
 

 

 
 

 
Working Paper No. 439 

 
 

The Fundamental Properties, Stability and Predictive 
Power of 

Distributional Preferences 
 
 
 

Ernst Fehr ⓡ Thomas Epper ⓡ Julien Senn 
 
 
 

October 2023 
 

 

 

 

 
 

 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
 

 

 



The Fundamental Properties, Stability and Predictive Power of

Distributional Preferences*

Ernst Fehr r⃝ Thomas Epper r⃝ Julien Senn

October 10, 2023

Abstract

Parsimony is a desirable feature of economic models but almost all human behaviors

are characterized by vast individual variation that appears to defy parsimony. How

much parsimony do we need to give up to capture the fundamental aspects of a pop-

ulation’s distributional preferences and to maintain high predictive ability? Using

a Bayesian nonparametric clustering method that makes the trade-off between par-

simony and descriptive accuracy explicit, we show that three preference types—an

inequality averse, an altruistic and a predominantly selfish type—capture the essence

of behavioral heterogeneity. These types independently emerge in four different

data sets and are strikingly stable over time. They predict out-of-sample behavior

equally well as a model that permits all individuals to differ and substantially better

than a representative agent model and a state-of-the-art machine learning algorithm.

Thus, a parsimonious model with three stable types captures key characteristics of

distributional preferences and has excellent predictive power.
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1 Introduction

A large and growing body of research suggests that social preferences play an impor-

tant role in many economic and social domains.1 It is thus crucial to understand the

properties and the distribution of these preferences in the broader population, and

to capture the prevailing preference heterogeneity in a parsimonious manner. Parsi-

mony is particularly important in applied contexts, where the degree of complexity

that theories can afford (at the individual level) is limited by tractability constraints.

When modelling preferences, the most parsimonious approach is to assume that a

representative agent captures the population’s preferences. This is, however, particu-

larly problematic in the domain of social and distributional preferences because even

a minority of individuals, who would have little weight in the representative agent’s

preferences, may have a disproportionate influence on equilibrium outcomes. This

follows from the fact that individuals with social preferences often display behaviors

that change others’ incentives, i.e., even the incentives of those without these prefer-

ences.2 Thus, completely neglecting preference heterogeneity may induce seriously

misleading conclusions and predictions.

But how much parsimony must we sacrifice to capture the fundamental charac-

teristics of behavioral heterogeneity? In other words, at which level of parsimony

do we still capture the key characteristics of behavioral heterogeneity, and when do

we start to neglect important aspects? How much predictive power—in terms of

the precision of out-of-sample predictions—do we have to give up if we want to re-

main parsimonious? Finally, and perhaps most importantly, does a stable core of

1For the role of social preferences and fairness concerns in bilateral bargaining see, e. g., Camerer
and Thaler (1995), Camerer and Loewenstein (1993), and Camerer (2011). For their role in labor and
goods markets see, e. g., Fehr et al. (1993), Charness (2000), Charness (2000), Bellemare and Shearer
(2007), Dur (2009), Gächter and Thöni (2010), Gächter et al. (2013), Kube et al. (2012), Breza et al.
(2018). For their role in political economy, collective action and cooperation, see, e. g., Gächter and
Thöni (2005), Tyran and Sausgruber (2006), Durante et al. (2014), Kerschbamer and Müller (2020), Fehr
r⃝ al. (2021a),Breza et al. (2021), and Breza et al. (2019). For their role in contract design, mechanism

design, and institutions see, e. g., Bierbrauer and Netzer (2016), Bierbrauer et al. (2017), Schmidt and
Ockenfels (2021), and Fehr et al. (2021b).

2A selfish proposer in the ultimatum game, for example, may have a reason to make fair offers even
if only a (significant) minority of the responders rejects unfair offers. Likewise, a selfish employer in
a gift exchange game may have a reason to pay high, nonmarket clearing wages, although “only” a
minority of employees reciprocates too high wages with higher effort. In public good situations, a
minority of players willing to punish free-riders can induce selfish players to contribute (see, e.g., Fehr
and Schmidt, 1999).
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behavioral heterogeneity exist across data sets and time, or are preferences too fluid

and shaped by flimsy, uncontrollable details that prevent the identification of stable

heterogeneity?

In this paper, we use a Bayesian nonparametric clustering algorithm—the Dirich-

let Process Means (DP-means) algorithm (Kulis and Jordan, 2012)—to answer these

questions in the context of distributional preferences. A key feature of this method

is that it makes the trade-off between parsimony and descriptive accuracy explicit.

The algorithm requires the researcher to specify a desired level of precision with

which individuals are assigned to different behavioral clusters in terms of the indi-

viduals’ maximum allowed deviation from the center of their nearest cluster (also

called “centroid”).3 Naturally, as more precision is demanded, the description of

behavioral heterogeneity becomes richer because more clusters emerge and the be-

havioral variation within clusters declines. However, this increased precision has a

cost in terms of parsimony (since more clusters emerge)—giving rise to the precision

(accuracy)–parsimony trade-off.

The DP-means algorithm also has several other attractive properties. Perhaps

most importantly, it can be applied to the raw choice data such that it does not

require any ex-ante assumptions about the structure of behaviors or preferences. The

algorithm enables the identification of behavioral clusters without assumptions on

the number of existing preference clusters and the behavioral properties (e.g., the

utility functions) of the different clusters. Once the level of precision is fixed, the

algorithm endogenously determines the number of clusters that minimizes the sum

of individuals’ deviations from their clusters.

We apply the DP-means algorithm to four different data sets on distributional

preferences collected in 2017 and 2020, covering in total 1731 subjects who are broadly

representative of the French and the German language populations in Switzerland.

The different data sets enable us to examine the stability of the fundamental char-

acteristics of behavioral heterogeneity across data sets with different individuals, as

well as across a three-year time period for the same individuals.

We elicited distributional preferences using a variety of incentivized money al-

3The individuals’ deviation from their clusters is measured in terms of the squared Euclidean
distance.

2



location tasks in which the decision maker has to decide how to allocate money

between him/herself and another anonymous participant. We use a combination of

choice situations in which the decision maker can pay to increase the other partici-

pant’s payoff, and situations in which she can pay to decrease the other participant’s

payoff. Thus, our design goes beyond traditional dictator games which elicit social

preferences by only allowing individuals to increase the payoff of others at a cost to

themselves. We also systematically vary the decision-maker’s cost of increasing or

decreasing the other’s payoff, which gives us the opportunity to identify a wide va-

riety of distributional preferences such as altruism (as in Andreoni and Miller, 2002

or Fisman et al., 2007, 2017), concerns for the total payoff (Charness and Rabin, 2002),

envy (Bolton, 1991; Kirchsteiger, 1994), or inequality aversion (Fehr and Schmidt,

1999; Bolton and Ockenfels, 2000), which all rest on different assumptions about indi-

viduals’ willingness to pay to increase and/or decrease others’ payoffs. The variation

in costs provides valuable information about the trade-offs subjects make when in-

creasing or decreasing others’ payoffs, information that we can use when we examine

the quality of models with different degrees of parsimony in terms of the accuracy of

their out-of-sample predictions.

How much parsimony do we have to sacrifice to capture the fundamental and

decisive characteristics of behavioral heterogeneity? Do we have to go far in the

direction of individual differences in preferences, or could a small number of clusters

already capture the essence of the existing heterogeneity? Our results show that

one does not have to move far beyond the representative agent model to capture the

essence of behavioral heterogeneity. Specifically, we find that three clusters with a

clear and unambiguous behavioral interpretation describe the essence of the existing

behavioral heterogeneity in all four data sets. Moreover, the same three clusters—

in terms of their behavioral interpretation and in terms of their relative quantitative

importance—emerge in each of the four data sets:

1. The biggest cluster always consists of individuals who predominantly make

payoff-equalizing choices. These individuals display a general willingness to

pay to increase the payoff of others who are worse off, as well as a willingness to

pay to decrease the payoff of those who are better off. This behavior is consistent

with inequality aversion as modeled in Fehr and Schmidt (1999) or Bolton and
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Ockenfels (2000).

2. The second somewhat smaller but still large cluster always consists of individ-

uals who display a fundamentally different kind of other-regarding behavior.

They are unwilling to reduce inequality by decreasing the payoff of those who

are better off but, similar to the inequality averse individuals, they are generally

willing to pay to increase the payoff of those who are worse off. Their behavior

is thus consistent with altruistic preferences as modeled in Charness and Rabin

(2002) or Fisman et al. (2007, 2017), for example.

3. The smallest, yet still substantial, cluster consists of individuals who predomi-

nantly maximize their own payoff without paying much attention to other indi-

viduals’ payoffs. We therefore label them as predominantly selfish.

The fact that clusters with the same qualitative behavioral properties emerge in all

four data sets suggests that the behavioral heterogeneity at the three-cluster level is

rather stable across time and data sets. In all samples, the cluster of inequality averse

individuals comprises between 45 and 53 percent of the population; the cluster of

altruistic individuals comprises between 30 and 42 percent of the population, and

the cluster of predominantly selfish individuals comprises between 10 and 24 percent

of the population. These findings suggest a relatively stable structure of behavioral

heterogeneity at the type-level.

Since the clustering results depend on the desired level of precision, we also ask

what happens if we demand more or less precision. We find that demanding less pre-

cision such that only two clusters emerge i) dramatically undermines the behavioral

interpretation of the clusters because the algorithm systematically pools incompatible

behavioral types (i.e., merges them into one cluster), and ii) substantially erodes the

stability of the behavioral interpretation of the clusters across data sets. For example,

inequality averse and selfish individuals are merged into one cluster in one dataset,

while the altruistic and the selfish individuals are merged into one cluster in another

dataset. These results suggest that requiring the model to be more parsimonious than

three clusters is unsatisfactory as it causes us to neglect important parts of behavioral

heterogeneity.
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In contrast, when we allow the model to be less parsimonious (by requiring more

precision such that a larger number of clusters emerge), we find that no new mean-

ingful and empirically relevant behavioral types emerge. Indeed, when the number

of clusters increases to four or five, the newly emerging clusters are populated by an

exceedingly small share of individuals (less than 2%) in three of the four data sets,

and their behavioral patterns are difficult to interpret. Thus, becoming less parsimo-

nious does not bring fundamentally new insights in terms of novel and empirically

relevant behavioral types.

Note that ex-ante it is far from obvious that the population can be characterized

by the three types we identified. In principle, it would have been possible to find

three other types (e.g., strong altruists, moderate altruists, and behindness averse

individuals such as in the student sample of Bruhin et al., 2018), or that the population

might be parsimoniously characterized by four different types, etc. However, the fact

that we identify the same three types in all four data sets generates confidence in the

stability of our three-type distribution.

The superiority of three clusters as a description of the essential aspects of behav-

ioral heterogeneity can also be expressed in terms of the precision-parsimony frontier.

This frontier is defined as the smallest mean squared Euclidean distance of individuals

from their clusters for each number of clusters (i.e., each given level of parsimony). In

other words, the frontier gives us the highest precision in individuals’ assignment to

clusters for given levels of parsimony. We computed this frontier for each of the four

data sets and find that it exhibits strongly decreasing benefits (measured in terms

of increases in precision) of relaxing parsimony. This suggests that it may not be

necessary to sacrifice a lot of parsimony to increase precision. Moreover, the frontier

has a clear, salient kink at three clusters: when moving from the representative agent

model (one cluster) to two or three clusters, rather large precision gains accrue, while

the precision gains above three clusters are relatively small. Moving below three clus-

ters is therefore associated with a large loss in precision, while moving above three

clusters yields only a small gain in precision.

Thus, considerations based on the precision-parsimony frontier also suggest that

three clusters provide the best description of the prevailing behavioral heterogeneity

while simultaneously maintaining parsimony. But how much predictive power—in
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terms of the accuracy of out-of-sample predictions—are we sacrificing by commit-

ting to a relatively parsimonious three-cluster approach? And how much additional

predictive power do we gain by moving from a representative agent model to a three-

cluster model? To answer these questions, we compare the predictive accuracy of our

model with three distributional preference types with the accuracy of (i) the repre-

sentative agent model and (ii) a model based on each individuals’ preferences.

To make quantitative out-of-sample predictions, we estimate a distributional two-

parameter utility function4 for (i) the representative agent, (ii) each of the three be-

havioral types in the three-cluster approach, and (iii) for each individual in our four

data sets. We estimate these utility functions on the basis of subjects’ decisions for a

given set of choice situations (the “estimation set”). We then use these estimated pa-

rameters of the utility functions to make point predictions for other choice situations

(the “prediction set”) for which the subjects also made decisions.5

We find that despite the huge increase in the complexity of the individual-level

model (2N parameters) relative to the three-type model (6 parameters only), the lat-

ter predicts equally well. Indeed, the out-of-sample hit rate6 of the three-type model

varies between 66.5 percent and 72.5 percent across the four data sets, while the hit

rate of the individual-level model varies between 67.9 and 70.4 percent. Actually, the

predictions of the three-type model are even superior to those of the individual-level

model in two of the four data sets. Moreover, the three-type model also predicts

substantially better than the representative agent model, beating the predictive accu-

racy of the latter in each of the four data sets. Thus, similar to the insights from the

precision-parsimony frontier, we find that the three-type model leads to a substantial

improvement over the representative agent model, while exceeding three types yields

4The utility function allows for all motives discussed in the literature on distributional preferences
such as selfishness, envy, concern for poorer individuals, aversion against disadvantageous inequality,
concern for the total payoff, etc.

5Note that the predictions of the representative agent model are based on the estimation of two
distributional preference parameters, while the three-type model uses six estimated parameters (two
for each type). This contrasts sharply with the individual-level model, which uses a set of estimated
parameters (2N parameters) that is orders of magnitude larger (e. g., 934 estimated preference param-
eters for the 467 individuals in the Panel-2017 data set).

6The hit rate is the percentage of predicted choices for the prediction set that coincides exactly with
individuals’ actual choices. Our results are qualitatively similar if we use the mean squared errors of
subjects’ actual choices from the predicted choices, but the hit rate has the advantage of being simpler
and easier to interpret.
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only very few additional benefits in terms of predictive accuracy.7

But how good is the predictive ability of our three-type model compared to a

state-of-the-art machine learning tool? To answer this question, we used regularized

gradient boosting trees (rGBT)—a machine learning technique that is widely used

in computer science and has been demonstrated to outperform alternative machine

learning models in various prediction scenarios because of its iterative error correc-

tion mechanism (Shwartz-Ziv and Armon, 2022). Thus, we train rGBT on subjects’

decisions on the estimation set and predict their decisions both for the estimation set

(within-sample predictions) and for the choice situations in the prediction set (out-

of-sample predictions).8

A key difference between the structurally estimated three-type approach and

rGBT is that the structural model relies on an explicit theory of how individuals

make trade-offs between their own and others’ payoffs. It uses the estimated val-

ues of the types’ trade-offs (incorporated in the estimated parameters of the types’

utility functions) to make predictions, while rGBT is a “black-box” optimized for

predicting outcomes in situations similar to those of the training set. However, the

nature of out-of-sample predictions is that the situations used in the predictions may

differ from those used to estimate or train the model. Thus, differences in the out-

of-sample predictive accuracy between the two approaches also inform us about the

potential value of economic theory for prediction purposes: If rGBT outperforms the

three-type model in out-of-sample predictions, then the economic theory underlying

distributional preference models may be of limited value for predictive purposes. If,

in contrast, the three-type model has a better out-of-sample predictive ability, then

the structural model not only enables insights into how subjects make trade-offs be-

tween their own and others’ payoffs in known decision situations, but it also provides

a superior understanding of how they make these trade-offs in new, yet unknown,

situations—suggesting that the model is more transferable to new situations than the

7Note that relaxing parsimony by allowing for four or five types also does not increase predictive
power because even if we increase to four or five clusters, almost all individuals remain in the three
clusters identified in the three-type model. Thus, the hit rates vary negligibly relative to the three-
cluster approach.

8Regularization applies penalties to more complex models to prevent overfitting. Gradient boosting
trees has previously also been successfully employed in economics (see, e.g., Chalfin et al., 2016; Einav
et al., 2018; Deryugina et al., 2019).
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rGBT.

We find that the rGBT makes superior within-sample predictions, with hit rates vary-

ing between 96.8 and 99.9 percent. This was expected, since rGBTs are optimized to excel

at this task. However, the three-type model far outperforms rGBT when it comes to out-

of-sample predictions. As mentioned above, the three-type model’s out-of-sample hit

rate varies between 66.5 and 72.5 percent, while the out-of-sample hit rates of rGBT

varies between 27.9 and 33.0 percent only. This finding—together with the results

mentioned on the previous pages—lends strong support to an economic approach

towards distributional preferences that is based on a parsimonious characterization

of behavioral heterogeneity at the type-level.

Our paper makes several contributions. First, while economists often allude infor-

mally to the desirability of parsimonious models, we are not aware of contributions

that explicitly address the trade-off between parsimony and descriptive accuracy. Our

application of the DP-means approach makes it possible to empirically quantify this

trade-off in terms of the precision-parsimony frontier, allowing us to make decisions

about the best level of parsimony in a principled and empirically informed way. We

apply our method to identify a parsimonious characterization of behavioral hetero-

geneity in the domain of distributional preferences but the method is, in principle,

also applicable to the domain of risk and time preferences.

Second, we document large precision benefits from only a small reduction in par-

simony in all of our four data sets, suggesting that one has to move only slightly

beyond the representative agent model to accurately account for the bulk of the pre-

vailing heterogeneity in the population. This view is reinforced by the existence of

a kink in the precision-parsimony frontier at three behavioral clusters which implies

rather small accuracy benefits beyond three clusters and rather large accuracy losses

below three clusters.

Third, our approach enables us to demonstrate that three fundamentally different

behavioral types capture the key properties of the population’s distributional prefer-

ences and to characterize these properties in terms of the prevailing distributional

preference models: (i) inequality aversion, (ii) altruism, and (iii) predominant selfish-

ness.

Fourth, we demonstrate that our parsimonious three-type model generates sub-
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stantially better predictions than a representative agent model and displays the same

predictive accuracy as n-types models based on the estimation of each individual’s

utility function. Thus, instead of knowing an individual’s precise preference param-

eters, it is only necessary to know the individual’s type assignment and the type’s

preference parameters to make quantitative predictions.

The third and the fourth points relate our paper to the literature on preference

estimation with finite mixture models (e.g., Bardsley and Moffatt, 2007; Bruhin et al.,

2010; Iriberri and Rey-Biel, 2011, 2013; Conte and Moffatt, 2012; Conte and Levati,

2014; Breitmoser, 2013; Bruhin et al., 2018; Burghart et al., 2020) and to the literature

on the properties and the stability of social preferences (Andreoni and Miller, 2002;

Bellemare et al., 2008, 2011; Fisman et al., 2007, 2015, 2023; Chuang and Schechter,

2015; Carlsson et al., 2014) These papers differ in many dimensions from ours, but the

most important difference is perhaps the fact that they do not examine the trade-off

between parsimony and precision, which is one of the core questions of our paper. In-

stead, they either estimate each individual’s utility function or estimate finite mixture

models that rely on ex-ante assumptions on the structure of behaviors or preferences.

This contrasts with our nonparametric approach where the behavioral types emerge

endogenously and without any assumptions on utility functions or pre-existing types.

Finally, our paper is also related to a small emerging literature that (i) compares

the (out-of-sample) predictive ability of economic models to that of machine learning

algorithms (e.g. Camerer et al., 2019; Fudenberg and Puri, 2021; Plonsky et al., 2019,

2017) and (ii) investigates the extent to which economic models are more complete

(Fudenberg et al., 2022) and transferable to other domains (Andrews et al., 2022).

The remainder of our paper is structured as follows. Section 2 describes our ex-

perimental design and Section 3 studies the fundamental properties of distributional

preferences. This section examines whether we can already find first hints for the

existence of behavioral types at the purely descriptive level. Then we apply the DP-

means algorithm to each of our four data sets to uncover the fundamental aspects

of population heterogeneity in a more principled and rigorous way. Section 4 exam-

ines the relative predictive power of a type-based empirical approach by comparing

it to the representative agent model, an individual-level model, and a state-of-the-art

machine learning model. Section 5 concludes the paper.
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2 Experimental design

2.1 Measuring social preferences

We measured subjects’ social preferences using a series of incentivized money alloca-

tion tasks in which participants had to decide how to allocate experimental currency

units (ECUs) between themselves and another anonymous participant in the study.9

The literature on the measurement of social preferences has predominantly relied

on choice situations where the decision maker can increase the recipient’s payoff by

giving up some of her own payoff to identify other-regarding behavior (see, e.g., Fis-

man et al., 2017). In our study, we use a combination of choice situations in which the

decision maker can pay to increase the other participant’s payoff (negatively sloped

budget lines in “self payoff–other payoff” space), and choice situations in which she

can pay to decrease the other participant’s payoff (positively sloped budget lines in the

“self payoff–other payoff” space). We also use positively sloped budget lines because

negatively sloped budget lines alone do not allow us to identify a wide range of po-

tentially relevant other-regarding behaviors. For example, inequality aversion Fehr

and Schmidt (1999) implies that individuals are not only willing to sacrifice some of

their own payoff to increase the payoff of those worse off (aversion to advantageous

inequality), but that they are also willing to sacrifice resources to decrease the payoff

of those who are better off (aversion to disadvantageous inequality). While nega-

tively sloped budget lines allow us to identify the former motive, the latter requires

positively sloped budget lines. Similarly, envious or spiteful individuals can only be

identified when they have the chance to reduce others’ payoff at a cost to themselves.

We address these identification issues by eliciting subjects’ distributional choices on

a set of both negatively sloped and positively sloped budget lines.

Figure 1 depicts the 12 budget lines that we use to identify subjects’ distributional

preferences. These choice situations systematically vary the cost of redistribution and

its impact on joint payoffs, thereby allowing us to identify a wide variety of other-

9To avoid issues related with reciprocity, we made it clear to our participants that they would in
no way be affected by any decision the other participant makes. This was explained as follows in the
instructions: ”The other participant will take part in another part of the study. Anonymity between you and the
other participant is guaranteed, i.e., neither you nor the other person will ever learn about each other’s identity.
Moreover, the other participant will not take decisions that affect you, i.e., you will not be affected in any way by
the other participant’s decisions.”
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regarding behaviors. In addition to these choice situations, we also presented our

subjects with a set of additional budget lines that we use for out-of-sample predictions

(more details on them is provided in Section 4).

Figure 2a illustrates how a typical choice situation was presented to participants.

We represented the available choices numerically and graphically in order to make

the trade-offs and the associated payoff implications transparent. For each choice

situation, there were always seven interpersonal allocations (labeled by 1 to 7) – all

located on a budget line. Each available allocation consisted of a specific distribu-

tion of ECUs between the participant (bars labeled by “You receive”) and the other

person (bars labeled by “Other person receives”). Figure 2b plots the budget line

corresponding to the example depicted in Figure 3a in the “self-payoff (ws) – other’s

payoff (wo)” space. In this example, the slope of the budget line is -2, indicating that

for every ECU the decision maker gives up, the other participant receives 2 ECUs.

Perfect equality in payoffs can be achieved by choosing allocation 4.

Figure 1: Measuring distributional preferences with a money allocation task
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2.2 Samples and implementation

We collected our data in 2017 and in 2020, covering a total of 1731 individuals who

are broadly representative of the French and the German language population of

Switzerland with respect to age, gender, and region. 348 respondents were surveyed
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Figure 2: Example of a choice situation
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in 2017 only (Only-2017 sample), 916 respondents were surveyed in 2020 only (Only-

2020 sample) and 467 respondents were surveyed both in 2017 and in 2020 (Panel

sample), yielding four separate datasets where we can investigate the distribution of

social preferences.10 We display the main descriptive statistics of each data set in

Table A.4 in the Appendix.

The procedure and the implementation of the experiment was similar for all the

subjects and across data sets. The experiment was computerized and conducted on-

line in collaboration with the LINK Institute, the leading company for high-quality

market research in Switzerland. In all samples, participants were paid a show-up

fee for taking part in the study until the end. In addition, we also incentivized par-

ticipants’ choices in the money allocation task by paying out one of their (randomly

drawn) decisions. The exchange rate between points in the money allocation task and

Swiss Francs was always 40 points per CHF.

10There are, in total, four datasets in which subjects could make independent allocation decisions
because the panel sample consists of two subsamples: one comprising panel subjects’ decisions in 2017
(Panel-2017), and another one comprising panel subjects’ decisions in 2020 (Panel-2020 sample).
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3 The fundamental properties of distributional prefer-

ences

In this section, we explore the behavioral properties of individuals’ distributional

preferences. Previous evidence (see, e.g., Andreoni and Miller, 2002; Bellemare et al.,

2008; Fisman et al., 2007, 2017; Kerschbamer and Müller, 2020; Bruhin et al., 2018;

Cappelen et al., 2007) suggests that there is considerable heterogeneity in distribu-

tional preferences. We are primarily interested in the question whether the distribu-

tion of preferences can be captured parsimoniously with a small number of behavioral

types that exhibit fundamentally distinct social preferences. To that end, we examine

whether the population consists of distinct clusters of individuals.

We approach this task in two steps. We start with a descriptive analysis of sub-

jects’ behavior in the money allocation task. This analysis could, in principle, already

provide first hints on the existence of clusters of individuals with clearly distinct

behavioral properties. We then proceed with a more rigorous approach in which

we apply a Bayesian nonparametric clustering algorithm—the Dirichlet Process (DP)

Means algorithm (Kulis and Jordan, 2012)—to examine behavioral heterogeneity in

our data sets.

The DP-means algorithm has several appealing properties that fit our purposes.

First, because the algorithm can be applied to individuals’ “raw” allocation data, it

does not require any assumptions about the behavioral properties (e.g., utility func-

tions) of the population under study. Instead, the algorithm is completely agnostic

regarding the concrete behavioral regularities that emerge, i.e., it is entirely driven by

the characteristics of the data. Thus, our approach differs from previous work (e.g.,

Bellemare et al., 2008; Fisman et al., 2015, 2017; Bruhin et al., 2018) that character-

ized preference heterogeneity on the basis of ex-ante assumptions on feasible utility

functions. Second, the algorithm allows the identification of behavioral heterogeneity

without ex-ante assumptions on the number of existing clusters. Instead, it makes

the trade-off between parsimony and descriptive accuracy explicit by requiring the

researcher to determine a level of precision with which individuals are assigned to

clusters. Once the level of precision is fixed, the algorithm endogenously determines

the number of clusters and assigns all individuals to one of the emerging clusters
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(with probability one11) in a way that minimizes the sum of individuals’ deviations

(measured in terms of the squared Euclidean distance) from their clusters’ centroids.

A third attractive property of the DP-means algorithm is that it nests the full range

of types, from a representative agent setting (i.e., a single data-generating process)

to a model where all individuals differ in their preferences (i.e., n data-generating

processes with as many types as there are individuals). Fourth, because the algorithm

can be directly applied to individuals’ observed behavior and does not rely on ex-ante

assumptions about behavior, it does not require any assumptions on the structure of

utility noise or the structure of behavioral errors (i.e., the error terms).12

3.1 Identifying behavioral heterogeneity at the descriptive level

The key properties of distributional preferences pertain to individuals’ willingness

to pay to increase others’ payoff and their willingness to pay to decrease others’ pay-

off. Therefore, when examining the potential existence of behavioral types at the

descriptive level, we search for clusters of individuals who display distinct but typ-

ical patterns in their willingness to pay to increase and decrease others’ payoffs in

different distributional situations.

For this purpose, we plot each individual’s modal choice across the negatively

sloped and across the positively sloped budget lines. An individual’s modal choice

on negatively sloped budget lines informs us about their willingness to pay to in-

crease the other’s payoff, whereas their modal choice on positively sloped budget

lines informs us about her willingness to pay to decrease the other’s payoff.13

We depict subjects’ modal choices on positively sloped and on negatively sloped

budget lines separately for each of our four data sets in Figure 3. For each budget line,

11This distinguishes DP-means from alternative approaches that probabilistically classify individuals
into clusters (such as the finite mixture models used, e.g., in Bruhin et al., 2010, Burghart et al. (2020)
or Bruhin et al., 2018).

12While the advantages of being able to infer behavioral clusters and individuals’ assignment to clus-
ters without structural assumptions on behavior are relatively transparent, the advantage of avoiding
assumptions about the structure of the error term (or utility noise) may seem less obvious. However,
it has been shown in the domain of risk preferences that assumptions about the utility noise in ran-
dom utility models are not innocuous. For instance, Buschena and Zilberman (2000) showed that the
assumptions on the error term are decisive for whether expected utility theory or non-expected utility
models best capture the data.

13We focus on the mode because it is less susceptible to random influences and outliers. Note that
we get very similar results if we instead use subjects’ median choices.
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we label the own-payoff maximizing allocation by z = 1, the own-payoff-minimizing

allocation by z = 0, and the payoff-equalizing allocation by z = 0.5. The other four

available allocations on each budget line are equidistantly placed between 0–0.5 and

0.5–1, respectively.

Strikingly, the same three distinct behavioral agglomerations emerge in all four data sets:

i) One group of individuals is located at z = 0.5 for both positively and negatively

sloped budget lines. These individuals seem to be primarily motivated by equal-

ity as they tend to choose the equal-payoff allocation, irrespective of whether

this means paying to reduce the other person’s payoff (positively sloped budget

lines) or paying to increase the other’s payoff (negatively sloped budget lines).

ii) Another group of individuals is located at z = 1 for positively sloped budget

lines and z = 0.5 for negatively sloped budget lines. These subjects tend to

equalize payoffs on negatively sloped budget lines but to maximize their own

payoff on positively sloped budget lines. Overall, they do not seem to be willing

to pay to reduce the other subject’s payoff for the sake of equality, but they behave

in an altruistic way when on negatively sloped budget lines, i.e., they are willing

to give up some of their own payoff to increase the other’s payoff.

iii) The last group of individuals is located at z = 1 for both negatively and pos-

itively sloped budget lines. These subjects tend to predominantly maximize

their own payoff irrespective of the consequences of this choice for the other

participant, i.e., they appear to make primarily self-interested choices.

Overall, Figure 3 provides a consistent message. First, it suggests the existence

of clusters of individuals with a clear behavioral interpretation – one cluster of in-

dividuals that primarily care for equality, another cluster that appears motivated by

altruistic concerns but never reduces others’ income, and a predominantly selfish

cluster. Second, the observed clustering supports the view that behavioral hetero-

geneity may indeed be well captured by a parsimonious number of types. Third, the

figure indicates that the type distribution is quite stable, i.e., that the same qualitative

behavioral types emerge across all data sets (Figures 3a to 3d) and over time (Figures 3a

and 3b). In the next section, we characterize behavioral heterogeneity more formally
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using Dirichlet Process Means. This enables us to examine the conclusions suggested

in Figure 3 more rigorously.

Figure 3: Subjects’ modal choices on negatively sloped and on positively sloped
budget lines
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Note: In all figures, we depict subjects’ modal choices among negatively sloped budget lines and among
positively sloped budget lines. Each dot represents one individual. Dots are jittered in order to make
identical modal choices of individuals visible. For each budget line, z = 1 indicates an own-payoff maxi-
mizing choice, z = 0 indicates an own-payoff minimizing choice, and z = 0.5 indicates a payoff-equalizing
choice. Panel (a) is constructed using panel subjects and their 2017-choices. Panel (b) is constructed using
panel subjects and their 2017-choices. Panel (c) is constructed using the choices of individuals who only
participateed in the 2017 study. Panel (c) is constructed using the choices of individuals who only partici-
pateed in the 2020 study. Note that if we replace individuals’ modal choices by their median choices, very
similar behavioral agglomerations emerge.
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3.2 Identifying behavioral heterogeneity with the DP-means algo-

rithm

The descriptive analysis in the previous section strongly suggests that our data may

be populated by three stable behavioral types. However, this analysis only takes sub-

jects’ modal choices into account, whereas a more rigorous analysis should be based

on all the choices subjects make. In addition, the descriptive analysis ignores the pre-

cision costs of parsimony that result when restricting attention to a small number of

clusters. Moreover, the descriptive analysis only suggests that there are three stable

behavioral agglomerations, but it does not assign each individual to one of the be-

havioral types. Since individuals’ choices are often not perfectly aligned with one of

the type’s typical choices, one needs an explicit metric that enables the assignment of

individuals to types. Finally, the descriptive analysis also fails to provide a principled

way to assess whether a higher, yet still parsimonious, number of behavioral types

(e.g., 4 or 5 types) exists. We address these issues by applying the Dirichlet Process

Means algorithm developed by Kulis and Jordan (2012).

In the following, we first describe the details of this algorithm and outline its

specificities and properties. We also discuss its advantages over the better known

k-means algorithm. We then apply this algorithm to our data sets.

3.2.1 The Dirichlet Process (DP) means algorithm

To apply the DP-means algorithm, we consider all the choices subjects make in the

12 budget lines depicted in Figure 2. An individual is thus represented by its allo-

cation profile, i.e., the set of all 12 budget allocations normalized to the unit interval,

where 1 refers to the own-payoff-maximizing choice and 0 refers to the own-payoff-

minimizing choice on the budget line.14 We search for clusters of individuals in the

12-dimensional unit space spanned by the 12 budget lines, with each individual being

represented as a single data point (her allocation profile) in that space. The output

of the algorithm is the number of clusters that emerge in the allocation space, and

the individuals’ assignment to these clusters. We call a cluster of individuals a be-

14As a convention, and without loss of generality, we set the normalized allocation to 1 if the other’s
payoff is maximized for the (vertical) budget line with infinite slope.
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havioral (or preference) type if the behavior of the individuals in that cluster has a clear

interpretation in terms of subjects’ distributional preferences.

The algorithm characterizes clusters by a type-specific mean allocation vector (the

centroid) to which individuals lie close (in terms of the squared Euclidean distances

between individual allocation profiles and the nearest centroid). The DP-means algo-

rithm requires specification of a parameter λ that has two intuitive meanings. First, λ

represents the maximal allowable (squared Euclidean) distance between individuals

belonging to a cluster and that cluster’s centroid. Thus, if an individual’s distance

from a cluster’s centroid is larger than λ, the individual does not belong to that clus-

ter. This means that a lower value of λ will tend to increase the accuracy with which

individuals are assigned to clusters (since they are constrained to lie closer to their

closest centroid), but it will also increase the number of clusters (thereby reducing

parsimony). λ thus makes the tradeoff between descriptive accuracy and parsimony

explicit. Second, as shown by Kulis and Jordan (2012), λ also represents the propor-

tional cost of adding an additional cluster (the ‘cost of complexity’) in the objective

function (1) described below.

The algorithm works as follows: We initially start with a single centroid specified

as the global mean vector of all allocation profiles, i.e., the mean of all observations

in the budget allocation space. At this stage, all individuals (i.e., all data points)

are assigned to a single representative agent. We then refine by iterating over the

following two steps:

1. We go over the list of individual allocation profiles in the allocation space and

check whether any of the squared Euclidean distances to the centroids exceeds

the maximally allowable distance λ for each individual. If this is the case, we

open a new cluster with the allocation profile that exceeds λ as its centroid.

Otherwise, we assign the data point to its nearest cluster.

2. We collect the subjects assigned to the same clusters and update the centroids

by computing the mean vector of all observations belonging to a cluster.

These two steps are repeated until convergence is reached, i.e., until there is no

more change in subjects’ assignments. As Kulis and Jordan (2012) demonstrate, this
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iterative procedure monotonically decreases the following objective at each iteration:

min
{gc}k

c=1

k
∑
c=1
∑
x∈gc

∥x − µc∥
2+λk , (1)

where x denotes an individual’s allocation profile, µc denotes the centroid of cluster

c, g represents the cluster partitioning of individuals, i.e., an assignment of each

individual’s allocation profile x to one of the clusters gc, and k denotes the number

of clusters.

The objective function described in Equation (1) is equivalent to the k-means ob-

jective, with the exception of the additional penalty term λk. An important advantage

of DP-means over k-means is that it is better suited to discover the true number of

clusters in the data and that it yields clusters of higher quality in the sense that indi-

vidual observations are more likely to be assigned to the correct cluster (for a more

extensive discussion, see Kulis and Jordan (2012) and Comiter et al. (2016)).

As a demonstration of DP-means’ capability to recover the true behavioral hetero-

geneity, we show in Appendix C that three different simulated types with constant

elasticity of substitution (CES) utility are detected by the algorithm, even in the pres-

ence of utility noise or random choice errors.

3.2.2 Applying the DP-means algorithm to our data sets

To identify a reasonable starting point for the application of the DP-means algorithm,

we examine the properties of the precision-parsimony frontier in each of our four

data sets. To that end, we calculate the loss in precision—in terms of the mean over

all individuals’ squared Euclidean deviations from the centroids (MSD)—generated

by a more parsimonious clustering. Figure 4 depicts MSD as a function of the number

of clusters separately for each of the four data sets.15

The figure shows that increasing the number of clusters from one to two, and

from two to three is associated with large reductions in individuals’ mean deviations

from their centroids. In contrast, further increasing the number of clusters to four or

15To guide our intuition regarding the units of MSD displayed on the vertical axes, it is useful to
know that if an individual’s allocation profile is on average one allocation away from the centroid,
MSD = 0.333.
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more yields only very small gains in precision. In fact, the gains in precision from

increasing the number of clusters below k = 3 is almost an order of magnitude higher

than the precision gains that accrue form exceeding k = 3.16 This means that starting

to examine the behavioral implications of our clustering results at λ-levels that yield

three clusters is not only suggested by the descriptive analysis in the previous section;

but also by the parsimony-precision trade-off.

When examining the behavioral implications of a cluster structure, we essentially

ask two questions. First, we ask whether the clusters allow for a clear and unambigu-

ous behavioral interpretation, i.e., whether each cluster indeed represents a preference type.

For example, a cluster that would mix up selfish and altruistic individuals would be

unsatisfactory as it would be difficult to assign a clean preference interpretation to

this cluster. In this context, it is important to recall that the DP-means algorithm is

agnostic with respect to the behavioral interpretation of the different clusters; the al-

gorithm only groups individuals according to their observed behavioral similarities,

regardless of what these similarities may be. It is the task of the researcher to inspect

and interpret the behavior of the individuals in the different clusters identified by the

algorithm.

Second, we also ask whether the same preference types emerge across the four

different data sets, i.e., whether the clusters are stable across subject pools and over time.

Suppose, for example, that we identified three clusters of (i) envious, (ii) altruistic,

and (iii) selfish individuals in one data set, but found that an inequality averse type

replaces the altruistic type in another data set drawn from the same population. Then

our findings would be less useful for theoreticians who strive for a parsimonious, yet

empirically based, modelling of social preferences because no stable type structure

would exist in that population. Thus, in addition to choosing an ideal point on the

parsimony-precision trade-off, we also care about suitability of the behavioral inter-

pretation and type stability. From an economic viewpoint, these are clearly desirable

criteria for describing the preference/behavioral heterogeneity in a population.

16More precisely, the reduction in MSD when moving from 1 to 2 clusters is between 0.17 and 0.29
units across data sets, and when moving from 2 to 3 clusters it is between 0.12 and 0.24 units across
data sets. This contrasts sharply with the reduction in MSD that results from moving beyond three
clusters. Moving from 3 to 4 clusters reduces MSD between 0.01 and 0.03 units; and moving from 4 to
5 clusters reduces MSD between 0.01 and 0.04 units. Thus, the precision gains of increasing k when
k < 3 are discontinuously larger compared to the gains from going beyond k = 3.
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Figure 4: Mean over all squared deviations of individuals from their centroids
(MSD) as a function of the number of clusters.
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(b) Sample: Panel-2020
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(c) Sample: Only-2017
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(d) Sample: Only-2020
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Note: The figure shows the mean over all squared deviation (measured in terms of Euclidean distance) of
individuals from their centroids as a function of the emerging number of clusters.

What do we find in each of our four data sets? Table 1 summarizes the outcomes

of the DP-means algorithm for this case. The largest cluster (Cluster 1) comprises

between 45% and 53% of the subjects. The second-largest cluster (Cluster 2) comprises

between 30% and 40% of subjects, and the remaining subjects – always the minority

21



– are assigned to Cluster 3. For example, roughly half of the subjects (48.18%) in the

Panel-2017 data set are assigned to Cluster 1, 41.97% to Cluster 2, and the remainder

(8.85%) are assigned to Cluster 3.

Table 1: Distribution of behavioral types across data sets with three clusters

Panel-2017 Panel-2020 Only-2017 Only-2020
Cluster 1 (Inequality Averse) 48.18% 45.18% 53.74% 45.52%
Cluster 2 (Altruistic) 41.97% 38.76% 29.60% 30.46%
Cluster 3 (Selfish) 9.85% 16.06% 16.67% 24.02%

Note: The table displays the distribution of individuals to three clusters (in percent) that emerges
in each of our four data sets. The behavioral interpretation of the clusters (indicated in parenthesis
in the leftmost column) is based on the interpretation of each cluster’s typical behavior provided in
Figure 5 below.

Do these clusters have a clear behavioral interpretation, and to what extent do

they correspond to fundamentally distinct behavioral types? Figure 5 provides the

answer to these questions: It depicts the relative share of own-payoff minimizing,

payoff-equalizing, and own-payoff-maximizing choices, respectively, among nega-

tively sloped and positively sloped budget lines, separately for each identified cluster

and for each data set.17

Individuals assigned to the first cluster (Cluster 1) predominantly make payoff-

equalizing choices. They exhibit a willingness to pay for reducing inequality when

this involves increasing the other individual’s payoff (budget lines with negative

slope) and when it involves decreasing the other individual’s payoff (budget lines

with positive slope). For this reason, we label this behavioral type as ”inequality

averse.” In contrast, individuals in the second cluster display a substantial willing-

ness to pay when the sacrifice involves an increase in the other individual’s payoff

(i.e., on budget lines with negative slope) but not when it involves a decrease in

the other’s payoff (i e., on budget lines with positive slope). We therefore label in-

dividuals in this cluster as “altruists.” Finally, individuals in the third cluster make

predominantly own-payoff maximizing choices both on budget line with negative

and positive slopes. We therefore label them as “predominantly selfish”.

17Recall that subjects could choose among seven different allocations. A choice is classified as own-
payoff minimizing (own-payoff maximizing) if it belongs to the two choices that give the subject the
lowest (highest) payoff. It is classified as payoff-equalizing if it implements perfect equality or one of
its nearest neighbouring allocations.
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Figure 5: The distribution of choices for positively and negatively sloped budget
lines in each cluster and each data set.
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Three aspects of these findings are particularly remarkable. First, the behavioral

interpretation of each of the three clusters is similar across the four data sets: subjects

are either characterized as being predominantly inequality averse, predominantly al-

truistic, or predominantly selfish. Second, the aggregate distribution of behavioral

types is rather stable across the samples. In all the data sets, the largest cluster

comprises inequality averse individuals, a large yet smaller share of individuals is

assigned to the altruistic type, and a minority of subjects are assigned to the pre-

dominantly selfish type. Third, the aggregate distribution of types is also remarkably

stable over time. This can be seen by comparing the distributions of types for the

panel sample in 2017 and in 2020.

These findings are particularly remarkable when considering that the DP-means
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algorithm i) is agnostic with respect to the behavioral interpretation of the types that

populate each sample, and ii) does not put any constraints on the distribution of

behavioral types.

3.3 Are there really three behavioral types?

What happens if we allow for a larger number of clusters by reducing the maximal

deviation allowed between an individual and their centroid? Will this lead to the

emergence of new empirically important and fundamentally distinct behavioral types

that remained hidden under the three-cluster characterization? Table 2 displays the

distribution of types in the four data sets when λ is lowered enough so that a four-

type distribution emerges. This analysis reveals that no new meaningful behavioral types

appear.

In three out of four data sets (columns 1-3), the fourth cluster consists of less than

2% of the individuals and is thus quantitatively negligible.18 Moreover, the few indi-

viduals that populate the fourth cluster display rather random and hard to interpret

behaviors. In contrast, the remaining three clusters show behavioral regularities that

are very similar to those documented with the three-type distribution: a majority of

inequality averse subjects, a large group of altruistic individuals, and a minority of

predominantly selfish individuals. In addition, we show in Appendix B.1 that virtu-

ally all the individuals from these data sets remain assigned to the same behavioral

type regardless of whether k = 3 or k = 4. This means, for example, that an individual

assigned to the inequality averse type when there are three clusters almost always

remains assigned to the same type when there are four clusters. Thus, individu-

als’ assignment to behavioral types remains robust to an increase in the number of

clusters allowed to emerge in these data sets.

Our findings for the remaining data set (Only-2020) appear slightly different at

first sight, but not when we examine them more carefully. In this sample, we find

that about one-third of the subjects is assigned to the altruistic type (Cluster 2), and

about 22% are assigned to the selfish type (Cluster 3). These shares are remarkably

18The fourth cluster is populated by only one individual in the Panel-2017 sample and in the Only-
2017 sample. Even in the Panel-2020 sample, it is populated by only 9 individuals and thus cannot be
considered an empirically relevant and fundamentally distinct behavioral type.
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Table 2: The distribution of behavioral types with four clusters

Panel-2017 Panel-2020 Only-2017 Only-2020
Cluster 1 IA (47.97%) IA (44.11%) IA (53.74%) IA-1 (28.28%)
Cluster 2 Altruistic (41.97%) Altruistic (38.76%) Altruistic (29.31%) Altruistic (30.02%)
Cluster 3 Selfish (9.85%) Selfish (15.20%) Selfish (16.67%) Selfish (22.16%)
Cluster 4 – (0.21%) – (1.93%) – (0.29%) IA-2 (19.54%)

Note: The table displays the distribution of individuals to four clusters (in percent) in each of our
four data sets. IA indicates inequality averse behavior, and IA-1 (IA-2) indicate the two clusters of
inequality averse subjects. “Selfish” indicates the primarily self-interested behavioral type.

similar to the proportions documented under the three-types specification in Table 1,

where 30.46% of the Only-2020 sample is assigned to the altruistic type and 24% is

assigned to the predominantly selfish type. The remaining subjects are the inequality

averse, who are divided into two separate clusters (Cluster 1 and Cluster 4). This

interpretation is supported by Table 3 below, which displays the transition of indi-

viduals between types for this data set. The table confirms that the inequality averse

type under k =3 is divided up into two inequality averse sub-types under k = 4, while

other instances of type transitions are extremely rare. For example, only 5 individuals

(out of 279) belonging to the altruistic cluster under k = 3 switch to one of the other

types when k = 4. It is further supported by Figure A.1 in Appendix B.1 which depicts

subjects’ choices among negatively sloped and positively budget lines. Thus, taken

together, the evidence suggests that no new meaningful behavioral types emerge if

we allow for four clusters, and that an individual’s assignment to types remains very

stable when moving from three to four clusters.

Table 3: Transition of individuals between behavioral types in the Only-2020 data set

k = 4 clusters
Inequality
averse (1)

Inequality
averse (2) Altruistic Predominantly

selfish
Total
(%)

k=3

clusters

Inequality
averse 240 176 1 0

417
(45.52%)

Altruistic 5 0 274 0
279

(30.46%)
Predominantly

selfish 14 3 0 203
220

(24.02%)
Total
(%)

259
(28.28%)

179
(19.54%)

275
(30.02%)

203
(22.16%)

916
(100%)

What happens if we are willing to become even less parsimonious and allow

for five clusters? In Appendix B.2, we show that no new empirically relevant and
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fundamentally distinct behavioral type emerges when allowing for a finer partition

of the data.

While we have seen that increasing precision by reducing parsimony does not

bring novel insights compared to a three-type model, one might wonder whether it

would be possible to increase parsimony by restricting heterogeneity to two clusters

only. Would this more parsimonious description of behavioral heterogeneity still

yield a clean and stable distribution of types in the population, or would we lose

important insights relative to three clusters?

We display the results of this exercise in Table 4 below. The table shows that when

we allow for only two clusters, the algorithm systematically merges fundamentally

distinct behavioral types together. As a result, most clusters do not have a clear

behavioral interpretation when k = 2. We therefore label these clusters as mixtures of

incompatible preferences (“MIP”). For example, in the Panel-2017 data set, cluster 1

(under k = 2) comprises subjects from the selfish and the inequality averse type (under

k = 3). We show this explicitly in the first row of the transition matrix in Table 5 below.

In the Panel-2020 data set, the selfish type disappears again under k = 2 because it

is now absorbed by the altruistic type in Cluster 2 (see Table A.13 in Appendix B.3),

thereby also preventing any clean interpretation of clusters in terms of behavioral

types. Similar difficulties arise in the two remaining data sets, as described in Tables

A.14 and A.15 of Appendix B.3.

These results highlight that requiring a higher degree of parsimony so that only

two clusters emerge yields an unsatisfactory characterization of the behavioral hetero-

geneity as i) it systematically makes an important type disappear, ii) it makes a clean

behavioral interpretation of the emerging clusters impossible, and iii) it undermines

the between-samples stability of the distributions of behavioral types.

Table 4: The distribution of behavioral types with two clusters

Panel-2017 Panel-2020 Only-2017 Only-2020
Cluster 1 MIP (55.89%) IA (46.25%) MIP (82.76%) MIP (54.04%)
Cluster 2 Altruistic (44.11%) MIP (53.75%) Selfish (17.24%) MIP (45.96%)

Note: The table displays the distribution of individuals to two clusters (in percent) in each of our
four data sets. The behavioral interpretation of the clusters is based on the information provided by
Tables 5 and Tables A.13 to A.15 in Appendix B.3. ”IA” indicates inequality averse behavior. ”MIP”
indicates a mixture of incompatible preferences.
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Table 5: Transition of individuals between types in the Panel-2017 data set

k = 3 types
Inequality

averse Altruistic Predominantly
Selfish

Total
(%)

k=2

types

MIP 219 0 42
261

(55.89%)

Altruistic 6 196 4
206

(44.11%)
Total
(%)

225
(45.18%)

196
(41.97%)

46
(9.85%)

467
(100%)

Altogether, these findings strongly support the conclusion that the behavioral het-

erogeneity in our data sets is best represented by three fundamentally distinct, and

stable, preference types with a clear behavioral interpretation: a densely populated

inequality averse type, a smaller yet still large altruistic type, and a third type com-

prising the minority of selfish subjects.

4 The predictive power of behavioral types

In the previous sections, we have shown that a three-type characterization of be-

havioral heterogeneity is strikingly stable both across data sets and over time. We

have also shown that allowing for more than three types does not bring important

new insights in terms of uncovering fundamental behavioral heterogeneity, and that

restricting the number of types to less than three results in a substantial loss of infor-

mation. But how well does such a parsimonious three-types model predict individual

behavior in novel choice situations? Does such a high degree of parsimony impair the

model’s predictive ability, or does it predict as well as a model that allows for more

heterogeneity? In other words, what is the cost of parsimony in terms of predictive

ability?

4.1 Does parsimony impair out-of-sample predictions?

In this section, we investigate the out-of-sample predictive ability of our type-based

characterization of preference heterogeneity. We compare it with the predictive ability
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of (i) a representative agent model, and (ii) a model with individual-level heterogene-

ity. These two alternative specifications represent the most extreme characterizations

of behavioral heterogeneity: The representative agent model assumes that all agents

can be described by the same set of parameters and thus rules out any form of be-

havioral heterogeneity, whereas the model with individual-level heterogeneity allows

all individuals to differ from each other. In general, one would expect that empiri-

cal models that capture differences in individuals’ preference parameters also have a

higher ability to predict individuals’ behavior. At the same time, however, stochastic

factors also affect individual behaviors. This randomness may have less impact on

type-based or representative agent-based predictions than predictions based on in-

dividuals’ utility functions. This follows from the fact that parts of this randomness

may cancel out when individuals are pooled together. This raises two important ques-

tions: (i) Is our parsimonious three-type model indeed superior to the representative

agent model? and (ii) How much worse is the predictive ability of the three-type

model compared to a model allowing for individual-level differences?

To answer these questions, we apply the random utility approach with a two-

parameter utility function that nests altruistic, inequality averse, and selfish prefer-

ences. Because we already know from our non-parametric analysis that these three

types constitute our population’s preferences, we can be confident that the appli-

cation of our parametric distributional preference model is not misspecified. The

parameters of the distributional random utility model are estimated using subjects’

choices on the twelve budget lines shown in Figure 1. The estimated preference pa-

rameters allow us to make quantitative predictions for out-of-sample budget lines that

were not used for parameter estimation.

Figure 6 below shows the budget lines (choice situations) for which we make out-

of-sample predictions. Note that the figure only contains budget lines that do not

cross the 45-degree line (“non-center budget lines”), while the budget lines used for

the identification of types and for estimating the parameters all crossed the 45-degree

line symmetrically and were thus centered (Figure 1). This means, for example, that

a sufficiently inequality averse subject who chooses the equal payoff allocation in the

middle of a negatively sloped centered budget line is predicted to minimize her payoff

on a negatively sloped budget line that is located completely below the 45-degree
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line (i.e., on a budget line in the advantageous payoff domain), since this minimizes

inequality. Likewise, such an individual is predicted to maximize her payoff on a

negatively sloped budget line that is located completely above the 45-degree line (i.e.,

on a budget line in the disadvantageous payoff domain), since this also minimizes

inequality. Thus, because we predict behavior for non-centered budget lines on the

basis of behaviors (and model estimates) on centered budget lines, the predictions

often deviate strongly from the behaviors of subjects on centered budget lines. This

means that the out-of-sample predictions constitute a serious predictive challenge for

the estimated empirical models.

Figure 6: Choice situations used for out-of-sample predictions
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Note: Figure 6a shows the non-center budget lines for which the Only-2017 subjects and the
Panel-2017 subjects made choices. Figure 6b shows the non-center budget lines for which the
Only-2020 and the Panel-2020 subjects made choices. In 2017, subjects had to make 52 additional
decisions (Figure 6a). Due to time constraints, we limited the number of additional choice
situations in 2020 (Figure 6b). We predicted subjects’ behavior for the non-center budget lines
in Figure 6 based on a model that estimated distributional preference parameters exclusively on
the basis of centered budget lines shown in Figure 1.

To describe the estimation of the distributional model, we introduce the following

notation. For each budget line j, individual i chooses one out of seven possible

allocations. Each allocation assigns a payoff to “self” and to “other”, denoted by

wij = (ws
ij, wo

ij). Individual i’s utility function Vi is given by

Vi (ws
ij, wo

ij) = ws
ij − αi max{wo

ij −ws
ij, 0}− βi max{ws

ij −wo
ij, 0} ,
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which is identical to the functional form chosen by Fehr and Schmidt (1999). If the

preference parameters are strictly positive (αi > 0 and βi > 0), individual i is inequality

averse, where αi captures aversion against disadvantageous inequality and βi the

aversion against advantageous inequality. Note, however, that in the two-person case

this functional form captures also altruistic utility functions like those of Charness

and Rabin (2002) if we allow for individuals with αi ≤ 0 and βi > 0. In principle, the

model also captures purely envious individuals if αi > 0 and βi < 0. Pure self-interest

is captured by αi = 0 and βi = 0. We put no restrictions on the size or the sign of αi and

βi in our empirical estimation, which ensures that the model nests all distributional

preference types observed in the data.

We use discrete choice models assuming random utility, and also estimate an

idiosyncratic error parameter ζi > 0, in addition to the two behavioral parameters αi

and βi. The value of an interpersonal allocation wij depends thus on three parameters

summarized by θ′i = (αi, βi, ζi). The discrete choice model yields, for each allocation,

the choice probabilities:

Prob(Vi (wij)−Vi (w′ij) > ε−ij − εij) =
eζiVi(wij)

∑k eζiVi(wkj)
,

where w′ij indexes the allocation options not chosen by the individual i in choice

situation j, εij denotes the error term, and k indexes all the available choice options.

We estimate a Bayesian hierarchical model in which the (untransformed)

individual-level parameters follow a multivariate normal distribution.19 In addition,

we use a diffuse prior, and draw from the posterior distribution using a Gibbs sam-

pler.

For all our data sets, we estimate the model at different levels of aggregation.

First, we estimate a representative agent model with only two parameters. Next, we

estimate the model for each of the three preference types that we identified with the

19The procedure is described in detail in Allenby (1997) and Train (2001). The hierarchical Bayes
approach also estimates mean and standard deviation of the population parameter distribution. Each
individual is part of this distribution and is allowed to deviate from the sample mean. Thus, the
model “disciplines” individual estimates in the sense that they may not depart “too strongly” from
population-typical behavior. These models have the feature that individuals who show rather erratic
behavior, or behavior departing strongly from typical behaviors, appear to be closer to the sample
mean (this is called shrinkage).
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DP-means algorithm, which yields 3 (types) × 2 = 6 estimated parameters. Finally, we

estimate the preference parameters that capture individual-level heterogeneity, which

leads to a set of parameters that is orders of magnitude larger.20 Thus, the individual

level model allows for a much richer empirical description of our data sets than the

type-based or the representative agent model.

To compare the predictive ability of the different empirical models, we compute

their hit rates. The hit rate summarizes how often the predictions exactly coincide

with subject’s actual choice. It ranges from 0 percent (when the model predicts all

outcomes incorrectly) to 100 percent (when the model has perfect predictive accu-

racy). We have also computed the mean squared error (MSE) of each model which

gives us the same conclusions as the hit rates. For this reason, we only report the hit

rates below.

Table 6 below reports the hit rates of the different empirical models (columns

2-4), separately for each of the four data sets (the four rows). A striking feature of

this table is that all models have a much better predictive ability than random choice.

Chance would imply a hit rate of approximately 14 percent (1 allocation out of 7

possible allocations), but the hit rates reported for all the models estimated are all 3.5

to 5 times larger. Thus, all the models predict behavior much better than chance.

A second important result is that the three-type model has a considerably higher

predictive ability than the representative agent model. The three-type model has a

higher predictive accuracy for all data sets, and its predictive superiority is particu-

larly pronounced for the Panel-2020 data set, where its hit rate is 18 percentage points

higher, and the Only-2020 data set, where its hit rate is 15 percentage points higher.

Finally, the third key finding is that the hit rates of the three-type model are very

similar to those of the individual-level model. In fact, there are even cases where the

predictive accuracy of the type-based model is better than that of the individual-level

model. For example, in the Panel-2017 sample, the individual-level model makes

accurate predictions 70.4 percent of the time whereas the type-based model has a hit

rate of 72.5 percent. Similar results hold for the Only-2017 data set, where the three-

type model also fares better. It is, in our view, quite remarkable that a model with

20Specifically, the set of estimated preference parameters for the individual-level model varies be-
tween 348 x 2 = 796 (in the Only-2017 data set) and 916 x 2 = 1832 parameters (in the Only-2020 data
set).
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only three types (i.e., six estimated preference parameters in total) has a predictive

accuracy that is as good as that of a model that has many more parameters.

Overall, these findings reveal a remarkable predictive ability of a model that is

only based on three different preference types. Moving from one to three types leads

to a substantial improvement in predictive power, but allowing for individual-level

heterogeneity basically generates the same predictive ability as the three-type model.

Table 6: Comparing the out-of-sample predictive accuracy (hit rates) of the
three-types model with an individual-level model and a representative agent model

Sample Representative agent (k=1) Three types (k=3) Individual (k=N)
Panel-2017 0.653 0.727 0.703
Panel-2020 0.490 0.672 0.679
Only-2017 0.637 0.715 0.695
Only-2020 0.511 0.665 0.681

Note: The table displays the hit rates of the different empirical models (representative agent model,
three-type model, individual-level model) for the different data sets (rows). The hit rates correspond
to the share of choice situations for which the subjects’ choices coincide exactly with the model’s
predictions. It ranges from 0 (when the model predicts all outcomes incorrectly) to 1 (when the
model has a perfect predictive accuracy). Completely random choice behavior predicts a hit rate of
0.14.

4.2 Type-based versus machine learning-based predictions

Our three-type model is parsimonious and rests on a sound identification of the key

motivational forces that govern redistributive behaviors. While the model is portable

in the sense that it can be used to predict behavior in new choice situations like the

non-center budget lines, how does it compare to a state-of-the-art machine learning

method designed for high predictive ability? To answer this question, we train reg-

ularized gradient boosting trees (rGBT) on the same 12 center budget lines used for

type identification and for the estimation of the structural distributional preference

models discussed in Section 4.1. We then predict choices both within sample (i.e.,

for the center budget lines) and out of sample (i.e., for non-center budget lines) in

the different data sets. Regularized GBT is widely used in computer science and has

been demonstrated to outperform alternative machine learning models in various

prediction scenarios because of its iterative error correction mechanism (Shwartz-Ziv
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and Armon, 2022)21, and it has also been successfully employed in a few economic

applications (see, e.g., Chalfin et al., 2016; Einav et al., 2018; Deryugina et al., 2019).22

Thus, we train regularized GBT on subjects’ decisions on the estimation set and pre-

dict their decisions both for the estimation set (within-sample predictions) and for

the choice situations in the prediction set (out-of-sample predictions).

When comparing the predictions of the machine learning approach and the struc-

tural economic approach, it is useful to precisely consider the information that is used

to train or estimate the models. The structural economic approach with three pref-

erence types uses information about all individuals’ choices on the 12 budget lines

displayed in Figure 1 and each individual’s type assignment, but restricts the esti-

mated model to two preference parameters (α and β) for each type. Thus, the three-

type model represents each individual of a particular type with that type’s average

(or “type-representative”) preference parameters. This approach thus neglects the

individuals’ behavioral identity with the exception of their type-assignment. For the

machine learning approach, we use budget line end points and individual identifiers

as training inputs. In other words, we base our gradient boosting trees on a richer

information base and thus expect rGBT to make better within-sample predictions than

the structural three-type model.23 Note, however, that this does not necessarily mean

that the machine learning tool makes also better out-of-sample predictions because the

non-center budget lines used for prediction differ from the centered budget lines, and

rGBT does not capture the structural motivational forces underlying human behav-

ior. rGBT might thus fare poorly when used to predict choices in novel situations. In

contrast, the structural three-type model is applicable across domains and may have

a better out-of-sample predictive ability than rGBT, to the extent that it captures the

21rGBT has also outperformed many alternative machine learning models in prediction com-
petitions. See: https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-
winning-solutions (retrieved on September 19, 2023).

22We employ the XGBoost algorithm (Chen and Guestrin, 2016), a regularized gradient boosting
technique. In comparison to traditional gradient boosting, XGBoost introduces several innovations
which benefit efficiency and mitigate overfitting. For our application, we set the learning rate, which
scales the contribution of each tree, to 0.8. We specify the maximum tree depth to 10, and the maximum
of boosting iterations to 100. We utilize a softmax objective function, so that the algorithm returns non-
probabilistic predictions of allocation choices on each budget line.

23In principle, it is also possible to study the predictive power of gradient boosting trees in the case
in which – like in the structural three-type model – it neglects individual identity information and
only considers information on individuals’ type (rGBT with type information). We discuss the results
of this exercise in the next footnote.
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fundamental motivational forces at work.

Table 7 compares the accuracy (hit rates) of the machine learning with the hit rates

of the three-type model. Rows 1 to 4 correspond to the predictions for the center bud-

get lines (i.e., the within-sample predictions) of the two approaches for the four data

sets, while rows 5 to 8 correspond to the predictions for the non-center budget lines

(i.e., the out-of-sample predictions). We deliberately display the within-sample pre-

dictive accuracy of gradient boosting trees to show that the machine learning tool

is really good at what it has been designed for: maximizing predictive accuracy

across structurally identical situations. In fact, as the first four rows in Table 7 show,

the within-sample hit rates of gradient boosting trees vary between 97 to 99 per-

cent, which is clearly better than the within-sample accuracy of the three-type model,

which varies between 70 and 72 percent.24

What about predictive accuracy for the out-of-sample predictions? Here, the type-

based model does substantially better than gradient boosting trees. While gradient

boosting trees yields hit rates that are better than chance (recall that random choices

would yield hit rates of about 0.14), they are all much lower than the hit rates obtained

by the three-type model. In fact, the out-of-sample hit rate of the three-type model is

roughly 2.3 times higher in all samples.

Taken together, these findings show that a parsimonious structural model of dis-

tributional preferences that captures the essence of individuals’ fundamental distri-

butional motives does a far better job in predicting behavior in novel situations com-

pared to a state-of-the-art machine learning tool designed for high predictive ability.

This finding underscores that, to be able to predict well across novel domains, un-

derstanding the structural motivational forces that shape behaviors is of paramount

importance and of greater use than simply relying on a “theory-blind” machine learn-

ing tool, even when the empirical economic model is so parsimonious that it neglects

many individual-level differences in preferences.25

24What happens if we examine the predictive power of gradient boosting trees when we neglect
individual identity information and consider only information on individuals’ type information (rGBT
with type information). In this case, the within-sample predictive performance (HIT rate) of rGBT is
only between 70 and 72%. Thus, individual identity information appears to be crucial for the within-
sample predictive superiority of machine learning.

25Interestingly, we find that even the structural representative agent model makes considerably
better out-of-sample predictions than rGBT. Due to space constraints we have currently omitted the
detailed description of this finding from the paper.
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Table 7: The out-of-sample predictive accuracy (hit rate) of the structural three-type-
model and of gradient boosting trees

Sample Prediction Estimation set Prediction set Types (k=3) Gradient boosting
Panel2017 within-sample Center Center 0.705 0.995
Panel2020 within-sample Center Center 0.708 0.996
Only2017 within-sample Center Center 0.700 0.999
Only2020 within-sample Center Center 0.724 0.968
Panel2017 out-of-sample Center Non-center 0.727 0.325
Panel2020 out-of-sample Center Non-center 0.672 0.292
Only2017 out-of-sample Center Non-center 0.715 0.289
Only2020 out-of-sample Center Non-center 0.665 0.279

Note: This table displays the hit rates of the structural three-type model (column 5) and of gradient
boosting trees (column 6) in the different data sets (rows). Rows 1-4 correspond to within- sample
predictions. Rows 5-8 correspond to the out-of-sample predictions. The hit rates reflect the share of
choice situations where the subject’s choice coincides exactly with the model’s prediction. It ranges
from 0 (when the model predicts all outcomes incorrectly) to 1 (when the model has a perfect
predictive accuracy).

5 Summary and conclusion

Parsimony is widely considered to be a virtue in economic modelling. It rests on

the idea that empirical and theoretical models should concentrate on the essential

characteristics of the problem at hand. At the same time, parsimony is typically

associated with neglecting details that may be important. So how much detail should

we neglect, and how should we determine what is essential? We tackled this problem

in the context of assessing the essential characteristics of preference heterogeneity in

the domain of distributional preferences.

For this purpose, we used a Bayesian nonparametric clustering algorithm—DP-

means—that makes the trade-off between parsimony and precision in the analysis of

preference heterogeneity explicit and does not require any assumptions on the char-

acteristics of distributional preferences. The empirical properties of the precision-

parsimony frontier as well as the descriptive analysis of our four data sets provide

strong hints that it may be possible to capture the essential characteristics of prefer-

ence heterogeneity with three behavioral types.

The parsimony-precision frontier displays strongly decreasing precision gains

from sacrificing parsimony by allowing more behavioral clusters and has a salient

kink at three behavioral types in all four data sets—indicating small precision gains

from more than three clusters and large precision losses from less than three clus-
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ters. The descriptive analysis also hints at the existence of three large behavioral

agglomerations but fails to to assign all individuals to a behavioral cluster.

We solve this problem by applying DP-means and assessing the behavioral in-

terpretation of fewer and more than three clusters. This analysis shows that fewer

clusters generate “dirty” preference agglomerations that merge very different pref-

erences into the same clusters. Likewise, allowing for four or five clusters does not

lead to empirically relevant and behaviorally meaningful new clusters while with

three clusters we recover three clean, and fundamentally distinct, types with a clear

behavioral interpretation—an inequality averse type, an altruistic type, and a pre-

dominantly selfish type. Remarkably, these three behavioral types emerge in all four

data sets in roughly similar proportions, indicating a rather high stability of the type

distribution both across samples and over time.

Finally, we show that relying on a three-type distribution to describe the behav-

ioral heterogeneity does not necessarily mean that one has to sacrifice predictive ac-

curacy, even when it comes to predicting the behavior of individuals out-of-sample. In-

deed, if one uses the structurally estimated utility function of each behavioral type to

predict the behavior of individuals out-of-sample, the predictive accuracy of this par-

simonious model is equally good compared to the accuracy of a model that is based

on individual-level estimates of utility functions. Moreover, the three-type model

outperforms the representative agent model and makes far better out-of-sample pre-

dictions than a state-of-the-art machine learning tool. Thus, taken together, the three-

type model not only gives us a parsimonious characterization of heterogeneity with

a meaningful behavioral interpretation, but also appears to be a good tool for pre-

dicting individuals’ behavior in novel situations.

While we gathered our data in Switzerland, an interesting question for future re-

search would be to assess whether the population of other countries can also be parsi-

moniously characterized with a small number of distributional preference types, and

whether the same or different types emerge. It would also be interesting to investigate

whether the same types emerge in difference substrata of the same population such

as, for example, in students or, more generally, in highly skilled strata of the popu-

lation with tertiary education. Preliminary evidence suggests that a whole type—the

inequality averse type—might not exist among students, and that higher education
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generally tends to mitigate inequality aversion Epper r⃝ al. (2023). Finally, it could

be interesting to examine whether the application of DP-means to the domain of risk

and time preferences also leads to the identification of a parsimonious distribution of

risk-taking and time discounting types.26

26Previous applications of mixture models to the domain of risk taking (Bruhin et al., 2010; Conte
et al., 2011) provide hope that this may be possible. Under assumptions that restrict the feasible space
of utility functionals, these papers identified an expected utility type and a rank-dependent utility
type (resp. a cumulative prospect theory type).
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ONLINE APPENDIX
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A Experimental task and population sample

A.1 Details on choice situations

Table A.1 describes the 12 choice situations presented in Figure 1. These are the choice
situations that we use to identify subjects’ other-regarding preferences, both for the
clustering (Section 3.2) and for the structural estimation of a two-parameter model
of distributional preferences (Section 4.1). The definition of the different variables in
the Table is as follows. ‘choiceId‘ is the unique identifier for each choice situation.
(own1, other1) represents the payoff combination at the lower end of the budget line
(in points). (own2, other2) represents the payoff combination at the upper end of
the budget line (in points). ‘bundle‘ indicates to which bundle the respective choice
situation belongs to (centered vs. non-center), and ‘slope‘ denotes the slope of the
budget line in the “own payoff – other payoff” space.

Table A.1: Estimation set (centered budget lines)

choiceId own1 own2 other1 other2 bundle slope
1 450 1050 750 750 center 0.0
2 500 1000 800 700 center -0.2
3 550 950 850 650 center -0.5
4 600 900 900 600 center -1.0
5 650 850 950 550 center -2.0
6 700 800 1000 500 center -5.0
7 750 750 1050 450 center -Inf
8 700 800 500 1000 center 5.0
9 650 850 550 950 center 2.0

10 600 900 600 900 center 1.0
11 550 950 650 850 center 0.5
12 500 1000 700 800 center 0.2

Tables A.2 and A.3 describe the choice situations used for out-of-sample predic-
tions in the 2017 and the 2020 waves, respectively.
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Table A.2: Prediction set (2017 wave, non-centered budget lines)

choiceId own1 own2 other1 other2 bundle slope
15 300 600 900 600 non-center -1.0
16 600 900 1200 900 non-center -1.0
17 300 900 900 900 non-center 0.0
18 350 850 950 850 non-center -0.2
19 400 800 1000 800 non-center -0.5
20 450 750 1050 750 non-center -1.0
21 500 700 1100 700 non-center -2.0
22 550 650 1150 650 non-center -5.0
23 600 600 1200 600 non-center -Inf
24 550 650 650 1150 non-center 5.0
25 500 700 700 1100 non-center 2.0
26 450 750 750 1050 non-center 1.0
27 400 800 800 1000 non-center 0.5
28 350 850 850 950 non-center 0.2
29 600 900 600 300 non-center -1.0
30 900 1200 900 600 non-center -1.0
31 600 1200 600 600 non-center 0.0
32 650 1150 650 550 non-center -0.2
33 700 1100 700 500 non-center -0.5
34 750 1050 750 450 non-center -1.0
35 800 1000 800 400 non-center -2.0
36 850 950 850 350 non-center -5.0
37 900 900 900 300 non-center -Inf
38 850 950 350 850 non-center 5.0
39 800 1000 400 800 non-center 2.0
40 750 1050 450 750 non-center 1.0
41 700 1100 500 700 non-center 0.5
42 650 1150 550 650 non-center 0.2
43 250 850 950 950 non-center 0.0
44 300 800 1000 900 non-center -0.2
45 350 750 1050 850 non-center -0.5
46 400 700 1100 800 non-center -1.0
47 450 650 1150 750 non-center -2.0
48 500 600 1200 700 non-center -5.0
49 550 550 1250 650 non-center -Inf
50 600 700 600 1100 non-center 5.0
51 600 800 600 1000 non-center 2.0
52 500 900 700 900 non-center 0.5
53 400 900 800 900 non-center 0.2
54 650 1250 550 550 non-center 0.0
55 700 1200 600 500 non-center -0.2
56 750 1150 650 450 non-center -0.5
57 800 1100 700 400 non-center -1.0
58 850 1050 750 350 non-center -2.0
59 900 1000 800 300 non-center -5.0
60 950 950 850 250 non-center -Inf
61 600 1100 600 700 non-center 0.2
62 600 1000 600 800 non-center 0.5
63 700 900 500 900 non-center 2.0
64 800 900 400 900 non-center 5.0

Table A.3: Prediction set (2020 wave, non-centered budget lines)

choiceId own1 own2 other1 other2 bundle slope
13 700 767 800 1133 non-center 5.0
14 800 950 700 250 non-center -3.0
15 700 800 800 1100 non-center 3.0
16 800 1100 700 400 non-center -1.0
17 700 820 800 1080 non-center 2.3
18 800 1175 700 575 non-center -0.3
19 700 718 800 1185 non-center 21.4
20 800 830 700 130 non-center -19.0

3



A.2 Descriptive statistics

Table A.4: Comparison of sample population with the Swiss population

Panel-2017 Panel-2020 Only-2017 Only-2020 Population
Male 0.56 0.56 0.52 0.48 0.48
Age (mean) 48.13 51.20 44.27 43.26 51.08

Education : Obligatory school 0.03 0.03 0.05 0.02 0.11
Education : Vocational training 0.34 0.35 0.41 0.34 0.42
Education : High school 0.15 0.10 0.11 0.13 0.10
Education : University 0.37 0.41 0.30 0.39 0.35
Education : Other 0.10 0.11 0.12 0.11 -

Income bracket : ≤ CHF 4000 0.26 0.28 0.24 0.37 0.28
Income bracket : CHF 4001-6000 0.17 0.23 0.24 0.21 0.26
Income bracket : CHF 6001-8000 0.20 0.20 0.20 0.18 0.22
Income bracket : CHF 8001-10000 0.15 0.14 0.13 0.10 0.12
Income bracket : CHF 10001-15000 0.10 0.09 0.08 0.05 0.09
Income bracket : ≥ CHF 15000 0.02 0.01 0.01 0.03 0.03
Income bracket : NA 0.10 0.05 0.09 0.05 -

Unemployed 0.03 0.02 0.04 0.03 0.03

N 467 467 348 916
Notes: The table displays descriptive statistics (mean) for the main socio-demographics of
the main sample and for the Swiss population. The population data were obtained from the
Swiss Federal Bureau of Statistics (2018) and are restricted to the adult Swiss population (i.e.
individuals holding a swiss passport who are at least 18 years old).
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B Alternative number of clusters

B.1 Allowing for four clusters

In this Appendix, we display—for each sample—the transition matrices that docu-
ment how individuals assignment to clusters varies when we increase precision such
that the number of clusters allowed to emerge increases from k = 3 to k = 4. In all
the samples, the vast majority of individuals remain assigned to the same behavioral
cluster. For example, in the Panel-2017 data set (Table A.5), 224 individuals out of the
225 assigned to the inequality averse cluster when k = 3 remain assigned to the same
cluster when k = 4. Similarly, the whole 196 individuals assigned to the altruistic
cluster and the 46 assigned to the predominantly selfish cluster remain assigned to
the same clusters. In the remaining data sets, we observe similar patterns: almost
all individuals remain assigned to the same behavioral cluster, and the fourth clus-
ter remains populated by very few individuals’ whose behavior is hard to interpret
(See Tables A.6 and A.7). We depicted the transition matrix for the Only-2020 sample
directly in the main text (Table 3). As we discuss there, the inequality averse cluster
splits into two sub-clusters in this sample. This interpretation is further supported
by Figure A.1, which shows that the two clusters display a behavior that is consistent
with inequality aversion. The other two clusters behave in a way consistent with self-
ishness (lower right panel) and altruism (lower left panel). Thus, in this sample too,
allowing for four clusters does not reveal a new, distinct, and empirically relevant
behavioral type.
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Figure A.1: The distribution of choices for positively and negatively sloped budget
lines in each cluster in the Only-2020 dataset when k = 4.

In
eq

ua
lit

y 
av

er
se

 (
2)

S
el

fis
h

In
eq

ua
lit

y 
av

er
se

 (
1)

A
ltr

ui
st

ic

negative positive negative positive

negative positive negative positive

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

slope

pr
op

or
tio

n

Relative share of

own−payoff minimizing choices

payoff−equalizing choices

own−payoff maximizing choices

6



Table A.5: Transition of individuals between types in the Panel-2017 data set

k = 4 clusters
Inequality

averse Altruistic Predominantly
Selfish

Non
Interpretable

Total
(%)

k=3

clusters

Inequality
averse 224 0 0 1

225
(48.18%)

Altruistic 0 196 0 0
196

(41.97%)
Predominantly

selfish 0 0 46 0
46

(9.85%)
Total
(%)

224
(47.97%)

196
(41.97%)

46
(9.85%)

1
(0.21%)

467
(100%)

Table A.6: Transition of individuals between types in the Panel-2020 data set

k = 4 clusters
Inequality

averse Altruistic Predominantly
selfish

Non
Interpretable

Total
(%)

k=3

clusters

Inequality
averse 202 0 0 9

211
(45.18%)

Altruistic 0 181 0 0
181

(38.76%)
Predominantly

selfish 4 0 71 0
75

(16.06%)
Total
(%)

206
(44.11%)

181
(38.76%)

71
(15.20%)

9
(1.93%)

467
(100%)

Table A.7: Transition of individuals between types in the Only-2017 data set

k = 4 clusters
Inequality

averse Altruistic Predominantly
Selfish

Non
Interpretable

Total
(%)

k=3

clusters

Inequality
averse 186 0 0 1

187
(53.74%)

Altruistic 1 102 0 0
103

(29.59%)
Predominantly

selfish 0 0 58 0
58

(16.67%)
Total
(%)

187
(53.74%)

102
(29.31%)

58
(16.47%)

1
(0.29%)

348
(100%)
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B.2 Allowing for five clusters

In this Appendix, we display—for each sample—the transition matrices that docu-
ment how individuals’ assignment to clusters varies when we increase precision such
that the number of clusters allowed to emerge increases from k = 3 to k = 5. As we
show below, we find again that the majority of individuals are assigned to an in-
equality averse cluster (IA), a smaller yet large group of individuals is assigned to
an altruistic cluster, and the remaining individuals are assigned to a predominantly
selfish cluster. However, these three behavioral types are now distributed in some
data sets over a larger number of clusters while in other data sets the fourth and
the fifth cluster basically remain unpopulated. This means that with five clusters the
stability of the behavioral interpretation of the different clusters across data sets and
time is completely lost. Table A.8 below, which depicts the respective distributions of
behavioral clusters, illustrates this in detail.

Table A.8: Type distribution when allowing for five types

Panel-2017 Panel-2020 Only-2017 Only-2020
Cluster 1 Altruistic (38.33) IA (42.61) IA (53.45) IA-1 (26.53)
Cluster 2 IA-1 (33.19) Altruistic (38.76) Altruistic (29.31) Selfish (21.18)
Cluster 3 IA-2 (18.63) Selfish (15.20) Selfish (16.67) IA-2 (19.43)
Cluster 4 Selfish (9.64) - (2.78) - (0.29) Altruistic-1 (18.78)
Cluster 5 - (0.21) - (0.64) - (0.29) Altruistic-2 (14.08)

Note: The table displays the distribution of individuals to five clusters (in percent) in each of our
four data sets. IA indicates inequality averse behavior, and IA-1 (IA-2) indicate the two clusters of
inequality averse subjects. Altruistic-1 (Altruistic-2)indicate the two clusters of altruistic subjects.
Selfish indicates the primarily self-interested behavioral type.

In two data sets (Panel-2020 and Only-2017), only three clusters are populated
(one cluster for each behavioral type) and the remaining two clusters (Cluster 4 and
Cluster 5) remain essentially unpopulated. In the Panel-2017 data set, the same three
types emerge but the inequality averse type is divided up into two clusters (sub-
types, IA-1 and IA-2) with an identical behavioral interpretation, as evidenced in the
transition matrix (Table A.9). The fifth cluster is populated by a single individual. Fi-
nally, in the Only-2020 data set, all five clusters are populated, but this is explained by
the fact that the inequality averse type and the altruistic type are both split into two
clusters, as evidenced in Table A.10. Altogether, these results suggest that increas-
ing precision such that 5 types are allowed to emerge does not bring fundamentally
new insights compared to the preferred clustering with k = 3, and it undermines the
stability of the behavioral interpretation of the clusters across data sets and across
time.
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Table A.9: Transition of individuals between types in the Panel-2017 data set

k = 5 clusters
Inequality
averse (1)

Inequality
averse (2) Altruistic Predominantly

Selfish
Non

Interpretable
Total
(%)

k=3

clusters

Inequality
averse 154 70 0 0 1

225
(48.18%)

Altruistic 0 17 179 0 0
196

(41.97%)
Predominantly

selfish 1 0 0 45 0
46

(9.85%)
Total
(%)

155
(33.19%)

87
(18.63%)

179
(38.33%)

45
(9.64%)

1
(0.21%)

467
(100%)

Table A.10: Transition of individuals between types in the Only-2020 data set

k = 5 clusters
Inequality
averse (1)

Inequality
averse (2) Altruistic (1) Altruistic (2) Predominantly

Selfish
Total
(%)

k=3

clusters

Inequality
averse 175 230 12 0 0

417
(45.52%)

Altruistic 0 1 155 123 0
279

(30.46%)
Predominantly

selfish 3 12 5 6 194
220

(24.02%)
Total
(%)

178
(19.43%)

243
(26.53%)

172
(18.78%)

129
(14.08%)

194
(21.18%)

916
(100%)

Table A.11: Transition of individuals between types in the Only-2017 data set

k = 5 clusters
Inequality

averse Altruistic Predominantly
Selfish

Non
Interpretable

Non
Interpretable

Total
(%)

k=3

clusters

Inequality
averse 185 0 0 1 1

187
(53.74%)

Altruistic 1 102 0 0 0
103

(29.60%)
Predominantly

selfish 0 0 58 0 0
58

(16.67%)
Total
(%)

186
(53.45%)

102
(29.31%)

58
(16.67%)

1
(0.29%)

1
(0.29%)

348
(100%)

Table A.12: Transition of individuals between types in the Panel-2020 data set

k = 5 clusters
Inequality

averse Altruistic Predominantly
Selfish

Non
Interpretable

Non
Interpretable

Total
(%)

k=3

clusters

Inequality
averse 195 0 0 13 3

211
(45.18%)

Altruistic 0 181 0 0 0
181

(38.76%)
Predominantly

selfish 4 0 71 0 0
75

(16.06%)
Total
(%)

199
(42.61%)

181
(38.76%)

71
(15.2%)

13
(2.78%)

3
(0.64%)

467
(100%)
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B.3 Allowing for only two clusters

In this Appendix, we display the transition matrices that document how individuals
assignment to types varies when we decrease precision (increase parsimony) such
that the number of types allowed to emerge decreases from k = 3 to k = 2. We depict
the results for the Panel-2020, the Only-2017 and the Only-2020 samples (evidence for
the Panel-2017 is discussed in the main text). These tables show that, in all samples,
restricting the number of types to two systematically leads to the disappearance of
an important behavioral type and to the merging of incompatible preference types
(denoted ”MIP” in the tables) into one type, which undermines the behavioral in-
terpretation of the different clusters. For example, in the Panel-2020 data set (Table
A.13), the altruistic and the predominantly selfish types when k = 3 are merged to-
gether into a single, uninterpretable cluster when k = 2.

Table A.13: Transition of individuals between types in the Panel-2020 data set

k = 3 clusters
Inequality

averse Altruistic Predominantly
Selfish

Total
(%)

k=2

clusters

Inequality
averse 203 6 7

216
(46.25%)

MIP 8 175 68
251

(53.75%)
Total
(%)

211
(45.18%)

181
(38.76%)

75
(16.06%)

467
(100%)

Table A.14: Transition of individuals between types in the Only-2017 data set

k = 3 clusters
Inequality

averse Altruistic Predominantly
Selfish

Total
(%)

k=2

clusters

MIP 187 100 1
288

(82.76%)
Predominantly

Selfish 0 3 57
60

(17.24%)
Total
(%)

187
(53.73%)

103
(29.6%)

58
(16.67%)

348
(100%)
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Table A.15: Transition of individuals between types in the Only-2020 data set

k = 3 clusters
Inequality

averse Altruistic Predominantly
Selfish

Total
(%)

k=2

clusters

MIP 412 3 80
495

(54.04%)

MIP 5 276 140
421

(45.96%)
Total
(%)

417
(45.52%)

279
(30.46%)

220
(24.02%)

916
(100%)
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C Recoverability of Preference Types

In this appendix, we demonstrate the ability of the DP means algorithm to recover
preference types from data. To that end, we simulate individual choices from the
family of constant elasticity of substitution (CES) preferences which has been widely
used in the literature (see, for example, Fisman, Jakiela and Kariv, 2017). A decision
maker with CES preferences maximizes the utility function27

V (w(s), w(o)) = v−1(κv (w(s))+ (1− κ)v (w(o)))+ ε ,

where w(s) and w(o) denote the money allocation to self and the other person,
respectively. v is a power function with parameter ρ

v(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xρ if ρ > 0
ln(x) if ρ = 0
−xρ if ρ < 0

,

and v−1 its inverse. The model has three parameter: κ, which governs the degree
of fair-mindedness; ρ, which captures the equality-efficiency tradoffs; and ζ, which
is the standard deviation of the errors controlling the deviations from deterministic
maximization of the CES function (i.e. the utility shocks ε).28

We employ a hierarchical simulation exercise and generate 1000 individuals’ allo-
cation choices for three distinct preference types:

1. An egalitarian altruist (Rawlsian) type with mean parameters κ = 0.5 and a very
low ρ = −100. This type approaches a maximin type with V(⋅) =min{w(s), w(o)}
when ρ → −∞. This type’s indifference curves are L-shaped.

2. A strong altruist type with mean parameters κ = 0 and ρ = 0 for which the
power function converges to the logarithm, such that V(⋅) = ln w(o). This type’s
indifference curves are horizontal lines.

3. A selfish type with mean parameters κ = 1 and ρ = 0, such that V(⋅) = ln w(s).
This type’s indifference curves are vertical lines.

We allow for heterogeneity within preference types. Specifically, we assume that
the preference parameter ρ and the logit-transformed κ are normally distributed with
the above means and standard deviation 0.2. The logit transformation of the latter
parameter ensures that the simulated κs lie within the unit interval.

We generate simulated data for a population consisting of 400 egalitarian altruists
(40%), 400 strong altruists (40%), and 200 selfish individuals (20%). We consider
three levels of noise: low noise (ζ = 0.01), medium noise (ζ = 30) and high noise
(ζ = 60). The expectation is that simulated types generated with more noise are less
discernable from each other.

27For the sake of brevity, we omit individual-, choice-situation- and alternative-specific indices.
28Thus, κ largely determines the slope of the indifference curve, whereas ρ determines its curvature.
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We restrict our attention to a level of precision that yields three clusters. Once
again, we cluster based on the center bundle choice only. As mentioned in the main
text, the DP-means algorithm is not aware of the interpretation of the emerging clus-
ters. The cluster labels have to be assigned by the researcher after a careful inspection
of the behavioral characteristics of each identified cluster, provided that the clusters
have a clear behavioral interpretation.

In all scenarios, the DP-means recovers all three behavioral types. However, as the
level of noise increases, each types’ characteristic behavior displays larger variance,
as shown in Figure A.2.

Figure A.2: The distribution of choices by recovered preference type and different
noise levels.
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