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Abstract

We develop a framework for optimal taxation when agents can earn their income
both in traditional activities, where private and social products coincide, and in rent-
seeking activities, where private returns exceed social returns either because they in-
volve the capture of pre-existing rents or because they reduce the returns to tradi-
tional work. We characterize Pareto optimal income taxes that do not condition on
how much of an individual’s income is earned in each of the two activities. These
optimal taxes feature an externality-corrective term, the magnitude of which depends
both on the Pigouvian correction that would obtain if rent-seeking incomes could be
perfectly targeted and on the relative impact of rent-seeking externalities on the pri-
vate returns to traditional and to rent-seeking activities. If rent-seeking externalities
primarily affect other rent-seekers, for example, the optimal correction lies strictly be-
low the Pigouvian correction. A calibrated model indicates that the gap between the
Pigouvian and optimal correction can be quantitatively important. Our results thus
point to a hefty informational requirement for correcting rent-seeking externalities
through the income tax code.
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1 Introduction

The financial crisis exposed prominent examples of highly compensated individuals whose
apparent contributions to social output proved illusory. The view that some top incomes
reflect rent-seeking—i.e., the pursuit of personal enrichment by extracting a slice of the
existing economic pie rather than by increasing the size of that pie—has inspired calls
for a more steeply progressive tax code (Piketty et al., 2014), and, motivated by similar
concerns about rent-seeking in finance, various countries have proposed higher taxes on
financial-sector bonus payments (Besley and Ghatak, 2013).

The argument behind such proposals is intuitively appealing. If part of the economic
activity at high incomes is socially unproductive rent-seeking or “skimming,” then it
would seem natural for a well-designed income tax to impose high marginal rates at high
incomes.1 This would discourage such behavior while simultaneously raising revenue
that could be used, for instance, to reduce taxes and encourage more productive effort at
lower incomes. Moreover, if some sectors or professions are more prone to rent-seeking
than others (Lockwood et al., 2015), sector-specific corrective taxes would be useful.

In this paper, we study the optimal design of such policies under the assumption of
imperfect targeting. For example, lawyers produce many socially efficient services, uphold-
ing property rights and providing incentives to abide by useful rules. On the other hand,
they may also engage in rent-seeking activities, some of which resemble zero-sum games.
The friction that we account for here is that it can be very hard to tell which is which: the
only way to find out can be a costly trial, a highly imperfect process. A similar point can
be made of finance and many other sectors. Hence, even sector- or profession-specific
taxes are necessarily imperfectly targeted, as they apply to multiple different activities
within such sectors that all come together in the same market and cannot be easily dis-
entangled in any given transaction. At the extreme, an individual may engage both in
productive and rent-seeking activities simultaneously, but only total income is observ-
able when computing tax liabilities.

Towards cleanly identifying the key effects of rent-seeking on optimal income taxes,
we begin with a simple representative-agent Ramsey model which isolates the corrective
role for taxation—as there is no scope for redistribution. The identical individuals in this
model can pursue two types of activities: traditional, productive work, where private
and social returns to effort coincide, and rent-seeking, where private returns exceed the
social returns to effort. Suppose, for instance, that rent-seeking effort involves claiming
credit for productive work done by others. Then rent-seeking imposes across-activity

1See Bertrand and Mullainathan (2001) for evidence of such rents.
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externalities (i.e., reduces the productivity of traditional effort) as well as within-activity
externalities (due to crowding effects in claiming credit). Both externalities drive a wedge
between the private returns to effort and its true productivity at the aggregate level.

A natural guess for the optimal tax rate would be the weighted Pigouvian tax rate,
i.e., the proportion of income earned through rent-seeking in the economy multiplied by
the wedge between the private and social returns to rent-seeking effort—the wedge that
would be the optimal tax on rent-seeking if it could be separately identified. Our first
main result, however, is that the optimal income tax systematically diverges from this
benchmark (Proposition 1).

To see why the initial guess is generally incorrect, consider the effects of a small tax
increase. It discourages effort and thus directly reduces rent-seeking. But it also has
indirect effects since a reduction in rent-seeking effort raises the returns to both types
of effort. If the within-activity externalities are large relative to the across-activity ones,
the returns to rent-seeking rise by more than the returns to productive effort. The tax
change thus encourages a perverse shift of effort into rent-seeking. This indirect effect
partially offsets the direct corrective benefits of the higher tax, and the optimal correction
lies strictly below the Pigouvian benchmark. When, on the other hand, the across-activity
externalities from rent-seeking dominate the within-activity ones, a reduction in rent-
seeking effort lowers the relative returns to rent-seeking, the activity shift effect reverses
sign, and the optimal correction exceeds the Pigouvian tax rate.

Indeed, we provide a simple and intuitive formula for the optimal correction, which
reveals that the gap between the optimal and Pigouvain corrections depend on the prod-
uct of two key parameters: the elasticity of the relative returns with respect to rent-seeking
effort, and individuals’ substitution elasticity between the two activities. The former de-
termines the extent to which an additional unit of rent-seeking effort increases or de-
creases the relative returns to rent-seeking, and the second determines the magnitude of
the activity shift in response to a change in relative returns. Only in the knife-edge case
where one of these elasticities is zero does the standard Pigouvian correction apply. Con-
versely, we show that the divergence between the Pigouvian and the optimal correction
explodes in this framework as the substitution elasticity grows (so individuals tend to
specialize in one of the two activities): The optimal tax can be zero even though rent-
seeking accounts for a strictly positive share of income in the economy and even though
it has strictly negative externalities.

We then extend our analysis to allow for heterogeneity, which is required both to ad-
dress the question of the optimal progressivity of the income tax schedule, and also to see
how the corrective motives interact with the standard redistributive motives for taxation.
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This extension assumes that individuals differ in their skills for both activities and consid-
ers the design of a fully nonlinear income tax. We solve this multidimensional screening
model by building on the insights in Rothschild and Scheuer (2013). Specifically, we ob-
serve that the realized wage distribution depends on the aggregate rent-seeking effort,
so that the optimal tax problem can be treated as a fixed point problem for rent-seeking
effort nested within an almost-standard Mirrlees (1971) optimal tax problem. The bottom
line is that the key intuition from the Ramsey model carries over, but the activity shift
effect gets complemented by several additional effects, which are due to heterogeneity.

In particular, our Proposition 2 provides an optimal marginal tax rate formula for each
income level. This formula features a multiplicative correction to a standard optimal tax
formula for economies without rent-seeking (such as Saez, 2001). This structure is consis-
tent with the “principle of targeting” (Dixit, 1985) and, more specifically, the “additivity
principle” discussed in the literature on corrective taxation in the presence of atmospheric
externalities, according to which taxes can be expressed as a sum of the optimal Pigou-
vian taxes and the optimal taxes from a related problem without externalities.2 However,
Proposition 3 shows that the correction term in the optimal tax formula again diverges
from the Pigouvian benchmark in manner that depends in a transparent way on the sign
and magnitude of the relative return elasticity.

Interestingly, we find an even stronger divergence result (vis-à-vis the Ramsey model)
in this heterogeneous agent model. The reason is that changes in marginal tax rates at any
given income level affect aggregate returns and therefore induce activity shifts elsewhere
in the income distribution. As a result, the optimal correction diverges from the Pigouvian
benchmark even at points in the distribution where all income is from rent-seeking, and
where the (marginal) income tax might appear to be a perfectly targeted instrument.

Finally, we complement these analytical results with a quantitative exploration of this
divergence. We estimate a flexible bivariate Pareto-lognormal parametrization of the the
two-dimensional skill distribution using data from the 2014 Current Population Survey
(CPS) and borrow estimates for the externalities from rent-seeking, which we associate
with law and finance, from the literature. We then trace out the full set of possible relative
return effects, consistent with the given Pigouvian correction, and simulate the optimal
nonlinear income tax schedule for each of these scenarios. Our results suggest that the
general equilibrium effects we emphasize here can be of similar magnitude as the Pigou-
vian taxes themselves, leading to considerable divergences.

In summary, our theoretical and quantitative results point to the hefty informational
requirements for using the income tax code to correct rent-seeking externalities. Even

2See Sandmo (1975), Sadka (1978), Cremer et al. (1998), Kopczuk (2003).
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if, for example, policymakers could perfectly pin down the overall magnitude of rent-
seeking externalities, either in the economy overall or in a particular industry such as fi-
nance (which is already challenging), our results suggest that there would still be a wide
range of possibly optimal corrective taxes. To determine the appropriate corrective tax,
policymakers would additionally need to know the relative impact of rent-seeking on var-
ious activities. In the absence of clear evidence on this, our results can be interpreted as
advising caution in using the income tax as a tool to discourage rent-seeking.

Related Literature. Our main results are most closely related in spirit to Diamond (1973),
although our motivation and framework are very different. Most importantly, Diamond
analyses the linear taxation of an externality-producing consumption good with hetero-
geneous agents. We establish our results in a homogenous agent Ramsey setting and then
extend them to a Mirrleesian framework with non-linear income taxes, thereby incorpo-
rating both corrective and redistributive motives for taxation. Moreover, as we discuss
in detail in the following section, our formula characterizing the divergence between the
optimal and Pigouvian corrections in the Ramsey model is related to some of Diamond’s
formulas, but in contrast to them our formula shows that this divergence depends in an
intuitive way on the product of two simple elasticities with natural empirical analogs,
allowing us to get transparent results on its direction and magnitude.

A special case of our model obtains when rent-seeking income is earned through a
crowdable search activity. Our analysis is therefore related to recent work by Golosov et
al. (2013), who consider optimal taxation in labor markets with search frictions. However,
they abstract from skill-driven wage heterogeneity in contrast to the general heterogene-
ity we allow for. Moreover, they consider search for employment rather than search as an
income producing (but, through crowding, negative externality generating) activity (see
also Hungerbuhler et al., 2006).

Our analysis tracks the methods of the optimal income taxation literature, notably
Ramsey (1927), Mirrlees (1971), Diamond (1998), Saez (2001) and Werning (2007). Our
paper also contributes to recent efforts to study optimal taxation under multidimen-
sional private heterogeneity—a literature which needs to tackle the challenges implied
by multidimensional screening problems, as standard techniques typically do not ap-
ply (Rochet and Choné, 1998). This literature includes, for instance, Kleven et al. (2009),
Scheuer (2013, 2014), Beaudry et al. (2009), Choné and Laroque (2010), and Lockwood and
Weinzierl (2015). These papers have different information structures than ours, however:
the second dimension of heterogeneity enters preferences additively in the first three; in
Beaudry et al. (2009), types have two distinct labor productivities, but one activity is a
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non-market activity, the returns from which are unobservable, whereas total income—
but not its breakdown between the two activities—is observable in our model;3 and in
Choné and Laroque (2010) and Lockwood and Weinzierl (2015), the second dimension is
a taste for labor rather than a full second skill type as we employ here.

More closely related is Rothschild and Scheuer (2013), who use methods similar to
those developed here to characterize optimal taxation in a Roy (1951) model. That paper
shares the structure of two-dimensional heterogeneity in our Mirrlees extension, but (as
all the other papers above) considers the special case where individuals always specialize
in one type of activity. It also rules out wages that deviate from the social marginal prod-
uct of effort and the resulting corrective motives for taxation, issues we focus on here.4

Finally, our paper relates to the literature studying the equilibrium allocation of tal-
ent across different sectors when there are rents to be captured in some of them. Most
of this literature (e.g. Baumol, 1990, Murphy et al., 1991, Acemoglu and Verdier, 1998,
and Cahuc and Challe, 2012) does not consider optimal tax policy to correct these equilib-
rium outcomes. But there are important recent exceptions. Philippon (2010) considers an
endogenous growth model with financiers, workers and entrepreneurs and analyzes the
effect of linear, sector-specific taxes on growth. The recent studies by Piketty et al. (2014)
and Lockwood et al. (2015) focus on the case where externalities reduce everyone else’s
income in a lump-sum fashion rather than the proportional reduction that we consider
here. This rules out the relative return effects from effort that we emphasize, which arise
when the externalities can affect different activities to varying degrees. In this case, due
to the absence of general equilibrium effects, the simple weighted Pigouvian correction
is optimal, which we use as a benchmark to compare our results to, both analytically and
quantitatively. Furthermore, Lockwood et al. abstract from redistributive motives and
Piketty et al. restrict attention to top marginal tax rates.

This paper proceeds as follows. In Section 2, we begin with a representative agent
Ramsey model that illustrates the key force underlying our main divergence result. Sec-
tion 3 then incorporates rich heterogeneity into our modeling framework and discusses
tax implementation issues. In Section 4, we analyze this model and provide our main
results. Finally, Section 5 provides a quantification of these results for a calibrated version
of our model, and Section 6 concludes. Most proofs as well as details on the data and cal-
ibration appear in a technical appendix. We also collect various examples and extensions

3Beaudry et al. also assume that, unlike here, effort in the market activity is observable.
4Our Ramsey setting with two unobservable margins of effort also relates to the literature on multi-

tasking (Holmström and Milgrom, 1991 and Baker, 1992), although these papers do not consider externali-
ties and corrective taxation. In Rothschild and Scheuer (2014), we extend our Mirrleesian analysis to N > 2
activities with arbitrary positive and negative externalities.
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in an online appendix.

2 A Simple Model Without Heterogeneity

We begin with a simple Ramsey representative agent model, which illustrates the key
force underlying our results. We will later show the additional effects that emerge in a
rich Mirrlees model with more realistic heterogeneity.

2.1 Setup

Preferences. Consider an economy consisting of a unit mass of identical agents, indexed
by i 2 [0, 1]. Preferences over consumption c and effort in each of two distinct activities,
e

q

and e
j

, are given by U(c, e
q

, e
j

) = u(c, m(e
q

, e
j

)) ⌘ u(c, l). We associate q with a
traditional activity and j with rent-seeking, as explained below. We assume that u is
strictly quasiconcave, twice continuously differentiable, and has uc > 0 and ul < 0. We
also impose the regularity conditions that consumption c and “leisure” �l are normal
goods and liml,c!0 �ul/uc = 0. For concreteness, we consider here the CES-specification
for the effort aggregator

m(e
q

, e
j

) =

✓
e

1+s

s

q

+ e
1+s

s

j

◆ s

1+s

with constant substitution elasticity s > 0, but we show in Appendix A that our results
go through for more general specifications. For s ! 0, individuals always choose e

q

= e
j

,
whereas for s ! •, they always specialize in one of the two activities.

Technology. Agents earn incomes y in proportion to each of the two components of
their effort via y = r

q

(E)e
q

+ r
j

(E)e
j

, where the activity-specific returns r
q

(E) = k
q

E�b

q

and r
j

(E) = k
j

E�b

j , with elasticities b

q

, b

j

2 [0, 1), are decreasing in the aggregate rent-
seeking effort E ⌘

R 1
0 e

j

(i)di, and where k
q

, k
j

> 0 are some constants.5 For later use,
denote the elasticity of the relative return r

q

(E)/r
j

(E) with respect to E by D ⌘ b

j

� b

q

.
We also impose the regularity condition Ds > �1 + b

q

, which we discuss further below.
Summing over individuals, aggregate income is therefore

Y(E
q

, E) = r
q

(E)E
q

+ r
j

(E)E, (1)

where E
q

⌘
R 1

0 e
q

(i)di. It is a sum of two components: the total earnings Y
j

⌘ r
j

(E)E

5Appendix A again shows that our results generalize to arbitrary non-increasing return functions, whose
elasticities with respect to E are not constant, but depend on E.

6



accruing to rent-seeking, and the total earnings Y
q

⌘ r
q

(E)E
q

accruing to the traditional
activity. The private returns r

q

to traditional effort thus coincide with the marginal social
returns ∂Y/∂E

q

. On the other hand, unless b

q

= b

j

= 0, the private returns r
j

to rent-
seeking effort strictly exceed the marginal social returns ∂Y/∂E = r

j

� b

q

Y
q

/E � b

j

r
j

.

Rent-seeking Externalities. The divergence between r
j

and ∂Y/∂E is why we interpret
the j-activity as generalized rent-seeking. For example, when b

q

= 0 and in the limiting
case b

j

! 1, there is a fixed “pie” of rents Y
j

= k
j

that individuals compete for by
exerting effort e

j

. This pie is divided up across agents in proportion to their individual
effort e

j

. More generally, when b

j

< 1, Y
j

is increasing but concave in E, and a proportion
1 � b

j

of private rent-seeking earnings are attributable to increasing the size of the rent-
seeking pie while the remaining portion b

j

is attributable to “skimming” from the portion
of the pie that would otherwise have gone to other rent-seekers. Finally, when b

q

>

0, rent-seeking effort additionally reduces the income Y
q

in the traditional activity. The
dependence of the returns r

q

(E) and r
j

(E) on aggregate rent-seeking effort reflects these
rent-seeking externalities.

The magnitude of the rent-seeking externality is naturally measured by the Pigouvian
correction tPigou, which aligns the private returns r

j

to an additional unit of rent-seeking
effort e

j

with the social returns ∂Y/∂E to this unit. That is, tPigou is defined such that

(1 � tPigou)rj

=
∂Y
∂E

) tPigou = b

j

+
1 � s

s
b

q

, (2)

where s ⌘ Y
j

/Y is the aggregate income share of rent-seeking.

Tax Instruments. There is a benevolent social planner who is aware of the structure of
the economy, but who is unable distinguish rent-seeking earnings from traditional earn-
ings. If the planner could separately identify and tax the earnings from rent-seeking ef-
forts, it would optimally impose the tax tPigou on rent-seeking earnings. Due to imperfect
targeting, however, its only policy tool is a tax on total income, with marginal rate t and
lump sum transfer T. Faced with such a tax, each agent solves

max
e

q

,e
j

u
⇣
(1 � t)(r

q

(E)e
q

+ r
j

(E)e
j

) + T, m(e
q

, e
j

)
⌘

, (3)

taking E and hence the returns to each activity as given. It will be useful to rewrite the
agent’s problem equivalently as
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max
l

⇢
max

x
u
✓
(1 � t)

✓
r

q

(E)
xl

m(x, 1)
+ r

j

(E)
l

m(x, 1)

◆
+ T, l

◆�
, (4)

where x ⌘ e
q

/e
j

and we used the fact that m is homogeneous of degree 1. One can think
of this as decomposing the agent’s problem into an inner, extensive margin problem of
choosing the effort ratio x across activities, and an outer, intensive margin problem of
choosing overall effort l (again taking E as given). In particular, the inner maximization
is equivalent to choosing the effort ratio x to solve

wE ⌘ max
x

r
q

(E)x + r
j

(E)
m(x, 1)

. (5)

Then the outer maximum in (3) is

max
l

u((1 � t)wEl + T, l). (6)

Maximization problem (6) indicates that wE is interpretable as a wage. Except for the fact
that this wage is endogenous to the aggregate rent-seeking effort in the economy, (6) is a
standard problem for an agent facing a linear tax and choosing overall effort l.

2.2 Equilibrium

An equilibrium is a tuple (t, T, E, E
q

) with E = e⇤
j

(t, T, E) and E
q

= e⇤
q

(t, T, E), and

T = t
�
r

q

(E)E
q

+ r
j

(E)E
�

, (7)

so that the planner’s budget is balanced.

Equilibrium Set. The equilibrium condition E = e⇤
j

(t, T, E) can be thought of as a fixed
point problem for E, given any tax system (t, T): Individuals take the returns and hence
E as given when choosing their optimal rent-seeking effort e

j

. In equilibrium, this effort
choice has to be consistent with the E that was taken as given. As the following lemma
demonstrates, this fixed point problem is well-behaved: it has a unique solution for any
(t, T). Indeed, the lemma demonstrates that E, E

q

, 1 � t, l = m(E
q

, E), and Y are all
co-monotonic within the set of equilibria.

Lemma 1. If (t, T, E, E
q

) and (t0, T0, E0, E0
q

) are equilibria, then 1 � t � 1 � t0 , E � E0 ,
E

q

, E0
q

, m(E
q

, E) � m(E0
q

, E0) , Y(E
q

, E) � Y(E0
q

, E0).

The proof of Lemma 1, which is in Appendix A, makes use of our regularity assump-
tion Ds > �1 + b

q

. Specifically, it shows that E
q

is proportional to E1+Ds along the
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equilibrium set, and hence traditional-sector output Y
q

is proportional to E1+Ds�b

q . If the
regularity condition is violated, it is possible that E

q

! 0 and hence l = m(E
q

, E) ! 0 as
E ! 0. But Y

q

! • as E ! 0. In other words, it would be feasible to have arbitrarily large
output, and hence consumption, with arbitrarily small aggregated effort, because the re-
turns to traditional work explode as aggregate rent-seeking effort vanishes. We focus on
the well-behaved case where this is excluded, and equilibria feature the co-monotonicity
property established in Lemma 1.

2.3 Optimal Tax Policy

By Lemma 1, the set of equilibria can be parameterized by E, t, l, or Y. The social plan-
ner’s problem is to select the equilibrium with the maximum u(Y, l). Per the following
proposition, this maximum exists and involves a tax rate t that satisfies a simple and
useful condition.

Proposition 1. The optimal tax exists, and satisfies

t =
stPigou

1 + (1 � s)sD
� 0. (8)

Intuition. At first glance, one may think that the optimal tax should just equal the share
of rent-seeking income s in the economy, multiplied by the Pigouvian tax on rent-seeking
tPigou, i.e. the numerator of (8). Indeed, this would be the optimal correction in partial
equilibrium, for an individual agent holding fixed the behavior of all other agents.6

The proposition shows, however, that the optimal tax rate diverges from this naive
Pigouvian benchmark by an adjustment factor 1/(1 + (1 � s)sD), which only disappears
in the knife-edge cases where the relative returns are fixed (so D = 0) or individuals’ effort
ratio e

q

/e
j

is fixed (so s ! 0). The intuition is based on the general-equilibrium effects of
the tax. The behavior of all other agents will not, in fact, stay fixed as an individual agent
adjusts overall effort l in response to a tax change. An increase in one agent’s l is asso-
ciated with an increase in rent-seeking effort e

j

, and hence aggregate E, and therefore a
corresponding change in the relative returns r

q

(E)/r
j

(E) (unless D = 0). This relative re-
turn change will lead all agents to adjust their effort ratio across the two activities (unless
s ! 0). The magnitude of this shift depends on the elasticity of substitution s between
effort in the two sectors and the elasticity D of relative returns.

6To see this, note that the private return to overall effort l is wE. Since e
j

= l/m(x, 1) and e
q

= xl/m(x, 1),
the social return to overall effort—holding the behavior of the other agents fixed—is ∂Y

∂E
q

x
m(x,1) +

∂Y
∂E

j

1
m(x,1) .

A simple calculation shows that 1 � stPigou indeed fills the wedge between these two returns.
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For example, suppose D > 0, so an increase in aggregate rent-seeking effort has a
stronger negative effect on rent-seeking returns than on traditional returns. Then a tax
increase, by lowering individuals’ overall and hence rent-seeking effort, increases the
relative returns to rent-seeking, and therefore induces a somewhat perverse shift of effort
towards rent-seeking. As a result, and per (8), the optimal tax is below the Pigouvian
benchmark. On the other hand, when D < 0, the general equilibrium effects are flipped:
the tax, by discouraging effort, induces a reduction in the relative returns and hence a
further flow out of rent-seeking. As a result, it is optimal to over-correct compared to the
Pigouvian tax.

Relation to Diamond (1973). The formula in (8) bears some resemblance to the results
in Diamond (1973). In his model, heterogeneous households demand an externality-
producing consumption good. He shows that the optimal linear tax, when it cannot be
differentiated across households, can be expressed as the product of a Pigouvian correc-
tion that captures the direct effect of the tax on the demand for the good, and an adjust-
ment term that reflects indirect effects of the changes in consumption across households
induced by the direct effect. The adjustment depends in a complicated way on the co-
variances between the degree to which different households contribute to the externality
per unit demanded, the sensitivities of their demands with respect to the externality, and
their price sensitivities. In particular, it vanishes when households are identical.

In contrast, our general equilibrium effects result from effort choice along two inten-
sive margins corresponding to two income-earning activities. The divergence we find
arises because the tax cannot separately target them, even with identical households.
Moreover, we are able to characterize in which direction and by how much the optimal
correction should deviate from the Pigouvian tax rate as a function of the product of two
simple elasticities. As we demonstrate in the next sections, our results also generalize
to a Mirrleesian setting with non-linear income taxes, which allows us to show how the
corrective motives for taxation isolated here interact with redistributive motives.

2.4 An Example

Putting Numbers. The simplicity of the optimality condition in Proposition 1 facilitates
back-of-the-envelope calculations of the adjustment factor. In particular, substitute (2) in
(8) to get

t =
sb

j

+ (1 � s)b

q

1 + (1 � s)Ds

, (9)
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so the numerator is just the income-share weighted average of the return elasticities. For
example, consider again the case with a fixed “pie” of rents but no cross-activity external-
ities, so b

q

= 0 and b

j

! 1. Then tPigou ! 100%, D = 1 and t = s/(1 + (1 � s)s). If the
share of rent-seeking income is, say, s = 10%, the naive Pigouvian benchmark for the tax
is also 10%, but the optimal tax is t = 1/(10 + 9s). Hence, with s = 1, the optimal tax
is t ⇡ 5%, roughly only half as much as the Pigouvian correction; it is even lower with
higher substitution elasticities.

Of course, this reasoning ignores the fact that the share of rent-seeking income s at
the optimum is endogenous to the tax rate, so we cannot simply treat it as a parameter.
However, it is straightforward to compute it for simple parametrizations of the utility
function, as any given t implies a unique s in equilibrium. For example, suppose that
utility is quasilinear in consumption and isoelastic with effort elasticity #, so

u(c, l) = c � l1+ 1
#

1 + 1
#

.

Appendix A shows that, in equilibrium,

1 � t = Ks
#�s

#(1+s)

✓
1 � s

s

◆ 1+#b

j

D#(1+s)

(10)

where K > 0 is some constant that depends on k
q

and k
j

but is independent of s. Equa-
tions (9) and (10) thus jointly characterize the optimal t and s, for any given parameters.7

An Example with Extreme Divergence. More interestingly, we can use this example to
formalize the observation that the activity shift effect, and hence the divergence between
the optimal tax and the Pigouvian benchmark, can become extreme as s ! •, i.e. when
individuals always specialize in the sector that delivers the higher return. By our regu-
larity condition, this exercise requires focusing on the case with D > 0. The following
corollary shows that the optimal tax approaches zero even though the Pigouvian bench-
mark, as well as the share of rent-seeking income, remain strictly positive.

Corollary 1. Suppose D > 0 and K < 1 � b

j

. As s ! •, the unique optimum involves

t ! 0, s ! K# > 0, and tPigou ! b

j

+
1 � K#

K#

b

q

> 0.

7Specifically, K ⌘ (k
j

/k
q

)(1+#b

j

)/(D#)k�1
j

. Hence, for any given t and s that satisfy (9), we can, conversely,
always reverse-engineer the remaining free parameters, such as the constants k

q

and k
j

, to make sure the
equilibrium condition (10) is satisfied, validating the above computations, which treated s as a parameter.
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As an illustrative example, consider again the case without cross-activity externalities,
with b

q

= 0 and b

j

= 1/2. Then tPigou = 50%. Moreover, suppose # = 1 and we
choose the free parameter K to approach 1/2 from below. Then the corollary implies
that the share of rent-seeking income s also approaches 50%, so the Pigouvian benchmark
stPigou ! 25%. In other words, half the income in the economy comes from a rent-seeking
activity where private returns are twice as high as social marginal returns. Nonetheless,
the optimal tax rate approaches 0, because of the shift effects emphasized here.

To see why, consider a single individual i and suppose she decreases her effort l by
a small amount dl in response to a tax increase. Since this decreases her rent-seeking
effort, the direct effect will be to reduce the externalities she imposes on other agents. But
there are also indirect effects: her decrease in rent-seeking effort will increase the relative
returns to rent-seeking, leading other individuals to reallocate their efforts towards rent-
seeking. In fact, with s ! •, they re-allocate until the original relative returns, and
hence E, are restored. (This is because, as s ! •, the relative returns are effectively fixed
at 1 in any interior equilibrium, to make individuals just indifferent between the two
activities.) The net effect is that the total income earned in the economy goes down by
exactly i’s reduced earnings wdl, and, since E is unchanged, the entire change in earnings
comes from the traditional sector. To put it another way: the individual’s rent-seeking
effort is directly unproductive, but, by effectively discouraging other individuals from
pursuing additional rent-seeking, it is indirectly productive. With s ! • the indirect
productivity exactly equals the private returns to rent-seeking, and the optimal correction,
taking general equilibrium effects into account, is exactly zero.

2.5 Introducing Heterogeneity

In this section, we have derived our main result, characterizing the divergence between
the optimal and Pigouvian correction, in a setting without heterogeneity. In the remainder
of the paper, we will show how this result extends to a richer setting where individuals
differ in their skills for both activities and the planner has access to a nonlinear income tax
and maximizes some social welfare function.8 We will see that the intuition emphasized
so far will continue to play a prominent role, but will be complemented by the following
additional insights:

1. Most obviously, there will be redistributive motives across endogenously heteroge-
neous wages. We will show how they interact with the purely corrective motives

8Such a more general framework will also be more suitable for calibration, allowing for a less ad hoc
quantification of the optimal divergence (see Section 5).
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considered so far.

2. The activity shift effect featured in the denominator of (8) will reappear (and will be
labeled effect S below), but it will play a somewhat different role with heterogeneity.
Changes in rent-seeking effort at any given wage level affect aggregate returns and
will therefore induce activity shifts elsewhere in the wage distribution. As a result,
the shift effect S will be global in nature. This will imply an even stronger divergence
result, where the optimal correction diverges from the Pigouvian benchmark even
at wage levels where the share of rent-seeking income is 1, and where the (marginal)
income tax might appear to be a perfectly targeted instrument.9

3. Because the wage distribution is endogenous to aggregate rent-seeking effort, the
optimal tax policy will seek to manipulate it in order to relax incentive constraints
(labeled effect I below). This Stiglitz (1982)-type emerges more generally in settings
with general equilibrium effects (e.g. Rothschild and Scheuer, 2013).

4. More interestingly, there will be heterogeneity not just across wages, but also within
wages. For example, there will be individuals who earn the same wage but through
a different mix of effort across the two activities, and who will therefore be differen-
tially affected by changes in relative returns induced by changes in taxes. This leads
to additional activity shifts (labeled effect C below) as well as redistributive effects
(effect R) within a given wage.

We will provide conditions under which the additional effects I, C and R all reinforce
the fundamental shift effect S that we already illustrated in this section, so that the result
in Proposition 1 goes through qualitatively.

3 The General Model

3.1 Setup

Skill Heterogeneity. As before, individuals can pursue two activities: Traditional work
and rent-seeking. Individuals are now endowed with a two-dimensional skill vector
(q, j) 2 Q ⇥ F, Q = [q, q], F = [j, j], where q captures an individual’s skill for tradi-
tional work, and j captures her skill for rent-seeking. In the preceding section, all agents

9In Appendix E.1, we provide a simple, stark example with two types that illustrates this point.
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had identical skills (normalized to q = j = 1). Now, we let skills be distributed with
some general, continuous cdf F : Q ⇥ F ! [0, 1] and associated continuous pdf f (q, j).10

Technology. Let the activity-specific efforts of an individual of type (q, j) be denoted
by e

q

(q, j) and e
j

(q, j), respectively. As before, aggregate output is given by (1), where
we now define

E
q

⌘
Z

Q⇥F
qe

q

(q, j)dF(q, j) and E ⌘
Z

Q⇥F
je

j

(q, j)dF(q, j)

as the aggregate effective (i.e., skill-weighted) efforts in the traditional and rent-seeking ac-
tivities, respectively. Correspondingly, individuals earn income in proportion to their ef-
fective effort in each activity, so y(q, j) = r

q

(E)qe
q

(q, j) + r
j

(E)je
j

(q, j). To capture the
distinction between rent-seeking and traditional work, we again assume that both returns
r

q

(E) and r
j

(E) are decreasing in aggregate rent-seeking effort E, but are independent of
traditional effort E

q

. As a result, the private return to effective effort coincides with the
social marginal product in the traditional activity, but exceeds it in the rent-seeking ac-
tivity, as in the previous section. Let the elasticities of the returns with respect to E be
denoted by b

q

(E) = �r0
q

(E)E/r
q

(E) and b

j

(E) = �r0
j

(E)E/r
j

(E) and the elasticity of
the relative return to traditional work r

q

/r
j

by D(E) ⌘ b

j

(E) � b

q

(E). D(E) measures
the relative importance of within- versus across-activity externalities.

It is worth pointing out that this specification of technology is very general. In particu-
lar, it is implied by any model where (i) each unit of effective effort in a given activity has
the same private return, (ii) effort in the Q-activity imposes no externalities, and (iii) ef-
fort in the F-activity imposes at least weakly negative externalities on both activities. We
also emphasize that this technology does not require firms or employers. We can assume
that each worker is self-employed and reaps the return to his effort directly. However, the
returns to both traditional and rent-seeking effort are determined in general equilibrium,
by the supply of effort of all other workers. Finally, note that property (i) implies that the
rent-seeking externality works through individual returns to effective effort. It therefore
rules out the uniform absolute reduction in other individuals’ incomes due to rent-seeking
(considered, for instance, in Piketty et al., 2014, and Lockwood et al., 2015), which is inde-
pendent of effort. Indeed, the interesting relative return effects on activity choice that we
explore in the following arise precisely because we allow rent-seeking to have differential
effects on the returns to different types of effort.11

10See Section 6 for a discussion of how our framework can be extended to capture further heterogeneity
in the disutility from, or taste for, working in the two activities.

11In Appendix E.2, we discuss several examples and applications that can be captured by our framework,
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Preferences. We consider the same utility function as in Section 2, given by U(c, e
q

, e
j

) =

u(c, m(e
q

, e
j

)) ⌘ u(c, l). In the appendix, we will show that all our results hold for a gen-
eral effort aggregator m(e

q

, e
j

) that is increasing in both arguments, continuously differ-
entiable, quasiconvex and linear homogeneous.12 To simplify the exposition, in the main
text we will focus our discussion on the special case where individuals always specialize
in one activity. This always obtains when m(e

q

, e
j

) is linear, and corresponds most natu-
rally to the interpretation of activities as tied to sectors or occupations (which is also the
application we will consider in our numerical illustration in Section 5). In this case, one
can think of individuals as making an extensive margin choice, picking one of the two sec-
tors depending on relative returns, and an intensive margin choice, picking the amount
of effort they want to provide in the chosen sector, as in the Roy model considered in
Rothschild and Scheuer (2013).

When m is strictly quasiconvex, individuals generally choose some interior effort mix
x = e

q

/e
j

. Still, as seen in the previous section, one can decompose the individual’s prob-
lem into two very similar subproblems: a choice of the effort ratio x, which (due to the
linear homogeneity of m) is again pinned down by the relative returns to the two activi-
ties, and an intensive margin choice of l. This can capture situations where an individual’s
job involves a mixture of both rent-seeking and traditional, productive activities.

In the Ramsey model from the previous section, we saw that as we approached the
case with linear m, and hence the substitution elasticity s ! •, we could obtain un-
bounded shift effects and therefore extreme results for optimal taxes. With heterogeneity,
however, this connection no longer holds, because a linear m at the individual level does
not imply an infinite substitution elasticity at the aggregate level. Intuitively, we will see
that most individuals’ sectoral choices are not responsive at all to small changes in rel-
ative returns (as their skills are such that they strictly prefer working in one of the two
sectors). Only the small set of individuals who were close to indifferent between the two
sectors before the change do respond, leading to a finite and well-behaved aggregate shift
effect even in a model with full specialization.

including the contests and races with winner-takes-all compensation that are widespread in finance, law,
and research.

12Note that, since u is left general, this allows for preferences ũ(c, m̃(e
q

, e
j

)) where m̃ is homothetic but
not linear homogeneous: then there exist transformations u and m of ũ and m̃ such that ũ(c, m̃(e

q

, e
j

)) =
u(c, m(e

q

, e
j

)) for all (c, e
q

, e
j

) with linear homogeneous m. An example is û(c)� h
q

(e
q

)� h
j

(e
j

) with h
q

(.)
and h

j

(.) homogeneous of the same degree.
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3.2 Implementation

A Direct Mechanism. We respectively denote the consumption, effort, utility and activ-
ity assigned to an individual of type (q, j) by c(q, j), l(q, j), V(q, j) ⌘ u(c(q, j), l(q, j))

and S(q, j) 2 {Q, F}. We also define an individual’s wage as the return to effort in the
assigned activity, so that

wE(q, j) =

(
r

q

(E)q if S(q, j) = Q
r

j

(E)j if S(q, j) = F

and we can write an individual’s income simply as y(q, j) = wE(q, j)l(q, j). As is stan-
dard, we assume the single crossing property, i.e., that the marginal rate of substitution
between y and c, �ul(c, y/w)/(wuc(c, y/w)), is decreasing in w.

We now describe a direct mechanism where individuals announce their privately
known type (q, j) and then get allocated c(q, j), y(q, j), and S(q, j). We will then link
this to the implementation through a nonlinear income tax schedule T(y) using the re-
sults in Rothschild and Scheuer (2013). In line with the imperfect targeting considered
in the Section 2, we take only income and consumption as de facto contractible for the
government, but not an individual’s skill type, sector, wage and effort.13 The resulting
incentive constraints that guarantee truth-telling of (q, j) in the direct mechanism are:

u
✓

c(q, j),
y(q, j)

wE(q, j)

◆
� max

⇢
u
✓

c(q0, j

0),
y(q0, j

0)
r

q

(E)q

◆
, u

✓
c(q0, j

0),
y(q0, j

0)
r

j

(E)j

◆�
8(q0, j

0)

(11)
since type (q, j) can imitate any other type (q0, j

0) by earning (q0, j

0)’s income either in
the Q- or the F-activity.

An Income Tax Implementation. The following lemma, due to Rothschild and Scheuer
(2013), shows that any incentive compatible allocation can be implemented by offering a
nonlinear income tax T(y).

Lemma 2. Any incentive compatible allocation {c(q, j), y(q, j), S(q, j), E} is such that
(i)

wE(q, j) = max{r
q

(E)q, r
j

(E)j} and S(q, j) =

(
Q if r

q

(E)q > r
j

(E)j

F if r
q

(E)q < r
j

(E)j;

(ii) u(c(q, j), y(q, j)/w) = u(c(q0, j

0), y(q0, j

0)/w) for all (q, j), (q0, j

0) such that wE(q, j) =

wE(q0, j

0) = w;
13See Section 6 for a discussion of these assumptions.
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(iii) it can be implemented by offering a nonlinear income tax schedule T(y) and letting agents
choose their preferred (c, y)-bundle from the resulting budget set B = {(c, y)|c  y � T(y)}.

The first two properties say that individuals always specialize in the activity where
their return to effort is higher and that individuals with the same wage must obtain the
same utility. The third property establishes that the principle of taxation holds. The sec-
ond property does not rule out that two individuals with the same wage (but who spe-
cialize in different activities) choose different (c, y)-bundles. Nonetheless, as argued in
Rothschild and Scheuer (2013), we can restrict attention to allocations {c(w), y(w), E} that
pool all same-wage individuals at the same (c, y)-bundle. The reason is that such pooling
can always be done in an incentive compatible and resource feasible way, and such that
it does not affect E or, by property (ii), utilities.

In Appendix B, we show how these results generalize to the case where individuals
do not necessarily specialize in one of the two activities, but pursue both simultaneously.
Instead of assigning an activity from the binary set {Q, F}, an allocation then specifies
the share of income qE 2 [0, 1] that an individual earns in the traditional activity (and
conversely 1� qE is earned through rent-seeking). Defining the wage analogously to (5) in
Section 2, our analysis goes through and Lemma 2 applies. In particular, any individual’s
wage wE and income share qE are fully pinned down by aggregate rent-seeking effort E
but are independent of the rest of the allocation. Because all individuals with the same
wage have the same preferences over (c, y)-bundles given by u(c, y/w), the screening
problem can again be reduced to offering allocations {c(w), y(w)} that only condition on
wages, which in turn are endogenous to E.

4 Optimal Non-linear Income Taxation

In this section, we characterize the set of Pareto efficient nonlinear income tax schedules.
This allows us to compare the optimal and Pigouvian corrections in this richer setting.

4.1 Pareto Optima

Wage Distributions. Lemma 2 showed that fixing E determines the wage wE(q, j) and
activity choice of each type (q, j). Together with the two-dimensional skill distribution
F(q, j), it therefore determines a one-dimensional wage distribution with cdf

FE(w) = F
✓

w
r

q

(E)
,

w
r

j

(E)

◆
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and sectoral densities

f q

E(w) =
1

r
q

(E)

Z w/r
j

(E)

j

f
✓

w
r

q

(E)
, j

◆
dj, f j

E (w) =
1

r
j

(E)

Z w/r
q

(E)

q

f
✓

q,
w

r
j

(E)

◆
dq

with corresponding cdfs Fq

E(w) and Fj

E (w) and with fE(w) = f q

E(w) + f j

E (w). Hence,
f j

E (w)/ fE(w) is the share of rent-seekers at wage level w. We denote the support of the
wage distribution for any E by [wE, wE], where wE = wE(q, j) and wE = wE(q, j).14

Pareto Weights. We use general cumulative Pareto weights Y(q, j) in (q, j)-space with
the corresponding density y(q, j) to obtain Pareto efficient allocations. The social planner
maximizes

R
Q⇥F V(q, j)dY(q, j) subject to resource and self-selection constraints. Com-

pletely analogously to the wage distributions above, for any given E, we can derive Pareto
weights over wages YE(w), as well as their density and decomposition across activities
yE(w) = y

q

E(w) + y

j

E(w), from Y(q, j). We are particularly interested in the regular
case in which the planner assigns greater weight to low-wage individuals, i.e., where
yE(w)/ fE(w) is non-increasing in w for any E.15

Elasticities. Any incentive compatible allocation {c(w), y(w), E} implies total effort and
utility l(w) ⌘ y(w)/w and V(w) ⌘ u(c(w), l(w)). We denote the resulting uncompen-
sated and compensated wage elasticities of total effort l by #

u(w) and #

c(w), respectively.

A Decomposition of the Pareto Problem. As in Rothschild and Scheuer (2013), we can
decompose the problem of finding Pareto optimal allocations into two steps. The first
step involves finding the optimal level of aggregate rent-seeking effort E. We call this
the “outer” problem. The second (which we call the “inner” problem) involves finding
the optimal resource-feasible and incentive-compatible allocation for a given level of E.
This inner problem is an almost standard Mirrlees problem; the only difference is that the
induced level of aggregate effective rent-seeking effort has to be consistent with the level
of E that we are fixing for the inner problem. For some given Pareto weights Y(q, j) (and
hence induced weights YE(w)), we therefore define the inner problem as follows (where

14We show in Appendix C how these definitions can be extended to the case of a general effort aggregator
m, with the interpretation that f q

E(w) and f j

E (w) are the average value of q (respectively 1� q) at wage level
w. Hence, more generally, f j

E (w)/ fE(w) is the share of rent-seeking income at w.
15For example, consider the case of relative Pareto weights where Y(q, j) = Ỹ(F(q, j)) for some increas-

ing function Ỹ : [0, 1] ! [0, 1]. Then these Pareto weights are regular whenever Ỹ is weakly concave.
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c(V, e) is the inverse function of u(c, l) with respect to c):

W(E) ⌘ max
V(w),l(w)

Z wE

wE

V(w)dYE(w) (12)

subject to
V0(w) + ul(c(V(w), l(w)), l(w))

l(w)
w

= 0 8w 2 [wE, wE] (13)

r
j

(E)E �
Z wE

wE

wl(w) f j

E (w)dw = 0 (14)

Z wE

wE

wl(w) fE(w)dw �
Z wE

wE

c(V(w), l(w)) fE(w)dw � 0. (15)

We employ the standard Mirrleesian approach of optimizing directly over allocations,
i.e., over effort l(w) and consumption or, equivalently, utility V(w) profiles. The social
planner maximizes a weighted average of individual utilities V(w) subject to three con-
straints. (15) is a standard resource constraint and (14) ensures that aggregate effective
effort in the rent-seeking activity indeed sums up to E (or, equivalently, rent-seeking in-
comes sum to r

j

(E)E). Finally, the allocation V(w), l(w) needs to be incentive compatible,
i.e.,

V(w) ⌘ u(c(w), l(w)) = max
w0

u
✓

c(w0),
l(w0)w0

w

◆
. (16)

It is a well-known result that under single-crossing, the global incentive constraints (16)
are equivalent to the local incentive constraints (13) and the monotonicity constraint that
income y(w) must be non-decreasing in w.16 We follow the standard approach of drop-
ping the monotonicity constraint, which can easily be checked ex post (as we do for the
numerical simulations in Section 5). If the solution to problem (12) to (15) does not satisfy
it, optimal bunching would need to be considered. Accounting for bunching is conceptu-
ally straightforward and does not substantively effect our analysis, so, for simplicity, we
abstract from bunching henceforth.

Once a solution V(w), l(w) to the inner problem has been found, the resulting welfare
is given by W(E). The outer problem is then simply maxE W(E). It is straightforward to
show that a solution to the inner problem exists for any E (see Rothschild and Scheuer,
2014, for details) and that, at any E for which individuals work in both activities, W(E) is
continuous, so that the outer problem has a solution over any compact set of Es.17

16See, for instance, Fudenberg and Tirole (1991), Theorems 7.2 and 7.3.
17Compactness would be ensured, for instance, by a standard Inada condition ul(c, l) ! �• as l " l for

some l < •.
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4.2 Marginal Tax Rate Formulas from the Inner Problem

Solving the inner problem (12) to (15) for a given E yields the following optimal marginal
tax rate formula:

Proposition 2. The marginal tax rate in any Pareto optimum is such that

1 � T0(y(w)) =

 
1 � x

f j

E (w)

fE(w)

!✓
1 +

h(w)
w fE(w)

1 + #

u(w)
#

c(w)

◆�1
with (17)

h(w) =
Z wE

w

✓
1 � yE(x)

fE(x)
uc(x)

l

◆
exp

✓Z x

w

✓
1 � #

u(s)
#

c(s)

◆
dy(s)
y(s)

◆
fE(x)dx (18)

for all w 2 [wE, wE], where l is the multiplier on the resource constraint (15) and lx the multi-
plier on the consistency constraint (14).

These formulas are the same as those for a standard Mirrlees model (see e.g. equations
(15) to (17) in Saez, 2001), with the only difference that, at each wage, marginal keep shares
1 � T0(y(w)) are scaled down by the correction factor 1 � x f j

E (w)/ fE(w), where x is the
(normalized) Lagrange multiplier on constraint (14) and f j

E (w)/ fE(w) is the fraction of
incomes earned in the rent-seeking activity at wage level w. This optimal local correction,
which makes agents internalize the rent-seeking externality, is thus proportional to the
relative importance of rent-seeking at w and the shadow cost of the consistency constraint
(14). As usual, the term h(w) captures the redistributive motives of the government and
income effects from the terms in the exponential function. A particularly simple formula
can be obtained from (17) with quasilinear preferences u(c, l) = c � h(l), where income
effects disappear, as in Diamond (1998). Then uc(w) = l = 1 and #

u(w) = #

c(w) 8w,
so that h(w) = YE(w)� FE(w). Hence T0(y(w)) � 0 at all income levels under regular
Pareto weights, and the marginal tax rate is increasing in the degree to which YE(w) shifts
weight to low-wage individuals compared to FE(w).

Under any preference assumptions, the top marginal tax rate is given by T0(y(wE)) =

x f j

E (wE)/ fE(wE), or simply x if all income at the top is from rent-seeking. We next con-
sider the outer problem in order to explore the determination of E and x.

4.3 Optimal Rent-Seeking Effort from the Outer Problem

Our main goal in the following is to compare x to the Pigouvian tax tPigou defined in (2)
in Section 2, i.e., the tax that aligns the private and social returns to rent-seeking effort.18

18We show in Appendix E.3 that tPigou can be interpreted, as in Section 2, as the optimal corrective tax
if, in addition to levying an optimal nonlinear income tax, the government could directly tax rent-seeking
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The key question will be how x—interpretable the optimal externality correction in our
model with imperfect targeting—differs from the targeted instrument benchmark tPigou.

Welfare Effects of Changing E. To be able to answer this question, Lemma 3 provides
an important auxiliary result, namely a decomposition of the welfare effect of marginal
changes in E that will be useful in the following.

Lemma 3. The welfare effect of a marginal change in aggregate rent-seeking effort E is

W 0(E) = lr
j

(E)
�
x � tPigou

�
+

D(E)
E

[I + R + xl (C + S)] , (19)

where
I ⌘ l

Z wE

wE

h(w)w
V0(w)
uc(w)

d
dw

 
f j

E (w)

fE(w)

!
dw, (20)

R ⌘
Z wE

wE

V0(w)w
f q

E(w) f j

E (w)

fE(w)

 
y

q

E(w)

f q

E(w)
�

y

j

E(w)

f j

E (w)

!
dw, (21)

C ⌘
Z wE

wE

w2l0(w)
f q

E(w) f j

E (w)

fE(w)
dw (22)

and
S ⌘

Z wE

wE

w2l(w) f
✓

w
r

q

(E)
,

w
r

j

(E)

◆
dw � 0. (23)

Direct Effects. The first term lxr
j

(E) in (19) is simply the direct effect of a change in
E on the consistency constraint (14), holding effort and sector constant for each individ-
ual. Similarly, the second term �ltPigour

j

(E) captures the effect of changing sectoral
returns on the resource constraint (15), holding effort, sector and consumption fixed for
all types.19 In fact, when D(E) = 0, E has no effect on relative returns r

q

(E)/r
j

(E). So
changing E while holding the effort and activity choice for each type (q, j) fixed is com-
patible with the incentive constraints (11). By an envelope argument, then, W 0(E) =

l

�
x � tPigou

�
r

j

(E), consistent with (19).
When D(E) 6= 0, the change in relative returns drives a wedge between x and tPigou

since holding allocations fixed is no longer incentive compatible, and there are additional
welfare effects from a change in E captured by the four effects in (20) to (23), which are
parallel to those in Rothschild and Scheuer (2013). In discussing them, we focus on the

income (see Proposition 4).
19To see this, differentiate with respect to E0 the total income in the economy r

q

(E0)E
q

+ r
j

(E0)E to get
(evaluated at E0 = E) r0

q

(E)E
q

+ r0
j

(E)E = ∂Y(E
q

, E)/∂E � r
j

(E) = �r
j

(E)tPigou.
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case D(E) > 0, so that an increase in E increases the relative return to traditional work
r

q

/r
j

. The opposite case is analogous with reversed signs.

Activity Shift Effect. A change in E causes an activity or sectoral shift, analogous to the
one found in the Ramsey model in Section 2. An increase in E (and thus r

q

/r
j

) leads
some previously indifferent individuals to switch from rent-seeking to traditional work;
S measures the effort shifted as a result.20 In the representative agent Ramsey model of
Section 2, the activity shift was the sole driver of the divergence between the optimal and
the Pigouvian correction.

Novel Effects due to Heterogeneity. The additional effects C, R and I arise from the rich
heterogeneity in the Mirreleesian framework. Specifically, they arise because a change in
E has differential wage effects on distinct individuals.

The term I is a generalized Stiglitz (1982) effect, which arises because the magnitude
of the wage effects varies across the wage distribution. If D > 0 and the share of income
earned through rent-seeking is locally increasing in w (i.e., d( f j

E (w)/ fE(w))/dw > 0),
then an increase in E leads to a local compression of the wage distribution, as returns
in the high-wage activity fall relative to the low-wage activity. This yields a welfare-
improving easing of the local incentive constraints (13) if they are binding downwards
(h(w) � 0). I therefore vanishes if there are no redistributive motives (e.g. with quasilin-
ear preferences and Ỹ(F) = F 8F), so that h(w) = 0 for all w.

Moreover, a change in E has different effects on the wages of distinct individuals who
originally earned the same wage w. In particular, the wage of a traditional worker at w
falls by r0

q

(E)w/r
q

(E) = b

q

(E)w/E whereas the wage of a rent-seeker falls by b

j

(E)w/E.
Hence, when D(E) > 0, the rent-seekers at w see their wages fall by more than the average
for the wage w-workers, and the traditional workers see their wages fall by less. The
term C arises because, by changing their wages differentially in the face of a fixed effort
schedule l(w), an increase in E in effect re-allocates effort across the rent-seekers and
traditional workers who are originally pooled. In particular, for an increasing (in w) effort
schedule, a rise in E results in a re-allocation of effort from rent-seekers (who effectively
move down along the schedule) to traditional workers (who move up) at any given w.

20We show in Appendix C.3 how S can be generalized to allow for general m, in which case it will also
incorporate continuous changes in the effort ratio e

q

/e
j

in response to the relative return change, as in
Section 2.
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Hence, C reinforces S if l0(w) � 0.21

The term R arises from the analogous reallocation of utility V(w) from rent-seekers
to traditional workers at the same initial wage, which is why it shows up in parallel to
the redistributive Stiglitz-term I. It disappears with relative welfare weights Y(q, j) =

Ỹ(F(q, j)), since then y

q

E(w)/ f q

E(w) = y

j

E(w)/ f j

E (w) for all w, E. Otherwise, it is wel-
fare improving when the planner puts more weight on traditional workers at each wage
(yq

E(w)/ f q

E(w) > y

j

E(w)/ f j

E (w)) and vice versa.22

4.4 Marginal Tax Rate Results

Comparing the Optimal and Pigouvian Corrections. We can now use Lemma 3 to de-
rive the following relationship between x and tPigou at any interior Pareto optimum. Set-
ting W 0(E) = 0 yields:

x = tPigou

 
1 � 1

ltPigou

D(E)
Y

j

(E)
(I + R)

!,✓
1 +

D(E)
Y

j

(E)
(C + S)

◆
. (24)

In a one-activity model with only the rent-seeking activity available and f q

E(w) = 0 for
all w, we mechanically have I = R = C = S = 0 and therefore x = tPigou = b

j

(E). The
tax formula (17) then implies that the correction factor by which marginal keep shares are
scaled down compared to the standard formula is uniform and given by 1 � tPigou. This
can be understood as a two-step correction as in Kopczuk (2013): first tax all wages by
tPigou to correct the rent-seeking externality. Then apply the standard optimal tax formula,
as in a Mirrlees model without externalities, with the corrected wages (1 � tPigou)w. In
particular, the top marginal tax rate is just T0(y(wE)) = tPigou.

In the general case where both activities take place, the optimal correction x deviates
from tPigou due to the relative return effects (20) to (23) whenever D(E) 6= 0. Based on the
discussion in the previous subsection and (24), the following proposition collects condi-
tions that determine this comparison.

21In particular, the average wage decline for those originally pooled at w is

f q

E(w)

fE(w)
b

q

(E)
w
E
+

f j

E (w)

fE(w)
b

j

(E)
w
E

.

Hence, the change in effort induced by the rise in E, relative to the wage-w average, is
l0(w)( f q

E(w)/ fE(w))D(E)w/E for a rent-seeker with original wage w. Multiplying this with w and the
share of rent-seekers at w, the change in rent-seeking income is thus w2l0(w)( f j

E (w) f q

E(w)/ fE(w)2)D(E)/E.
Summing over all w’s therefore leads to the effect C in (22) on the consistency constraint (14).

22In Appendix C.3, we prove Lemma 3 for general m and show that the decomposition (19) goes through,
I and R are unaffected and C and S can be generalized in a straightforward way, with the same intuition
and properties as discussed here.
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Proposition 3. In any regular Pareto optimum, x > 0. If in addition: (i) effort l(w) is weakly
increasing in w; (ii) marginal utility of consumption uc(c(w), l(w)) is weakly decreasing in w;
(iii) the share of rent-seeking incomes f j

E (w)/ fE(w) is weakly increasing in w; and (iv) the wel-
fare weights on traditional workers are not smaller than those on rent-seekers at each w, so that
y

q

E(w)/ f q

E(w) � y

j

E(w)/ f j

E (w) 8w, then

x S tPigou if D(E) T 0.

Combined with the marginal tax rate formula in Proposition 2, this result has clear im-
plications for Pareto optimal tax schedules. For instance, under the conditions in Propo-
sition 3 and if all income at the top is earned through rent-seeking ( f j

E (wE)/ fE(wE) = 1),
then T0(y(wE)) = x S tPigou iff D(E) T 0. Hence, if e.g. D(E) > 0, the top marginal tax
rate is less than the Pigouvian correction tPigou even when all top earners are exclusively
active in the rent-seeking activity. In this sense, we obtain a stronger divergence result
compared to the Ramsey model from Section 2, where the divergence vanished when the
share of rent-seekers was 1.23 At other income levels, the optimal correction x is still less
than tPigou by Proposition 3, but of course gets combined with the redistributive compo-
nents of the marginal tax rate according to (17).

Intuition. The divergence of the optimal correction x from tPigou directly reflects the fact
that the income tax is an imperfect tool for externality correction, even in income brackets
where all income comes from rent-seeking. This is because, as the discussion above high-
lights, the effects of the externality E are non-uniform (whenever D(E) 6= 0) and global in
nature. When D(E) > 0, taxing rent-seeking intensive portions of the income distribution
at a higher rate directly discourages effort at those income levels, lowering E and helping
to correct the externality. As in Section 2, however, a lower E raises the relative returns to
rent-seeking globally, encouraging a shift into this activity. This implies a smaller-than-
Pigouvian optimal correction. On the other hand, when D(E) < 0, higher taxes directly
discourage the externality-causing activity, and, since this lowers the relative returns to
rent-seeking, indirectly encourage effort-shifting away from rent-seeking. As a result, the
optimal x exceeds tPigou and, for instance, the optimal top marginal tax rate over-corrects
compared to the Pigouvian rate.

As discussed in Section 4.3, apart from the shift effect S � 0, which is the analog of the
shift effect found in Section 2, there are three additional relative return effects C, I, and R
that arise due to heterogeneity. The assumptions in Proposition 3 are sufficient to ensure

23Of course, a fortiori we obtain 0  T0(y(wE)) = x f j

E (wE)/ fE(wE) < tPigou if the share of income from
rent-seeking is less than one at the top and D(E) > 0.
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that they are also non-negative and thus reinforce S. Note, however, that these are only
sufficient conditions, so that the comparison between x and tPigou can hold even when
they are violated for some wage levels. For instance, with relative Pareto weights and
quasilinear preferences, R = 0 since the planner attaches the same welfare weight to indi-
viduals with the same wage but in different activities, and marginal utility of consump-
tion is constant and equal to one, so that both conditions (ii) and (iv) can be dropped.24

Assumptions (i) and (iii) are easy to verify ex-post, as we do in Section 5.

Unbounded Skill Distribution. Our results do not depend on a bounded skill distri-
bution, but readily extend to the case of an unbounded support. For simplicity, consider
quasilinear and isoelastic preferences.25 Suppose that limw!• f j

E (w)/ fE(w) = x with x 2
[0, 1], that c = limw!• w fE(w)/(1 � FE(w)) exists, and that limw!• yE(w)/ fE(w) = 0
so that the share of rent-seeking income at the top is well-defined, the wage distribution
has a Pareto tail, and the social planner puts zero welfare weight on top earners asymp-
totically. Then we can use equation (17) to derive the following asymptotic marginal tax
rate for w ! • (see Rothschild and Scheuer, 2011, for the details):

lim
w!•

T0(y(w)) =
xcx + 1 + 1/#

c + 1 + 1/#

. (25)

Moreover, Lemma 3 and Proposition 3 also go through, so that 0 < x and x S tPigou under
the same conditions as in the bounded support case.

5 Numerical Illustration

In this section, we provide optimal policy simulations for a simple version of our model
calibrated to the U.S. in order to quantitatively gauge the divergence between the optimal
and Pigouvian correction.

5.1 Data and Estimation

Data. Our data source is the Current Population Survey (CPS). We take these data as
generated by a (sub-optimal) tax equilibrium and use parametric assumptions and equi-
librium restrictions from our model to identify the rent-seeking technology and the un-

24The only role of condition (ii) in Proposition 3 is to make sure (together with regular welfare weights)
that the incentive constraints bind downwards, i.e. h(w) � 0. All that matters for this is that the overall
social marginal welfare weights uc(w)yE(w)/ fE(w) are non-increasing in w.

25Similar results can be derived for the general case using the asymptotic methods in Saez (2001).
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derlying skill distribution. Specifically, we use information on worker earnings and hours
to generate a sample of hourly wages for the U.S. working population.26 In addition, the
CPS provides an industry classification that we use to assign individuals to rent-seeking
versus traditional work (see Acemoglu and Autor, 2011, and Ales et al., 2014, for recent
related exercises). For the sake of illustration and in the spirit of Lockwood et al. (2015),
we associate industries related to finance and law services with rent-seeking and all other
industries with traditional work. In other words, we take the observed wage distribu-
tion and sectoral choices as generated by a two-sector Roy model. We assume quasilinear
isoelastic preferences with elasticity # = 0.5.

Externalities. To pin down the externalities from rent-seeking, we use the numbers pre-
sented in Lockwood et al. (2015) for aggregate spillovers by sectors (see their table 3). For
finance, they estimate this negative spillover to be 1.4% of aggregate income, based on
French’s (2008) comparison of active and passive fund management fees and interpret-
ing the difference as wasted resources to beat the market. For law, their estimate of the
negative spillover as a share of aggregate income is 0.2%. This is based on Murphy et
al.’s (1991) cross-country regressions that measure the effect of the number of lawyers per
capita on GDP. The income shares of finance and law in Lockwood et al.’s (2015) calcula-
tions are 4.3% and 2.1%, respectively (see their table 2). Taking these numbers together,
we can estimate the negative externalities and hence the Pigouvian correction from the
ratio of social and private outputs of these two sectors combined:

1 � tPigou =
(4.3% � 1.4%) + (2.1% � 0.2%)

4.3% + 2.1%
= 75%.

According to this estimate, each dollar of privately earned income in the rent-seeking
activity corresponds to only 75 cents of social output, so tPigou = 25%. This may be
viewed as a conservative estimate of the externalities, though, because (i) French’s (2008)
analysis, for example, is based on one particular channel of rent-seeking, ignoring others
(such as high-speed trading), and (ii) it measures the average externality, which is natu-
rally smaller than the relevant, marginal one (for instance when rent-seeking is associated
with crowding effects). We therefore also computed results for the case of twice as large
negative externalities, with tPigou = 50%. These are shown in Appendix D.

Relative Return Effects. We return to the simple parametrization from Section 2 with
constant return elasticities, i.e. r

q

(E) = k
q

E�b

q and r
j

(E) = k
j

E�b

j . This is general

26For further details on the data and sample selection, see Appendix D.
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enough to accommodate various scenarios for relative return effects, for any given tPigou,
since D = b

j

� b

q

is a free parameter. However, the two parameters b

q

and b

j

are jointly
constrained by equation (2), because of the Pigouvian correction tPigou estimated above
and because the income share of the rent-seeking sector s = Y

j

/Y is given by the data.
This allows us to illustrate the full range of possible relative return effects. At one

extreme, if the externality from rent-seeking only falls on the returns to rent-seeking itself,
but not on the returns to traditional work, we have b

q

= 0 and, by (2), b

j

= tPigou. At
the other extreme, if the negative spillovers from rent-seeking are borne exclusively by
the traditional sector, then b

j

= 0, b

q

= stPigou/(1 � s). Third, in the knife-edge case
where both return elasticities are the same, (2) implies b

q

= b

j

= stPigou and there are
no relative return effects. This parallels the benchmark case that Piketty et al. (2014) and
Lockwood et al. (2015) focus on. Finally, we also consider the two intermediate cases,
where the effect of E on rent-seeking returns is twice as large as on traditional returns,
i.e. b

j

= 2b

q

, and vice versa, again always consistent with tPigou = 25%. This captures
situations where the negative spillovers from rent-seeking are borne by both sectors, but
more by one or the other.

Estimating the Skill Distribution. The two-dimensional skill distribution F(q, j) is es-
timated as follows. q and j are drawn from the sector-specific distributions F

q

and F
j

,
which we specify below. Then the correlation is captured by a Gaussian copula, so

F(q, j) = NS

⇣
F�1(F

q

(q)), F�1(F
j

(j))
⌘

, (26)

where NS is the cdf of the bivariate normal distribution with mean zero and covariance
matrix S, and F is the cdf of the one-dimensional standard normal distribution. In par-
ticular, S = (1, r; r, 1), so r captures the correlation across the two dimensions of ability,
while the marginal distributions are still given by F

q

and F
j

.
Following Lockwood et al. (2015), we assume that these marginals are each described

by a Pareto-lognormal distribution. This three-parameter distribution, first introduced by
Colombi (1990), approximates a lognormal distribution with mean µi and standard devia-
tion si at low skill values and features a Pareto tail with parameter ai for high skill values,
i 2 {q, j}. A special case occurs when ai ! •, so the marginals become pure lognormal
distributions, and hence (26) collapses to a simple bivariate lognormal distribution over
(q, j). More generally, however, this specification is flexible enough to allow for thicker
tails at the top, as implied by the Pareto distribution, which are characteristic of empirical
wage and income distributions.
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To estimate the resulting 7 parameters of the bivariate skill distribution (26) (i.e., µi, si

and ai for i 2 {q, j} as well as r), we proceed as follows. First, it is straightforward to
see that, without loss of generality, we can normalize E and the technological constants k

q

and k
j

so that r
q

(E) = r
j

(E) = 1 at the allocation in the data (see Appendix D for details).
As a result, we can take the observed wages in the data as equal to the individuals’ skill
in the chosen sector: w = max{q, j}. Based on the wage distribution and sectoral choices
observed in the CPS, we then estimate the parameters using a standard two-step Gener-
alized Method of Moments (GMM) procedure. In particular, we compute the percentiles
of the overall wage distribution in the data, and then minimize the (weighted) distance
between the estimated and empirical share of individuals in each percentile and in each
of the two sectors. Appendix D provides further details and the estimation results. It also
illustrates the quality of fit between the empirical and estimated sectoral wage distribu-
tions based on the 2014 CPS (Figure 2).

5.2 Results

Marginal Tax Rate Schedules. Figure 1 shows the optimal marginal income tax sched-
ule, as a function of the hourly wage, for each of the five scenarios for relative return
effects described above. The darkest schedule captures the case where the externalities
are borne exclusively by rent-seeking (D = tPigou > 0), and the schedules are depicted
brighter as D becomes smaller (and ultimately negative), always consistent with tPigou =

25%. We use relative Pareto weights Y(F) = 1 � (1 � F)r, where r = 1 (together with
quasilinear preferences) implies the absence of redistributive motives whereas r ! •
converges to a Rawlsian criterion. The left panel shows the optimal policies for r = 1,
i.e. utilitarian Pareto weights Y = F. This captures the benchmark where the income tax
purely serves corrective purposes and, by Proposition 2, is given simply by T0(y(w)) =

x f j

E (w)/ fE(w). The right panel shows the optimal marginal tax rates for an intermediate
value r = 1.3, which adds progressive redistributive motives.

The share of rent-seekers is increasing in w for most of the wage distribution and
converges to 1 for very high wages given the estimated skill distribution. In the knife-
edge scenario with b

q

= b

j

and hence no relative return effects, the marginal tax rate
schedule is therefore simply tPigou f j

E (w)/ fE(w). This is precisely the middle schedule in
the left panel.27 In particular, the top marginal tax rate in this scenario is just tPigou. The
other schedules illustrate the consequences of non-trivial relative return effects. The first

27Recall that b

q

and b

j

are chosen to be consistent with tPigou = 25% in the baseline allocation, i.e. given
equation (2) and the share of aggregate rent-seeking income s in the data. Since this share is endogenous,
however, the Pigouvian correction tPigou at the optimum can be slightly different.
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Figure 1: Optimal policy for tPigou = 25%, various scenarios

row of Table 1 collects the resulting values for the optimal correction x, which coincides
with the top marginal tax rates in the left panel of Figure 1.

Optimal versus Pigouvian Corrections. As can be seen from Table 1, assuming that
the externalities are borne within the rent-seeking sector lowers the optimal correction to
15.9%, i.e. by more than a third compared to the Pigouvian correction. Even in the less
extreme and perhaps more plausible scenario where both sectors are affected but the effect
on rent-seeking returns is twice as large as on traditional returns, x = 18.8% and thus still
considerably lower than in the case without relative return effects. In other words, the
activity shift effects S, C > 0 emphasized here induce a sizable divergence between the
optimal correction and what a simple Pigouvian intuition would suggest, indicating that
these effects can be of first-order importance, and of similar order of magnitude as the
Pigouvian correction itself.28

On the other hand, if rent-seeking mostly affects the traditional sector and therefore in-
creases the relative returns to rent-seeking, then this leads to higher-than-Pigouvian taxes
in accordance with Proposition 3, up to a top marginal tax rate of 31%. In sum, the mag-
nitude and direction of relative return effects alone, holding the externality as captured
by tPigou fixed, can lead to a variation in the optimal correction by a factor of 2 when
comparing the most extreme cases (15.9% versus 31%), or by a factor of 1.5 when compar-

28Note that I = R = 0 in the absence of redistributive motives. It is easy to check numerically that effort
l(w) is increasing and C > 0. This also implies that y(w) is increasing, so that bunching is not part of the
optimum.
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Table 1: Optimal x for different redistributive and technological scenarios

b

q

= 0 b

q

= b

j

/2 b

q

= b

j

b

j

= b

q

/2 b

j

= 0

No redistribution 15.9% 18.8% 26.4% 29.6% 31%
Redistribution 14.7% 17.8% 28% 32.6% 34.4%

ing the more conservative cases where the externalities target both sectors, even though
unequally (29.6% versus 18.8%).

Redistributive Motives. The right panel of Figure 1 shows the optimal marginal tax
schedules under progressive Pareto weights, with the typical U-shaped pattern for low
and intermediate wages and overall degreasing marginal tax rates at the top. The kink
at the top occurs at a wage level where the share of rent-seekers hits 100%, and hence
the corrective component of the marginal tax rate first increases and then stays flat as
wages increase. We observe that redistributive motives further increase the quantitative
importance of the relative return effects, as can be seen from the second row of Table 1.
The reason is that redistributive goals imply I > 0 and hence, by equation (24), gener-
ate yet another force that drives a wedge between the optimal and Pigouvian correction.
This indicates that accounting for redistribution can have further quantitatively signifi-
cant effects compared to purely efficiency-based approaches, such as Diamond (1973) in
the different context of Ramsey commodity taxation, or Lockwood et al. (2015).

Finally, in Appendix D, we present sensitivity checks with respect to the magnitude of
tPigou, and show results for tPigou = 50%, i.e., twice the size of the externalities from rent-
seeking considered here. Unsurprisingly, this also amplifies the optimal divergence from
the Pigouvian rate in the considered scenarios. For instance, in the first scenario with-
out cross-sectoral externalities, the optimal correction is 23.7% without redistributive mo-
tives, and 21.6% with redistributive motives, i.e., less than half the Pigouvian correction
(see Figure 3 and Table 2).29 In the opposite scenario without within-sector externalities,
the optimal corrections are 62.3% and 72.6%, respectively.

29For readers who still consider tPigou = 50% as a conservative estimate of the negative spillovers from
finance and law, we also computed the optimum for tPigou = 90% and the first scenario, which leads to
x = 42.5%. Thus, even if the share of rent-seekers at the top is very high and their social marginal product
very low, this does not necessarily imply a correspondingly high top marginal tax rate.
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6 Conclusion and Discussion

Our results are driven by the fact that income taxes are an imperfect instrument for cor-
recting rent-seeking externalities. Directly taxing the externality-causing rent-seeking ac-
tivity, were it possible, would reduce both its absolute desirability and its desirability
relative to other activities. By contrast, an income tax directly affects only the absolute
desirability of rent-seeking. The magnitude of the optimal correction via the income tax
depends, however, on the direction of the indirect (general equilibrium) effects of taxes
on the relative desirability of rent-seeking. When within-activity externalities dominate,
these indirect effects are perverse: higher taxes on portions of the income distribution
with high levels of rent-seeking raise the relative returns to rent-seeking and encourage a
shift towards these activities. Consequently, the optimal externality correction lies strictly
below the Pigouvian correction. When across-activity externalities dominate, the indirect
effects reinforce the direct effects, and the optimal correction strictly exceeds the Pigou-
vian one.

We conclude by discussing a few additional considerations that may be important in
policy applications.

Information Requirements. We demonstrated the potential quantitative importance of
general equilibrium effects and, more generally, how our analytical results can be opera-
tionalized to help inform the optimal design of income tax systems. Operationalizing our
results requires taking a stand on (i) the magnitude of the rent-seeking externalities in the
economy—and the distribution of rent-seeking across income levels—and (ii) the relative
impact of these externalities on rent-seeking versus traditional activities. Our results sug-
gest that both the level and relative impacts of rent-seeking externalities are likely to be
quantitatively important. These are not well-known or easy-to-obtain quantities though:
We know little or nothing about the relative impacts of rent-seeking externalities, and,
while we benchmarked the overall magnitude of the externalities to the literature, sub-
stantial additional research is needed to pin it down with a higher degree of confidence.
We view our analysis as pointing to the importance of such research for income tax pol-
icy, similar, for instance, to the work by economists and scientists on the magnitude and
distributional impacts of environmental externalities.

Taste Heterogeneity. In our model, individuals’ effort choices are driven exclusively by
pecuniary concerns. In the full-specialization model described in the main text, for in-
stance, individuals choose whether to be rent-seekers or traditional workers based purely
on the wages they can earn in those two sectors. It is straightforward, however, to in-
troduce an extra “distaste for rent-seeking effort” parameter in our framework. If, per
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Lockwood and Weinzierl (2015), this parameter affects preferences over effort and con-
sumption in the same way as skills do, then these two parameters can be collapsed into
a single “effective skill” parameter to which all of our analysis directly applies.30 As
Lockwood and Weinzierl emphasize, however, one needs, in this case, to be careful in
how one interprets Pareto weights over these effective skills: if, e.g., a primary driver
of income differences is differences in the distaste-for-rent-seeking parameter—with low-
distaste individuals earning high incomes in rent-seeking and high-distaste individuals
earning lower incomes in traditional work—one might want to employ more strongly
progressive Pareto weights than if differences were driven by skill alone.

Targeting. Our starting point is the assumption that rent-seeking income cannot be
directly targeted, which is, of course, what makes our theoretical analysis non-trivial.
Our results for this natural benchmark case can be interpreted as a cautionary assessment
of the ability of income taxes to substitute for targeted taxes, even if one could perfectly
pinpoint the incomes at which rent-seeking predominates.

The extent to which the imperfect targeting assumption is justified differs somewhat
across applications. In our calibrated model in Section 5, it means that tax instruments are
restricted not to be occupation-specific. This may be because differential taxation creates
additional distortions if individuals can relabel their occupations, because it encourages
special interest lobbying for preferential tax treatment of particular occupations, or be-
cause it raises concerns about horizontal equity and about empowering the government
to make the determination of how socially productive workers in different professions
are. In other applications, for instance when individuals simultaneously pursue both tra-
ditional and rent-seeking effort—as in our Ramsey model—it is even more natural to as-
sume that individuals’ total incomes but not their rent-seeking shares are observable, be-
cause the government would otherwise be required to collect detailed information about
the kind of tasks that individuals do, which is likely difficult and costly.

Regulation. We take the rent-seeking opportunities and hence externalities as given.
Presumably, the government can also affect rents through regulation, which would affect
the form of the externalities through our technological return functions r

q

(E) and r
j

(E)
directly. However, as long as some rent-seeking opportunities remain after regulation,
our analysis of optimal taxes applies, taking the degree of regulation as given.

30This sort of heterogeneity in the disutility from effort in different sectors is natural in our intensive-
effort-margin Mirrleesian setting. This is different from the sort of fixed costs, unrelated to effort, considered
in Lockwood et al. (2015)’s extensive margin model.
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A Appendix: Proofs for Section 2
While we treat the elasticities b

q

, b

j

, and s as constants in the main text, it will be clear that from the
following proofs that the results extend trivially to the case where all three depend on E (in which case the
regularity condition sD > �1 + b

q

must hold uniformly for all relevant E). The following proofs only rely
on m(e

q

, e
j

) being linear-homogeneous and weakly quasiconvex.
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A.1 Proof of Lemma 1
We first show that there is a unique equilibrium (t(E), T(E), E, E

q

(E)) associated with any E > 0. (This
step does not depend on the regularity condition sD > �1 + b

q

.) Second, we show that the regularity
condition implies the co-monotonicity, with E, of E

q

, l = m(E
q

, E
j

), and Y, and the inverse wage 1/wE. The
co-monotonicity 1 � t follows easily: 1 � t = �ul/(wEuc) by the consumer’s problem (6), and �ul/uc is
increasing along any upward sloping locus when leisure and consumption are normal goods.

For the first step, note from the necessary and sufficient first-order conditions of the agent’s problem
(3) first that r

q

(E)
r

j

(E)
=

m
q

(x, 1)
m

j

(x, 1)
, (27)

where x ⌘ E
q

/E, m
q

and m
j

denote the partial derivatives of m, and second that

t = 1 +
ul(Y(E

q

, E), m(E
q

, E))m
q

(E
q

, E)
uc(Y(E

q

, E), m(E
q

, E))r
q

(E)
. (28)

Differentiating the log of the left-hand side of (27) with respect to E yields (omitting arguments)

r
q

r
j

 
r0

q

r
q

�
r0

j

r
j

!
=

r
q

r
j

D/E. (29)

Differentiating the log of the right-hand side w.r.t. x yields

1
x

m
q

m
j

✓
m

qq

x
m

q

�
m

qj

x
m

j

◆
=

m
q

m
j

1
sx

> 0, (30)

where we used the definition of the substitution elasticity s = d log x/d log(m
q

/m
j

). If D = 0, the left-
hand-side of (27) is constant, so (27) determines a unique x, and E

q

= Ex. If D 6= 0, then, from (29) and (30),

dx
dE

E
x
= Ds. (31)

Hence, (27) implies a unique solution x(E) and E
q

(E) ⌘ Ex(E) for any E. Substituting E
q

(E) for E
q

in (28)
yields the unique tax t(E) consistent with an equilibrium with E. Budget balance pins down the unique
associated transfer T(E). This completes the first step.

For the second step, note that E
q

= xE. By (31), dE
q

dE
E
E

q

= 1 + Ds > 1 + Ds � b

q

> 0, so E
q

and E are
co-monotonic. Similarly, l = m(E

q

, E) = Em(x, 1). Hence,

dl
dE

E
l
= 1 +

m
q

(x, 1)x
m(x, 1)

dx
dE

E
x
= 1 +

m
q

(x, 1)x
m(x, 1)

Ds. (32)

If D � 0, this is clearly positive. Otherwise, it exceeds 1 + Ds > 0 since

m
q

(x, 1)x
m(x, 1)

=
m

q

(x, 1)x
xm

q

(x, 1) + m
j

(x, 1)
2 (0, 1).

Again similarly, Y
q

= k
q

E
q

E�b

q

j

, so dY
q

dE
E
Y

q

= 1 + Ds � b

q

> 0. (33)

Since Y = Y
q

+ k
j

E1�b, Y and E are co-monotonic. Finally, wE is the maximum over x of (r
q

(E)x +
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r
j

(E))/m(x, 1), which is decreasing in E (since the returns r
q

, r
j

are decreasing in E at each x). So 1/wE is
co-monotonic with E.

A.2 Proof of Proposition 1
Using the formulas in the proof of Lemma 1, it is straightforward to show that E ! 0 implies l ! 0, Y ! 0,
and 1/wE ! 0. We can also use Lemma 1 to write the planner’s problem in terms of l as maxl u (Y(l), l). The
planner’s objective is increasing/locally constant/decreasing in l if and only if (suppressing arguments)

uc

✓
dY
dl

+
ul
uc

◆
R 0. (34)

Using wE = Y/l yields
wEuc

✓
dY
dl

l
Y
+

1
wE

ul
uc

◆
R 0. (35)

Next, write Y(l) = Y(E(l)x(E(l)), E(l)) and compute

dY
dl

Y
l
=

✓
dY
dE

E
Y

◆✓
dE
dl

l
E

◆
=

✓
∂Y
∂E

+
∂Y
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q

✓
E

dx
dE

+ x
◆◆

E
Y

✓
dE
dl

l
E

◆

=

✓
(1 � tPigou)rj

E
Y
+ (1 � s)

Y
E

q

x(1 + Ds)
E
Y

◆✓
1 +

m
q

(x, 1)x
m(x, 1)

Ds

◆�1

=
�
(1 � tPigou)s + (1 � s)(1 + Ds)

�
(1 + (1 � s)Ds)�1

=
�
s(1 � b

j

) + (1 � s)(1 + Ds � b

q

)
�
(1 + (1 � s)Ds)�1 (36)

where we used ∂Y/∂E
q

= r
q

= (1� s)Y/E
q

, the definition of tPigou in (2), expressions (31) and (33), and the
fact that wEm

q

(x, 1) = r
q

from the agent’s problem.
Combining (36) and (35) shows that the planner’s objective is increasing/locally constant/decreasing

in l as ⇥
s(1 � b

j

) + (1 � s)(1 + Ds � b

q

)
⇤
(1 + (1 � s)Ds)�1 R � 1

wE

ul
uc

. (37)

Since 1/wE ! 0 and (by assumption) �ul/uc ! 0 as E ! 0, while

s(1 � b

j

) + (1 � s)(1 + Ds � b

q

) � min
�

1 � b

j

, 1 + Ds � b

q

 
> 0

and (1 + (1 � s)Ds) 2 (0, 1 + |Ds|), we see that the planner’s objective is increasing in l as l ! 0. We can
therefore find a sufficiently small l0 such that the planer’s objective is increasing in l at l0. We next show
that there exists an l1 such that the planner’s objective u(Y(l), l) < u(Y(l0), l0) 8l > l1. The existence of an
optimum will then follow from the facts that [l0, l1] is compact and the equilibrium locus and the planner’s
objective are continuous.

Towards constructing l1, consider the agent’s indifference curve in (l, c)-space through (l0, Y0). It is
strictly convex and has slope �ul(Y(l0), l0)/uc(Y(l0), l0) > 0 at (l0, Y(l0)). Hence, along the indifference
curve, the ratio c/l is bounded below by �ul(Y(l0), l0)/uc(Y(l0), l0) > 0 as (l, c) grows large. On the other
hand, the ratio Y(l)/l = w(l) ! 0 along the equilibrium locus. So there exists an l1 sufficiently high so that
the indifference curve lies strictly above the equilibrium locus.

Finally, to obtain the optimal tax formula (8) and complete the proof, note that a necessary condition
for the planner’s optimum is that (35) holds with equality. Using (36) and the fact, from the agent’s opti-
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mization problem, that (1 � t)w = �ul/uc, yields

1 � t =
�
(1 � tPigou)s + (1 � s)(1 + Ds)

�
(1 + (1 � s)Ds)�1 . (38)

Rearranging yields (8).

A.3 Details on Section 2.4 and Proof or Corollary 1
Using the functional forms for the returns and preferences, we can write (27) and (28) as x = EDs(k

q

/k
j

)s

and

(1 � t)k
j

E�b

j = e
1
#

j
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1 + x
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Using e
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= E and the first condition to write E as a function of x in the second condition, we obtain
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Finally, note that
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Using this above to substitute s for x delivers equation (10) in the main text, with K ⌘ k�
1+#b

j

D#

q

k
1+#b

j

�D#

D#

j

.
To prove Corollary 1, note that an optimal equilibrium is an intersection of the two functions topt(s)

and teq(s), where the former is given by the right-hand side of (9) and the latter is given by 1 minus the
right-hand side of (10), for any s 2 [0, 1].

As for the former, in the limit as s ! •, topt(s) is identically 0 for s 2 [0, 1) if D > 0. Moreover,
topt(1) = b

j

for all s. As for the latter, if D > 0, teq(s) converges on s 2 (0, 1) to the increasing limit function
teq(s) = 1 � Ks�1/#. For s ! 0, teq(s) ! �• and for s ! 1, teq(s) ! 1 � K.

If K < 1 � b

j

, comparing the limit points of the graphs of the functions teq(s) and topt(s) as s ! •
shows that, for sufficiently large s, there must be a unique s(s) for which teq(s(s)) = teq(s(s)), and this
unique intersection, which is the optimum, must satisfy s(s) ! K1/# 2 (0, 1) and teq(s(s)) ! 0.

B Appendix: Proofs for Section 3
In this appendix, we show how our analysis from Section 3.2 extends to the case where the effort aggregator
m is quasiconvex and linear homogeneous, which allows for the linear m case discussed in the main text as
a special case. We again characterize a direct implementation, where individuals announce their privately
known type (q, j) and then get assigned c(q, j), y(q, j), and the fraction of income earned through the
Q-activity, given by q(q, j) ⌘ y

q

(q, j)/y(q, j) = r
q

(E)qe
q

(q, j)/y(q, j). Income y and consumption c are
observable but an individual’s skill type (q, j) and the activity-specific efforts e

q

or e
j

(and q) are not. The
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resulting incentive constraints that guarantee truth-telling of the agents are:

u
✓

c(q, j), m
✓

q(q, j)y(q, j)
qr

q

(E)
,
(1 � q(q, j))y(q, j)

jr
j

(E)

◆◆

� max
p2[0,1]

⇢
u
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c(q0, j

0), m
✓

py(q0, j

0)
qr

q

(E)
,
(1 � p)y(q0, j

0)
jr

j

(E)

◆◆�
8(q, j), (q0, j

0), (39)

since type (q, j) can imitate another type (q0, j

0) by earning (q0, j

0)’s income using a continuum of combi-
nations of efforts (and thus income shares (p, 1 � p)) in the Q- and F-activities.

The following lemma shows that incentive compatibility implies that each type (q, j) has a well-defined
wage w ⌘ y/l and activity-specific income share q, which both depend on aggregate rent-seeking effort E
but are otherwise independent of the allocation.

Lemma 4. In any incentive compatible allocation {c(q, j), y(q, j), q(q, j), E},

w(q, j) ⌘ y(q, j)
l(q, j)

= max
p2[0,1]

m
✓

p
qr

q

(E)
,

1 � p
jr

j

(E)

◆�1
(40)

and q(q, j) is a corresponding arg max.

Proof. By the linear homogeneity of m, the “own type” incentive constraints (for (q, j) = (q0, j

0)) imply

q(q, j) 2 argmin
p2[0,1]

m
✓

py(q, j)
qr

q

(E)
,
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qr

q

(E)
,

1 � p
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◆
.

Equation (40) then follows immediately from the definitions w(q, j) ⌘ y(q, j)/l(q, j) and

l(q, j) ⌘ m(e
q

(q, j), e
j

(q, j)) = y(q, j)m
✓

q(q, j)
qr

q

(E) , 1 � q(q, j)
jr

j

(E)

◆
.

By Lemma 4, fixing E pins down each type’s wage wE(q, j), as in (5). Moreover, q(q, j) is chosen to
minimize the overall effort m(e

q

, e
j

) subject to achieving a given amount of income. When m is strictly
quasiconvex, q(q, j), which depends only on the skill ratio a ⌘ q/j, is also uniquely determined by E for
each a. With weakly quasiconvex m, q(q/j) is uniquely determined outside of a countable set of a-values,
where it is interval-valued because the individual is indifferent between various effort combinations to
achieve a given income. By Lemma 4, the correspondence q(q/j) depends on, and is non-decreasing in,
the relative returns zE(a) ⌘ ar

q

(E)/r
j

(E), and we can define the functions qE(a) ⌘ Q(zE(a)) by taking q to
be equal to the midpoints of the intervals on the countable set of degenerate a’s.

Viewed as a distribution, Q has a well-defined derivative denoted by Q0.31 Since

x =
e

q

e
j

=
jr

j

(E)
qr

q

(E)

✓
y

e
j

jr
j

(E)
� 1

◆
=

1
zE(a)

q
1 � q

, (41)

we can write Q(z) = zx(z)/(1+ zx(z)), which only depends on and is increasing in z by linear homogene-
ity and quasiconvexity of m. For later use, it will also be helpful to define Q̃

z0(z) ⌘ z0x(z)/(1 + z0x(z))
with Q̃0(z) ⌘ Q̃0

z0
(z)

���
z0=z

, i.e. the change in the traditional income share Q that is due to the change in the

activity-specific effort ratio x in response to a change in relative returns z, but holding z fixed otherwise.

31In particular, Q(z) is ordinarily differentiable except at some countable number of jump discontinuities;
the latter adds a series of Dirac d-functions to Q0. See appendix C.3. Recall that q 2 {0, 1} for almost all
individuals if m is linear, but otherwise will typically take interior values.
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C Appendix: Proofs for Section 4

C.1 Wage Distributions for General m
Lemma 4 showed that fixing E determines the wage wE(q, j) and the traditional activity income share qE(a)

for each type (q, j). For any given E, we compute the cdf over (w, a)-pairs:

GE(w, a) ⌘
Z

{(q,j)|wE(q,j)w, q/ja}
dF(q, j)

with the corresponding density gE(w, a). This allows us to obtain the wage distribution for any given E
simply as the marginal distribution

FE(w) ⌘
Z

{(q,j)|wE(q,j)w}
dF(q, j) =

Z w

wE

Z •

a=0
dGE(z, a)

with the corresponding density fE(w) =
R •

a=0 dGE(w, a) as well as the activity-specific densities f q

E(w) ⌘R •
a=0 qE(a)dGE(w, a) and f j

E (w) ⌘
R •

a=0(1 � qE(a))dGE(w, a). Hence, these densities can be interpreted as
an average value of q (respectively 1 � q) for all individuals at wage w, and fE(w) = f q

E(w) + f j

E (w) for all
w 2 [wE, wE]. In the special case with m(e

q

, e
j

) = e
q

+ e
j

, (40) immediately implies qE(a) 2 {0, 1} almost
everywhere, leading to the definitions in the main text.

C.2 Proof of Proposition 2
Putting multipliers l on (15), xl on (14) and ĥ(w)l on (13), the Lagrangian corresponding to (12)-(15) is,
after integrating by parts (13),

L =
R wE

wE
V(w)yE(w)dw �

R wE
wE

V(w)ĥ0(w)ldw +
R wE

wE
ul(c(V(w), l(w)), l(w)) l(w)

w ĥ(w)ldw

+xlY
j

(E)� xl

R wE
wE

wl(w) f j

E (w)dw + l

R wE
wE

wl(w) fE(w)dw � l

R wE
wE

c(V(w), l(w)) fE(w)dw. (42)

By Theorem 3 in Clarke (1976), this Lagrangian approach is generically valid, i.e. constraint qualification is
satisfied and any solution must be a stationary point of Lagrangian for some (bounded) multipliers. Using
∂c/∂V = 1/uc and compressing notation, the first order condition for V(w) is

ĥ

0(w)l = yE(w)� l fE(w)
1

uc(w)
+ ĥ(w)l

ulc(w)
uc(w)

l(w)
w

. (43)

Defining h(w) ⌘ ĥ(w)uc(w), this becomes

h

0(w) = yE(w)
uc(w)

l

� fE(w) + h(w)
ucc(w)c0(w) + ucl(w)l0(w) + ucl(w)l(w)/w

uc(w)
. (44)

Using the first order condition corresponding to the incentive constraint (16),

uc(w)c0(w) + ul(w)l0(w) + ul(w)
l(w)

w
= 0, (45)
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the fraction in (44) can be written as �(∂MRS(w)/∂c)y0(w)/w, where M(c, l) ⌘ �ul(c, l)/uc(c, l) is the
marginal rate of substitution between effort and consumption and MRS(w) ⌘ M(c(w), l(w)), so (with a
slight abuse of notation) ∂MRS(w)/∂c stands short for ∂M(c(w), l(w))/∂c. Substituting in (44) and rear-
ranging yields

� ∂MRS(w)
∂c

l(w)
y0(w)
y(w)

h(w) = fE(w)� yE(w)
uc(w)

l

+ h

0(w). (46)

Integrating this ODE gives

h(w) =
Z wE

w

✓
fE(x)� yE(x)

uc(x)
l

◆
exp

✓Z x

w

∂MRS(s)
∂c

l(s)
y0(s)
y(s)

ds
◆

dx

=
Z wE

w

✓
1 � yE(x)

fE(x)
uc(x)

l

◆
exp

✓Z x

w

✓
1 � #

u(s)
#

c(s)

◆
dy(s)
y(s)

◆
fE(x)dx, (47)

where the last step follows from l(w)∂MRS(w)/∂c = 1 � #

u(w)/#

c(w) after tedious algebra (e.g. using
equations (23) and (24) in Saez, 2001).

Using ∂c/∂l = MRS, the first order condition for l(w) is

lw fE(w)

✓
1 � MRS(w)

w

◆
� xlw f j

E (w) = �ĥ(w)l


(�ulc(w)ul(w)/uc(w) + ull(w)) l(w)

w
+

ul(w)
w

�
,

which after some algebra can be rewritten as

w fE(w)

✓
1 � MRS(w)

w

◆
� xw f j

E (w) = h(w)

✓
∂MRS(w)

∂l
l
w

+
MRS(w)

w

◆
, (48)

where ∂MRS(w)/∂e again stands short for ∂M(c(w), l(w))/∂l. With MRS(w)/w = 1 � T0(y(w)) from the
first-order condition of the workers, this becomes

1 � x

f j

E (w)

fE(w)
= (1 � T0(y(w)))


1 +

h(w)
w fE(w)

✓
1 +

∂MRS(w)
∂l

l
MRS(w)

◆�
. (49)

Simple algebra again shows that 1 + ∂ log MRS(w)/∂ log l = (1 + #

u(w))/#

c(w), so that the result follows
from (47) and (49).

C.3 Proof of Lemma 3
We prove the following lemma for the case of a general m-aggregator function. Lemma 3 will then emerge
as a special case for linear m.

Lemma 5. The welfare effect of a marginal change in aggregate rent-seeking effort E is given by (19) in Lemma 3.
The terms I and R are as in (20) and (21). C and S are given by

C ⌘
Z wE

wE
w2l0(w)VarE(q|w) fE(w)dw (50)

and
S ⌘

Z wE

wE

Z •

a=0
y(w)Q̃0(zE(a))zE(a)dGE(w, a) � 0 (51)

with VarE(q|w) =
R •

0 qE(a)2gE(a|w)da �
�R •

0 qE(a)gE(a|w)da

�2 and gE(a|w) = gE(w,a)
fE(w) .
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Before proving Lemma 5, we establish some preliminary results. Because we allow m to be only weakly
quasiconvex, the marginal rate of substitution c(e

q

/e
j

) ⌘ m
q

(e
q

/e
j

)/ m
j

(e
q

/e
j

) can have constant re-
gions. Since c is non-decreasing, there are at most a countable number of such regions. Use {di}n

i=1, with di

increasing in i, to denote the values of c at these flat regions.32 An individual with q/j =
r

j

(E)
r

q

(E) di ⌘ a

i
E will

be indifferent between a range of activity-specific income shares q 2
h
qi, qi

i
, where, by equation (41), the

bounds are, respectively, the minimum and the maximum q for which c

⇣
q

1�q
1
di

⌘
= di and thus indepen-

dent of E. The upper-hemicontinuous correspondence qE(a) thus jumps from qi to qi as a crosses a

i
E from

below. For any given wage w and E, taking a

0
E = q/j and a

n+1
E = q/j, we can thus write33

FE(w) =
Z

a

n+1
E

a

0
E

Z w

wE(a)
gE(w0, a)dw0da =

n

Â
i=0

Z
a

i+1
E

a

i
E

Z w

wE(a)
gE(w0, a)dw0da,

where wE(a) ⌘ wE

⇣
max{q, aj}, max{q/a, j}

⌘
and wE(a) ⌘ wE

�
min{q, aj}, min{q/a, j}

�
. Similarly, we

can write

Fq

E(w) =
n

Â
i=0

Z
a

i+1
E

a

i
E

Z w

wE(a)
qE(a)gE(w0, a)dw0da.

The latter is a useful formulation because, on each of the intervals in the sum, the function qE(a) is contin-
uously differentiable. The discontinuities occur at the boundaries of the intervals. It allows us to prove the
following technical lemma, which will be useful below.

Lemma 6.

dFE(w)
dE

=
b

j

(E)
E

w f j

E (w) +
b

q

(E)
E

w f q

E(w) and
dFq

E(w)

dE
=

b

q

(E)
E

w f q

E(w)� KE(w)� LE(w), where (52)

KE(w) ⌘ �
n

Â
i=0

Z
a

i+1
E

a

i
E

Z w

wE(a)

dqE(a)
dE

gE(w0, a)dw0da +
n

Â
i=1

Z w

wE(a
i
E)

da

i
E

dE

⇣
qi � qi

⌘
gE

⇣
w0, a

i
E

⌘
dw0

= �D(E)
E

Z
a

n+1
E

a

0
E

Z w

wE(a)
Q0(zE(a))zE(a)gE(w0, a)dw0da (53)

and LE(w) ⌘ �D(E)
E

Z
a

n+1
E

a

0
E

qE(a)(1 � qE(a))wgE(w, a)da. (54)

Moreover, dFj

E (w)/dE = dFE(w)/dE� dFq

E(w)/dE and analogous expressions hold for dYE(w)/dE, dYq

E(w)/dE
and dYj

E(w)/dE.

Proof. It is useful to define the function w̃(w, a, E; E0) as the wage, at E, of the type (q, j) that would have
had wage w (and a) at E = E0. Then, by construction, the set {(q, j)|wE(q, j)  w̃(w, q/j, E; E0)} is in-
dependent of E: it is simply the set of types that would have had wage less than w at E0. Hence, for all
E,

FE0(w) =
Z

a

n+1
E

a=a

0
E

Z w̃(w,a,E;E0)

wE(a)
gE(w0, a)dw0da (55)

32We deal with finite n to keep notation clean; the countably infinite case is an easy but notationally
cumbersome extension.

33We mildly abuse notation here in assuming that a

0
E  a

1
E and a

n+1
E � a

n
E since a simple redefinition of

n and the relevant a

i
E values would yield the same formulae.
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i.e., the measure of types with wage less than w when E = E0. Taking the derivative of the RHS with respect
to E (which is zero by construction) and evaluating at E0 and re-arranging yields

Z
a

n+1
E

a=a

0
E

Z w

wE(a)

dgE0(w
0, a)

dE
dw0da �

Z
a

n+1
E

a=a

0
E

dwE0
(a)

dE
gE0(wE0

, a)da = �
Z

a

n+1
E

a=a

0
E

dw̃(w, a, E0; E0)
dE

gE0(w, a)da.

The LHS is easily recognized as dFE(w)/dE, evaluated at E0. Computing dw̃(w, a, E0; E0)/dE,

dFE(w)
dE

=
Z

a

n+1
E

a=a

0
E

✓
qE(a)

b

q

(E)
E

w + (1 � qE(a))
b

j

(E)
E

w
◆

gE(w, a)da =
b

q

(E)
E

w f q

E(w) +
b

j

(E)
E

w f j

E (w),

which proves the first result in (52). Moreover, for all E,

Fq

E0
(w) =

n

Â
i=0

Z
a

i+1
E0

a

i
E0

Z w̃(w,a,E;E0)

wE(a)
qE0(a)gE(w0, a)dw0da, (56)

since the set of types being integrated over is independent of E, and so is qE0(a). We explicitly compute the
derivative with respect to E of the RHS of (56), which is zero since the object is, by construction, independent
of E. After some re-arranging and evaluating at E0, we get

n

Â
i=0

Z
a

i+1
E0

a

i
E0

Z w

wE0
(a)

qE0(a)
dgE0(w

0, a)

dE
dw0da �

n

Â
i=0

Z
a

i+1
E0

a

i
E0

dwE0
(a)

dE
qE0(a)gE0

�
wE0

(a), a

�
da

= �
n

Â
i=0

Z
a

i+1
E0

a

i
E0

dw̃(w, a, E0; E0)
dE

qE0(a)gE0(w, a)da. (57)

Adding Ân
i=0

R a

i+1
E0

a

i
E0

R w
wE0

(a)
dqE0 (a)

dE gE0(w
0, a)dw0da�Ân

i=1
R w

wE0
(ai

E0
)

da

i
E0

dE

⇣
qi � qi

⌘
gE0

⇣
w0, a

i
E0

⌘
dw0 to both sides,

we can recognize the left hand side as dFq

E(w)/dE evaluated at E0. Again substituting for dw̃(w, a, E0; E0)/dE,
the RHS of (57) is

Z
a

n+1
E

a

0
E

✓
qE0(a)

b

q

(E0)
E0

w + (1 � qE0(a))
b

j

(E0)

E0
w
◆

qE0(a)gE0(w, a)da

=
b

q

(E0)
E0

w f q

E0
(w) +

D(E0)
E0

Z
a

n+1
E

a

0
E

qE0(a)(1 � qE0(a))wgE0(w, a)da.

Using the definitions in (53) and (54), we conclude that dFq

E(w)/dE = b

q

(E)
E w f q

E(w)� KE(w)� LE(w).
Finally, observe that q̃E(a) ⌘ qE(a)� Ân

i=1(q
i � qi)H(a � a

i
E), where H is the Heaviside step function

(using the half-maximum convention), is continuous. It has a well-defined derivative with respect to E
equal to dqE(a)/dE away from the a

i
E-jumps, and well-defined (bounded) left- and right-derivatives at the

jumps. Therefore,
Z

a

n+1
E

a=a

0
E

Z w

wE(a)

dq̃E(a)
dE

gE(w0, a)dw0da =
n

Â
i=0

Z
a

i+1
E

a=a

i
E

Z w

wE(a)

dqE(a)
dE

gE(w0, a)dw0da. (58)
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Differentiating H as a distribution yields dH(a�a

i
E)

dE = �d(a� a

i
E)

da

i
E

dE , where d is the Dirac d-function. Hence,

Z
a

n+1
E

a=a

0
E

Z w

wE(a)
(qi � qi)

dH(a � a

i
E)

dE
gE(w0, a)dw0da = �

Z w

wE(a
i
E)

da

i
E

dE
(qi � qi)gE(w0, a

i
E)dw0. (59)

Combining (58) and (59) (and differentiating qE(a) as a distribution), we have

Z
a

n+1
E

a=a

0
E

Z w

wE(a)

dqE(a)
dE

gE(w0, a)dw0da =
n

Â
i=0

Z
a

i+1
E

a=a

i
E

Z w

wE(a)

dqE(a)
dE

gE(w0, a)dw0da �
n

Â
i=0

Z w

wE(a
i
E)

da

i
E

dE
(qi � qi)gE(w0, a

i
E)dw0.

Using Q(zE(a)) ⌘ qE(a) and dzE(a)/dE = zE(a)D(E)/E yields the second equality in (53).

Lemma 6 will be used in the now following proof of Lemma 5. Using (42) and a standard envelope
theorem,

W 0(E) =
Z wE

wE
V(w)

dyE(w)
dE

dw � l

Z wE

wE
c(V(w), l(w))

d fE(w)
dE

dw

+ l(1 � x)
Z wE

wE
wl(w)

d f j

E (w)

dE
dw + l

Z wE

wE
wl(w)

d f q

E(w)

dE
dw + xlY0

j

(E) + B1 (60)

with
B1 ⌘ dwE

dE

h
V(wE)yE(wE)� lc(V(wE), l(wE)) fE(wE) + l

⇣
fE(wE)� x f j

E (wE)
⌘

wEe(wE)
i

�dwE
dE

h
V(wE)yE(wE)� lc(V(wE), l(wE)) fE(wE) + l

⇣
fE(wE)� x f j

E (wE)
⌘

wEe(wE)
i

and Y
j

(E) ⌘ r
j

(E)E. Integrating by parts the four integrals yields

W 0(E) = B1 + B2 �
Z wE

wE
V0(w)

dYE(w)
dE

dw + l

Z wE

wE

✓
V0(w)
uc(w)

+ MRS(w)l0(w)

◆
dFE(w)

dE
dw

� l(1 � x)
Z wE

wE
(wl0(w) + l(w))

dFj

E (w)

dE
dw � l

Z wE

wE
(wl0(w) + l(w))

dFq

E(w)

dE
dw + xlY0

j

(E) (61)

with

B2 =

"
V(w)

dYE(w)
dE

� lc(V(w), l(w))
dFE(w)

dE
+ l(1 � x)wl(w)

dFj

E (w)

dE
+ lwl(w)

dFq

E(w)

dE

#wE

wE

.

By the first order conditions (46) and (48) with respect to V(w) and l(w) from the inner problem, the terms

A1(E) ⌘ l

Z wE

wE

l0(w)
fE(w)


w fE(w)

✓
1 � MRS(w)

w

◆
� xw f j

E (w)� h(w)

✓
∂MRS(w)

∂l
l(w)

w
+

MRS(w)
w

◆�
dFE(w)

dE
dw

and A2(E) ⌘ l

Z wE

wE

V0(w)
uc(w) fE(w)


yE(w)

uc(w)
l

� fE(w)� h

0(w)� h(w)
∂MRS(w)

∂c
l(w)

y0(w)
y(w)

�
dFE(w)

dE
dw

44



are both equal to zero. Adding A1(E) and A2(E) to (61), using (13) and re-arranging yields

W 0(E) = B1 + B2 + xlY0
j

(E) +
Z wE

wE
V0(w)

✓
yE(w)
fE(w)

dFE(w)
dE

� dYE(w)
dE

◆
dw

� l

Z wE

wE
l(w)

dFE(w)
dE

dw + xl

Z wE

wE

 
(l(w) + wl0(w))

dFj

E (w)

dE
� wl0(w)

f j

E (w)

fE(w)
dFE(w)

dE

!
dw

� l

Z wE

wE

✓
h(w)

w
d [MRS(w)l(w)]

dw
+ h

0(w)
V0(w)
uc(w)

◆
1

fE(w)
dFE(w)

dE
dw. (62)

Using Lemma 6, the first integral in (62) is

D(E)
E

Z wE

wE
V0(w)w

f q

E(w) f j

E (w)

fE(w)

 
y

q

E(w)

f q

E(w)
�

y

j

E(w)

f j

E (w)

!
dw =

D(E)
E

R (63)

Again using Lemma 6, the terms with l(w) in the second line of (62) can be written as

�l(1 � x)
b

j

(E)
E

Z wE

wE
wl(w) f j

E (w)dw � l

b

q

(E)
E

Z wE

wE
wl(w) f q

E(w)dw + xl

Z wE

wE
l(w)(KE(w) + LE(w))dw

= �l

✓
b

j

(E)r
j

(E) + b

q

(E)
r

q

(E)
E

E
q

◆
+ xlb

j

(E)r
j

(E) + xl

Z wE

wE
l(w)(KE(w) + LE(w))dw

= �lr
j

(E)tPigou + xlb

j

(E)r
j

(E) + xl

Z wE

wE
l(w)(KE(w) + LE(w))dw. (64)

The terms with wl0(w) in (62) can be written as

xl

Z wE

wE
wl0(w)

"
b

j

(E)
E

w f j

E (w)�
f j

E (w)

fE(w)
w
E

⇣
b

j

(E) f j

E (w) + b

q

(E) f q

E(w)
⌘
+ KE(w) + LE(w)

#
dw

= xl

D(E)
E

Z wE

wE
w2l0(w)

"
f q

E(w) f j

E (w)

fE(w)
�
Z •

0
qE(a)(1 � qE(a))gE(w, a)da

#
dw + xl

Z wE

wE
wl0(w)KE(w)dw

= xl

D(E)
E

Z wE

wE
w2l0(w)VarE(q|w) fE(w)dw + xl

Z wE

wE
wl0(w)KE(w)dw

= xl

D(E)
E

C + xl

Z wE

wE
wl0(w)KE(w)dw, (65)

where the first equality uses (54). Combining the terms with KE(w) from (64) and (65) gives xl

R wE
wE

(wl(w))0KE(w)dw,
which can be integrated by parts to yield

B3 � xl

Z wE

wE
wl(w)K0

E(w)dw = B3 + xl

D(E)
E

Z wE

wE

Z •

0
y(w)Q0(zE(a))zE(a)dGE(w, a) (66)

with B3 = xlwEl(wE)KE(wE) since KE(wE) = 0. Further combining this with the LE(w)-term in (64) yields

B3 + xl

D(E)
E

Z wE

wE
y(w)

Z •

0

�
Q0(zE(a))zE(a)� qE(a)(1 � qE(a))

�
dGE(w, a). (67)
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Note that Q̃0(z) = Q̃0
z0
(z)

���
z0=z

= Q0(z)z � Q(z)(1 � Q(z)), so that (67) becomes

B3 + xl

D(E)
E

Z wE

wE

Z •

0
y(w)Q̃0(zE(a))zE(a)dGE(w, a) = B3 + xl

D(E)
E

S. (68)

Moreover, S � 0 since Q̃0(z) = z

2x0(z)/(1+ zx(z))2 � 0. Finally, use the incentive constraint (13), rewritten
as V0(w)/uc(w) = MRS(w)l(w)/w, to write the last line of (62) as

�l

Z wE

wE

✓
h(w)w

d[V0(w)/uc(w)]
dw

+ h

0(w)w
V0(w)
uc(w)

+ h(w)
V0(w)
uc(w)

◆
1

w fE(w)
dFE(w)

dE
dw

or, recognizing the sum of the bracketed terms as d[h(w)wV0(w)/uc(w)]/dw, integrating by parts, and
using the transversality condition h(wE) = h(wE) = 0 and (52),

l

Z wE

wE
h(w)w

V0(w)
uc(w)

d
dw

 
b

q

(E)
E

f q

E(w)

fE(w)
+

b

j

(E)
E

f j

E (w)

fE(w)

!
dw

= l

D(E)
E

Z wE

wE
h(w)w

V0(w)
uc(w)

d
dw

 
f j

E (w)

fE(w)

!
dw =

D(E)
E

I. (69)

Define F̃(w, E) ⌘ FE(w). Since F̃(wE, E) ⌘ 1 for all E,

dF̃(wE, E)
dE

=
∂F̃(wE, E)

∂E
+

∂F̃(wE, E)
∂w

dwE
dE

=
dFE(wE)

dE
+ fE(wE)

dwE
dE

= 0. (70)

Together with an analogous expression at wE and the fact that KE(wE) = LE(wE) = LE(wE) = 0, this yields
B1 + B2 = �xlwE l(wE)KE(wE) = �B3. Using (63), (64), (65), (68) and (69) in (62) yields

W 0(E) = �lr
j

(E)tPigou +
D(E)

E
(R + I) + xl

✓
r

j

(E) +
D(E)

E
(C + S)

◆
, (71)

where we have used Y0
j

(E) + b

j

(E)r
j

(E) = r
j

(E). This completes the proof of Lemma 5.
To see that Lemma 3 is implied as a special case when m is linear, observe that then n = 1, q1 = 1,

q1 = 0, s1 = 1, and a

1
E =

r
j

(E)
r

q

(E) . Hence, for the region where q = 1,
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In this region, w = qr
q

(E) and a = q/j. Hence, q = w/r
q

(E), j = w
ar

q

(E) and the Jacobian for the

transformation is w
a
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q
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Moreover, LE(w) = 0 since q 2 {0, 1}. Using this in (65) and (66) yields the result.
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C.4 Proof of Proposition 3
The first part of the proposition is established by the following lemma:

Lemma 7. x > 0 in any regular Pareto optimum.

Proof. Any Pareto optimum solves maxE,T(.)
R wE

wE
u (yT(w)� T(yT(w)), yT(w)/w) dYE(w) subject to (a) a

set of incentive constraints yT(w) 2 arg maxy u(y � T(y), y/w) for all w, (b) the consistency constraint
Y

j

(E)�
R wE

wE
yT(w) f j

E (w)dw = 0 and (c) the revenue constraint
R wE

wE
T(yT(w))dFE(w) � 0. We show that

any solution to the relaxed problem where the consistency constraint (c) is replaced by the inequality con-
straint Y

j

(E)�
R wE

wE
yT(w) f j

E (w)dw � 0, with associated multiplier lx̃, always has x̃ > 0 with regular Y.
Since this implies that the solution (E⇤, T⇤(.)) to the relaxed problem is feasible in the unrelaxed problem,
x = x̃ > 0 as well. So, suppose, by way of contradiction, that x̃ = 0 in (E⇤, T⇤(.)). Standard arguments
(e.g. Werning, 2000) imply T⇤0(.) � 0 with regular Pareto weights in this case. Now consider a small de-
crease DE from E⇤ holding T⇤(.) fixed. This at least weakly increases the wage, and hence the utility, of
each individual, increasing the objective. It has no effect on the set of incentive constraints (a) since T⇤(.)
remains fixed. It has no effect on the relaxed constraint (b) since x̃ = 0. It relaxes the revenue constraint (c)
since yT(w) is non-decreasing and T⇤0(.) � 0. This contradicts the optimality of (E⇤, T⇤(.)) in the relaxed
problem, showing that x̃ > 0 in the relaxed problem and hence x = x̃ > 0.

We next show that h(w) � 0 under the assumptions in the proposition. To see this, suppose (by way of
contradiction) h(w) < 0 for some w. Since h(wE) = h(wE) = 0 by the transversality condition, this together
with continuity of h(w) implies that there exists some interval [w1, w2] such that w1 < w2, h(w1) = h(w2) =

0 and h(w) < 0 for all w 2 (w1, w2). Then h

0(w1)  0 and h

0(w2) � 0. Using (18), this implies

yE(w1)
fE(w1)

uc(w1)
l

 yE(w2)
fE(w2)

uc(w2)
l

.

yE(w)/ fE(w) is decreasing in w with regular Pareto weights and uc(w) is also decreasing under condition
(ii), yielding the desired contradiction. Hence, I is non-negative under condition (iii). Conditions (i) and
(iv) ensure that C and R are also non-negative, and S > 0. Hence, either the numerator or the denominator
of (24) or both are positive. x > 0 implies that both are positive. Hence, x S tPigou , D(E) T 0.

D Appendix: Details on Section 5

D.1 Data and Estimation
Data. We use the March release of the CPS for 2014. We use the earnings data and the self-reported
estimate of hours worked to construct wages. The CPS also provides a detailed industry classification
for working individuals. We drop individuals for whom earnings, hours, age or industry is not reported.
Following Heathcote et al. (2010), we also restrict attention to working age individuals between ages 25
and 65 and those employed (dropping those with very low hours or earnings per year). All variables are
weighted with the provided weights.

The industry variable we use to classify individuals, for the sake of our illustration, as rent-seekers
or traditional workers is a 3-digit NAICS-based industry code. This is the variable ind02 in the NBER re-
leased Merged Outgoing Rotation Groups (MORG) data. We choose the finance and law-related categories
“Banking and related activities,” “Savings institutions, including credit unions,” “Non-depository credit
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Figure 2: Empirical and fitted (sectoral) log-wage distributions

and related activities,” “Securities, commodities, funds, trusts, and other financial investments,” “Insur-
ance carriers and related activities,” and “Legal services” to capture rent-seeking (following the spirit of,
and simplifying comparison to, Lockwood et al., 2015).

Normalizations. From the data, we obtain the (per-capita) incomes of traditional workers and rent-seekers,
Y

q

and Y
j

. We can, w.l.o.g., normalize E
q

= Y
q

and E = Y
j

in this initial allocation, so that r
q

= Y
q

/E
q

= 1
and r

j

= Y
j

/E = 1 and wages coincide with skills. This is because scaling all q-skills by some factor
k scales E

q

by k and hence r
q

by 1/k, which leaves traditional wages w
q

= qr
q

, efforts and incomes un-
changed. The same holds for j-skills. In other words, skills (q, j) are only identified up to such re-scalings
for given observables. Given our specification, r

q

= k
q

E�b

q and r
j

= k
j

E�b

j , so this normalization implies

setting the constants k
q

and k
j

such that k
q

= Yb

q

j

and k
j

= Yb

j

j

.

Estimation. Let (w
qi, w

ji) be individual i’s potential wages in the traditional and rent-seeking activities,
where the observed wage in the chosen sector is wi = max{w

qi, w
ji}. Our goal is to estimate the 7 param-

eters of the bivariate Pareto-lognormal wage distribution described in Section 5 in order to approximate
the empirical sectoral wage distributions from the data. We use a standard GMM estimation procedure
to accomplish this, based on the following moment conditions. We first compute N equal quantiles of the
overall empirical wage distribution, taking both sectors together, and then find the share of individuals in
each of these quantiles and in each of the two sectors. This gives us 2N moments to match, of which 1 is
redundant and therefore dropped (since the shares add up to 1). We work with N = 100 (i.e., percentiles),
which helps to match all parts of the sectoral wage distributions, including the top tail, but also perform
robustness checks with fewer quantiles, for instance the N = 20 or N = 5, with relatively minor effects on
the estimation results.34

34These are standard moment conditions of the form E[g(wi, si, p)] = 0, where g(wi, si, p) = v(wi, si)�
v(p) is the difference between the 2N � 1-dimensional vector v(wi, si) with each element equal to an in-
dicator for the quantile/sector of observation i (implied by the wage wi and sector si) and the 2N � 1-
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Figure 3: Optimal policy tPigou = 50%, various scenarios

We use a standard two-step estimator. In the first step, we obtain a consistent (albeit not efficient)
parameter estimate by numerically minimizing the unweighted sum of squared differences between the
empirical shares and the shares under the parametric distribution. Using this parameter estimate, we can
repeatedly simulate the shares in each quantile/sector to obtain a consistent estimate of their covariance
matrix. Second, we re-estimate using the inverse of this covariance matrix as a weighting matrix. We
obtain µ

q

= 2.5, s

q

= 0.5, a

q

= 3.7, µ

j

= 1.7, s

j

= 0.8, a

j

= 3.2 and r = 0.6.

Fit. Figure 2 plots the resulting distributions of log-wages (both overall and for the two sectors) as well
as the share of rent-seekers as a function of the log-wage, both for the data and the fitted bivariate Pareto-
lognormal, which demonstrates a reasonably good fit. In particular, we find a lower Pareto-parameter (and
hence a thicker tail) in the j-dimension, which implies that rent-seekers dominate at the very top of the
wage distribution. We truncate the resulting skill distribution at the top 0.1 percentile in both dimensions
and rescale accordingly.

Policy Simulations. To compute optimal income taxes, we begin with the inner problem for given E. The
(sectoral) wage distributions are obtained numerically using the return functions ri(E) and the estimated
skill distribution. The resulting optimal tax problem can be solved using the same methods as for a standard
Mirrlees model (making use of the local incentive constraints), with the only additional complication that
the multiplier x needs to be found numerically such that the consistency constraint is satisfied. We then
repeat this procedure to find the optimal E using a grid search. We finally verify that the monotonicity
constraint y0(w) � 0 is satisfied, so the solution is globally incentive compatible.

dimensional vector v(p) of quantile/sector shares under the bivariate Pareto-lognormal wage distribution
with 7-dimensional parameter vector p. Our moment condition—the difference between the observed frac-
tion of individuals in each bin and the expected fraction given p—is the empirical analog of E[g(wi, si, p)].
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Table 2: Optimal x for different redistributive and technological scenarios

b

q

= 0 b

q

= b

j

/2 b

q

= b

j

b

j

= b

q

/2 b

j

= 0

No redistribution 23.7% 29.2% 50.6% 58.2% 62.3%
Redistribution 21.6% 27.0% 52.0% 65.0% 72.6%

Sensitivity Checks. In Section 5, we compute optimal tax policy for an economy calibrated such that
tPigou = 25%. Here we show how the results change for twice as strong negative externalities, i.e. tPigou =

50%. Figure 3 plots the resulting marginal tax rate schedules, as a function of the wage, for all 5 scenarios
capturing possible relative return effects as well as without and with redistributive motives (r = 1 versus
r = 1.3, left versus right panel). Table 2 lists the corresponding optimal corrections x. See Section 5 for a
brief discussion.
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E Online Appendix (Not for Publication)

E.1 A Two-Type Example
In this appendix, we provide a simple yet stark example to illustrate point 2 in Section 2.5.35 Suppose that,
in the productive activity, output is proportional to (skill-weighted) aggregate effort. In the rent-seeking
activity, workers compete for a fixed rent k

j

> 1. There is an equal measure of two types of individuals, each
with preferences u(c, l) = c � l1+1/#/(1 + 1/#) over consumption and effort, and with a linear aggregator
for activity-specific efforts. Type 1 agents have a skill q1 = 1 for the productive activity and j1 = 1 for rent-
seeking. In contrast, type 2 workers are unable to work in the productive activity (q2 = 0) but have ability
j2 ⌘ jR > 1 for rent-seeking. Individuals of type i face returns to rent-seeking effort equal to jikj

/E,
i = 1, 2, where E ⌘ ll1 + jRl2 is the (skill-weighted) aggregate rent-seeking effort in the economy and l

is the (endogenous) fraction of type 1 workers who work in the rent-seeking activity. These rent-seeking
returns correspond to a situation in which each unit of skill-weighted effort in that activity claims an equal
share of the total rent k

j

.
We will show that the optimal nonlinear income tax can involve zero marginal tax rates for both types

in this example economy, even though type 2 can only perform an activity that is socially completely waste-
ful. To wit, there are three possibilities for type 1’s activity choice: If E > k

j

, the rent-seeking activity is
relatively crowded, so type 1 individuals all prefer to do productive work (l = 0); if E < k

j

, rent-seeking
returns are higher than q1 = 1, so type 1 workers strictly prefer to do rent-seeking (l = 1); and finally an
interior allocation with E = k

j

where they are indifferent and some fraction l 2 [0, 1] of them does rent-
seeking. We focus on this third case and derive parameter conditions below under which the utilitarian
optimum indeed corresponds to such an interior allocation.

If E = k
j

, we can solve for the equilibrium share l of type 1 workers doing rent-seeking

k
j

= E = ll1 + jRl2 ) l =
k

j

� jRl2
l1

and substituting yields a total income in the economy of (1 � l)l1 + k
j

= l1 + jRl2. In other words, the
wages of the two types are w1 = 1 and w2 = jR since E = k

j

. As a result, utilitarian social welfare is simply

W = l1 + jRl2 �
l1+ 1

#

1
1 + 1

#

+
l1+ 1

#

2
1 + 1

#

. (72)

Now suppose we have access to a nonlinear income tax, which allows us to control efforts li, i = 1, 2, but not
directly type 1’s activity choices. Maximizing (72) w.r.t. li yields l1/#

i = wi, i = 1, 2, implying zero marginal
tax rates for both types.36 These efforts are consistent with an interior l whenever j

1+#

R 2 [k
j

� 1, k
j

].
For sufficiently small #, this interior allocation yields higher social welfare than the corner allocations with
E 6= k

j

.37 A fortiori, the optimal non-linear income tax for this economy has zero marginal taxes at both

35We thank Iván Werning for suggesting this example.
36Clearly, this zero-tax allocation is also incentive compatible, and therefore is the utilitarian optimum

among the E = k
j

-allocations.
37To see this, note that social welfare in the optimum with interior l is W⇤ =

⇣
1 + j

1+#

R

⌘
/(1 + #). The

highest welfare among the allocations with l = 1 is k
j

, obtained in the allocation with 100% taxation and
E = 0. Clearly, W⇤ > k

j

for small enough # since j

1+#

R > k
j

� 1 as assumed above. The highest welfare
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types’ income levels.
In this example, the high income rent-seekers are clearly identifiable (a tax that hits only them can be

levied, namely a tax on type 2’s higher income jRl2) and they produce no output. The targeted, Pigouvian
tax on their effort would therefore be 100%. Yet it is optimal not to tax them under the nonlinear income
tax. In other words, taxing the income of an identifiable subset of rent-seekers is not a good substitute
for a direct tax on rent-seeking. To see why not, consider imposing a small tax on the type 2 individuals,
reducing their effort by d. This decrease in total rent-seeking effort E raises the returns to rent-seeking k

j

/E.
Productive workers then shift into rent-seeking (l increases) until E = k

j

is restored. The net effect is an
aggregate income reduction of exactly w2d. Although rent-seekers are not directly productive, their indirect
productivity is therefore exactly equal to their wage: by congesting the rent-seeking activity, they help to
keep type 1 workers out of rent-seeking and thereby sustain their productivity in the productive activity.
This indirect productivity thus corresponds to our activity shift effect corresponding to the term (1 � s)sD
from Proposition 1, and the term S in Lemma 3 in Section 4.38

E.2 Applications
In this appendix, we demonstrate that our general framework from Section 3 is flexible enough to capture
a wide range of rent-seeking activities. For instance, in many applications, labor effort effectively takes
the form of search, such as search for arbitrage opportunities in financial markets, where traders compete
to exploit a potentially limited set of profitable trades. As a trading strategy becomes more crowded, its
equilibrium return falls, leading to negative search externalities (as e.g. in Axelson and Bond, 2012). Simi-
larly, portions of individual incomes are often earned through tournaments (Lazear and Rosen, 1979), i.e.,
fixed-sum games with winner-takes-all compensation, e.g. in activities related to the arts, entertainment,
law, or consulting. The next example demonstrates our connection to these applications.

Example 1 (Contests). Consider N rent-seekers competing for a rent of value Y
j

. As in Tullock (1980), the proba-
bility pi that player i 2 {1, ..., N} wins the contest is increasing in her own effective effort relative to everyone else’s
effective effort:

pi(j

iei
j

, j

�ie�i
j

) = j

iei
j

. N

Â
j=1

j

jej
j

.

Player i’s expected payoff (and thus long-run income if these contests occur repeatedly) is therefore j

iei
j

Y
j

/E

with E ⌘ ÂN
j=1 j

jej
j

. Whenever j

iei
j

/E is small, the private return to effective rent-seeking effort is given by Y
j

/E,
as in our general model, and exceeds the social marginal return to effective effort, given by Y0

j

(E) (zero if Y
j

(E) = k
j

).

Relatedly, our model can capture activities that take the form of races, where individuals compete to
be the first to discover new ideas and innovations in R&D and academic research, market opportunities
or consulting strategies (see e.g. Arrow, 1962, for business stealing effects and Dixit, 1987, for innovation
races). This framework also describes socially wasteful but privately profitable financial speculation (Hirsh-
leifer, 1971, Arrow, 1973) when traders have an incentive to be the first to incorporate a piece of information
into market prices, even if the social value of this acceleration is small, leading to excessive investments in
accelerating the pace of adjustments. This is again demonstrated formally in the following example.

with l = 0 involves E = k
j

and l1 = 1, l2 = k
j

/j

R. It can be checked that the welfare from this allocation
is always less than W⇤.

38The same results obtain if type 1 individuals can only do productive work whereas type 2 individuals
can pursue both activities.
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Example 2 (Races). Suppose individuals race to discover a rent with value M(t) at time t (with M0 < 0 if
early discovery is valuable), with the winner capturing the entire benefit. If individual discovery hazards lj

iei
j

are proportional to skill-weighted efforts j

iei
j

, then, defining aggregate effort E = Âi j

iei
j

, the time to discovery is
p(t|E) = lE exp(�lEt) and the expected payoff to an individual rent-seeker i is

j

iei
j

E

Z •

0
M(t)p(t|E)dt ⌘ j

iei
j

Y
j

(E)
E

with Y
j

(E) ⌘
Z •

0
M(t)p(t|E)dt,

as in our general model. Conditions that ensure r
j

(E) = Y
j

(E)/E � Y0
j

(E) are easy to provide.

Of course, many jobs involve a mixture of both rent-seeking and traditional, productive activities. For
instance, Glode and Lowery (2012) consider a model where financial sector workers engage in both (zero-
sum) speculative trading and surplus creation (e.g. from market making) and argue that profits from both
activities are interlinked. In such cases, rent-seeking may also have negative impacts on the productivity
of traditional activities, as captured by r0

q

(E) < 0 in our general model and illustrated in the next example,
which elaborates on the illustrative example from the introduction.

Example 3 (Red Tape). Consider an organization wherein individuals compete for rents Y
j

(as in Example 1) and
provide traditional work. Agents skim rents by routing paperwork through their desk or inserting themselves more
in the way of decision and production processes. The total income of individual i is given by j

iei
j

Y
j

/E + r
q

(E)qiei
q

,
where r0

q

(E) < 0 captures the negative effect on traditional output when individuals compete harder for rents.

Biais et al. (2011) consider a similar model where fast traders impose externalities on slow traders
through adverse selection from their information advantage. These effects also naturally arise in labor mar-
kets where pay is determined by offers from competing employers, such as for academic faculty. Academics
can put time and effort both into doing actual research and into competing for outside offers (which is costly
and time-consuming both for the academic and potential recruiters). Both types of effort increase pay, but
salary raises due to outside offers may not necessarily correspond to an increase in research productivity,
as captured by the contest compensation structure in Example 1.39 Spending time and resources on outside
offers may also get in the way of actual research, leading to cross-activity externalities as in Example 3.

E.3 The Targeted Tax Benchmark
In this appendix, we show for the Mirrlees model from Section 3 that tPigou is the corrective tax on rent-
seeking when it can be targeted separately. In particular, suppose that, in addition to the nonlinear income
tax T(y), a linear tax t on rent-seeking income is available. To attack the resulting optimal tax problem,
it is useful to decompose it into an inner and outer problem as follows: the inner problem takes t and
E as given and is written in terms of after-t returns in the rent-seeking activity. In particular, we define
allocations as before, except that now y

j

(q, j) ⌘ (1 � t)jr
j

(E)e
j

(q, j), with y(q, j) ⌘ y
q

(q, j) + y
j

(q, j)

and q(q, j) ⌘ y
q

(q, j)/y(q, j) following accordingly. Then by Lemma 4, incentive compatibility requires

wE,t(q, j) ⌘ max
p2[0,1]

m
✓

p
qr

q

(E)
,

1 � p
(1 � t)jr

j

(E)

◆�1
,

39The same framework applies when researchers spend part of their time on competing for grants or
prizes through races or contests with winner-takes-all compensation, as in Examples 1 and 2, and other
parts of their time on producing actual research.
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qE,t(q/j) is a corresponding arg max, and both are determined by t and E for each type (q, j). This leaves
the objective (12) and incentive constraints (13) in the inner problem unchanged. The consistency and
resource constraints become

Z wE,t

wE,t
wl(w) f j

E,t(w)dw + tY
j

(E) = Y
j

(E) and (73)

Z wE,t

wE,t
(wl(w)� c(V(w), l(w))) fE,t(w)dw + (t � s)Y

j

(E) +
s

1 � t

Z wE,t

wE,t
wl(w) f j

E,t(w)dw = 0, (74)

with multipliers xl and l as before, and where s is a free parameter that will be useful in what follows (the
terms multiplied by s sum to 0 by (73), and a casual reader can safely set s = 0). The inner problem yields
social welfare W(E, t), which the outer problem maximizes over E and t. The next proposition summarizes
the results for this scenario with targeted tax instruments.

Proposition 4. Suppose a linear activity-specific tax t on rent-seeking is available in addition to the non-linear
income tax T(y). Then, at any Pareto optimum:
(i) (1 � t)x = tPigou � (t � s),
(ii) the top marginal tax rate on rent-seeking income is t + (tPigou � t) f j

E,t(wE,t)/ fE,t(wE,t), which reduces to tPigou

if all top earners specialize in rent-seeking, and
(iii) if there are no redistributive motives (h(w) = 0 8w, Y(q, j) = F(q, j) 8(q, j)), then t = tPigou and no other
distorting taxes are imposed (T0(y) ⌘ 0 for all y).

Proof. Part (i). Consider the change in W(E, t) induced by a small variation from (E, t) to (E + dE, t + dt)
with dt = �(1 � t)b(E)dE/E. This variation is leaves (1 � t)r

j

(E)/r
q

(E) unchanged and therefore affects
neither the optimal q of any individual nor

q̃(q, j; E, t) ⌘ max
q2[0,1]

m
✓

q
q

,
1 � q

(1 � t)r
j

(E)/r
q

(E)j

◆�1
.

By the envelope theorem, the welfare effects of this variation can be computed by holding fixed the allo-
cations l(q̃), c(q̃) for each individual. It therefore has no direct effect on individuals’ utilities, and, since it
leaves unchanged the ratio of after-t wages between any two types, does not affect the incentive constraints.
To compute the effects on the consistency and resource constraints (73) and (74), it is convenient to change
variables within the integrals from after-t wages w to the re-scaled wages q̃ ⌘ w/r

q

(E):40

Z
q̃E,t

q̃E,t
q̃r

q

(E)l(q̃) f̃ j

E,t(q̃)dq̃ + tY
j

(E) = Y
j

(E) (75)

Z
q̃E,t

q̃E,t

�
r

q

(E)q̃l(q̃)� c(V(q̃), l(q̃))
�

f̃E,t(q̃)dq̃ + (t � s)Y
j

(E) +
sr

q

(E)
(1 � t)r

j

(E)
r

j

(E)
Z

q̃E,t

q̃E,t
q̃l(q̃) f̃ j

E,t(q̃)dq̃ = 0,

(76)
where f̃ k

E,t(q̃) = f̃ k
E,t(w/r

q

(E)) ⌘ r
q

(E) f k
E,t(w), k = q, j, are the wage densities in terms of q̃. The variation

leaves everything in these constraints unchanged except the terms r
q

(E), r
j

(E), Y
j

(E), and t. Hence,

dW = l


x

✓
(1 � t)Y0

j

(E)�
r0

q

(E)
r

q

(E)
(1 � t)Y

j

(E)
◆
+

r0
q

(E)
r

q

(E)
�
(1 � t)Y

j

(E) + Y
q

(E)
��

dE

+l

h
(t � s)Y0

j

(E)� sb

j(E)r
j

(E)
i

dE + lY
j

(E)(1 � x)dt,

40Note that this does not affect the multipliers l and x: it is a change of variables within the integrals, not
a reformulation of the constraints.
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or, using dt = �(1 � t)D(E)dE/E and the definition of tPigou, dW = lr
j

(E)
⇥
x(1 � t) + (t � s)� tPigou

⇤
dE

after some algebra. Since dW = 0 at the optimum, the result follows.
Part (ii). The inner problem given E and t solves (12) s.t. (13), (73) and (74). When s = 0, this is the

same problem as without the tax t except for the fact that (i) wages w are after-t wages and (ii) there are
the additional constants tY

j

(E) in (73) and (74). As a result, the optimal marginal tax formula (17) goes
through, where w is the after-t wage and the effective marginal keep share on rent-seeking income is given
by (1 � t)(1 � T0(y(w))). Hence, the top marginal tax rate in the rent-seeking activity is

1 � (1 � t)(1 � T0(y(wE,t))) = 1 � (1 � t)

 
1 � x

f j

E,t(wE,t)

fE,t(wE,t)

!
= t + (tPigou � t)

f j

E,t(wE,t)

fE,t(wE,t)
,

where the last step uses the result from part (i).
Part (iii). To prove the result, we first show how the outer problem decomposition is extended to the

presence of the linear tax t. Fix the rent-seeking tax t and s = 0. If t = 0, ∂W(E, t)/∂E is given by the
right-hand-side of (19), since the outer problem for E is identical to the baseline without a rent-seeking tax.
If t 6= 0, one can derive ∂W(E, t)/∂E using the same steps as in the proof of Lemma 3. The presence of t
changes this derivation in two ways. First, the consistency and resource constraints (73) and (74) contain an
extra tY

j

(E); this gives rise mechanically to an extra (1� x)ltY0
j

(E) term. Second, wages w are after-t. This
changes the interpretation (but not the form) of the effects R, I, C and S. The only formal change is when
going from the first to the second line of (64), because now

R wE,t
wE,t

wl(w) f j

E,t(w)dw = (1 � t)Y
j

(E). Hence,
the last line of (64) becomes

� lr
j

(E)tPigou + lr
j

(E)b

j(E)t + xl(1 � t)b

j(E)r
j

(E) + xl

Z wE,t

wE,t
l(w)(KE(w) + LE(w))dw.

Incorporating these two changes implies that, for any given (E, t),

∂W(E, t)
∂E

= lr
j

(E)
�
x � tPigou + t(1 � x)

�
+

D(E)
E

[I + R + xl (C + S)] . (77)

The result then follows from the fact that setting t = tPigou yields ∂W(E, t)/∂E ⌘ 0 using (77) since x = 0
by the result in part (i) and I = R = 0 when there are no redistributive motives (h(w) = 0 and Y(q, j) =

F(q, j)). Moreover, with h(w) = 0, T0(y(w)) = 0.

Proposition 4 formally establishes tPigou as the benchmark corrective tax under targeting based on three
insights: First, as shown in part (ii), tPigou is the top marginal tax rate when all top-wage workers only
do rent-seeking and we can target rent-seeking directly. Second, part (iii) implies that, in the absence of
redistributive motives (e.g. with quasilinear preferences and Y = F), the optimal tax on the rent-seeking
component of income is given by tPigou.

Third, although the optimal linear rent-seeking tax t is not generally equal to tPigou when there are
redistributive motives, tPigou can still be interpreted its corrective component. Specifically, part (i) implies
that, as in Kopczuk (2003) we can solve for an optimum in two steps. First, set a baseline corrective tax t.
Second, solve for the remaining linear rent-seeking tax s = t � t and the non-linear income tax T. If we
choose t = tPigou, part (i) yields x = 0, so the optimization problem in the second step is equivalent to a
problem with no externalities (but with pre-s returns (1� tPigou)jr

j

(E) in the rent-seeking activity). Hence,
tPigou is the Pigouvian corrective tax tp as defined by Kopczuk (2003).
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