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Abstract

This paper is concerned with the problems of posterior simulation and model choice
for Poisson panel data models with multiple random effects. Efficient algorithms based
on Markov chain Monte Carlo methods for sampling the posterior distribution are
developed. A new parameterization of the random effects and fixed effects is proposed
and compared with a parameterization in common use, and computation of marginal
likelihoods and Bayes factors via Chib’s (1995) method is also considered. The methods
are illustrated with two real data applications involving large samples and multiple
random effects. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is concerned with the problems of estimation and model compari-
son for panel count data models with multiple random effects. Although we
focus on count data, much of our discussion is also relevant for binary data and
the class of generalized linear models. We are interested in procedures that allow
for the efficient estimation of such models (for which the likelihood function is
usually not available) and methods that can be used to compare alternative,
potentially non-nested, models. A growing literature has recently begun to
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address these problems from various numerical perspectives, primarily organ-
ized around Markov chain Monte Carlo algorithms (Albert, 1992; Bennett et al.,
1996; Gamerman, 1994; Wakefield et al., 1994; Zeger and Karim, 1991). It has
also become understood that certain identification problems can severely com-
promise the performance of the existing simulation methods. Gelfand et al.
(1996) discuss one approach for dealing with this problem, but this approach
does not appear to be computationally straightforward for the models we study.

This paper advances the existing literature in three important directions.
First, we propose a parameterization of the model, related to that in Gelfand et
al. (1996), that tackles the identification problem and is simple to implement. In
our parameterization the covariate matrices for the fixed effects and the random
effects are completely distinct, and the random effects have a non-zero mean.
Second, we develop efficient algorithms based on Markov chain Monte Carlo
methods for sampling the posterior distribution of the parameters and the
random effects. These algorithms in conjunction with the proposed parameteriz-
ation of the model, provide a substantial improvement over existing methods for
sampling the posterior distribution. Finally, we develop an approach for com-
puting Bayes factors (Kass and Raftery, 1995) for alternative panel count models
that requires only the simulation routines for sampling the posterior distribu-
tion. This approach is based on the work of Chib (1995) and is easy to apply
compared to alternative methods described by Carlin and Chib (1995) and
Green (1995). As far as we are aware, Bayes factors for panel count data models
have not been computed before.

The rest of the paper is organized as follows. In Section 2 we discuss
the simulation of the posterior distribution and consider several different rou-
tines, each defined by a particular choice of proposal density in the
Metropolis—Hastings step. In Section 3 we show how the marginal likelihood
may be computed from the Markov chain Monte Carlo output. This section
also takes up the calculation of the maximum likelihood estimate through
a modification of the Monte Carlo EM (MCEM) algorithm of Wei and Tanner
(1991) and the computation of the likelihood function by importance sampling.
In Section 4 we consider two applications of the techniques, first to data on the
effects of the drug progabide on epileptic patients, and then to patent data on
a longitudinal sample of 680 firms in the United States. Concluding remarks
appear in Section 5 followed by an Appendix.

2. Markov chain Monte Carlo sampling methods

2.1. The model and new parameterization

Let y"My
it
N be count data on subjects i"1,2,n across time periods

t"1,2,¹
i
. The model of interest specifies that conditionally on parameters
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b3Rk and random effects b
i
3Rq the counts are Poisson, i.e.,

y
it
Db, b

i
&Poisson(k

it
),

where k
it

is the conditional mean

k
it
"E(y

it
Db, b

i
)"exp(x@

it
b#w@

it
b
i
),

b
i
&N

q
(g, D),

the covariates x
it

and w
it

contain no variables in common, and N
q
denotes the

q-variate normal distribution.
Our parameterization is characterized by two new features: the non-zero

mean vector g for the random effects and the specification of the covariates
x
it

and w
it

that are not allowed to have common variables. In previous formula-
tions, w

it
is a subset of x

it
and E(b

i
)"0 (for example, Laird and Ware, 1982).

This parameterization is not recommended in the context of the Markov chain
Monte Carlo methods we propose, because of an identification problem. To see
this, suppose for simplicity that the only overlap between x

it
and w

it
is x

itk
and

define A
itk
"k

it
!x

itk
(b

k
#b

ik
), so that k

it
"x

itk
(b

k
#b

ik
)#A

itk
. But the first

term is observationally equivalent to b
ik
x
itk

, implying that b
k

is not likelihood
identified (O’Hagan, 1994). Identification must therefore be achieved entirely
through the prior distribution of b

i
. As a result, if the data contain considerable

heterogeneity leading to a large variance D, then any Markov chain Monte
Carlo algorithm that simulates both b and b

i
will not mix well. Transferring the

‘common’ effect of x
k

to g
k

removes the nonidentified parameter b
k
. Our

parameterization is related to, but different from, the hierarchical centering
introduced by Gelfand et al. (1996).

We complete the model by assuming that the parameters (b, g, D) follow the
prior distributions

b&N(b
0
, B~1

0
), g&N(g

0
, M~1

0
), D~1&Wish(l

0
, R

0
),

where (b
0
, B

0
, g

0
, M

0
, v

0
, R

0
) are known hyperparameters and Wish(l

0
, R

0
) is

the Wishart distribution with l
0

degrees of freedom and scale matrix R
0

(Press,
1989). These distributions are flexible in representing various prior beliefs about
the parameters.

2.2. Likelihood function

Computational algorithms for estimation are needed because the likelihood
function of this model is complicated and intractable. The likelihood function
may be expressed formally as follows. Let y

i
"(y

i1
,2,y

iTi
) denote the observa-

tions on the ith cluster. Under conditional independence

f (y
i
Db, b

i
)"

Ti

<
t/1

p(y
it
Db, b

i
)
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and

f (y
i
, b

i
Db, g, D)"f (y

i
Db, b

i
) /(b

i
Dg, D),

is the joint density of (y
i
, b

i
), where p is the Poisson mass function with

conditional mean k
it

and /(b
i
Dg, D)JDDD~1@2expM!0.5(b

i
!g)@D~1(b

i
!g)N is

the density of the normal distribution with mean g and covariance D. The
likelihood function of the parameters given y"(y

1
,2,y

n
) is then given by

¸(yDb, g, D)"
n

<
i/1
P f (y

i
, b

i
Db, g, D) db

i
,

n
<
i/1

¸
i
(y

i
Db, g, D), (1)

which is the product of the n likelihood contributions¸
i
(y

i
Db, g, D). The intracta-

bility of the likelihood function arises from the integral in Eq. (1).

2.3. Sampling the random effects

To develop an operational Markov chain Monte Carlo scheme for simulating
the posterior distribution it is necessary to include the random effects in the
simulation, an example of data augmentation (Tanner and Wong, 1987). The
Markov chain Monte Carlo algorithm is then based on the blocks
b"(b

1
, b

2
,2,b

n
), b, g, and D, and the associated full conditional distributions

[bDy, b, D], [bDy, g, b], [gDb, D], [D~1Dg, b]. (2)

Given an arbitrary starting point in the parameter space, the conditioning
variables are set at their most recent simulated values, and the distributions are
sampled recursively a large number of times. Under regularity conditions that
are satisfied in this problem, the Markov chain produced by these iterations can
be shown to converge to the posterior distribution.

Consider the sampling of the n random effects b
i

from the distribution
n(bDy,b, g, D)"<n

i/1
n(b

i
Dy

i
, b, g, D), where

n(b
i
Dy

i
, b, g, D)Jf(y

i
, b

i
Db, g, D)

"/(b
i
Dg, D)

Ti

<
t/1

exp[!exp(x@
it
b#w@

it
b
i
)]

][exp(x@
it
b#w@

it
b
i
]yit.

This density is difficult to simulate by standard rejection-based methods but is
amenable to analysis via the versatile Metropolis—Hastings algorithm (Tierney,
1994; Chib and Greenberg, 1995). As a review, recall that, for a given target
density f(t), the Metropolis—Hastings algorithm is implemented as follows:
1. Given the current value t, sample a proposal value ts from the density

q(t, ts).
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2. Move to the value ts with probability a(t,ts) and stay at the value t with
probability 1!a(t,ts), where

a(t, ts)"minG
f (ts)q (ts, t)

f (t)q(t, ts)
,1H.

The behavior of this algorithm (in terms of how well the support of the target
density is traversed) depends critically on the choice of q. One interesting aspect
of our current application is that the Metropolis—Hastings algorithm must be
applied to each of the target densities n(b

i
Dy

i
, b, g, D). Monitoring each of these

Metropolis-Hastings chains is a difficult matter when one has a large number of
clusters, as in the examples below. For this reason, it is extremely important that
we identify proposal densities that work well on general grounds and require
limited monitoring. The suggestions are compared systematically in the examples.

Method 1: Random walk proposal. In this method one defines q
1
(b

i
, bs

i
)"

/(bs
i
Db

i
, q

1
D), where q

1
is a scalar that is adjusted in trial runs to obtain suitable

candidates. With this choice, proposal values are obtained with little effort, but
the sample can display considerable serial correlation.

Method 2: ¹ailored proposal. A second approach is to tailor the proposal
density to the target density around its modal value bK

i
"argmax

bi
ln f (y

i
, b

i
Db, g, D). The mode is obtained from the Newton—Raphson algorithm

using the gradient vector

g
bi
"!D~1(b

i
!g)#

Ti

+
t/1

(y
it
!exp(x@

it
b#w@

it
b
i
))w

it
(3)

and Hessian matrix

H
bi
"!D~1!

Ti

+
t/1

(exp(x@
it
b#w@

it
b
i
))w

it
w@
it
. (4)

Now define

q
2
"f

T
(b

i
DbK

i
, q

2
»

bi
,l)

JDq
2
»

bi
D~1@2G1#

1

l
(b

i
!bK

i
)@(q

2
»

bi
)~1(b

i
!bK

i
)H

~(l`q)@2
,

where q
2

and l are adjustable constants and f
T
( ) DbK

i
,q
2
»

bi
,l) is the multivariate-t

density with l degrees of freedom, location parameter bK
i
and scale matrix q

2
»

bi
.

We set »
bi
"(!H

bi
)~1, which is the negative inverse of the Hessian of

ln f (y
i
, b

i
Db, g, D) at the mode. We avoid the use of a similarly matched normal

proposal density /(b
i
DbK

i
, c»

bi
) because the MVt proposal density is more flexible

and easier to adjust (because of the extra tuning parameter l). Furthermore, in
our empirical examples, proposal values generated from the normal proposal
produce some extreme acceptance rates even after considerable tuning.
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Method 3: Mixture proposal—tailored proposal. In this method the proposal
values are drawn from a mixture of proposal densities q

1
and q

2
. One can select

q
2

less frequently than q
1

to minimize the set-up time within each cycle. The
Markov property of the simulation is preserved if the respective densities are
selected at fixed, pre-specified intervals. This is a computationally inexpensive
way of producing satisfactory proposal values.

Method 4: Acceptance—rejection with tailored proposal. In this approach the
proposal value is obtained by an acceptance—rejection procedure applied to the
pseudo-dominating function c

i
f
T
(b

i
DbK

i
, q

2
»

bi
, l), where c

i
is a positive number (its

choice is discussed below). Note that we have again utilized the MVt distribu-
tion rather than the multivariate normal. Let bs

i
be a value generated from

f
T
(b

i
DbK

i
, q

2
»

bi
, l) that satisfies the condition

u)f (y
i
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i
Db, g, D)/c

i
f
T
(bs

i
DbK

i
, q

2
»
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, l),

where u&Unif(0,1). Let C
1
"I[ f(y

i
, b

i
Db, g, D))c

i
f
T
(b

i
DbK

i
, q

2
»

bi
, l)] be an indi-

cator of whether the proposal density dominates the target at the current value
b
i
, and let C

2
"I [f(y

i
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i
Db, D))c

i
f
T
(bs

i
DbK

i
, q

2
»

bi
, l)] be an indicator of domina-

tion at the proposal value bs
i
. Then the probability of move (see, Chib and

Greenberg, 1995, p. 332) is defined as
(a) a(b

i
, bs

i
)"1 if C

1
"1;

(b) a(b
i
, bs

i
)"c

i
f
T
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i
DbK

i
, q

2
»

bi
, l)/f(y

i
, b

i
Db, D) if C

1
"0 and C

2
"1;

(c) a(b
i
, bs

i
)"minM f (y

i
, bs

i
Db, D) f

T
(b

i
DbK

i
, q

2
»

bi
, l)/[ f(y

i
, b

i
Db, D) f

T
(bs

i
DbK

i
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2
»
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,

l)],1N if C
1
"0 and C

2
"0.

Remark. The quantity c
i
used above (the value of l is fixed at 15 in the examples)

is determined as follows:

c
i
"

0.6]f (y
i
, bK

i
Db, g, D)

f
T
(bK

i
Dg, D, l)

,

which can be explained in the following way. The term f(y
i
, bK

i
Db, g, D)/f

T
(bK

i
Dg, D, l)

forces the ordinates of the pseudo-dominating density and the (unnormalized)
target density to agree at the mode bK

i
. The factor 0.6 (other values might be tried)

lowers the ordinates of the pseudo-dominating density at all values of b
i
to

improve the probability of generating values away from the mode and thereby
attain greater mixing.

2.4. Sampling b, g, and D

Given the random effects, the remaining simulations are quite straightfor-
ward, with both g and D being simulated from standard distributions. For b, the
sampling requires the use of a Metropolis—Hastings algorithm with an easily
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constructed (tailored) proposal density. The target density is proportional to

/(bDb
0
, B~1

0
)

n
<
i/1

Ti

<
t/1

exp[!exp(x@
it
b#w@

it
b
i
)] [exp(x@

it
b#w@

it
b
i
]yit.

The mode bK and curvature »b"[!Hb]~1 of the logarithm of this function at
the mode are readily obtained, usually through a few Newton—Raphson steps.
The latter steps are implemented via the gradient vector

gb"!B
0
(b!b

0
)#

n
+
i/1

Ti

+
t/1

[y
it
!exp(x@

it
b#w@

it
b
i
)]x

it

and Hessian matrix

Hb"!B
0
!

n
+
i/1

Ti

+
t/1

[exp(x@
it
b#w@

it
b
i
)]x

it
x@
it
.

Analogous to the case of b
i
above, one can now define a tailored MVt density for

generating proposal values. The density we actually use is further refined so that
tailored proposal values that are relatively distant from the current point can be
obtained. We do this by reflecting the current value around bK before adding an
MVt increment with zero mean and scale matrix qb»b. The resulting proposal
density is given by q(b, bs)"f

T
(bsDbK !(b!bK ),qb»b,l), which is symmetric in

(b, bs). There is no need to use the mixture proposal density in this case because
the computational burden of finding the tailored density is minimal.

One cycle of the Markov chain Monte Carlo simulation is completed by
sampling g from

n(gDb, D)"/(gDgL , M~1
1

), (5)

where

gL "M~1
1 AM0

g
0
#

n
+
i/1

D~1b
iB and M

1
"(M

0
#nD~1),

and D~1 from

n(D~1Db)"f
WAD~1Dn#v

0
, CR~1

0
#

n
+
i/1

(b
i
!g)(b

i
!g)@D

~1

B,
where f

W
( ) Da, A) denotes a Wishart density with a degrees of freedom and scale

matrix A.

3. Marginal likelihood by Markov chain Monte Carlo

From a practical viewpoint, the problem of model choice is one of the most
important in fitting panel count data models and similar generalized linear
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models. We now show how this problem can be tackled with the posterior
simulation techniques discussed in the previous section. We focus on one of the
central quantities in Bayesian model choice — the marginal likelihood of a model
— and show how it may be computed from the Markov chain Monte Carlo
output. The marginal likelihood of a given model is the integral of the likelihood
with respect to the prior density of the parameters, i.e.,

m(y)"P¸(yDb, g)n(b, g, D) dbdgdD. (6)

On the basis of the marginal likelihood one may compute the Bayes factor
(Jeffreys, 1961) in favor of model M

k
(and against model M

l
) as

B
k,l
"

m(yDM
k
)

m(yDM
l
)
. (7)

We adopt an approach due to Chib (1995) for computing the model marginal
likelihood. First, for some arbitary point h* we note that m(y) can be written as

m(y)"
¸(yDh*)n(h*)

n(h*Dy)
. (8)

Second, we estimate the posterior ordinate at the point h* as

lnnL (h*Dy)"lnnL (D~1*Dy)#ln nL (g*Dy, D*)#lnnL (b*Dy, g*, D*).

Our estimate of the marginal likelihood on the log scale is then given by

lnmL (y)"ln¸(yDh*)#lnn(h*)!AlnnL (D~1*Db, g)

#lnnL (gDy, D*)#lnnL (b*Dy, g*, D*)B. (9)

Before we discuss how each of the quantities in this expression is obtained we
mention that we take the point h* in this calculation to be either the posterior
mean or the maximum likelihood estimate.

3.1. Likelihood function

We begin with the computation of the likelihood function at the point h*. The
contribution of y

i
to the likelihood at the point h* is

¸
i
(y

i
Dh*)"P f (y

i
Db

i
, b*)/(b

i
Dg*, D*) db

i
, (10)

where the normalizing constants for both of the functions that appear under the
integral are known and we have suppressed the model indicatorM. If b

i
is of low

dimension it is possible to compute this integral numerically by the method of
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quadrature. The likelihood contribution can also be computed by the Laplace
approximation (see, Tierney and Kadane, 1986) if the cluster size ¹

i
is large.

An alternative method that is more reliable for small cluster sizes is import-
ance sampling (see, Geweke, 1989). If g(b

i
) denotes an importance sampling

function, the importance sampling estimate of ¸
i
(y

i
Dh*) is

Ķ
i
(y

i
Dh*)"M~1

M
+
j/1

f(y
i
Db(j)

i
, b*)/(b(j)

i
Dg*, D*)

g(b(j)
i

)
,

where b(j)
i

( j"1,2,M) are i.i.d. draws from g(b
i
). A convenient choice for the

latter is f
T
( ) DbK

i
, (!H

bi
)~1, l). The log-likelihood function is obtained by adding

the ln Ķ
i
(y

i
Dh*).

3.2. Estimation of n(h*Dy)

We now consider the estimation of each of the three posterior ordinates that
appear in the marginal likelihood expression. These ordinates can be estimated
from suitably constructed Markov chain samplers via the following steps.

First, use the draws Mb(g), g(g)N from the initial run consisting of the distribu-
tions [bDy, b], [bDy, b, g, D], [gDb, D], and [D~1Dg, b] to form the estimate

nL (D~1*Dy)"c G~1
G
+
g/1

DD~1*D(n`l0~q~1)@2

DR(g)
n

D(n`l0)@2
expM0.5 tr(R(g)~1

n
D~1*)N,

where R(g)
n
"[R~1

0
#+n

i/1
(b(g)

i
!g(g))(b(g)

i
!g(g))@]~1 and c is the normalizing

constant of the Wishart density (see, Press, 1982, p. 108).
Second, continue the sampling with the reduced set of distributions [bDy, b],

[bDy, b, g, D*], and [gDb, D*], where D is set equal to D*, and use the draws of
Mb(g)N from this run to form the estimate

nL (g*Dy, D*)"G~1
G
+
g/1

/(g*DgL (g), M*~1
1

),

where gL (g)"M~1*
1

(M
0
g
0
#+n

i/1
D~1*b(g)

i
) and M*

1
"(M

0
#nD~1*).

Finally, use the draws Mb(g)N from the final reduced Markov chain run
involving [bDy, b] and [bDy, b, g*, D*] to form the Gaussian kernel estimate

nL (b*Dy, g*, D*)"G~1
G
+
g/1

/(b*Db(g), H),

where H"diag(h
1
,2,h

k
) is a diagonal window-width matrix.

The accuracy of the posterior ordinate estimate can be gauged by calculating
the numerical standard error, as discussed in the appendix. The numerical
standard error is generally small if G is large.
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3.3. Computation of modal estimates

We now turn to the question of finding the modal estimate, which, along with
the posterior mean, may serve as h* for the marginal likelihood calculation. The
ML estimate may also serve as a starting point for the full Markov chain Monte
Carlo iterations.

The EM algorithm (Dempster et al., 1977) requires the recursive implementa-
tion of two steps: the expectation or E-step and the maximization or M-step. In
the E-step, given the current guess of the maximizer h(j)"(b(j), g(j), D(j)), one
computes

Q(h(j), h)"P
n
+
i/1

[lnPr(y
i
Db, b

i
)#ln/(b

i
Dg, D)]n(bDy, h(j)) db. (11)

Although Q cannot be calculated in closed form, it can be estimated by Monte
Carlo as suggested by Wei and Tanner (1990). Let Mb(1),2,b(K)N, where
b(j)&[bDy, h(j)], be a sample obtained by one of the methods discussed in
Section 2. Wei and Tanner (1990) recommend that K depend on j — a small value
of K (about 1,000) is used at the start of the iterations and increased (to about
5,000) as the maximizer is approached. Then

QK (h(j), h)"K~1
K
+
k/1

n
+
i/1

Mln Pr(y
i
Db, b(k)

i
)#ln/(b(k)

i
Dg, D)N (12)

is an ergodic average that, under regularity conditions, converges to Q as
KPR. In the M-step, the QK function is maximized to obtain a revised guess of
the maximizer h(j`1), i.e.,

h(j`1)"arg max
h

QK (h(j), h).

This maximization is accomplished in two conditional maximization steps:
f Given the current value of D, QK (h(j), h) is maximized over b and g to produce

b(j`1) and g(j`1), where g(j`1)"(nK)~1+K
k/1

+n
i/1

b(k)
i

, and b(j`1) is obtained
by the Newton—Raphson method applied to K~1+K

k/1
+n

i/1
ln Pr(y

i
Db, b(k)

i
).

The gradient and Hessian for the N—R algorithm, similar to those of
Section 3, are given by

K~1
K
+
k/1

n
+
i/1

Ti

+
t/1

(y
it
!exp(x@

it
b#w@

it
b(k)
i

))x
it
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!K~1
K
+
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n
+
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+
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(exp(x@
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it
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i

))x
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it
,

respectively.
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f Given b(j`1) and g(j`1), the random effects Mb
i
N are drawn from

n(bDy, g(j`1), D(j)), and the update of D is obtained from the revised QK function
as

D(j`1)"(nK)~1
K
+
k/1

n
+
i/1

(b(k)
i
!g(j`1))(b(k)

i
!g(j`1))@.

The calculation of QK and the maximization over h are terminated when the
change in successive parameter values is sufficiently small. Standard errors of
the estimate h* can be obtained from a Monte Carlo version of Louis’s (1982)
formula for the information matrix

!J~1
J
+
k/1

L2ln f (y, b(k)Dh*)

LhLh@
!J~1

J
+
k/1
A
Lln f (y, b(k)Dh*)

Lh
!mB

]A
Lln f (y, b(k)Dh*)

Lh
!mB

@
, (13)

where m"J~1+J
k/1

Lln f (y, b(k)DhK )/Lh and b(j)&[bDy, h*].

4. Examples

We next present two applications of the methods developed above to count
data. The first is to data on a treatment for epilepsy and the second to patent
data.

4.1. Epilepsy data

Diggle et al. (1995) consider the data on four successive two-week seizure
counts (y

ij
) for each of 59 epileptics (i"1,2,59; j"0,2,4), some of whom are

treated with progabide (observation 49 is eliminated from the computations
because of the unusual pre- and post-randomization seizure counts). The com-
plete data set appears in Table 1. The covariates are

x
ij1

"G
1 if treatment group,

0 if control,
x
ij2

"w
ij1

"G
1 if visit j"1, 2, 3, or 4,

0 if baseline

and t
ij

(the offset term), which equals 8 if j"0 and 2 if j"1, 2, 3, or 4. Following
Diggle et al., we model the counts by a Poisson link. In the (b, g)-parameteriz-
ation, we let

log E(y
ij
Db, b

i
)"log t

ij
#b

2
x
ij1

#b
4
x
ij1

x
ij2

#b
i1
#b

i2
w
ij1

, b
i
&N

2
(g, D)

S. Chib et al. / Journal of Econometrics 86 (1998) 33–54 43



Table 1
Epilepsy data

Obs y
i1

y
i2

y
i3

y
i4

Treat Base Obs y
i1

y
i2

y
i3

y
i4

Treat Base

1 5 3 3 3 0 11 31 0 4 3 0 1 19
2 3 5 3 3 0 11 32 3 6 1 3 1 10
3 2 4 0 5 0 6 33 2 6 7 4 1 19
4 4 4 1 4 0 8 34 4 3 1 3 1 24
5 7 18 9 21 0 66 35 22 17 19 16 1 31
6 5 2 8 7 0 27 36 5 4 7 4 1 14
7 6 4 0 2 0 12 37 2 4 0 4 1 11
8 40 20 23 12 0 52 38 3 7 7 7 1 67
9 5 6 6 5 0 23 39 4 18 2 5 1 41

10 14 13 6 0 0 10 40 2 1 1 0 1 7
11 26 12 6 22 0 52 41 0 2 4 0 1 22
12 12 6 8 5 0 33 42 5 4 0 3 1 13
13 4 4 6 2 0 18 43 11 14 25 15 1 46
14 7 9 12 14 0 42 44 10 5 3 8 1 36
15 16 24 10 9 0 87 45 19 7 6 7 1 38
16 11 0 0 5 0 50 46 1 1 2 4 1 7
17 0 0 3 3 0 18 47 6 10 8 8 1 36
18 37 29 28 29 0 111 48 2 1 0 0 1 11
19 3 5 2 5 0 18 49 102 65 72 63 1 151
20 3 0 6 7 0 20 50 4 3 2 4 1 22
21 3 4 3 4 0 12 51 8 6 5 7 1 42
22 3 4 3 4 0 9 52 1 3 1 5 1 32
23 2 3 3 5 0 17 53 18 11 28 13 1 56
24 8 12 2 8 0 28 54 6 3 4 0 1 24
25 18 24 76 25 0 55 55 3 5 4 3 1 16
26 2 1 2 1 0 9 56 1 23 19 8 1 22
27 3 1 4 2 0 10 57 2 3 0 1 1 25
28 13 15 13 12 0 47 58 0 0 0 0 1 13
29 11 14 9 8 1 76 59 1 4 3 2 1 12
30 8 7 9 4 1 38

and in the b-parameterization

log E(y
ij
Db, b

i
)"log t

ij
#b

1
#b

2
x
ij1

#b
3
x
ij2

#b
4
x
ij1

x
ij2

#b
i1
#b

i2
w
ij1

, b
i
&N

2
(0, D).

Thus, g corresponds to (b
1
, b

3
) since the intercept and x

ij2
(time) variables are

random effects.
Focusing first on the (b, g)-parameterization, we experiment with the four

alternative proposal generating densities for b discussed in Section 2 under the
following vague priors for b, g, and D~1:

b&N
2
(0, 10~2]I), g&N

2
(0, 10~2]I), D~1&¼(4, I).
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Table 2
Epilepsy data: M—H tuning constants, posterior means (standard deviations) and performance
summaries in the (b, g)-parameterization. Results are based on G"10,000 samples beyond an initial
transient stage of 1,000 cycles

Method 1 Method 2 Method 3 Method 4

M—H constants
q1@2b 1.5 1.5 1.5 1.5
q1@2
1

0.7 n.a. 0.7 n.a.
q1@2
2

1.5 1.5 1.5 1.5

Parameters
Const 1.093 (0.128) 1.076 (0.134) 1.080 (0.143) 1.066 (0.134)
Treat !0.051 (0.170) !0.023 (0.180) !0.029 (0.204) !0.002 (0.185)
Time 0.017 (0.101) 0.016 (0.115) 0.021 (0.108) 0.013 (0.114)
Interact !0.370 (0.133) !0.363 (0.166) !0.373 (0.147) !0.360 (0.159)
D

11
0.474 (0.099) 0.478 (0.100) 0.481 (0.100) 0.476 (0.100)

D
21

0.017 (0.056) 0.015 (0.058) 0.013 (0.058) 0.014 (0.057)
D

22
0.241 (0.062) 0.245 (0.065) 0.244 (0.063) 0.246 (0.064)

Acf(20)
Const 0.429 0.435 0.395 0.368
Treat 0.872 0.779 0.804 0.721
Time 0.421 0.276 0.362 0.195
Interact 0.686 0.471 0.580 0.321
D

11
0.042 0.010 0.024 0.024

D
21

0.096 0.017 0.018 0.003
D

22
0.124 0.005 0.045 0.012

M-H acceptance
b 0.392 0.401 0.401 0.399
b
i
min 0.084 0.587 0.187 0.895

b
i
max 0.429 0.610 0.466 0.911

Tuning constants in these methods (such as q
1

and q
2
) are obtained in short

preliminary runs by examining the acceptance rates and the serial correlations
of the output. The values of these adjustable constants are included in our
tabular output. The final Markov chain Monte Carlo iterations are then run for
10,000 cycles beyond a burn-in of 1,000 iterations.

Table 2 contains results for these data in the (b, g)-parameterization.
The table contains the posterior means, the posterior standard deviations,
the autocorrelation at lag 20 of the generated sample, and the acceptance
rates in the b

i
and b steps. Because there are a large number of b

i
, we report only

the minimum and maximum acceptance rates achieved in the sampling. These
are useful summaries of the performance of the Metropolis—Hastings simula-
tions; acceptance rates for each random effect cannot be easily monitored in
real time.
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From these results we conclude that all four methods for simulating b yield
similar posterior means and standard deviations. These, in turn, are close to the
maximum likelihood estimators reported in Diggle et al. (1995) and to those
obtained from the MCEM algorithm developed above. The posterior point
estimates of D

ij
also agree with the maximum likelihood estimates. The results

indicate an important time ] treatment interaction effect and substantial
heterogeneity in the intercepts.

We next examine the effect of parameterization and apply each of the four
methods anew after setting g"0 and letting w

it
be a subset of x

it
. The prior on

b in these runs is N
4
(0,10~2]I). For brevity we focus on method 4 and simulate

10,000 draws from the posterior distribution, setting q1@2b "1.5 and q1@2
2

"1.5.
We summarize the results in Fig. 1 for (b

1
, b

4
, D

11
, D

22
). The figure contains

Q—Q and autocorrelation plots for output from the recommended (b, g)-para-
meterization (second column) and from the b-parameterization (third column).
From these figures we conclude that the Q—Q plots are linear and that the chain
displays less serial correlation in the (b, g)-parameterization.

The best overall results are obtained when the random effects are simulated
by the accept—reject method with a pseudo-dominating density (Method 4)
in the (b, g) formulation. It is interesting to note that even the random-
walk chain for simulating the random effects (Method 1) yields point estimates
that are similar to the others, although its autocorrelations are quite large. This
suggests that exploratory work can be done with this rather fast approach, and
final results can be computed with one of the slower, but more satisfactory,
methods.

We also consider the question of model choice for these data by computing
the log marginal likelihoods for the model discussed above (M

1
) and for an

alternative model (M
2
) in which the intercept is the only random effect. The

marginal likelihoods are computed from the (b, g)-parameterization. Method
4 is used to simulate the random effects. Each of the reduced Markov chain
Monte Carlo iterations is run for 10,000 iterations, and the marginal likelihood
identity is evaluated at the maximum likelihood estimate. We obtain
lnm(y)"!915.404 for M

1
and !969.824 for M

2
. This is very strong evidence

in favor of including the second random effect. The numerical standard error
(calculated using the expression in the Appendix) of the former estimate is 0.1,
which is negligible compared to !915.404.

4.2. Patent data

These patent data have previously been analyzed by Hausman et al. (1984)
and Blundell et al. (1995) by classical means. The data set contains information
on the research and development (R&D) expenditures of 642 firms and the
number of patents received over the time period 1975—1979. With y

it
denoting

the number of patents received by firm i in year t, the model of interest specifies,
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in the b-parameterization, that

logE(y
ij
Db, b

i
)"b

1
#b

2
x
ij1

#b
3
x
ij2

#b
4
x
ij3

#b
5
x
ij4

#b
i1
#b

i2
w
ij1

,

where E(b
i
)"0, x

ij1
"w

ij1
is the logarithm of R&D spending (logR

0
), and

x
ij2

to x
ij4

are lagged values of the logarithm of R&D spending
(logR

~1
, log R

~2
, logR

~3
). The intercept and logR

0
are thus treated as random

effects. In the (b, g)-parameterization the model is written as

logE(y
ij
Db, b

i
)"b

3
x
ij2

#b
4
x
ij3

#b
5
x
ij4

#b
i1
#b

i2
w
ij1

,

where E(b
i
)"g and the variables are defined as above. The model also contains

time dummies for 1976—1979, which are suppressed here and in the output for
convenience. The data set contains additional variables — a dummy variable for
whether a firm is in a group of scientifically based industries and the inflation-
adjusted book value of the firm in 1971 — but these cannot be included as
covariates in the model, because they exhibit no within-firm variation and hence
are indistinguishable from the random intercept.

The Markov chain Monte Carlo design and the priors for this model corres-
pond to those discussed above. Once again we investigate the efficacy of the four
methods for simulating the random effects and of the alternative parameteriz-
ations. The first set of results (based on 10,000 simulations after dropping the
first 2,000) appears in Table 3. We find that the results are broadly consistent
across methods. The magnitudes of the posterior means and standard deviations
of D lead us to conclude that there is considerable variation across firms and
that current R&D expenditures have a smaller effect on firms with large
intercepts. Furthermore, the posterior moments of the fixed effects reveal that
the effect of the first lag in logR&D is close to zero, while those from the
remaining lagged values of logR&D are positive but smaller than that of current
R&D.

It is also interesting to mention that these data clearly illustrate the
advantages of using an MVt tailored proposal as opposed to the Gaussian
tailored proposal in the generation of the random effects. The latter proposal
was found to yield minimum acceptance rates of 0 and poor mixing in some
cases.

Next we report on the results from the b-parameterization by fitting the above
model with Method 3 and setting q1@2b "0.7, q1@2

1
"1, and q1@2

2
"1.5. For

simplicity we compare the marginal posterior distributions of the intercept and
the coefficient of log R

0
from the alternative parameterizations. We also exam-

ine the autocorrelation plots of the sampled values. The results appear in Fig. 2,
where the first column corresponds to the recommended parameterization. It
can be seen that the marginal posterior distributions for b

1
are different, but

those of b
2

are quite close. It appears that the distribution of the intercept in the
b-parameterization has not converged even after 12,000 iterations due to the

S. Chib et al. / Journal of Econometrics 86 (1998) 33–54 49



Table 3
Patent data: M—H tuning constants, posterior means (standard deviations) and performance
summaries in the (b, g)-parameterization. Results are based on G"10,000 samples beyond an initial
transient stage of 1,000 cycles

Method 1 Method 2 Method 3 Method 4

M—H const
q1@2b 0.7 1.0 0.7 1.0
q1@2
1

0.7 n.a. 1.0 n.a.
q1@2
2

1.0 2.5 1.5 2.0

Param
constant 0.776 (0.075) 0.772 (0.077) 0.747 (0.076) 0.733 (0.076)
logR

0
0.694 (0.030) 0.697 (0.040) 0.621 (0.035) 0.572 (0.036)

logR
~1

!0.043 (0.031) !0.055 (0.033) 0.005 (0.032) 0.046 (0.033)
logR

~2
0.128 (0.036) 0.130 (0.036) 0.138 (0.038) 0.144 (0.037)

logR
~3

0.092 (0.030) 0.089 (0.030) 0.113 (0.030) 0.129 (0.031)
D

11
2.588 (0.259) 2.668 (0.256) 2.594 (0.248) 2.547 (0.252)

D
21

!0.578 (0.072) !0.618 (0.079) !0.597 (0.076) !0.585 (0.076)
D

22
0.215 (0.027) 0.293 (0.035) 0.287 (0.034) 0.282 (0.032)

Acf(20)
Constant 0.153 0.026 0.048 0.031
logR

0
0.480 0.322 0.221 0.171

logR
~1

0.186 0.263 0.045 0.155
logR

~2
0.034 0.034 !0.009 0.007

logR
~3

0.182 0.083 0.050 0.042
D

11
0.515 0.117 0.204 0.011

D
21

0.550 0.182 0.253 0.019
D

22
0.630 0.290 0.385 0.032

M-H acceptance rate
b 0.377 0.222 0.387 0.233
b
i
min 0.015 0.259 0.121 0.818

b
i
max 0.590 0.291 0.482 0.925

high serial correlation. For each parameter, the autocorrelation patterns are
better behaved in the (b,g)-parameterization. This is the kind of improvement we
expected given the high degree of heterogeneity in the data. A more extensive
experiment with the other methods gave similar results.

Finally, we note that Method 3, which appears to inherit the strengths of
Method 2 without the drawbacks of Method 1, gives results that are comparable
to the more sophisticated Method 4. This is potentially very useful because
Method 3 can deliver an order of magnitude reduction in computing time for
large data sets.
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Fig. 2. Patents data. Posterior densities and acf ’s for (b
1
,b

2
) under alternative parameterizations:

output from the (b,g)-parameterization is in the first column, and output from the b-parameteriz-
ation is in the third column.
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5. Conclusions

This paper has shown how Markov chain Monte Carlo methods make
possible the analysis of rather complex variants of the Poisson panel count
model with random effects. We have discussed several different Metrop-
olis—Hastings based approaches for simulating the (augmented) posterior
distribution. One useful approach for sampling the random effects is based on
a mixture proposal density. The first component of this mixture is a random
walk chain, and the second is a tailored multivariate-t density. We have found
that it is important to use a multivariate-t distribution instead of the Gaussian
distribution for this purpose. We have discussed the use of a Metrop-
olis—Hastings accept—reject algorithm with a pseudo-dominating density and
documented the value of a new parameterization of the random effects and the
fixed effects.

In addition, we have considered the problems of ML estimation and model
choice and have developed the first practical methodology for the computation
of marginal likelihoods and Bayes factors without constraining assumptions
about the size of the clusters and number of random effects. This advance should
prove useful and important.
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Appendix A. Numerical standard error of the marginal likelihood estimate

In this appendix we briefly discuss how the numerical standard error of the
posterior ordinate estimate in Section 3.2 can be derived. The numerical stan-
dard error gives the variation that can be expected in the posterior ordinate
estimate if the simulation were to be repeated.

Following Chib (1995), let

h(g)"A
f
W
(D*~1Dn#v

0
, R(g)~1

n
)

/(g*DgL (g), M*~1
1

)

/(b*Db(g), H) B ,

where f
W

is the Wishart density, and note that

hK "G~1
G
+
g/1

h(g)"A
nL (D~1*Dy)

nL (g*Dy, D*)

nL (b*Dy, g*, D~1*)B .
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Hence, from Newey and West (1987),

Var(hK )"G~1CX0
#

m
+
s/1
A1!

s

m#1B(Xs
#X@

s
)D,

where

X
s
"G~1

G
+

g/s`1

(h(g)!hK ) (h(g)!hK )@

and m is a constant that represents the lag at which the autocorrelation function
of h(g) tapers off. By the delta method the variance of

lnnL (D~1*Dy)#ln nL (g*Dy, D*)#lnnL (b*Dy, g*, D*)

is given by

a@Var(hK )a,

where a"(hK ~1
1

, hK ~1
2

, hK ~1
3

). The numerical standard error is the square root of
this quantity.
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