(x)

∣∣ ≤ ε

24 K̃1

. (11.4)

Putting Equations (11.3)–(11.4) together yields

∀n ≥ N1

∣∣∆(−1)
n (a+ η1)−∆(−1)

n (a)
∣∣+
∣∣∆(−1)

n (b)−∆(−1)
n (b− η1)

∣∣ ≤ ε

3 K̃1

. (11.5)

Therefore, for all n ≥ N1,
∣∣∣∣∣

∫ b−η1

a+η1

ϕ̃(x) d∆(−1)
n (x)−

∫ b

a
ϕ̃(x) d∆(−1)

n (x)

∣∣∣∣∣

≤ K̃1

[∣∣∆(−1)
n (a+ η1)−∆(−1)

n (a)
∣∣+
∣∣∆(−1)

n (b)−∆(−1)
n (b− η1)

∣∣
]

≤ ε

3
. (11.6)

Since ϕ̃n(x)−→ϕ̃(x) uniformly over x ∈ [a+ η1, b− η1], there exists N2 ∈ N such that

∀n ≥ N2 ∀x ∈ [a+ η1, b− η1] |ϕ̃n(x)− ϕ̃(x)| ≤ ε h

3
.

By Assumption 3.2, there exists N3 ∈ N such that, for all n ≥ N3, maxx∈R |∆(−1)
n (x)| =

Tr(Σ−1
n )/p is bounded by 1/h . Therefore for all n ≥ max(N2, N3)

∣∣∣∣
∫ b−η1

a+η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b−η1

a+η1

ϕ̃(x) d∆(−1)
n (x)

∣∣∣∣ ≤
ε h

3
× 1

h
=
ε

3
. (11.7)

Arguments analogous to those justifying Equations (11.3)–(11.5) show there exists N4 ∈ N

such that

∀n ≥ N4

∣∣∆(−1)
n (a+ η1)−∆(−1)

n (a− η1)
∣∣+
∣∣∆(−1)

n (b+ η1)−∆(−1)
n (b− η1)

∣∣ ≤ ε

3 K̃
,

for the finite constant K̃ of Assumption 3.4. Therefore, for all n ≥ N4,

∣∣∣∣
∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b−η1

a+η1

ϕ̃n(x) d∆
(−1)
n (x)

∣∣∣∣ ≤
ε

3
. (11.8)

Putting together Equations (11.6)–(11.8) implies that, for all n ≥ max(N1, N2, N3, N4),

∣∣∣∣
∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b

a
ϕ̃(x) d∆(−1)

n (x)

∣∣∣∣ ≤ ε .

Since ε can be chosen arbitrarily small,

∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−

∫ b

a
ϕ̃(x) d∆(−1)

n (x) −→ 0 .
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By using Equation (11.2) we get

∫ b+η1

a−η1

ϕ̃n(x) d∆
(−1)
n (x)−→

∫ b

a
ϕ̃(x) d∆(−1)(x) .

Theorem 1.1 of Bai and Silverstein (1998) shows that on a set Ω2 of probability one, there

are no sample eigenvalues outside the interval [a− η1, a+ η1], for all n large enough. Therefore,

on the set Ω ..= Ω1 ∩ Ω2 of probability one,

∫
ϕ̃n(x) d∆

(−1)
n (x)−→

∫ b

a
ϕ̃(x) d∆(−1)(x) .

Together with Equation (11.1), this proves Lemma 11.2.

Lemma 11.3.

1

p
log
[
det
(
Σ−1
n S̃n

)] a.s.−→
∫ b

a
log
[
ϕ̃(x)

]
dF (x)−

∫
log(t) dH(t) .

Proof of Lemma 11.3.

1

p
log
[
det
(
Σ−1
n S̃n

)]
=

1

p
log
[
det
(
Σ−1
n

)
det
(
S̃n
)]

=
1

p
log
[
det
(
Σ−1
n

) p∏

i=1

ϕ̃n(λi)
]

=

∫
log [ϕ̃n(x)] dFn(x)−

∫
log(t) dHn(t) . (11.9)

A reasoning analogous to that conducted in the proof of Lemma 11.2 shows that the first term

on the right-hand side of Equation (11.9) converges almost surely to
∫ b
a log

[
ϕ̃(x)

]
dF (x). Given

that Hn converges weakly to H, Lemma 11.3 follows.

We are now ready to tackle Theorem 3.1. Lemma 11.1 and Lemma 11.2 imply that

1

p
Tr
(
Σ−1
n S̃n

) a.s.−→
∫ b

a
ϕ̃(x)

1− c− 2 c xRe[m̆F (x)]

x
dF (x) .

Lemma 11.3 implies that

−1

p
log
[
det
(
Σ−1
n S̃n

)]
− 1

a.s.−→
∫

log(t) dH(t)−
∫ b

a
log
[
ϕ̃(x)

]
dF (x)− 1 .

Putting these two results together completes the proof of Theorem 3.1.

11.2 Proof of Proposition 3.1

We start with the simpler case where ∀n ∈ N, ∀x ∈ R, ψ̃n(x) ≡ ψ̃(x). We make implicitly use

of Theorem 1.1 of Bai and Silverstein (1998), which states that, for any fixed η > 0, there are

no eigenvalues outside the interval [a− η, b+ η] with probability one, for all n large enough.
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For any given estimator S̃n with limiting shrinkage function ϕ̃, define the univariate function

∀x, y ∈ [a, b], ψ̃(x) ..= ϕ̃(x)/x and the bivariate function

∀x, y ∈ [a, b] ψ̃♯(x, y) ..=





xψ̃(x)− yψ̃(y)

x− y
if x 6= y

xψ̃′(x) + ψ̃(x) if x = y .

Since ψ̃ is continuously differentiable on [a, b], ψ̃♯ is continuous on [a, b] × [a, b]. Consequently,

there exists K > 0 such that, ∀x, y ∈ [a, b], |ψ̃♯(x, y)| ≤ K.

Lemma 11.4.

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi

a.s.−→
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) . (11.10)

Proof of Lemma 11.4.

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi
=

1

p2

p∑

j=1

p∑

i=1

ψ̃♯(λi, λj)−
1

p2

p∑

j=1

ψ̃♯(λj , λj)

=

∫ b

a

∫ b

a
ψ̃♯(x, y) dFn(x) dFn(y)−

1

p2

p∑

j=1

ψ̃♯(λj , λj) .

Given Equation (3.1), the first term converges almost surely to the right-hand side of

Equation (11.10). The absolute value of the second term is bounded by K/p; therefore, it

vanishes asymptotically.

Lemma 11.5.

∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) = −2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x) . (11.11)

Proof of Lemma 11.5. Fix any ε > 0. Then there exists η1 > 0 such that, for all v ∈ (0, η1),

∣∣∣∣2
∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x)− 2

∫ b

a
xψ̃(x)Re [m̆F (x+ iv)] dF (x)

∣∣∣∣ ≤
ε

4
.

The definition of the Stieltjes transform implies

−2

∫ b

a
xψ̃(x)Re [m̆F (x+ iv)] dF (x) = 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
dF (x) dF (y) .

There exists η2 > 0 such that, for all v ∈ (0, η1),

∣∣∣∣∣2
∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
dF (x)dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2}dF (x)dF (y)

∣∣∣∣∣ ≤
ε

4

and

∣∣∣∣
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y)−

∫ b

a

∫ b

a
ψ̃♯(x, y)1{|x−y|≥η2} dF (x) dF (y)

∣∣∣∣ ≤
ε

4
.
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We have

∫ b

a

∫ b

a
ψ̃♯(x, y)1{|x−y|≥η2} dF (x) dF (y) =

∫ b

a

∫ b

a

xψ̃(x)− yψ̃(y)

x− y
1{|x−y|≥η2} dF (x) dF (y)

=

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)

+

∫ b

a

∫ b

a

yψ̃(y)

y − x
1{|y−x|≥η2} dF (y) dF (x)

= 2

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y) .

Note that

2

∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y)

= 2

∫ b

a

∫ b

a

xψ̃(x)

x− y

v2

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y) ,

and that

∀(x, y) such that |x− y| ≥ η2
v2

(x− y)2 + v2
≤ v2

η22 + v2
.

The quantity on the right-hand side can be made arbitrarily small for fixed η2 by bringing v

sufficiently close to zero. This implies that there exists η3 ∈ (0, η1) such that, for all v ∈ (0, η3),

∣∣∣∣∣2
∫ b

a

∫ b

a

xψ̃(x)

x− y
1{|x−y|≥η2} dF (x) dF (y)− 2

∫ b

a

∫ b

a

xψ̃(x)(x− y)

(x− y)2 + v2
1{|x−y|≥η2} dF (x) dF (y)

∣∣∣∣∣ ≤
ε

4
.

Putting these results together yields

∣∣∣∣
∫ b

a

∫ b

a
ψ̃♯(x, y) dF (x) dF (y) + 2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x)

∣∣∣∣ ≤ ε .

Since this holds for any ε > 0, Equation (11.11) follows.

Putting together Lemmas 11.4 and 11.5 yields

2

p2

p∑

j=1

∑

i>j

λjψ̃(λj)− λiψ̃(λi)

λj − λi

a.s.−→ −2

∫ b

a
xψ̃(x)Re [m̆F (x)] dF (x) .

Lemma 11.6. As n and p go to infinity with their ratio p/n converging to the concentration c,

log(n)− 1

p

p∑

j=1

E[log(χ2
n−j+1)] −→ 1 +

1− c

c
log(1− c) .

Proof of Lemma 11.6. It is well known that, for every positive integer ν,

E[log(χ2
ν)] = log(2) +

Γ′(ν/2)

Γ(ν/2)
,
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where Γ(·) denotes the gamma function. Thus,

1

p

p∑

j=1

E[log(χ2
n−j+1)] = log(2) +

1

p

p∑

j=1

Γ′((n− j + 1)/2)

Γ((n− j + 1)/2)
.

Formula 6.3.21 of Abramowitz and Stegun (1965) states that

∀x ∈ (0,+∞)
Γ′(x)

Γ(x)
= log(x)− 1

2x
− 2

∫ ∞

0

t dt

(t2 + x2)(e2πt − 1)
.

It implies that

log(n)− 1

p

p∑

j=1

E[log(χ2
n−j+1)] = −1

p

p∑

j=1

log

(
1− j − 1

n

)
+

1

p

n∑

k=n−p+1

1

k

+
1

p

n∑

k=n−p+1

∫ ∞

0

t dt

[t2 + (k/2)2](e2πt − 1)

=.. −1

p

p∑

j=1

log

(
1− j − 1

n

)
+An +Bn .

It is easy to verify that

−1

p

p∑

j=1

log

(
1− j − 1

n

)
−→ −1

c

∫ c

0
log(1− x)dx = 1 +

1− c

c
log(1− c) .

Therefore, all that remains to be proven is that the two terms An and Bn vanish. Using

formulas 6.3.2 and 6.3.18 of Abramowitz and Stegun (1965), we see that

An
..=

1

p

n∑

k=n−p+1

1

k
=

1

p

[
Γ′(n)

Γ(n)
− Γ′(n− p+ 1)

Γ(n− p+ 1)

]
=

1

p
log

(
n

n− p+ 1

)
+O

(
1

p(n− p+ 1)

)
,

which vanishes indeed. As for the term Bn, it admits the upper bound

Bn
..=

1

p

n∑

k=n−p+1

∫ ∞

0

t dt

[t2 + (k/2)2](e2πt − 1)
≤
∫ ∞

0

t dt

[t2 + ((n− p+ 1)/2)2](e2πt − 1)
,

which also vanishes.

Going back to Equation (2.2), we notice that the term

2

p

p∑

j=1

λjψ̃
′(λj)

remains bounded asymptotically with probability one, since ψ̃′ is bounded over a compact set.

Putting all these results together shows that the unbiased estimator of risk Θn(Sn, Σ̂)

converges almost surely to

(1− c)

∫ b

a
ψ̃(x)dF (x)−

∫ b

a
log[ψ̃(x)]dF (x)− 2c

∫ b

a
xψ̃(x)Re[m̆F (x)]dF (x) +

1− c

c
log(1− c)

=

∫ b

a

{
1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)− log[ϕ̃(x)]

}
dF (x) +

∫ b

a
log(x)dF (x) +

1− c

c
log(1− c)

=

∫ b

a

{
1− c− 2 c xRe[m̆F (x)]

x
ϕ̃(x)− log[ϕ̃(x)]

}
dF (x) +

∫
log(t) dH(t)− 1 ,

where the last equality comes from the following lemma.
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Lemma 11.7.

∫ b

a
log(x) dF (x) +

1− c

c
log(1− c) =

∫
log(t) dH(t)− 1 .

Proof of Lemma 11.7. Setting ϕ̃(x) = x for all x ∈ Supp(F ) in Lemma 11.3 yields

1

p
log
[
det
(
Σ−1
n Sn

)] a.s.−→
∫ b

a
log(x) dF (x)−

∫
log(t) dH(t) . (11.12)

In addition, note that

1

p
log
[
det
(
Σ−1
n Sn

)]
=

1

p
log

[
det

(
Σ−1
n

1

n

√
ΣnX

′
nXN

√
Σn

)]

=
1

p
log

[
det

(
1

n
X ′

nXn

)]
a.s.−→ c− 1

c
log(1− c)− 1 , (11.13)

where the convergence comes from Equation (1.1) of Bai and Silverstein (2004). Comparing

Equation (11.12) with Equation (11.13) proves the lemma.

It is easy to verify that these results carry through to the more general case where the

function ψ̃n can vary across n, as long as it is well behaved asymptotically in the sense of

Assumption 3.4.

11.3 Proof of Proposition 3.2

We provide a proof by contradiction. Suppose that Proposition 3.2 does not hold. Then there

exist ε > 0 and x0 ∈ Supp(F ) such that

1− c− 2 c x0 Re[m̆F (x0)] ≤
a1

h
− 2ε . (11.14)

Since m̆F is continuous, there exist x1, x2 ∈ Supp(F ) such that x1 < x2, [x1, x2] ⊂ Supp(F ),

and

∀x ∈ [x1, x2] 1− c− 2 c xRe[m̆F (x)] ≤
a1

h
− ε .

Define, for all n ∈ N and x ∈ R,

ϕ(x) ..= x1[x1,x2](x)

ϕn(x)
..= ϕ(x)

Dn
..= Diag

(
ϕn(λn,1), . . . , ϕn(λn,p)

)

Sn
..= UnDnU

′
n .

By Lemmas 11.1–11.2,

1

p
Tr
(
Σ−1
n Sn

) a.s.−→
∫
ϕ(x)

1− c− 2 c xRe[m̆F (x)]

x
dF (x) . (11.15)

The left-hand side of Equation (11.15) is asymptotically bounded from below as follows.

1

p
Tr
(
Σ−1
n Sn

)
=

1

p

p∑

i=1

u′n,iΣ
−1
n un,i × λn,i 1[x1,x2](λn,i)

≥ λn,1

h
[Fn(x2)− Fn(x1)]

a.s.−→ a1

h
[F (x2)− F (x1)] . (11.16)
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The right-hand side of Equation (11.15) is bounded from above as follows.

∫
ϕ(x)

1− c− 2 c xRe[m̆F (x)]

x
dF (x) ≤

(
a1

h
− ε

)
[F (x2)− F (x1)] . (11.17)

Given that F (x2)−F (x1) > 0, Equations (11.15)–(11.17) form a logical contradiction. Therefore,

the initial assumption (11.14) must be false, which proves Proposition 3.2.

11.4 Proof of Proposition 3.3

If we compare Equations (3.8) and (3.9), we see that the term
∫
log(t) dH(t) appears in both,

so it can be ignored. The challenge is then to prove that

κ∑

k=1

∫ bk

ak

{
c+ 2 c xRe[m̆F (x)] + log(x)

}
dF (x) <

κ∑

k=1

∫ bk

ak

log

[
x

1− c− 2 c xRe[m̆F (x)]

]
dF (x) .

(11.18)

Rearranging terms, we can restate this inequality as

κ∑

k=1

∫ bk

ak

{
c+ 2 c xRe[m̆F (x)] + log (1− c− 2 c xRe[m̆F (x)])

}
dF (x) < 0 . (11.19)

Setting y ..= c+2 c xRe[m̆F (x)] leads us to investigate the function y 7→ y+log(1−y). Elementary

calculus shows that it is strictly negative over its domain of definition, except at y = 0, where

it attains its maximum of zero. The condition y = 0 is equivalent to xRe[m̆F (x)] = −1/2.

If we set the variable x equal to a1, the lower bound of the leftmost interval of the support

of the limiting sample spectral distribution F , we get

a1 Re[m̆F (a1)] = PV

∫ ∞

−∞

a1
λ− a1

dF (λ) , (11.20)

where PV denotes the Cauchy Principal Value (Henrici, 1988, pp. 259–262). The quantity in

Equation (11.20) is nonnegative because λ ≥ a1 for all λ ∈ Supp(F ). By continuity, there exists

some β1 ∈ (a1, b1] such that xRe[m̆F (x)] > −1/2 for all x ∈ [a1, β1]. This implies that the strict

inequality (11.19) is true.

11.5 Proof of Proposition 3.4

Subtracting Equation (3.8) from Equation (3.14) shows that the difference between limiting

losses MS
c (H,ϕ

M )−M
S
c

(
H,ϕS

)
is equal to

∫ {
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)
− 1− log

[
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)

]}
dF (x) . (11.21)

The function y 7−→ y − 1 + log(y) is strictly positive over its domain of definition, except at

y = 1, where it attains its minimum of zero. Therefore

∀x ∈ Supp(F )
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)
− 1− log

[
1− c− 2cxRe[m̆F (x)]

1− c+ 2cF (x)

]
≥ 0 , (11.22)
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which implies that M
S
c (H,ϕ

M ) − M
S
c

(
H,ϕS

)
≥ 0, as we already knew from Corollary 3.1.

Elementary calculus shows that the inequality (11.22) is strict if and only if −xRe[m̆F (x)] 6=
F (x). As in the proof of Proposition 3.3, we use a1, the lower bound of the leftmost interval of

the support of the limiting sample spectral distribution F :

∀x ∈ [0, a1) − xRe[m̆F (x)] =

∫
x

x− λ
dF (λ) = 1 +

∫
λ

x− λ
dF (λ) , (11.23)

which is a strictly decreasing function of x. Therefore, using the fact that m̆F is continuous

(Silverstein and Choi, 1995, Theorem 1.1), −a1 Re[m̆F (a1)] is strictly below the value that

−xRe[m̆F (x)] takes at x = 0, which is itself zero. It implies −a1 Re[m̆F (a1)] 6= F (a1). By

continuity, there exists some β′1 ∈ (a1, b1] such that −xRe[m̆F (x)] 6= F (x) for all x ∈ [a1, β
′
1].

This in turn implies that the integral in Equation (11.21) is strictly positive.

11.6 Proof of Proposition 3.5

The linear shrinkage estimator in Equation (14) of Ledoit and Wolf (2004) is of the form

SL
n

..= mnIn +
a2n
d2n

(Sn −mnIn) , (11.24)

where

mn
..=

∫
λ dFn(λ)

a.s.−→
∫
λ dF (λ) (11.25)

a2n
..=

∫
t2dHn(t)−

[∫
t dHn(t)

]2
−→

∫
t2dH(t)−

[∫
t dH(t)

]2
(11.26)

d2n
..=

∫
λ2dFn(λ)−

[∫
λ dFn(λ)

]2
a.s.−→

∫
λ2dF (λ)−

[∫
λ dF (λ)

]2
. (11.27)

Thus, the linear shrinkage function is ϕL
n : x 7−→ mn +

(
a2n/d

2
n

)
(x−mn). Under Assumptions

3.1–3.3,

∀x ∈ Supp(F ) ϕL
n(x)

a.s.−→
∫
λ dF (λ) +

∫
t2dH(t)−

[∫
t dH(t)

]2

∫
λ2dF (λ)−

[∫
λ dF (λ)

]2
[
x−

∫
λ dF (λ)

]
.

(11.28)

Since the support of F is compact, the convergence is uniform.

12 Proofs of Theorems in Section 4

12.1 Proof of Theorem 4.1

Lemma 12.1. Under Assumptions 3.1–3.3, there exists a nonrandom function ∆(1) defined

on R such that the random function ∆
(1)
n (x) converges almost surely to ∆(1)(x), for all x ∈ R.

Furthermore, ∆(1) is continuously differentiable on R and can be expressed as

∀x ∈ R ∆(1)(x) =




0 if x < a,
∫ x
a δ

(1)(λ)dF (λ) if x ≥ a,

9



where ∀λ ∈ [a,+∞), δ(1)(λ) ..= λ/|1− c− c λ m̆F (λ)|2.

Proof of Lemma 12.1. Follows directly from Theorem 4 of Ledoit and Péché (2011).

Lemma 12.2. Under Assumptions 3.1–3.4,

1

p
Tr
(
ΣnS̃

−1
n

) a.s.−→
∫ b

a

1

ϕ̃(x)
d∆(1)(x) .

Proof of Lemma 12.2. Note that

1

p
Tr
(
ΣnS̃

−1
n

)
=

1

p

p∑

i=1

u′iΣnui
ϕ̃n(λi)

=

∫
1

ϕ̃n(x)
d∆(1)

n (x) .

The remainder of the proof is similar to the proof of Lemma 11.2 and is thus omitted.

Lemma 12.1 and Lemma 12.2 imply that

1

p
Tr
(
ΣnS̃

−1
n

) a.s.−→
∫ b

a

x

ϕ̃(x) |1− c− c x m̆F (x)|2
dF (x) . (12.1)

Lemma 11.3 implies that

−1

p
log
[
det
(
ΣnS̃

−1
n

)]
− 1

a.s.−→
∫ b

a
log
[
ϕ̃(x)

]
dF (x)−

∫
log(t) dH(t)− 1 .

Putting these two results together completes the proof of Theorem 4.1.

12.2 Proof of Theorem 4.2

Note that

1

p
Tr

[(
Σn − S̃n

)2]
=

1

p

p∑

i=1

[
τ2n,i − 2u′n,iΣnun,i ϕ̃n(λn,i) + ϕ̃n(λn,i)

2
]

=

∫
x2 dHn(x)− 2

∫
ϕ̃n(x) d∆

(1)
n (x) +

∫
ϕ̃n(x)

2 dFn(x) .

The remainder of the proof is similar to the proof of Lemma 11.2 and is thus omitted.

12.3 Proof of Theorem 4.3

Note that

1

p
Tr

[(
Σ−1
n − S̃−1

n

)2]
=

1

p

p∑

i=1

[
1

τ2n,i
− 2

u′n,iΣ
−1
n un,i

ϕ̃n(λn,i)
+

1

ϕ̃n(λn,i)2

]

=

∫
1

x2
dHn(x)− 2

∫
1

ϕ̃n(x)
d∆(−1)

n (x) +

∫
1

ϕ̃n(x)2
dFn(x) .

The remainder of the proof is similar to the proof of Lemma 11.2 and is thus omitted.

10



13 Proof of Theorem 5.2

Define the shrinkage function

∀x ∈ Supp
(
F τ̂n
n,p

)
ϕ̂∗
n(x)

..=
x

1− p

n
− 2

p

n
xRe

[
m̆τ̂n

n,p(x)
] .

Theorem 2.2 of Ledoit and Wolf (2015) and Proposition 4.3 of Ledoit and Wolf (2012) imply

that ∀x ∈ Supp(F ), ϕ̂∗
n(x)

a.s−→ ϕ∗(x), and that this convergence is uniform over x ∈ Supp(F ),

apart from arbitrarily small boundary regions of the support. Theorem 5.2 then follows from

Corollary 3.1.

14 Proofs of Theorems in Section 6

14.1 Proof of Theorem 6.1

Lemma 14.1. Under Assumptions 3.2, 3.3, and 6.1, there exists a nonrandom function ∆(−1)

defined on R such that ∆
(−1)
n (x) converges almost surely to ∆(−1)(x), for all x ∈ R − {0}.

Furthermore, ∆(−1) is continuously differentiable on R− {0} and can be expressed as ∀x ∈ R,

∆(−1)(x) =
∫ x
−∞ δ(−1)(λ)dF (λ), where

∀λ ∈ R δ(−1)(λ) ..=





0 if λ < 0,
c

c− 1
· m̆H(0)− m̆F (0) if λ = 0,

1− c− 2 c λRe[m̆F (λ)]

λ
if λ > 0 .

Proof of Lemma 14.1. The proof of Lemma 14.1 follows directly from Ledoit and Péché

(2011, Theorem 5) and the corresponding proof, bearing in mind that we are in the case c > 1

because of Assumption 6.1.

The proof of Theorem 6.1 proceeds as the proof of Theorem 3.1, except that Lemma 14.1 replaces

Lemma 11.1.

14.2 Proof of Theorem 6.2

Define the shrinkage function

ϕ̂∗
n(0)

..=

(
p/n

p/n− 1
· ̂̆mH(0)− ̂̆mF (0)

)−1

,

and ∀x ∈ Supp
(
F τ̂n

n,p

)
ϕ̂∗
n(x)

..=
x

1− p

n
− 2

p

n
xRe

[
m̆τ̂n

n,p(x)
] .

First, since both ̂̆mH(0) and ̂̆mF (0) are strongly consistent estimators, ϕ̂∗
n(0)

a.s−→ ϕ∗(0). Second,

Theorem 2.2 of Ledoit and Wolf (2015) and Proposition 4.3 of Ledoit and Wolf (2012) applied

to F imply that ∀x ∈ Supp(F ), ϕ̂∗
n(x)

a.s−→ ϕ∗(x), and that this convergence is uniform over

x ∈ Supp(F ), apart from arbitrarily small boundary regions of the support. Theorem 6.2 then

follows from Corollary 6.1.

11



15 Proofs of Propositions in Section 7

15.1 Common Notation

Let Vn denote a matrix of eigenvectors of Σn arranged to match the ascending order of the

eigenvalues vector τn = (τn,1, . . . , τn,p). Let vn,p denote the pth column vector of the matrix Vn.

We can decompose the population covariance matrix Σn into its bulk and arrow components

according to Σn = ΣB
n +ΣA

n , where

ΣB
n

..= Vn × Diag(τn,1, . . . , τn,p−1, 0)× V ′
n (15.1)

ΣA
n

..= Vn × Diag( 0, . . . , 0︸ ︷︷ ︸
p− 1 times

, τn,p)× V ′
n . (15.2)

Note that the min(n, p) largest eigenvalues of Sn are the same as those of Tn ..= n−1XnΣnX
′
n, so

in many instances we will be able to simply investigate the spectral decomposition of the latter

matrix. Equations (15.1)–(15.2) enable us to write Tn = TB
n + TA

n , where TB
n

..= n−1XnΣ
B
nX

′
n

and TA
n

..= n−1XnΣ
A
nX

′
n.

15.2 Proof of Proposition 7.1

Given that the bulk population eigenvalues are below h, Theorem 1.1 of Bai and Silverstein

(1998) shows that there exists a constant B such that the largest eigenvalue of TB
n is below B

almost surely for all n sufficiently large. Furthermore, due to the fact that the rank of

the matrix TA
n is one, its second largest eigenvalue is zero. Therefore the Weyl inequalities

(e.g., see Theorem 1 in Section 6.7 of Franklin (2000) for a textbook treatment) imply that

λn,p−1 ≤ B+0 = B a.s. for sufficiently large n. This establishes the first part of the proposition.

As for the second part, it comes from

λn,p
τn,p

≥
v′n,pSnvn,p

τn,p
=

1

τn,p
v′n,p

√
Σn

X ′
nXn

n

√
Σnvn,p = v′n,p

X ′
nXn

n
vn,p

a.s.−→ 1. (15.3)

15.3 Proof of Proposition 7.2

Lemma 15.1. Under Assumptions 3.1, 3.2.a–c, and 3.2.f, there is spectral separation between

the arrow and the bulk in the sense that

sup

{
t ∈ R : F τn

n,p(t) ≤
p− 1

p

}
< inf

{
t ∈ R : F τn

n,p(t) >
p− 1

p

}
(15.4)

for large enough n.

Proof of Lemma 15.1. From page 5356 of Mestre (2008), a necessary and sufficient condition

for spectral separation to occur between the arrow and the bulk is that

∃t ∈ (τn,p−1, τn,p) s.t. Θn(t) ..=
1

p

p∑

i=1

τ2n,i(
τn,i − t

)2 − 1

c
< 0 . (15.5)

This is equivalent to the condition that the function xF (m) defined in Equation (1.6) of

Silverstein and Choi (1995) is strictly increasing at m = −1/t. Section 4 of Silverstein and Choi

12



(1995) explains in detail how this enables us to determine the boundaries of the support of F τn
n,p .

Assumption 3.2.f guarantees that

∀i = 1, . . . , p− 1, ∀t ∈ (τn,p−1, τn,p),
τ2n,i(

τn,i − t
)2 ≤ h

2

(
h− t

)2 , (15.6)

therefore a sufficient condition for arrow separation is that

∃t ∈ (τn,p−1, τn,p) s.t. θn(t) ..=
p− 1

p

h
2

(
h− t

)2 +
1

p

τ2n,p(
τn,p − t

)2 − 1

c
< 0 . (15.7)

The function θn is strictly convex on
(
h, τn,p

)
and goes to infinity as it approaches h and τn,p,

therefore it admits a unique minimum on
(
h, τn,p

)
characterized by the first-order condition

θ′n(t) = 0 ⇐⇒ 2
p− 1

p

h
2

(
h− t

)3 + 2
1

p

τ2n,p(
τn,p − t

)3 = 0

⇐⇒ p− 1

p

h
2

(
t− h

)3 =
1

p

τ2n,p(
τn,p − t

)3

⇐⇒
(

p

p− 1

)1/3 t− h

h
2/3

= p1/3
τn,p − t

τ
2/3
n,p

⇐⇒ t = t∗n
..=
(
h τn,p

)2/3
(

p
p−1

)1/3
τ
1/3
n,p +

(
1
p

)1/3
h
1/3

(
p

p−1

)1/3
h
2/3

+
(
1
p

)1/3
τ
2/3
n,p

.

Note that t∗n ∼ h
2/3
β
1/3
1 p2/3, therefore

θn
(
t∗n
)
∼ h

2

h
4/3
β
2/3
1 p4/3

+
β21 p

2

β21 p
3
− 1

c
−→ −1

c
< 0 , (15.8)

which implies that condition (15.7) is satisfied for large enough n, and the arrow separates from

the bulk.

Since the function Θn from Equation (15.5) is strictly convex over the interval
(
τn,p−1, t

∗
n

)
,

limtցτn,p−1
Θn(t) = +∞ and Θn(t

∗
n) ≤ θn(t

∗
n) < 0 by Lemma 15.1, Θn admits a unique zero in(

τn,p−1, t
∗
n

)
. Call it bn. An asymptotically valid bound for bn is given by the following lemma.

Lemma 15.2. Under Assumptions 3.1, 3.2.a–c, and 3.2.f,

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N bn ≤
(
1 +

√
c+ ε

)
h . (15.9)

Proof of Lemma 15.2.

Θ(bn) = 0 ⇐⇒ 1

p

p−1∑

i=1

τ2n,i(
τn,i − bn

)2 +
1

p

τ2n,p(
τn,p − bn

)2 =
1

c
. (15.10)

From bn ≤ t∗n and τn,p ∼ β1p we deduce

1

p

τ2n,p(
τn,p − bn

)2 ∼ 1

p
−→ 0 ; (15.11)
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therefore,

1

p

p−1∑

i=1

τ2n,i(
τn,i − bn

)2 −→ 1

c
. (15.12)

This implies that ∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N

1

p

p−1∑

i=1

τ2n,i(
τn,i − bn

)2 ≥ 1

c+ ε

p− 1

p

h
2

(
h− bn

)2 ≥ 1

c+ ε
(
h− bn

)2

h
2 ≤ c+ ε

bn ≤
(
1 +

√
c+ ε

)
h. (15.13)

Since the function Θn from Equation (15.5) is strictly convex over the interval
(
t∗n, τn,p

)
,

limtրτn,p
Θn(t) = +∞ and Θn(t

∗
n) ≤ θn(t

∗
n) < 0 by Lemma 15.1, Θn admits a unique zero in(

t∗n, τn,p
)
. Call it tn. An asymptotically valid equivalency result for tn is given by the following

lemma.

Lemma 15.3. Under Assumptions 3.1, 3.2.a–c, and 3.2.f,

τn,p − tn ∼ τn,p√
n
. (15.14)

Proof of Lemma 15.3.

Θ(tn) = 0 ⇐⇒ 1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 +
1

p

τ2n,p(
τn,p − tn

)2 =
1

c
. (15.15)

From the inequalities tn ≥ t∗n and τn,i ≤ h (for i = 1, . . . , p− 1) we deduce

1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 ≤ p− 1

p

h
2

(
h− t∗n

)2 ∼ h
2/3

β
2/3
1 p4/3

−→ 0 , (15.16)

therefore

1

p

τ2n,p(
τn,p − tn

)2 −→ 1

c

1

n

τ2n,p(
τn,p − tn

)2 −→ 1

τn,p − tn
τn,p/

√
n

−→ 1.

Lemma 15.4. Define

λn
..= inf

{
t ∈ R : F τn

n,p(t) >
p− 1

p

}
. (15.17)

Then under Assumptions 3.1, 3.2.a–c, and 3.2.f,

τn,p − λn ∼ 2
τn,p√
n
. (15.18)
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Proof of Lemma 15.4. Equation (13) of Mestre (2008) gives

λn = tn − c tn
1

p

p∑

i=1

τn,i
τn,i − tn

. (15.19)

This is equivalent to plugging m = −1/tn into Equation (1.6) of Silverstein and Choi (1995).

These authors’ Section 4 explains why method yields the boundary points of Supp(F τn
n,p). From

Equation (15.19) we deduce

1− λn
tn

= c
1

p

τn,p
τn,p − tn

− c
1

p

p−1∑

i=1

τn,i
tn − τn,i

. (15.20)

Lemma 15.3 enables us to approximate the first term on the right-hand side by

c
1

p

τn,p
τn,p − tn

∼ p

n
× 1

p
×
√
n =

1√
n
. (15.21)

Since τn,i ≤ h < tn, the second term is bounded by

0 ≤ c
1

p

p−1∑

i=1

τn,i
tn − τn,i

≤ c
h

tn − h
∼ c

h

β1p
, (15.22)

therefore it is negligible with respect to the first term. We conclude by remarking that

1− λn
tn

∼ 1√
n

tn − λn ∼ tn√
n
∼ τn,p√

n

τn,p − λn =
(
τn,p − tn

)
+
(
tn − λn

)
∼ 2

τn,p√
n
.

Lemma 15.5. Define

µn
..= sup

{
t ∈ R : F τn

n,p(t) ≤
p− 1

p

}
. (15.23)

Then under Assumptions 3.1, 3.2.a–c, and 3.2.f,

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N µn ≤
(
1 +

√
c+ ε

)2
h . (15.24)

Proof of Lemma 15.5. Equation (13) of Mestre (2008) gives

µn = bn − c bn
1

p

p∑

i=1

τn,i

τn,i − bn
. (15.25)

This is equivalent to plugging m = −1/bn into Equation (1.6) of Silverstein and Choi (1995).

Fix any i ∈ {1, 2, . . . , p− 2} and hold (τn,j)j 6=i constant. Define the function

∀b ∈ (τn,p−1, t
∗
n), ∀t ≤ τn,i+1 Fi(b, t) ..= b− c b

1

p

t

t− b
− c b

1

p

p∑

j=1
j 6=i

τn,j
τn,j − b

. (15.26)
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Then clearly µn = Fi(bn, τn,i). Viewing µn and bn as two univariate functions of τn,i, we can

write:
dµn
dτn,i

=
∂Fi

∂b
(bn, τn,i)×

dbn
dτn,i

+
∂Fi

∂t
(bn, τn,i) . (15.27)

But notice that

∀b ∈ (τn,p−1, t
∗
n), ∀t ≤ τn,i+1

∂Fi

∂b
(b, t) = 1− c

1

p

t2

(t− b)2
− c

1

p

p∑

j=1
j 6=i

τ2n,j
(τn,j − b)2

; (15.28)

therefore,
∂Fi

∂b
(bn, τn,i) = −c Θn(bn) , (15.29)

which is identically equal to zero by Equation (15.5). By the envelope theorem, Equation (15.27)

simplifies into

dµn
dτn,i

=
∂Fi

∂t
(bn, τn,i) = c

1

p

b
2
n

(τn,i − bn)2
> 0 . (15.30)

We can thus obtain an upper bound on µn by setting τn,1, . . . , τn,p−2 equal to τn,p−1. In this

particular case, bn verifies

p− 1

p

τ2n,p−1

(τn,p−1 − bn)2
+

1

p

τ2n,p

(τn,p − bn)2
=

1

c
. (15.31)

From Equation (15.13) and τn,p ∼ β1p we deduce

p− 1

p

τ2n,p−1

(τn,p−1 − bn)2
−→ 1

c
(15.32)

τn,p−1

τn,p−1 − bn
−→ − 1√

c
. (15.33)

Thus, in the particular case where τn,1, . . . , τn,p−2 are all equal to τn,p−1, µn verifies

µn
bn

= 1− c
p− 1

p

τn,p−1

τn,p−1 − bn
− c

1

p

τn,p

τn,p − bn
−→ 1 +

√
c . (15.34)

Remember that, by Equation (15.30), the particular case τn,1 = · · · = τn,p−2 = τn,p−1 yields an

upper bound on µn that holds in the general case τn,1 ≤ · · · ≤ τn,p−2 ≤ τn,p−1, therefore putting

together Equations (15.13) and (15.34) yields the conclusion

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N µn ≤
(
1 +

√
c+ ε

)2
h. (15.35)

The first part of Proposition 7.2 follows from Lemma 15.5 and from the observation

that qp−1
n,p (τn) is no greater than µn as defined in Equation (15.23). The second part of

Proposition 7.2 follows from Lemma 15.4 and from the observation that qpn,p (τn) is no smaller

than λn as defined in Equation (15.17).
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15.4 Proof of Proposition 7.3

The eigenvalues of TB
n are bounded from below by zero. Given that the bulk population

eigenvalues are below h, Theorem 1.1 of Bai and Silverstein (1998) shows that there exists a

constant B such that the largest eigenvalue of TB
n is below B almost surely for all n sufficiently

large. Therefore the Weyl inequalities imply that

λAn,p ≤ λn,p ≤ λAn,p +B (15.36)

almost surely for sufficiently large n, where λAn,p denotes the largest eigenvalue of TA
n .

Furthermore, we have
λAn,p
τn,p

= v′n,p
X ′

nXn

n
vn,p

a.s.−→ 1 . (15.37)

Putting together Equations (15.36) and (15.37) yields λn,p/τn,p
a.s.−→ 1, as desired.

15.5 Proof of Proposition 7.4

Since the function Θn from Equation (15.5) is strictly convex over the interval
(
τn,p,+∞

)
,

limtցτn,p
Θn(t) = +∞ and limtց+∞Θn(t) = −1/c < 0, Θn admits a unique zero in

(
τn,p,+∞

)
.

Call it tn. An asymptotically valid equivalency result for tn is given by the following lemma.

Lemma 15.6. Under Assumptions 3.1, 3.2.a–c, and 3.2.f,

tn − τn,p ∼
τn,p√
n
. (15.38)

Proof of Lemma 15.6.

Θ(tn) = 0 ⇐⇒ 1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 +
1

p

τ2n,p(
τn,p − tn

)2 =
1

c
. (15.39)

From tn ∼ β1p and τn,i ≤ h (for i = 1, . . . , p− 1) we deduce

1

p

p−1∑

i=1

τ2n,i(
τn,i − tn

)2 ∼ h
2

β21p
2
−→ 0 ; (15.40)

therefore,

1

p

τ2n,p(
τn,p − tn

)2 −→ 1

c

1

n

τ2n,p(
τn,p − tn

)2 −→ 1

tn − τn,p
τn,p/

√
n

−→ 1.

Lemma 15.7. Define

λn ..= sup
{
t ∈ R : F τn

n,p(t) < 1
}
. (15.41)

Then under Assumptions 3.1, 3.2.a–c, and 3.2.f,

λn − τn,p ∼ 2
τn,p√
n
. (15.42)
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Proof of Lemma 15.7. Equation (13) of Mestre (2008) gives

λn = tn − c tn
1

p

p∑

i=1

τn,i
τn,i − tn

. (15.43)

This is equivalent to plugging m = −1/tn into Equation (1.6) of Silverstein and Choi (1995).

From Equation (15.43) we deduce

λn
tn

− 1 = c
1

p

τn,p
tn − τn,p

+ c
1

p

p−1∑

i=1

τn,i
tn − τn,i

. (15.44)

Lemma 15.6 enables us to approximate the first term on the right-hand side by

c
1

p

τn,p
tn − τn,p

∼ p

n
× 1

p
×
√
n =

1√
n
. (15.45)

Since τn,i ≤ h < tn, the second term is bounded by

0 ≤ c
1

p

p−1∑

i=1

τn,i
tn − τn,i

≤ c
h

tn − h
∼ c

h

β1p
; (15.46)

therefore, it is negligible with respect to the first term. We conclude by remarking that

λn
tn

− 1 ∼ 1√
n

λn − tn ∼ tn√
n
∼ τn,p√

n

λn − τn,p =
(
λn − tn

)
+
(
tn − τn,p

)
∼ 2

τn,p√
n
.

The observation that λn ≤ qpn,p (τn) ≤ λn together with Lemmas 15.4 and 15.7 establishes

Proposition 7.4.

15.6 Proof of Lemma 7.1

For ease of notation, let us denote ϕ̃n(λn,i) by ϕ̃n,i in this proof only.

L
S
n(Σn, S̃n) =

1

p

p∑

i=1

ϕ̃n,i · un,iΣ−1
n un,i +

1

p

p∑

i=1

log(τn,i)−
1

p

p∑

i=1

log(ϕ̃n,i)− 1

∂LS
n(Σn, S̃n)

∂ϕ̃n,i
=

1

p
un,iΣ

−1
n un,i −

1

p

1

ϕ̃n,i

The first-order condition is

∂LS
n(Σn, S̃n)

∂ϕ̃n,i
= 0 ⇐⇒ ϕ̃n,i =

1

un,iΣ
−1
n un,i

.
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15.7 Proof of Proposition 7.5

As in the proof of Proposition 7.3 above, let Vn denote a matrix of eigenvectors of Σn arranged

to match the nondescending order of the eigenvalues τn = (τn,1, . . . , τn,p), and let vn,i denote its

ith column vector (i = 1, . . . , p). The matrix ΣA
n defined in Equation (15.2) is a rank-degenerate

version of the population covariance matrix where all bulk eigenvalues have been neglected. The

sample covariance matrix that corresponds to ΣA
n is

SA
n

..= n−1
√
ΣA
nX

′
nXn

√
ΣA
n . (15.47)

It admits a spectral decomposition on the same orthonormal basis as Σn and ΣA
n :

SA
n = Vn × Diag

(
λAn,1, . . . , λ

A
n,p

)
× V ′

n , (15.48)

with all eigenvalues equal to zero except for λAn,p = n−1τn,p · v′n,pX ′
nXnvn,p. Viewing Sn as a

perturbation of SA
n , Equation (5.1) of Meyer and Stewart (1988) gives the approximation

∀i = 1, . . . , p− 1 u′n,pvn,i =
v′n,i

(
Sn − SA

n

)
vn,p

λAn,p − λAn,i
+O

((
τn,i
τn,p

)2
)
, (15.49)

from which we deduce

τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i
=

p−1∑

i=1

τn,p
τn,i

[
v′n,i

(
Sn − SA

n

)
vn,p

λAn,p − λAn,i

]2
+O

(
1

p

)
. (15.50)

Note that ∀i = 1, . . . , p − 1, v′n,iS
A
n vn,p = 0, and v′n,iSnvn,p = n−1√τn,i τn,p · v′n,iX ′

nXnvn,p,

therefore this expression simplifies to

τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i
=

1

n

p−1∑

i=1

(
v′n,iX

′
nXnvn,p

)2
/n

(
v′n,pX

′
nXnvn,p/n

)2 +O

(
1

p

)
. (15.51)

By the law of large numbers, (p−1)−1
∑p−1

i=1

(
v′n,iX

′
nXnvn,p

)2/
n

a.s.→ 1 and v′n,pX
′
nXnvn,p/n

a.s.→ 1;

therefore,

τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i

a.s.−→ c . (15.52)

Given that
∑p

i=1

(
u′n,pvn,i

)2
= 1, we have (u′n,pvn,p)

2 a.s.−→ 1. This enables us to conclude that

τn,p · u′n,pΣ−1
n un,p =

(
u′n,pvn,p

)2
+ τn,p

p−1∑

i=1

(
u′n,pvn,i

)2

τn,i

a.s.−→ 1 + c .

15.8 Proof of Proposition 7.6

Lemma 15.8. Let

τ
A
n

..= ( 0, . . . , 0︸ ︷︷ ︸
p− 1 times

, τn,p) . (15.53)

Then under Assumptions 3.1, 3.2.a–c, and 3.2.f, 1 + λn,p m̆
τ
A
n

n,p(λn,p)
a.s.−→ 0.
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Proof of Lemma 15.8. By taking the limit of Equation (5.7) as m ∈ C
+ approaches the real

line, we find that for all λ ∈ (0,+∞), m ..= m̆
τ
A
n

n,p(λ) is the unique solution in C
+ ∪ R to the

equation

m = −p− 1

pλ
+

1

p

1

τn,p

(
1− p

n
− p

n
λm

)
− λ

. (15.54)

With the change of variables m̃ ..= pm+ (p− 1)/λ, Equation (15.54) becomes

m̃ =
1

τn,p

(
1− 1

n
− 1

n
λ m̃

)
− λ

(15.55)

τn,p
1

n
λm̃2 +

(
τn,p

1

n
+ λ− τn,p

)
m̃+ 1 = 0 . (15.56)

(15.56) is a classic quadratic equation whose discriminant is ∆ =
(
τn,pn

−1 + λ− τn,p
)2−4τn,pn

−1.

In turn, the Equation ∆ = 0 is itself a quadratic equation in λ:

λ2 − 2τn,p

(
1

n
+ 1

)
λ+ τ2n,p

(
1

n
− 1

)2

= 0 . (15.57)

It admits two distinct real, positive solutions: λ = τn,p
(
1± n−1/2

)2
. This enables us to factorize

the discriminant ∆ into

∆ =

[
λ− τn,p

(
1 +

1√
n

)2
]
×
[
λ− τn,p

(
1− 1√

n

)2
]
. (15.58)

This factorization shows that Equation (15.56) admits a solution in C
+ if and only if λ ∈(

τn,p(1 + n−1/2)2, τn,p(1 + n−1/2)2
)
. Over this interval, the solution with positive imaginary

part is

m̃ =
τn,p(1− n−1)− λ+ i ·

√[
λ− τn,p(1− n−1/2)2

]
×
[
τn,p(1 + n−1/2)2 − λ

]

2 τn,p λ/n
. (15.59)

This is none other than the Stieltjes transform of the celebrated Marčenko-Pastur (1967)

distribution with scale parameter τn,p and concentration parameter 1/n. Changing back to

the original variable m, we obtain the following solution for Equation (15.54):

m = −p− 1

pλ
+
τn,p(1− n−1)− λ+ i ·

√[
λ− τn,p(1− n−1/2)2

]
×
[
τn,p(1 + n−1/2)2 − λ

]

2 τn,p λ p/n
,

(15.60)

for all λ ∈
[
τn,p(1 − n−1/2)2, τn,p(1 + n−1/2)2

]
. Note that this closed interval, along with zero,

constitutes the support of F
τ
A
n

n,p . The general solution for all λ > 0 can be expressed concisely

by introducing the function

∀λ ∈ (0,+∞) u(λ) ..=





−1 if 0 < λ < τn,p(1− n−1/2)2,

i if τn,p(1− n−1/2)2 ≤ λ ≤ τn,p(1 + n−1/2)2,

1 if τn,p(1 + n−1/2)2 < λ .

(15.61)
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It is

m̆τ
A
n

n,p(λ) = −p− 1

pλ
+
τn,p(1− n−1)− λ+ u(λ)

√∣∣λ− τn,p(1− n−1/2)2
∣∣×
∣∣τn,p(1 + n−1/2)2 − λ

∣∣

2 τn,p λ p/n
,

from which we deduce, after simplification,

1 + λ m̆τ
A
n

n,p(λ) =
1

2p
+

n

2p

(
1− λ

τn,p

)
+
nu(λ)

2p

√√√√
∣∣∣∣∣
λ

τn,p
−
(
1− 1√

n

)2
∣∣∣∣∣×
∣∣∣∣∣

(
1 +

1√
n

)2

− λ

τn,p

∣∣∣∣∣ .

(15.62)

Lemma 15.8 then follows by setting λ = λn,p in Equation (15.62) and using Proposition 7.3.

Lemma 15.9.

∀λ ∈ (0,+∞)
∣∣∣1 + λ m̆τn

n,p(λ)
∣∣∣ ≤

√
n

p
. (15.63)

Proof of Lemma 15.9. Section 2.2 of Ledoit and Wolf (2012) defines the ancillary function

mτn
n,p(z)

..=
p− n

nz
+
p

n
mτn

n,p(z), ∀z ∈ C
+ . (15.64)

Call its image mτn
n,p (C

+). Equation (1.4) of Silverstein and Choi (1995) states that the function

mτn
n,p has a unique inverse on C

+ given by

zτn
n,p(m) ..= − 1

m
+

1

n

p∑

i=1

τn,i
1 +mτn,i

, ∀m ∈ mτn
n,p

(
C
+
)
. (15.65)

The change of variables m = mτn
n,p(z) ⇐⇒ z = zτn

n,p(m) yields

∀z ∈ C
+ 1+zmτn

n,p(z) =
n

p

[
1 + zmτn

n,p(z)
]
=
n

p

[
1 + zτn

n,p(m)m
]
=

1

p

p∑

i=1

mτn,i
1 +mτn,i

. (15.66)

By Jensen’s inequality,

∀m ∈ mτn
n,p

(
C
+
)

(
1

p

p∑

i=1

Re

[
mτn,i

1 +mτn,i

])2

≤ 1

p

p∑

i=1

(
Re

[
mτn,i

1 +mτn,i

])2

(15.67)

(
1

p

p∑

i=1

Im

[
mτn,i

1 +mτn,i

])2

≤ 1

p

p∑

i=1

(
Im

[
mτn,i

1 +mτn,i

])2

. (15.68)

Adding these two equations, we obtain

∀m ∈ mτn
n,p

(
C
+
)

∣∣∣∣∣
1

p

p∑

i=1

mτn,i
1 +mτn,i

∣∣∣∣∣

2

≤ 1

p

p∑

i=1

∣∣∣∣
mτn,i

1 +mτn,i

∣∣∣∣
2

. (15.69)

Since zτn
n,p(m) ∈ C

+ for all m ∈ mτn
n,p (C

+), we have:

∀m ∈ mτn
n,p

(
C
+
)

Im
[
zτn
n,p(m)

]
> 0 . (15.70)
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Let m1
..= Re[m] and m2

..= Im[m]. Equation (1.3) of Silverstein and Choi (1995) implies that

mτn
n,p (C

+) ⊂ C
+; therefore, m2 > 0. This enables us to deduce from Equation (15.70) that

∀m ∈ mτn
n,p

(
C
+
)

Im

[
− 1

m1 + im2
+

1

n

p∑

i=1

τn,i
1 + (m1 + im2)τn,i

]
> 0

m2

m2
1 +m2

2

− 1

n

p∑

i=1

m2τ
2
n,i

(1 +m1τn,i)2 +m2τ2n,i
> 0

1

p

p∑

i=1

τ2n,i(m
2
1 +m2

2)

(1 +m1τn,i)2 +m2τ2n,i
<
n

p

1

p

p∑

i=1

∣∣∣∣
mτn,i

1 +mτn,i

∣∣∣∣
2

<
n

p
. (15.71)

Putting together Equations (15.66), (15.69), and (15.71) yields ∀z ∈ C
+
∣∣1 + zmτn

n,p(z)
∣∣2 < n/p.

Lemma 15.9 then follows from taking the limit as z ∈ C
+ goes to λ ∈ (0,+∞).

By taking the limit of Equation (5.7) as m ∈ C
+ approaches the real line, we find that for

all λ ∈ (0,+∞), m ..= m̆τn
n,p(λ) is the unique solution in C

+ ∪ R to the equation

m =
1

p

p−1∑

i=1

1

τn,i

(
1− p

n
− p

n
λm

)
− λ

+
1

p

1

τn,p

(
1− p

n
− p

n
λm

)
− λ

. (15.72)

Comparing Equation (15.72) with Equation (15.54) yields

∀λ ∈ (0,+∞) λ
[
m̆τn

n,p(λ)− m̆τ
A
n

n,p(λ)
]
=

1

p

p−1∑

i=1

τn,i

[
1− p

n
− p

n
λ m̆τn

n,p(λ)
]

τn,i

[
1− p

n
− p

n
λ m̆τn

n,p(λ)
]
− λ

. (15.73)

Remember that by Assumption 3.2.f, there exists h > 0 such that 0 ≤ τn,1 ≤ · · · ≤ τn,p−1 ≤ h

for all n large enough. Furthermore by Assumption 3.1 there exists c such that p/n ≤ c for

all n large enough. Lemma 15.9 then yields the following bound for sufficiently large n:

∀λ ∈
(
h
(
1 +

√
c
)
,+∞

)
λ
∣∣∣m̆τn

n,p(λ)− m̆τ
A
n

n,p(λ)
∣∣∣ ≤

h
(
1 +

√
c
)

λ− h
(
1 +

√
c
) . (15.74)

By Proposition 7.3, this implies

λn,p

[
m̆τn

n,p(λn,p)− m̆τ
A
n

n,p(λn,p)
]

a.s.−→ 0 . (15.75)

Using Lemma 15.8, we obtain

1 + λn,p m̆
τn
n,p(λn,p)

a.s.−→ 0 , (15.76)

from which we can finally conclude that

λn,p

1− p

n
− 2

p

n
λn,p Re

[
m̆τn

n,p(λn,p)
] a.s.∼ λn,p

1 +
p

n

a.s.∼ τn,p
1 + c

. (15.77)
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