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How are visual scenes encoded in local neural networks of visual cortex? In rodents,
visual cortex lacks a columnar organization so that processing of diverse features from a
spot in visual space could be performed locally by populations of neighboring neurons. To
examine how complex visual scenes are represented by local microcircuits in mouse visual
cortex we measured visually evoked responses of layer 2/3 neuronal populations using 3D
two-photon calcium imaging. Both natural and artificial movie scenes (10 seconds duration)
evoked distributed and sparsely organized responses in local populations of 70–150
neurons within the sampled volumes. About 50% of neurons showed calcium transients
during visual scene presentation, of which about half displayed reliable temporal activation
patterns. The majority of the reliably responding neurons were activated primarily by
one of the four visual scenes applied. Consequently, single-neurons performed poorly in
decoding, which visual scene had been presented. In contrast, high levels of decoding
performance (>80%) were reached when considering population responses, requiring
about 80 randomly picked cells or 20 reliable responders. Furthermore, reliable responding
neurons tended to have neighbors sharing the same stimulus preference. Because of this
local redundancy, it was beneficial for efficient scene decoding to read out activity from
spatially distributed rather than locally clustered neurons. Our results suggest a population
code in layer 2/3 of visual cortex, where the visual environment is dynamically represented
in the activation of distinct functional sub-networks.
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INTRODUCTION
Mouse visual cortex shares fundamental features such as retino-
topy, receptive field types, orientation tuning, and ocular dom-
inance plasticity with visual cortices of higher mammalian
species (Hubener, 2003). Nonetheless, the fine-scale organiza-
tion of its cortical microcircuits is clearly dissimilar. Recently,
in vivo two-photon calcium imaging enabled new insights
into the functional micro-architecture of mouse visual cor-
tex by measuring neuronal response selectivity with single-cell
resolution (Ohki and Reid, 2007; Grewe and Helmchen, 2009;
Wallace and Kerr, 2010). Receptive fields of layer 2/3 neurons
were found to be relatively large with high overlap for neighbor-
ing neurons (Smith and Hausser, 2010). In addition, a salt-and-
pepper organization of orientation preference exists in layer 2/3
(Ohki et al., 2005; Mrsic-Flogel et al., 2007; Sohya et al., 2007).
Thus, these neurons can produce highly selective action poten-
tial output in response to drifting gratings, even though synaptic
inputs onto their dendrites are more broadly tuned (Jia et al.,
2010; Medini, 2011). Such selective responses of cortical neu-
rons suggest that in spite of large receptive fields and high
overlap of dendritic and axonal arbors of neighboring neurons
(Hellwig, 2000) there may exist a specific micro-organization.
Indeed, inter-connected sub-networks of layer 2/3 neurons shar-
ing distinct inputs from layer 4 have been identified in brain
slices (Yoshimura et al., 2005). Moreover, a recent study that com-
bined in vivo two-photon calcium imaging with post-hoc paired

whole-cell recordings in brain slices reported evidence for func-
tional sub-networks of neurons expressing similar orientation
tuning (Ko et al., 2011). To better understand local processing of
the visual scenery in intermingled networks of neighboring neu-
rons with diverse tuning properties, further characterization of
such functional sub-networks is essential.

Activation of cortical neurons critically depends on the
type of visual stimulation and it remains unclear how com-
plex stimuli are encoded in mouse visual cortex. In other
species, it has been shown that visual cortex is tuned to com-
pute natural scenes with their specific spatial and temporal
statistics (Felsen and Dan, 2005). While dynamic natural scenes
evoke sparse responses (Vinje and Gallant, 2000; Yao et al., 2007;
Yen et al., 2007; Haider et al., 2010), presentations of static natu-
ral images failed to induce sparse coding (Tolhurst et al., 2009).
This difference may in part arise because synaptic connections
between cortical neurons are not stationary but express diverse
dynamic transfer functions, even for different terminal arbors of
the same axon (Markram et al., 1998). Thus, to reveal the rep-
resentation of complex and dynamic visual stimuli in mouse
cortex, comprehensive measurements of local population activity
are needed.

Here we applied a 3D laser scanning technique for in vivo two-
photon calcium imaging of neuronal populations (Göbel et al.,
2007) in order to determine the local representation of dynamic
visual scenes, including natural movies, in layer 2/3 of mouse
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visual cortex. We evaluated response selectivity and encod-
ing capacity of individual neurons as well as of variable-sized
neuronal sub-populations. In addition, we analyzed the spa-
tial distribution of visual scene representations within the local
microcircuit, revealing shared functional properties on the fine-
scale of neighboring neurons.

MATERIALS AND METHODS
ANIMAL PREPARATION AND FLUORESCENCE LABELING
All animal procedures were carried out according to the guidelines
of the University of Zurich, and were approved by the Cantonal
Veterinary Office. C57BL/six mice (2–3 months old, of either
sex) were anesthetized with either 2.7 ml/kg of a solution of one
part fentanyl citrate and fluanisone (Hypnorm; Janssen-Cilag,
UK) and one part midazolam (Hypnovel; Roche, Switzerland) in
two parts of water or by urethane (0.5–1.0 g/kg) and chlorpro-
thixene (0.2 mg/mouse), applied intraperitoneal. With fentanyl,
anesthesia was maintained by injecting 0.4 ml Hypnorm, 1.1 ml
H2O, and 0.1 ml Dormicum at 0.05 ml per 10 g body weight per
hour. Atropine (0.3 mg/kg) and dexamethasone (2 mg/kg) were
administered subcutaneously to reduce secretions and edema.

The primary visual cortex was identified using intrinsic imag-
ing (Schuett et al., 2002). Briefly, we illuminated the cortical
surface with 630 nm LED light, presented gratings continuously
drifting in all direction for 6 seconds, and collected reflectance
images through a 4x objective with a CCD camera (Toshiba
TELI CS3960DCL; 12 bit; 3-pixel binning, 427 × 347 binned pix-
els, 8.6 µm pixel size, 25 Hz frame rate). Intrinsic signal changes
were analyzed as fractional reflectance changes relative to the pre-
stimulus average. Regions for two-photon imaging were selected
within the responsive area identified with intrinsic imaging about
2 mm lateral from the midline, corresponding to the monocular
region for the contralateral eye.

A craniotomy was opened, the dura removed, and the
exposed cortex superfused with normal rat ringer solution
(NRR) (135 mM NaCl, 5.4 mM KCl, 5 mM Hepes, 1.8 mM CaCl2,
1 mM MgCl2, pH 7.2, with NaOH). Calcium indicator loading
was performed using the “multi cell bolus loading” technique
(Stosiek et al., 2003). Briefly, 50 µg of the acetoxymethyl (AM)
ester form of the calcium-sensitive fluorescent dye Oregon Green
BAPTA-1 (OGB-1; Invitrogen, Basel, Switzerland) were dissolved
in 4 µl DMSO plus 20% Pluronic F-127 (BASF, Germany) and
diluted with 36 µl standard pipette solution (150 mM NaCl,
2.5 mM KCl, 10 mM Hepes, pH 7.2) yielding a final OGB-1 con-
centration of about 1 mM. The dye was pressure ejected under
visual control through a glass pipette with broken tip inserted
into layer 2/3 of visual cortex. Application of sulforhodamine 101
(SR101; Invitrogen) to the exposed neocortical surface resulted in
co-labeling of the astrocytic network (Nimmerjahn et al., 2004).
Following dye injection the craniotomy was filled with agarose
(type III-A, Sigma; 1% in NRR) and covered with an immobilized
glass cover slip.

VISUAL STIMULATION
Visual stimuli were presented on a 21 inch CRT monitor 30 cm
in front of the contralateral eye. The stimulus set for monocu-
lar stimulation consisted of four different 10 seconds movies: two

different natural movies, a movie of drifting gratings, and a
noise stimulus (Figure 1A). Natural movies were chosen from a
published database (van Hateren and Ruderman, 1998) and nor-
malized for mean luminance and contrast. Drifting square wave
gratings and noise stimulus had the same temporal (2 Hz) and
spatial frequency (0.05 cycles per degree). Gratings drifted in
eight different directions for 1.25 seconds to result in a 10 second
movie. All stimuli were presented for 10 seconds in pseudo-
random order interleaved with blank periods of at least 20
seconds. Typically, 6–12 trials were collected for each visual scene.

3D TWO-PHOTON CALCIUM IMAGING
Calcium transients were acquired using a custom-built two-
photon microscope equipped with a piezoelectric focusing unit
(PIFOC; Physical Instruments, Germany) and a 40x water im-
mersion objective (LUMPlanFl/IR; 0.8 NA; Olympus). 3D laser
scanning and data acquisition were performed as described
(Göbel et al., 2007) using custom written software (LabView;
National Instruments, USA). A spiral scan line (10,000 scan
points) was adjusted to cover a scan volume of 100–200 µm side
length and 60–150 µm in depth usually starting at 100 µm below
the cortical surface (Figure 1B). Fluorescence data were acquired
together with the position signal of the scanning mirrors and the
piezo focusing unit. On average 84 ± 5% (n = 12 populations)
of the manually identified neurons were hit by the 3D scan line at
10 Hz scan rate.

ELECTROPHYSIOLOGY
For verification of the estimated spike rates we performed simul-
taneous juxtacellular recordings of neuronal firing patterns dur-
ing 3D population imaging. A glass pipette was filled with NRR
and the red dye Alexa 594 (20 µM; Invitrogen) for visualiza-
tion. The tip of the pipette was placed near a neuron filled with
calcium indicator and a seal was formed to record extracellu-
lar spikes. Spikes were recorded at 5 kHz using a patch-clamp
amplifier (npi, Reutlingen, Germany) and Spike2 software (CED,
Cambridge, UK), threshold detected and binned at the same rate
as the imaging sample rate (10 Hz; Figure 1C).

CALCIUM SIGNAL ANALYSIS
Data were analyzed with LabView and Matlab (Mathworks, USA).
Cells were detected manually in the reference stacks and their
locations superimposed with the acquired position signal of the
3D laser scan line (Figure 1B). A volume of interest was placed
around the cell bodies and the enclosed pixels of the scan line
were assigned to the respective cell (Göbel et al., 2007). Relative
percentage changes in fluorescence (�F/F) were thresholded at
95% confidence level of the baseline. To estimate the underlying
spike rate we used a deconvolution method (Yaksi and Friedrich,
2006). Traces were low-pass filtered (0.4 Hz) and deconvolved
with an idealized spike-evoked calcium transient (amplitude 5%,
decay 1.6 seconds) (Figure 1D). Population responses are shown
as intensity graphs, with time running on the horizontal axis and
the estimated neuronal spike rate for all neurons depicted in the
rows using a gray-scale code (Figure 1E).

To test the reliability of the neuronal responses to the pre-
sented visual stimuli we calculated the correlation of each
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FIGURE 1 | 3D calcium imaging of visual responses in layer 2/3 neuronal

populations. (A) Stimulus set of visual scenes used in this study. (B) Top:
Reference stack of a layer 2/3 cell population labeled with OGB 1 70–130 µm
below pial surface (neurons green; astroglia counterstained with SR101, red).
Bottom: 3D spiral scan trajectory used to collect data from layer 2/3
population. Neuron positions are indicated by green spheres.
(C) Simultaneous 3D population imaging and single-cell juxtacellular
recording. Top: 3D reconstruction of the imaged neurons with recorded
neuron in red. Bottom: Juxtacellular recorded spikes binned to same sample
rate as imaging data (10 Hz). (D) Example responses to Movie A and B with

binned spikes (top) and simultaneously imaged fluorescence transients
(middle; raw data in blue; filtered data in green). Dotted line indicates the
95th percentile of baseline. Bottom traces show estimated spike rates
obtained by deconvolving calcium signal (blue) superimposed with the
filtered actually recorded spike rates (black). (E) Average response to 10
consecutive Movie B presentations in a juxtacellularly recorded neuron and
the surrounding population. Top: Mean traces for raw and deconvolved
calcium signal, filtered spike rate, and peri-stimulus time histogram (PSTH)
for the recorded neuron. Bottom: Intensity graph showing the average
population response (recorded cell indicated by arrow).

trial to every other trial. This analysis was performed either
for individual neurons or for the entire population, in which
case all single-neuron responses (rows in the intensity graphs)
were concatenated to a single long vector. The correlation of
trial i and trial j of either single-neuron or network responses
was calculated as the covariance of the two vectors (Xi, Xj),
normalized by their respective variability (standard deviation,
σi and σj):

rij = cov(Xi, Xj)

σi · σj
(1)

Because visual scenes were presented in random order, we sorted
the trials according to which visual scene had been presented and
displayed the results in a correlation matrix with the correlation
coefficient color-coded.

DECODING ANALYSIS
We analyzed how well visual scenes could be decoded from the
temporal response pattern either of individual neurons, the entire
local population, or subsets of the population. Response trials
were classified as encoding for one of the four visual scenes using
a nearest mean classifier (Duin, 1996; Goard and Dan, 2009).
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We computed the class mean for each of the four visual scenes
from the training set leaving out the tested trial. The assignment
of a trial to a particular class was based on the nearest class mean
using a correlation-based distance metric (dik = 1 − rik) where rik

is the correlation of the test trial with the mean of stimulus class
k. The obtained list of assigned stimulus identities was compared
to the actual order of the stimulus presentation to get the percent-
age of correctly classified trials for each experiment and stimulus.
The same procedure was used for single-cell correlations. Reliable
responders were defined as neurons whose responses could be
correctly classified in >50% of the trials for at least one visual
scene. The type of stimulus preference of each reliable respon-
der (single-stimulus versus multi-stimuli preference) was given by
the number of those visual scenes with >50% correctly classified
response trials.

To test the dependence of decoding performance on the size
of the considered population we repeated the classification algo-
rithm for variable-sized sub-networks of subsets of neurons
randomly drawn from the total population of neurons in each
experiment. This process was repeated 1000 times for each sub-
network size (one to total number of neurons in experiment) to
calculate the mean percentage of correctly classified trials for each
network size. For each experiment the maximum performance
was calculated as the percentage of correctly classified trials of
the complete network. The minimum network size for reaching
near-optimal decoding was defined as the mean number of cells
required to reach 95% of maximum performance.

To test for dependence of decoding performance on number of
discriminated stimuli, the same process was also applied to trials
with responses to 2, 3, or 4 randomly drawn visual scenes (i.e.,
all six possible combinations were considered for 2 stimuli sets
and four combinations for 3 stimuli). In addition, to correct for
the dependence of information content on the number of stim-
uli tested, we repeated the analysis using mutual information as
performance measure. Mutual information (in bits) of a decoded
response vector R and stimulus vector S was calculated as

I(R, S) =
∑
r∈M

∑
s∈M

p(r, s) log2

(
p(r, s)

p(r) p(s)

)
(2)

where p(r, s) denotes the joint probability distribution function
and p(r) and p(s) the marginal probability distribution func-
tions given the considered stimulus set M (e.g., [1,2,3,4] for
discrimination of the 4 stimuli).

NEIGHBORHOOD ANALYSIS
We analyzed the spatial organization of functional responses
within the local neuronal network. Cell positions in 3D coor-
dinates were obtained from the reference stacks and were used
to calculate distances between all cells. Inter-cell distances were
binned with 20 µm bin size to reduce the occurrences of empty
bins. A consistent analysis of local network organization required
equal numbers of cells in each network. Therefore, we defined
two neighborhood groups of neurons composed of the four near-
est neighbors of a center neuron (“nearest neighbors”) or the
next neighbors 5–8 (“second-nearest neighbors”). For these two
groups of neighbors we evaluated the percentage of “functional

clusters,” defined as neighbor groups with at least one member
sharing the same stimulus preference as the center neuron. As a
control, we calculated the percentage of functional clusters for
randomly shuffled cell positions (repeated 1000 times). To cal-
culate the decoding performance of local clusters we grouped
each cell with its nearest and second-nearest neighborhoods and
obtained the percentage of correctly classified trials using the trial
classification method as described above.

Data are presented as mean ± standard error if not otherwise
noted. Statistical significance was tested with a Student’s t-test and
significance level was 5% unless noted otherwise. Selectivity for
individual stimuli was tested with one-way ANOVA.

RESULTS
3D POPULATION IMAGING OF CORTICAL RESPONSES TO
VISUAL SCENE PRESENTATION
To examine the representation of visual scenes in mouse visual
cortex we measured visually evoked 3D population activity in
cortical layer 2/3 using two-photon calcium imaging. The stimu-
lus set consisted of four 10 seconds movies representing different
visual scenes (Figure 1A). All scenes were presented in random
order to detect stimulus-specific cortical population responses
irrespective of reported influences of previous stimulus history
(Nikolic et al., 2009). Somatic calcium transients in neuronal
populations were measured with the calcium indicator OGB-
1 using 3D laser scanning (Göbel et al., 2007) (Figure 1B; see
Methods; n = 12 populations from eight mice; 70–150 neu-
rons per population). A deconvolution-based algorithm was used
to convert calcium signals into an estimated time course of
neuronal spike rate (Yaksi and Friedrich, 2006). We validated
this approach with simultaneous juxtacellular recording of neu-
ronal firing patterns during 3D population imaging (Figure 1C).
Although single-spike sensitivity was not reached, the spike
rates estimated by deconvolving the calcium transients fitted
closely the simultaneously recorded spike patterns, filtered at the
same frequency as the calcium data (Figure 1D). In addition,
the average deconvolved response matched closely the average
instantaneous spike rate and the peri-stimulus time histogram
(PSTH) across trials (Figure 1E). Finally, the deconvolved cal-
cium transients were highly correlated with the simultaneously
recorded neuronal spike rate (0.74 ± 0.1; n = 7 neurons), sig-
nificantly higher than the correlation of the raw fluorescence
traces with the firing rate (0.43 ± 0.06; p < 0.0001). These find-
ings indicate that the measured calcium transients represent
the underlying neuronal firing patterns and that the decon-
volved calcium transients are reliable estimates of neuronal spike
rates. We therefore, used the estimated spike rates in the further
analysis.

3D population imaging revealed highly reliable and specific
stimulus-evoked activity patterns in neuronal subsets (Figure 2).
For each stimulus about half of the neuronal population showed
significant responses (Movie A: 55 ± 6%; Movie B: 48 ± 6%;
Gratings: 55 ± 7%; Noise: 53 ± 5%; n = 1360 neurons in total).
Typically, responsive neurons displayed several epochs of activa-
tion during presentation of one or multiple visual scenes, which
were consistent across trials. To analyze the response specificity we
calculated trial-to-trial correlations for all trial combinations with
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FIGURE 2 | Reliable and specific activation of 3D populations by visual

scenes. Upper rows: Example 3D activation pattern for two time points
(arrows) during the presentation of Movie A, Movie B, Grating, and Noise
stimulus (black bars). Middle rows: Example responses of four neurons
(locations indicated by inserted box plots) to repeated stimulation with
different visual scenes. Average relative fluorescence changes (�F/F) from

six trials are shown together with the individual trials (grays). Blue traces
are the estimated underlying spike rates (fs ). Bottom row: Intensity graphs
showing the average firing rate of the entire population (rows represent
individual neurons; time runs on the horizontal axis). Start and end of visual
stimulation are indicated by dotted lines. Black arrows indicate example
neurons.

same or different stimuli, considering the neuronal responses
of either the entire recorded population or individual neurons
(Figures 3, 4; Methods). For entire populations, trial-to-trial cor-
relations were computed from the respective intensity graphs and
composed into a 2D matrix (Figures 3A,B). Correlations were
significantly higher for same stimulus trials than for trials with
different stimuli (example population in Figure 3C; pooled anal-
ysis in Figure 3D; mean correlation 0.18 ± 0.13 for n = 1891
same stimulus trial combinations, and 0.08 ± 0.09 for n = 5795
different stimulus trial combinations; ± SD; p < 0.001; t-test).
Similar response specificity was observed for all visual scenes
tested (mean correlation 0.21 ± 0.15, 0.14 ± 0.11, 0.21 ± 0.12,
0.16 ± 0.1 for Movie A, Movie B, Grating, and Noise, respec-
tively). Hence, using 3D calcium imaging of layer 2/3 populations

we could resolve specific neural network responses to the different
presented visual scenes.

Correlation analysis of single-cell response trials revealed fea-
tures distinct from the population responses (Figures 4 A,B).
While some neurons responded primarily during only one of
the visual scenes (e.g., neuron #18 and #38) other neurons
showed distinct responses to two or more stimuli (e.g., neuron
#65). The diversity of responses from individual cells resulted
in broader and overlapping distributions of trial-to-trial cor-
relations for same stimulus trials and different stimulus trials
(Figure 4C; mean correlation 0.14 ± 0.39 for n = 82,120 same-
stimulus trial combinations and 0.04 ± 0.36 for n = 2,54,220
different stimulus trial combinations in 403 cells; ± SD; p <

0.001, t-test). We conclude that individual layer 2/3 neurons may
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FIGURE 3 | Response specificity of local population. (A) and (B) Method
to calculate trial-to-trial correlation matrix. (A) Population trial-to-trial
correlations were obtained by correlating all pairs of trials of entire
population responses to visual scenes. (B) The correlation matrix was filled
with pair-wise correlation coefficients of fs responses for each pair of trials.
The example shows six trials per presented visual scene. Trials are sorted
by the presented visual scenes indicated on right and top. (C) Trial
correlation matrix for entire network response of the population shown in
Figure 2. Dashed white lines separate trials with different visual scenes
indicated on the left and top. (D) Cumulative distribution of correlation
coefficients from the population analysis for all experiments with trials with
same visual stimulus (red) or with different visual stimuli (black). Trial-to-trial
correlations were significantly higher for same stimulus trials compared to
different stimulus trials.

be recruited only by specific visual scenes, raising the question
how well visual scenes can be decoded from temporal response
patterns in single-neurons versus multiple neurons within the
local population.

DECODING OF VISUAL SCENES
For decoding visual scenes from the recorded responses we
used a nearest mean classifier to predict from individual trials,
which visual stimulus had been presented (see Methods). We
considered either the entire sampled network (concatenating all
single-neuron response vectors) or individual neurons. For each
experiment, the response vectors for all trials were assigned to the
clusters representing the different visual scenes (Figure 5A). The
obtained list of assigned cluster identities was compared to the
actual order of the scene presentation, yielding the percentage of
correctly classified trials for each experiment and stimulus. Pooled
across all experiments, 84 ± 4% of the trials on average were cor-
rectly classified with similar success rates for the different visual
scenes (Figure 5C; 92 ± 4%, 82 ± 7%, 86 ± 6%, and 75 ± 6% for
Movie A, Movie B, Grating, and Noise, respectively; p = 0.26,
ANOVA). On the individual cell level we defined “reliable respon-
ders” as cells that correctly predicted the stimulus in >50% of
the trials for at least one visual scene (Figure 5B). About half

of the responding cells were such reliable responders (26 ± 5%
of total number of cells) with most of them preferring only one
particular visual scene (75 ± 4% of reliable responders; n = 12
populations) and only a minority showing reliable responses to
multiple scenes (Figure 5D; according to this definition example
neurons #18 and #38 in Figure 4 had single-scene preference for
Movie A and the Grating movie, respectively; neuron #50 reliably
responded to Movies A and B; and neuron #65 responded to all
four visual scenes).

Applying the network decoding scheme to the sub-networks
of reliable responders resulted in similar decoding performance as
the entire population (86 ± 3%; Figure 5C). In contrast, when we
applied the decoding scheme to individual neurons, performance
was dramatically decreased (Figure 5C). The average single-cell
performance pooled for all cells was close to the 25% chance
level (21 ± 3%) and pooling over only the reliable responders
also resulted in a reduced decoding performance (35 ± 2% cor-
rectly classified trials). The likely explanation is that most reliable
responder’s preferred only one specific visual scene and thus were
“blind” to the other scenes. These results show that individual
neurons can be highly tuned to specific features of the visual
input. However, only by observing the cooperation of several neu-
rons within the population, increasing the likelihood to sample
from distinct functional sub-networks, it is possible to decode the
cortical representation of the visual scenes.

DEPENDENCE ON NETWORK SIZE AND NUMBER OF STIMULI
To inquire how the decoding performance of the local neuronal
population depends on the number of discriminated visual scenes
we repeated the decoding analysis, selecting trials to include only
2, 3, or 4 different visual scenes. Moreover, in order to estab-
lish the minimum number of cells that have to be considered
to reach near-optimal (95%) decoding performance, we exam-
ined how the fraction of correctly classified trials depends on
the number of cells included in the analysis. Figure 6A illustrates
this analysis for one example population that reached 100% per-
formance for >100 neurons. Averaged over all populations, the
maximal decoding performance was independent of whether 2, 3,
or 4 different visual scenes were considered (Figure 6B; 92 ± 2%,
88 ± 3%, and 85 ± 5%, respectively; n = 12; p = 0.2; ANOVA).
Similar decoding performance levels were also reached for the
sub-networks of reliable responders (Figure 6B; 93 ± 2%, 89 ±
3%, and 87 ± 3% for 2, 3, or 4 different visual scenes, respec-
tively; p = 0.3) and only 10–20 reliable responders were required
to reach 95% decoding level (Figure 6C). On the other hand,
drawing cells randomly from the entire population required
larger number of cells: at least 52, 64, and 69 simultaneously
recorded neurons were required to reach 95% decoding per-
formance for 2, 3, and 4 different visual scenes, respectively
(Figure 6C).

The finding that the smallest required network size depended
on the number of different visual scenes to classify might simply
be due to the different information content when discriminat-
ing different numbers of visual scenes. For example, chance level
is 50% for 2 visual scenes whereas it is 25% for 4 different
scenes. To take this difference in information content into account
we also used mutual information as performance measure, a
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quantity that measures the reduction in uncertainty about the
presented visual scene by knowledge of a single-trial neuronal
response. Mutual information increased with growing population
size and reached higher levels when a larger number of scenes had
to be discriminated (Figures 6D,E; 0.7 ± 0.1 bits, 1.1 ± 0.1 bits,
and 1.4 ± 0.1 bits for 2, 3, or 4 different visual scenes, respec-
tively). Similar results were obtained for populations consisting
either of the entire imaged population or only of the reliable
responders (Figure 6E). Calculating the network size required to
reach near-optimal (95%) mutual information in each experi-
ment resulted in similar numbers of cells for different numbers
of visual scenes (Figure 6F; 79 ± 10, 81 ± 10, and 80 ± 10 for 2,
3, and 4 visual scenes, respectively; p = 1.0, ANOVA). Selecting
only the reliable responders reduced the minimal population
size consistently to 21 ± 3, 23 ± 4, 23 ± 4 for 2, 3, and 4 visual
scenes, respectively (Figure 6F; p = 0.9). These findings indicate
that observing the neuronal representations in about 80 ran-
domly picked layer 2/3 neurons is required to discriminate low
numbers of visual scenes with high fidelity, while around 20
neurons suffice if only the sub-network of reliable responders
is considered. However, previous knowledge about the identity
and location of these neurons is required to selectively collect
information from this subset. Therefore, we further elaborated
these findings by analyzing the spatial relationship of the reliably
responding neurons.

SPATIAL ORGANIZATION OF VISUAL SCENE REPRESENTATIONS
The 3D laser scanning technique not only acquires population
responses to dynamic visual stimuli, it further provides 3D spa-
tial information about the location of the sampled neurons.
Hence, we analyzed the relationship between spatial location and
stimulus preference for all neurons in the imaged populations
(Figure 7A). We evaluated the abundance of pairs of neurons in
the data sets having same or different stimulus preferences and
compared these values to those from the same data sets with
shuffled neuron positions. Relative to random, we found a signif-
icantly higher probability of neuron pairs with the same stimulus
preference being in close proximity (48 ± 25% and 18 ± 8%
for distances of 20 and 40 µm, respectively; n = 12; p = 0.01;
t-test). For pairs of neurons with different stimulus preferences
the abundance was similar to the calculated random probability
(Figure 7B).

Because the number of neurons differed within local volumes
defined by a fixed radius, we performed a neighborhood analysis,
considering a nearest neighbors group (four closest cells) and a
second-nearest neighborhood (neighbors 5–8). The average dis-
tance of each cell to its fourth nearest neighbor was 21 ± 6 µm
(95th percentile: 32 µm). We examined the fine-scale spatial orga-
nization of the population responses by counting for each reliable
responder the number of neurons in the neighborhood that dis-
played the same visual scene preference as this particular neuron
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and compared the results to the same data set with shuffled cell
positions (Figures 7B,C). The nearest neighbors group displayed
a 50% higher probability of comprising at least one neuron with
the same stimulus preference as the center neuron compared to
randomly shuffled networks (Figure 7C; 47 ± 7%; n = 12 exper-
iments; p = 0.01; t-test). No significant increase was found when
considering the second-nearest neighbors group (p = 0.8). This
finding indicates that there exists a certain redundancy of stim-
ulus coding in clusters of neighboring neurons, which might
deteriorate decoding performance. Indeed, calculating the mutual
information of each neuron’s response together with its four
nearest neighbors showed a significant decrease by about 6%
compared to randomly picking groups of six cells (Figure 7D;
0.53 ± 0.05 bits and 0.56 ± 0.056 bits for neighboring neurons
and for random groups of cells, respectively; p = 0.001; n = 12
experiments; t-test). Again, no significant difference in decoding
performance was found for the second-nearest neighbors group
(p = 0.98).

Local neighbors with the same stimulus preference could still
exhibit quite different temporal response profiles or, alternatively,

also show increased temporal correlations. To examine this ques-
tion, we compared the inter-neuron correlation coefficients for
neuron pairs within the nearest neighbors group, showing either
same or different stimulus preference. In addition, we analyzed
neuron pairs with the same stimulus preference but located either
within nearest neighbors group or further away from each other.
The local neighbors with same stimulus preference displayed
the highest correlation coefficients, with the mean being signif-
icantly higher compared to the two other controls (Figures 7E,F;
mean correlation 0.44 ± 0.21, 0.35 ± 0.17, 0.4 ± 0.16 for local
neighbors with same and different stimulus preference and far
neighbors, respectively; ± SD; p < 0.001 for both comparisons
with different stimulus and far neighbors controls; t-test). These
results indicate that neurons within local clusters are more corre-
lated to each other than to neurons further away even if those
share the same stimulus preference. Nearby neurons in layer
2/3 of mouse visual cortex thus tends to share dynamic tuning
properties.

DISCUSSION
Using 3D two-photon calcium imaging we characterized neu-
ronal spiking activity of layer 2/3 populations in mouse visual
cortex during presentations of a set of dynamic visual scenes.
We found stimulus-specific response patterns in neuronal sub-
sets with most responding neurons preferring mainly one visual
scene. The presented visual scene could be well decoded from
the population activity pattern, requiring only about 20 neu-
rons when the most informative pool of reliable responders
was considered. Spatial analysis furthermore suggests that within
local neighborhoods there exist functional sub-networks of neu-
rons that share similar response properties. Our findings provide
novel insights into how the visual environment is dynamically
represented in the local microcircuit of mouse neocortex.

3D TWO-PHOTON CALCIUM IMAGING IN VISUAL CORTEX
Several recent studies employed two-photon calcium imaging to
investigate the functional microcircuit of visual cortex. Often,
drifting gratings were applied as visual stimuli to map ori-
entation tuning using standard frame imaging (Ohki et al.,
2005, 2006; Mrsic-Flogel et al., 2007; Sohya et al., 2007; Li et al.,
2008; Kara and Boyd, 2009; Ch’ng and Reid, 2010; Kerlin et al.,
2010; Runyan et al., 2010) or imaging of small volumes
(Andermann et al., 2010; Kerlin et al., 2010). Here, we applied
3D laser spiral scanning (Göbel et al., 2007) to reveal dynamic
response patterns simultaneously in rather large volumes. Despite
the reduced temporal resolution and signal-to-noise ratio com-
pared to electrophysiological techniques, we confirmed using
simultaneous juxtacellular recordings that 3D calcium imag-
ing faithfully resolves visually evoked neuronal firing patterns
(Figure 1). 3D imaging is particularly beneficial for studying the
dynamic 3D representation of specific stimuli as well as ana-
lyzing spatial functional relationships within local populations.
Here, it enabled us to reveal complete representations in local
neighborhoods whereas microelectrodes sample only from very
few neurons within a volume of 100 µm diameter (Henze et al.,
2000). In addition, 3D imaging permitted us to identify the func-
tionally relevant subset of reliable responders, which are generally

Frontiers in Neural Circuits www.frontiersin.org December 2011 | Volume 5 | Article 18 | 8

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kampa et al. Cortical representation of visual scenes

B C

E F
all cells 

reliable responders 

0 

20 

40 

60 

80 

100 

2 3 4 

C
or

re
ct

ly
 C

la
ss

ifi
ed

 T
ria

ls
 (%

) 

Performance 

Number of Visual Scenes

0.0 

0.5 

1.0 

1.5 

2.0 

2 3 4 

M
ut

ua
l I

nf
or

m
at

io
n 

(b
its

) 

Performance

Number of Visual Scenes

0 

20 

40 

60 

80 

100 

2 3 4 

N
um

be
r o

f C
el

ls
 

Network Size

Number of Visual Scenes

0 

20 

40 

60 

80 

100 

2 3 4 

N
um

be
r o

f C
el

ls
 

Network Size

Number of Visual Scenes

all cells 

reliable responders 

A

D

0 50 100
0

20

40

60

80

100

C
or

re
ct

ly
 C

la
ss

ifi
ed

 T
ria

ls
 (%

)
two scenes
three scenes
four scenes

Number of Cells

0 50 100
0

0.5

1

1.5

2

M
ut

ua
l I

nf
or

m
at

io
n 

(b
its

)

Number of Cells

Trial Classification

Mutual Information 

FIGURE 6 | Dependence of decoding performance on network size and

number of stimuli. (A–C) Decoding performance is measured as percentage
of correctly classified trials as shown in Figure 5 and Methods. (A) The
percentage of correctly classified trials increases with growing population
size in an example experiment. Different colored lines show discrimination of
2, 3, or 4 different visual scenes. (B) Average decoding performance across
all experiments depends on number of discriminated visual scenes but is
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the number of discriminated visual scenes. Note that assembling networks
of reliable responders alone reduces the required network size.
(D–E) Decoding performance measured as mutual information. (D) Mutual
information increases with growing population size in same example
experiment as in (A). (E) Average decoding performance as in (B) corrected
for mutual information content. Note that maximum mutual information
depends on the number of visual scenes to discriminate (1, 1.58, and 2 bits,
respectively; dashed lines). (F) Required network size to obtain near-optimal
information is independent of number of discriminated visual scenes.

dispersed throughout the volume, and examine their decoding
performance.

While most of our current concepts of visual processing
have come from experiments using artificial stimulus sets, it is
important to use natural stimuli to work out how the brain pro-
cesses the input it is usually confronted with (Felsen and Dan,
2005; Olshausen and Field, 2005). Interestingly, in cats, with
their highly columnar organization of visual cortex (Ohki et al.,
2006), responses to natural scenes were heterogeneous in pre-
sumed nearby neurons (Yen et al., 2007). In addition, feature
detection in visual scenes is increased when these features are
presented as parts of natural scenes rather than as artificial stim-
uli (Felsen et al., 2005). Moreover, it has been demonstrated that
temporal patterns of population activity serve well to differen-
tiate between natural stimuli, noise, and gratings (Kayser et al.,
2003). These results point to a distinct visual-coding strategy that
is tuned to the dynamics of natural scenes.

FUNCTIONAL MICRO-ORGANIZATION OF MOUSE VISUAL CORTEX
We found a subset of the neurons in each population to
respond reliably to visual scene stimulation (Figures 4, 5). The
majority of these neurons preferred only one particular scene
providing further evidence that neurons in mouse visual cor-
tex can be highly selective to visual features (Niell and Stryker,
2008). In addition, neighboring neurons tended to share the

same stimulus preference suggesting the existence of functional
sub-networks. In another recent two-photon imaging study in
mouse visual cortex, receptive field sub-regions were found
to highly overlap even for neurons separated by several hun-
dred microns (Smith and Hausser, 2010). Considering an average
receptive field diameter of 10–14◦ for pyramidal neurons in
mouse visual cortex (Niell and Stryker, 2008; Gao et al., 2010;
Smith and Hausser, 2010) and a cortical magnification factor of
15 µm/◦ (Schuett et al., 2002), receptive fields of neurons within a
cortical volume of 100 µm are also expected to be highly overlap-
ping. It is therefore, unlikely that visual scene preference observed
in our study is simply explained by different spatial locations
of the receptive fields. More likely, stimulation of visual field
areas surrounding the neurons’ receptive fields caused modula-
tory influences (Vinje and Gallant, 2000; Angelucci and Bullier,
2003). This can lead to the observed decorrelation of the popula-
tion responses and also to an increase in the information capacity
(Vinje and Gallant, 2000, 2002).

Despite the seemingly random (“salt-and-pepper”) organiza-
tion of orientation tuning in rodent visual cortex (Ohki and Reid,
2007) our spatial analysis of the local representation of visual
scenes indicates a certain degree of functional clustering on
the scale of ∼40 µm or of the nearest five neighboring cells
(Figure 7). It has been reported that cortical neurons form
mini-columns with similar widths of 20–40 µm across species

Frontiers in Neural Circuits www.frontiersin.org December 2011 | Volume 5 | Article 18 | 9

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kampa et al. Cortical representation of visual scenes

P
er

ce
nt

ag
e 

in
cr

ea
se

re
la

tiv
e 

to
 ra

nd
om

 (%
)

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

-40 

0 

40 

80 

-8.0 

-4.0 

0.0 

4.0 

10 30 50 70 90 >100
Neuron distance (μm)

P
er

ce
nt

ag
e 

in
cr

ea
se

re
la

tiv
e 

to
 ra

nd
om

 (%
)

 

same
different

Stimulus Preference

same different same
(NN ≥5) 

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t 

(NN 1-4)

0 0.2 0.4 0.6 0.8 1
Correlation coefficient

 

different
same

same

1

0

0.5

NN 1-5

NN ≥6

A

B

C

D F

E

*

Stimulus Preference

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

*
*

1-4 5-8
Nearest Neighbors

1-4 5-8
Nearest Neighbors

20 μm

Likelihood of
Same-Stimulus 
Preference

P
er

ce
nt

ag
e 

ch
an

ge
re

la
tiv

e 
to

 ra
nd

om
 (%

) Mutual Information
100

50

0

*

FIGURE 7 | Spatial organization of 3D population responses to different

visual scenes. (A) Example of 3D distribution of neuronal stimulus
preference. Note that few neurons reliably respond to more than one visual
scene. (B) Occurrences of neurons with same or different stimulus
preferences at different cell-to-cell distances compared to shuffled data sets.
Neurons have significantly more neighbors with the same visual scene
preference at distances of up to 40 µm than neighbors with different scene
preferences. (C) Occurrences of functional clusters of nearest neighbors with

same stimulus preference compared to shuffled data sets. (D) Decoding
performance for different clusters of nearest neighbors compared to
randomly picked groups of five cells. (E) Cumulative distributions of
correlation coefficients between cells with different stimulus preferences and
spatial locations. “NN 1-4” indicates correlations with the first four nearest
neighbors, “NN ≥ 5” indicates correlations with neurons further away.
(F) Average correlation coefficients between neurons are highest for neurons
with preference for the same visual scene and located within local clusters.

(Raghanti et al., 2010). Local neighbors within 50 µm also share
a higher connectivity (Holmgren et al., 2003) making it likely
that the observed clusters represent interconnected sub-networks,
with neurons sharing common sensory inputs from layer 4
afferents (Yoshimura et al., 2005). To determine the connectivity
scheme of the entire population a serial sectioning electron-
microscopy study would be required. While this technique has
been applied to reconstruct the connectivity of few identified neu-
rons in mouse visual cortex (Bock et al., 2011), it is still far from
reconstructing the full circuitry of a hundred neurons as in our
3D populations. However, a recent study has shown that neigh-
boring neurons with high response correlations to natural scenes
are also more likely to be connected to each other (Ko et al., 2011).
Indeed, we find members of local clusters with similar stimulus
preferences to be more correlated to each other in their responses
to visual scenes than neurons with different stimulus preferences
or neurons further apart from each other (Figures 7E,F).

These findings are consistent with the idea that the local
clusters observed in our study could represent interconnected
sub-networks sharing similar sensory inputs and therefore, sim-
ilar tuning properties. The redundancy of encoded information
in such local sub-networks reduces their discriminative power
to distinguish different visual scenes. Consequently, decoding of
the visual scenery improves by integration over several, spatially
segregated sub-networks. Such a microcircuit, where follower
networks integrate inputs from several distinct sub-networks,
has recently been reported and proposed for sensory feature
integration (Kampa et al., 2006). Thus, 3D imaging of network

responses to dynamic visual scenes suggests a population code
in layer 2/3 of visual cortex, where the visual environment is
represented in the spatio-temporal activation patterns of distinct
neuronal sub-networks.

DECODING OF VISUAL SCENES
Our results show that cortical neurons can express diverse tuning
properties in response to dynamic visual scenes. This is, to our
knowledge, the first study investigating the decoding properties
of complete and unbiased local populations using dynamic nat-
uralistic visual stimuli. Even though visual scene-evoked activity
was distributed and sparse, we found that population responses
were specific and reliable so that in more than 80% of the trials
activity patterns could be correctly assigned to one of the four
presented visual scenes (Figure 5). Such high level of decoding
could be achieved with population sizes of about 50–70 neu-
rons from the total pool and 10–20 neurons from the pool of
reliably responding neurons depending on whether 2, 3, or 4 dif-
ferent visual scenes were discriminated (Figure 6). Interestingly,
correcting for the difference in information obtained from dis-
crimination of different numbers stimuli led to a similar required
population size of ∼80 neurons or ∼20 reliable responders for all
numbers of visual scenes (Figure 6). This implies that the infor-
mation provided by each neuron is independent of the number
of discriminated stimuli, which can be explained by the fact that
most neurons encode only one particular visual scene. It should,
however, be noted that this study is not exhaustive in the sample
set of different visual scenes or in their duration. Presentations of
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longer movies would also increase the diversity of presented stim-
ulus features and therefore, the probability of neurons to respond.
Nonetheless, similar decoding levels have been reached in primate
visual cortex during a face discrimination task using compara-
ble numbers of selected reliably responding neurons (Rolls et al.,
1997). Interestingly, our observed minimal population size is also
similar to reports of required network sizes for motor movement
prediction (Lebedev et al., 2008). These results and the high suc-
cess rate of single-trial classification further confirm the fidelity
of our 3D imaging technique. Consequently, with 3D imaging,
we have the capacity to resolve the representation of visual scenes
in local microcircuits.

FUTURE DIRECTIONS
A number of opportunities exist to reveal further details of the
functional organization of cortical microcircuits. For example,
using a novel high-speed imaging technique, we demonstrated
precise reconstruction of the sparse activation of visual cortex
neurons during natural movie presentation (Grewe et al., 2010).
A further extension of this method to 3D (Cheng et al., 2011;
Grewe et al., 2011) should make it possible to reveal 3D activation
patterns at higher temporal resolution. Second, discrimination

of neuronal subclasses is desirable (Ascoli et al., 2008), and is
becoming possible through post-hoc immunostaining methods
(Kerlin et al., 2010). Third, genetically encoded calcium indi-
cators have become nearly as sensitive as synthetic indicators
(Lutcke et al., 2010), and enable chronic recordings from the same
neuronal populations over weeks to months (Mank et al., 2008;
Tian et al., 2009), to explore the effect of behavior and attention
on the cortical representation of visual scenes (Andermann et al.,
2010). Together, two-photon imaging of local representations of
dynamic natural scenes in mouse visual cortex is a powerful app-
roach to study the function of visual cortex in a realistic context.
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