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TUTORING SYSTEMS AND PEDAGOGICAL THEORY

In designing computer-based educational systems our primary concern ought not
to be with a dazzling new technology, nor should we be misguided by such
romantically unrealistic goals and expectations as replacing teachers, textbooks,
or even the physical and social learning activities of students through learner-
machine interactions. Instead, the main object in the design of computational
media as a new form of “intellectual bootstrapping™ (Collins & Brown, 1988)
ought to be its functional connection to a (partly normative) pedagogical and
didactical’ philosophy. The design must take into account the proper use and
integration of the system into the comprehensive range of learning and teaching
activities that take place in the “behavior setting” (Barker, 1978) of schooling.

In the first part of this chapter eight principles are suggested for designing
computer-based cognitive tools for learning and problem solving. The principles,
contrasting in certain ways principles outlined by Anderson, Boyle, Farrell, and
Reiser (1984), or by Ohlsson (1986), are based on pedagogical theory and on
cognitive research and lead to the discussion of a set of critical issues for the

'The concept of didactics is not used here in its narrow and increasingly negative sense of
“spoonfeeding” students by extremely teacher-centered instructional methods which leave little
of the guidance and leamning responsibility to the student, but in its original and broader sense of
classical Bildungstheorie (e.g., Klafki, 1963). The latter meaning includes both the question of what
to teach (reflecting and constituting the object of instruction) and how to teach (designing an
instructional setting of methods and media) a specific content. The two meanings of “didactics” are
contained, for example, in the distinction between “product” and “process” with respect to the
fundamental pedagogical goals of teaching.
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design of educational software. The principles have been applied to HERON, a
computerized teaching and learning environment designed to aid children in
understanding and solving a wide class of complex mathematical word problems.
I describe parts of HERON in the second part of the chapter, emphasizing the
important role of representational means, or formats, as conceptual tools for
problem-representation, planning, and reflection.?

From Cognitive Analysis to Instructional Design:
Computers as Cognitive Tools

Educational software should make sense from a pedagogical point of view.
Hence, four crucial considerations should govern the design of machine-sup-
ported instructional contexts: (a) a cognitive and instructionally efficient model
of the task or the domain the system is designed for, (b) a sound conception of the
general and content-specific learning processes associated with the domain, (c) a
domain-appropriate social-cognitive concept of teaching (balancing dimensions
such as explicit instruction versus discovery leamning, “solo-learning™ (Bruner,
1961, 1986) versus collaborative learning), and (d) a view of the active nature of
the learner. With regard to the tutoring of mathematical word problems: Whoever
designs a computer-based instructional system needs to know both how to effec-
tively represent and convey the informational structures related to word problems
and the processes and strategies employed by learners of different ability levels in
their understanding and problem solving.

Thus work on tutoring systems should be based both on research in cognitive
psychology and on research in didactical or instructional theory, two distinct
fields, which still maintain few interconnections. Often enough, cognitive re-
searchers analyze meaning structures and processes on a conceptual level, using
formats that are neither translatable into instructionally efficient models of do-
mains and tasks, nor allow inference {0 any normative principles (Glaser, 1987)
of instruction. On the other hand, designers of textbooks and computational
media, as well as (expert) teachers. are often not successful in performing micro-
structural cognitive task analyses, yet such analyses would be beneficial in
uncovering the properties of the representational and operative “tacit” (Polanyi,
1966) knowledge inherent in the performance of a task.

This leads to the first principle: :

P1: Design and use computer-based tools pedagogically, that is, as cognitive
instructional tools for mindful teachers and learners in a culture of problem
solving. '

2Principles are fairly abstract by their nature. The reader who wants to see—while reading the
first sections of the chapter—how the principles are incorporated into the tutor, might prefer to read
sections of the second part of the chapter first. :
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In contrast to a technology-driven and opportunistic design philosophy, com-
puters should be used in education, by judicious teachers and active, intentional
learners (in the sense of Scardamalia, Bereiter, McLean, Swallow, and Wood-
ruff, 1989) as supportive cognitive tools in the service of explicit pedagogical
goals (Reusser, 1991). As mind-empowering prosthetic devices which belong to
our overall “cultural tool kit” (Bruner, 1990), future computerized tools of
learning and instruction not only act as amplifiers of our own intelligence but,
beyond that, might significantly change our traditional view of the instructional
setting, “redefine the natural limits of human functioning,” as Bruner says
(1990, p. 21). Instructional tools should be based on our best cognitive analyses
of curricular tasks and processes. With regard to their status as supportive mind
tools, which are always used in a specific context and with a specific purpose,
they should remain a means to a pedagogical end or goal. As such they form a
functional part of a distributed and much more comprehensive setting for ped-
agogical intelligence.

From the “Romantic Quest for Intelligent Machines’
(Clancey, 1989) to the Activities of Virtually
Autonomous Learners

The catchword “intelligent tutoring systems” (Sleeman & Brown, 1982) has
come to mean that a computer functions as an intelligent, dynamically adaptive
substitute for a human teacher, who is capable of performing sensitive cognitive
diagnoses, which means to infer, on the basis of a constantly-retuned student
model, a person’s cognitive states—what the person knows, how she thinks and
lears—on the basis of her overt behavior (cf. Ohlsson, 1986; van Lehn, 1988).
There are good reasons to be skeptical about the feasibility—and in part even the
desirability—of intelligent systems that are based on full system control and
deep student modeling (Nathan, Kintsch, & Young, 1990; Resnick & Johnson,
1988; Scardamalia et al., 1989). Intelligent tutoring, in which a machine tailors
its instruction to an individual student on the basis of an inferred, constantly
updated, fine-grained mental model, may be seen as a long-term goal. But given
the current state of the art, machine-tutoring based on cognitive simulation of the
student is not possible across a full range of open-ended tasks and domains,
where fuzzy language and qualitative world-knowledge based reasoning are re-
quired. This is especially true with regard to error modeling. As Derry and
Hawkes (1989) note: “Deep modeling of procedural bugs is computationally
intractable for complex problem domains, and we do not believe it is required for
effective cognitive apprenticeship™ ( p. 33).

Even if technology based cognitive diagnosis were, in principle, a feasible
goal in the distant future, it would be only one of several ways to apply advanced
computing technologies to education. From a pedagogical point-of-view, there
are alternative means of supporting and facilitating human learning and problem
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solving through interaction with a computer. The most sensible one might be to
view machine-supported tutoring with the ultimate goal of developing a virtually
autonomous and reflective learner and thinker. This does not require intelligent
systems but flexible, didactic supports. Intelligence, on this view, is seen as
being located primarily in the learner and distributed across the whole ped-
agogical setting, rather than being located in the computer.

Scardamalia et al. (1989) even question how useful highly intelligent systems
would be: Such systems

may also be heading in the wrong direction. For it is not the computer that should
be doing the diagnosing, the goal-setting and the planning, it is the student. The
computer environment should not be providing the knowledge and intelligence to
guide learning, it should be providing the facilitating structures and tools that
enable students to make maximum use of their own intelligence and knowledge.
(p. 54)

One should therefore not conceive of computer applications in education
primarily as substitutes for intelligent teachers but as tools aimed at cultivating
the intelligence of the user, as didactic instruments directed, to the greatest
possible extent, at fostering learner autonomy and self-regulation. One can add
that there is little evidence that even expert human teachers are able to carry out
extensive cognitive diagnosis (e.g., McArthur, Stasz & Zmuidzinas, 1990).

P2: Extend and empower the minds of intentional learners.

Computer environments should be seen as mind-extending or catalyzing tools
for intelligent and volitional learners and virtually autonomous problem solvers.
They should provide stimulating and facilitating structures in order to promote
meaning construction activities, such as planning, representation, and reflec-
tion. Such an alternative view of computers can be situated within the epis-
temological and didactic framework of models and metaphors currently being
discussed in applied metacognitive research. These include, for example, the
Vygotskian-inspired models of coaching and scaffolding (Brown & Palincsar,
1989), of cognitive apprenticeship (Collins, Brown, & Newman, 1989), of pro-
cedural facilitation (Scardamalia et al., 1989), of learning through reflection
(Collins & Brown, 1988), or, more generally, of autonomous and self-directed
learning and problem solving (Beck, 1989; Bruner, 1986).

From this pedagogical perspective, tutoring would not be considered suc-
cessful primarily with respect to the degree to which a system is able to “intel-
ligently” force a student down some preset solution path, as human tutors very
often do but, instead, to the degree to which it optimizes students sense of
control, and to the degree to which student solutions are self-generated.
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P3: Provide learners with some guidance according to the “principle of mini-
mal help.” (Aebli, 1961)

Making errors, or getting stuck, is an inevitable part of learning. However, in
order to provide effective feedback or graduated help, a tutor does not neces-
sarily need to perceive what the student is thinking but to know what the structure
of the task is, and what the student is doing while working on it. Since learners
can become highly confused and demoralized by undetected errors (Anderson et
al., 1984), some feedback must be provided—either immediate, delayed, or on
request. Good teachers, as well as intelligent learners, follow the didactic “prin-
ciple of minimal help” (Aebli, 1961). Ideally, a tutoring system would leave it to
the student, to use or seek only as much help or feedback from the system as he
needs. If tutorial action appropriate for an individual learner is called for, cog-
nitive modelling, however, is not the only way to determine its quality. An
alternative basis for characterizing students’ errors and making tutorial decisions
can be established through a different form of behavioral diagnosis (cf. Wenger,
1987). It requires a careful conceptual analysis or decomposition of the knowl-
edge or skill to be taught. The tutor should know mature (expert) and less mature
models of the processes and representations to be taught. Feedback during prob-
lem-solving, for example, on errors, can be based on a conceptual analysis of the
solution space. This makes it possible to determine when and how the observed
knowledge-construction activity of a particular student deviates from a predeter-
mined set of solution paths (Derry & Hawkes, 1989). Thus, mapping overt
student performance onto powerful representations of a task can lead to effective
guidance without assessing student thinking on 2 moment-by-moment basis. Still
another type of feedback is used by Nathan, Kintsch, and Young (1990), in their
tutoring of distance-rate problems. The student can run an animation (time vary-
ing computer graphics) on the basis of his problem model, enabling him to judge
its correctness on his own.

From Learning through Memorization and Drill-and-
Practice Routines to Learning through Active
Construction, Comprehension and Reflection

Computer-based cognitive tools should be less oriented toward memorization and
drill-and-practice and, instead, toward fostering meaning construction activities,
like understanding, problem solving, planning, and reflection. Computers with
today’s direct-manipulation graphic interfaces (Hutchins, Hollan, & Norman,
1985) are best equipped to do (and undo) such things as generating icons,
selecting, presenting, touching, linking, placing, storing, and retrieving informa-
tion, including bookkeeping and monitoring of the user’s actions. Thus they are
ideally suited to providing both representational and procedural facilitation to the
student’s understanding.
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P4: Have students construct and externalize their mental models.

Uncovering the covert, or externalizing the hidden, intermediate and compo-
nent steps and products of the learner’s “effort after meaning” —as Barilett
(1932) who was a constructivist far ahead of his time, framed the self-construc-
tive nature of the creation of meaning—is a major cognitive function of comput-
er-based instructional tools. Normally unobservable knowledge-construction ac-
tivities that are reified (Collins & Brown, 1988) as accessible visual displays
reduce the burden on working memory. What has been externally represented,
objectified, embodied, organized, and made overt and explicit by extracortical
organizers of thought (Vygotsky, 1978), can then be identified, inspected, ana-
lyzed, discussed, communicated, further reflected and operated upon, and finally
carried out consciously and deliberately by the learner (Greeno, 1987; Pea,
1987).

By proposing that students make their thinking explicit and that they actively
construct their own conceptualization of a problem or domain, we do not pretend
any quasi-automatic and significant improvement of knowledge organization or
higher-order thinking skills. Just as an empty head cannot think, there is no
effective computer-supported learning without domain-related, representational
and procedural (strategic) tools supplied by the educational culture. This claim is
in direct opposition to the empirically unwarranted, romantic growth optimism
currently in vogue, an optimism that is inspired by Piagetian ideas of cognitive
growth and maturation (cf. Aebli, 1978), by related ideas of radical construc-
tivism and discovery learning, as well as by a superficial understanding of
concepts proposed by Vygotsky. Proponents of this view sometimes seem to
believe that the self-construction abilities of children, as well as skill and knowl-
edge formation in general are simply emergent, nonintentional properties of
mostly nondirective or nonauthoritarian social interactions between children and
more knowledgeable others.

P5: Provide students with intelligible and effective representational tools of
thought and of communication.

Efficient conceptual representation of content is a key problem for both learn-
ing and teaching. Appropriate representational formats of domains and tasks,
including tree structures, coordinate graphs, diagrams, data tables, conceptual
networks, symbol systems (alphanumeric, algebraic . . .), and scientific nota-
tions, are indispensible tools not only for thinking, problem solving, and reason-
ing, but also for the communication of knowledge. Tutors and textbooks should
provide students, as an important target of instruction, with cognitively plausible
operative, iconic, and symbolic systems of representation rooted in a deep se-
mantic understanding of the domain.

Finding facilitating representations for almost any (class of) problem(s)
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should be seen as a major intellectual achievement, one that is often greatly
underestimated as a significant part of both problem-solving efforts in science
(Simon, 1977)3 and of efforts in instructional design. Teachers and designers of
knowledge media, should take pedagogical responsibility for giving students the
power of effective domain ontologies (Greeno, 1983). That is, they should sup-
ply students with carefully designed conceptualizations, symbol systems and
instructional models of tasks and concepts, that are vital for the development of
expertise in almost any knowledge domain.

But what are cognitively plausible and efficient systems or forms of represen-
tation? If supplying carefully designed conceptualizations of problems and do-
mains for students is a significant cognitive issue and a major pedagogical
device, questions arise about how to characterize the qualities of good instruc-:
tional representations. There are at least two related issues involving goodness:
One is the question of representations as domain ontologies (Greeno, 1983;
Wenger, 1987), also called the issue of cognitive and epistemic plausibility or
fidelity (How faithful is a conceptual model of a domain and what are its on-
tological commitments?). The second is the issue of representations as ped-
agogical means of looking at a topic or domain (tools of Anschauung), an issue,
as Ohlsson (1987) remarks with respect to.a proposed “pedagogy of illustra-
tions,” that is not yet well understood.

I think an answer to the question of the cognitive-didactical quality of instruc-
tional representations contains several elements. They are outlined next and are
incorporated into the tutoring system* described later in this chapter:

1. Cognitively plausible and pedagogically useful representational systems
or formats allow students, while creating and elaborating a mental representa-
tion of a problem, to capture (the) essential structural features of the problem
and to differentiate the problem from classes of similar problems. Efficient
representations permit one to organize a task around salient properties and invar-
iants of its (functional or relational) deep structure, i.e., around abstract relations
among components—something that, for example, experienced teachers and
expert problem-solvers do intuitively. It requires breaking up a domain into
conceptual building blocks in such a way that the natural and conceptual con-

3Scientists, especially mathematicians and logicians, always have devoted much energy to the
development of useful and efficient forms of symbolization. As Simon (1977) notes, there might be
only a few basic formats of representation at all in science. On the psychological level of the
individuum, numerous studies show the superiority of experts in knowledge organization and prob-
lem conceptualization: Skilled problem solvers not only build rich problem representations before
they start solving a problem, but good representations of problems significantly affect problem
solving efficiency as well.

4The basic representational format and strategy of our system are solution trees. The reader may
read the sections on this format in parallel with the following list of components of efficient represen-
tational systems.
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FIG. 5.1. Instructional repre-

sentation designed to provide
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demic Press.

straints inherent in the domain or task become explicit and easier for the learner
to grasp. In a sufficient and concise representation, everything that is needed for
processing is contained in it, and everthing that is contained, is relevant.

2. Representational notations guide students’ problem-solving and knowl-
edge-construction activities by supplying operative, iconic, and symbolic forms
of solutions and—more generally—of understanding. Efficient representational
formats make evident the constraints that problem spaces and solutions must
satisfy. Well-defined notational formats can serve as a form of written calculus
(Clancey, quoted from Wenger, 1987, p. 320) for a domain or a class of prob-
lems. They reflect the constraints of a task, direct students’ construction of
mental models in ways theoretical task analysis says are required for solving, and
allow “the quality of solutions to be evaluated” with respect to its form (Wenger,
1987, p. 320).

3. Good representational formats enforce intentional structural editing, that
is, they encourage students to view their manipulations of a representation as
semantically meaningful operations. This can be encouraged (a) by supporting
different ways of conceptualizing, or multiple solution paths, (b) by allowing the
student to reconfigure a construction process or to refer back to prior parts of it,
and (c) by discouraging referentially empty manipulations of the mere syntax of a
representational format.

4. Effective representatians allow rapid recognition and retrieval of relevant
information, mainly by reducing abstract problem-solving and reasoning pro-
cesses in favour of processes which come closer to perceptual operations, to
seeing things (cf. Wertheimer, 1945). The great utility of computationally effi-
cient diagrams “arises from perceptual enhancement” (Larkin & Simon, 1987,
p- 95), the fact that relevant relations and conclusions can be easily computed and
read off with the help of “simple, direct perceptual operations” (Reusser, 1984).
Two diverse examples of efficient iconic representations are depicted in Figs. 5.1
and 5.2. Further examples include the coordinate system, or function diagrams.

5. Effective representational systems provide a structural basis (platform)
upon which, using domain-specific or general problem-solving methods or strat-
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FIG. 5.2. From Duncker (1935) stems the
foltowing problem: One morning at the %% .
time of sunrise, a monk started out to
climb a high mountain. A narrow spiral
path led upwards to a temple. After some
days of Lent and of meditation, again at
sunrise, the monk came back down to the
valley following the same path down-
wards that he came up. Does there exist
a location on the mountain path which
the monk reaches at exactly the same
hour of the day on his ascent and on his
descent?—The visual diagram maps in a productive and unique way the problem
situation onto the standard notational format of the coordinate system. To most read-
ers, the visual representation elicits a kind of a gestalt switch, of sudden restructur-
ing.—The problem is easily solvable if one succeeds in representing it {(either exter-
nally or mentally) in a visually insightful way, for example, by assuming that two
monks do the ascent and the descent on the same day. The given pictorial representa-
tion allows one to read off, with simple perceptual operations, the solution that the
monks must meet each other at some place.

ascent!

descenl

sunrise sunset

egies, the user can act, manipulate, and reason. Their efficiency also arises thus
from operative enhancement, the fact that procedural formats of representation
support certain kinds of actions and transformations on its objects. Examples
include the widely used and fundamental procedural formats of alphanumeric
and algebraic equations.

6. Instructionally valuable representations serve to mediate between idiosyn-
cratic and informal analyses of problems and concepts and shared cultural and
more formal analyses. Among their most important dual function is to provide
bridges from ordinary language, or the physical view of concrete objects, to
canonical scientific languages and conceptualizations. That is, efficient represen-
tations inherit a dual role: They should be linkable, on the one hand, to common
natural language descriptions of reality and to informal analyses of problems and
domains, including learners’ everyday mental models and intuitions.5 On the
other hand, they also contain conceptual elements that correspond to variables in
abstract views, scientific models and formalisms, as, for example, mathematical
notations. '

7. Hence, cognitively plausible instructional representations should be parts
of learning systems (Nesher, 1989) in which multiple representations, designed

SNesher (1989) makes an important point to this in saying that artificial representations should
enrich, and not simply replace “the child’s intuitions from his everyday experience” (p. 212). As a
general principle, theoretical knowledge that can not be decply connected with the learner’s old
concepts and intuitive theories, does not become instrumental or integrated into his existing knowl-
edge basc. On the contrary, it remains alien to it.
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to preserve different aspects of an invariant relational structure, are linked in a o s 0 5 X B N X 0 & 0 K50
yoked fashion (Resnick & Johnson, 1988). Choosing “an apt combination of R G - S ‘LﬁL - ’
situational and quantitative models for instructional purposes is a challenging T ~4

problem” (Hall, Kibler, Wenger, & Truxaw, 1989, p. 280). Connected represen- x 1

tations allow the student to view the same object, relationship, or process, from A

different representational perspectives. By fostering mobility between multiple » - A

representations (Aebli, 1981; Bruner, Olver, & Greenfield, 1966; Piaget, 1947), -5 <

it should become clear to the learner “that it is not the representation on the 18 W, — <

screen that matters in the end, but the representation built up in the students’ 2 '7

FIG. 5.3b. The figure intimately connects to Fig. 5.3a. It represents the
problem situation in a more abstract way. The representation is gener-
ated by a personal computer (where the problem is implemented with
graphic and symbolic tools) which can be used by the students for
setting up theoretical experiments and for mathematization.

head—their mental modeis” (Resnick & Johnson, 1988, p. 27). Figure 5.3
shows parts of an connected learning system of multiple, progressively more
abstract instructional representations designed for teaching the law of falling
bodies, starting from study of the trajectory (parabola) of horizontally thrown
objects.

8. Externalized representations supply teachers and students with a concep-
tual language to communicate and talk about what is to be learned. They give
referential meaning to students’ thinking and discussions of the task, but also to
the instructional dialogue between teachers and learners.

Representation has been a perennial issue in problem solving literature since
Gestaltpsychology (Wertheimer, 1945). As a classical wisdom in problem solv-

FIGS. 5.3a-d. Teaching the law of falling bodies to 14 year old Swiss FIG. 5.3c. Representation of
eighth-graders with the aid of a yoked (discovery learning) system of the underlying mathematical

representations (after Hollenstein, Staub, & Stissi, 1987). The system
was successfully used in classroom instruction and by groups of stu-
dents. At the beginning, the following problem was posed to the stu-
dents: A stuntman wants to jump with a motorcycle a gorge 50 meters
wide with a drop of 15 meters. What miust his initial speed be?

FIG. 5.3a. Inthe classroom, a simulation of the problem situation was
built up and represented with the aid of iconic, manipulative, and
symbolic elements, that is: a sketch including the gorge, the ramps for
the jump, and the ideal trajectory (1) was drawn on the blackboard; in
order to simulate the possible effects of the varying speed of the mo-

torcycle on the trajectory, a jet of water {2), adjustable in pressure, was

projected on the wall {3); a computer graph depicting the coordinate
system, allowing to study the jet of the water as time-varying graphics,
could also be projected.

problem structure as computer-  |'e'ociy Jgmm l 20jmisec
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d: depth of drop (meters) | _ cakculation of d
491m 1*1 * 491
19.62 m 2%2 * 491
44.15m 3*3 * 491

7848 m 4*4 * 49

: : FIG. 5.3d. Abstractively re-
) . duced data table from Fig. 5.3c
d [RAIREN generated on the blackboard

during classroom discussion.

- &uu—F

ing says: to properly understand a problem is halfway to the solution. To solve a
problem means first to understand it, to represent, or see its inherent structure,
which means to build an appropriate internal and/or external conceptualization or
rich data structure. Most problem-solving processes inherently consist of a repre-
sentation-construction part which is followed by problem-solving operations that
act upon the created representation. Thus, there can be no doubt that carefully
designed instructional models of tasks and domains, which facilitate the organi-
zation and (re)construction of meaning in knowledge acquisition and problem
solving, constitute vital tools and targets of both learning and teaching—both
within and outside of computer-assisted instruction.

However, the design of plausible and efficient representations as instruments
of thought and communication (Kaput, 1989) is more than a prerequisite ped-
agogical task, and far more than just ad hoc and tricky didactic art work to be
quickly replaced by canonical (symbolic) notations and standard conceptualiza-
tions of science. The issues of computational efficiency (Larkin & Simon, 1987;

1800 T

d (m)

P S e T S S SO S S ST WU SO V)
o 1 2 k ] 4 1 3 [ ] T ] ] 10 11 12 13 14 15 18 t7 18 19
. t (s®0)
FIG. 5.3e. Function graph and corresponding algebraic equation for
the law of falling bodies.
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Winston, 1984), of conceptual faithfulness and cognitive and epistemic fidelity
(Roschelle, 1990; Wenger, 1987), or of intelligibility (Reusser, 1984 ) of effective
instructional representations touches the fundamental epistemological question
of what are the building blocks, the psychological forms or mediums of knowing
and thinking (Aebli, 1981), and the conceptual entities (Greeno, 1983), out of
which our most effective mental models and our most satisfying cognitive ac-
tivities are made. Thus, there are questions of ontological and epistemological
commitments and implications which are not beyond pedagogical design but
intimately and inseparably connected to it.

P6. Promote the use of comprehension-related strategies. Together with rep-
resentational formats, general and domain-specific strategies are the cognitive
tools of thinking and problem solving.

Complementary to providing facilitating representational entities and formats
should be procedural assistance, the facilitation of domain-specific and global
strategies. While advice with respect to high-level (meta)cognitive (control)
strategies like planning, reflecting, setting and maintaining attention to goals,
searching (for alternative solution paths), or monitoring one’s own performance,
is easier to provide from computers in many cases (cf. Cumming & Self,
1990)—and also seems to be transferable to other domains (Brown & Campione,
1990), sensitive task-specific help is a far more difficult problem. Domain-
specific strategic assistance, that is, assistance beyond simply providing solu-
tions via “informed feedback” (Wenger, 1987), can only go as far as it is
possible to formalize the semantics of a domain. And, as a corrolary to this, it
will be successful only in so far as cognitive or behavioral diagnosis are feasible.

P7. Encourage reflective and self-directed learning.

Pedagogically designed computer environments, which at the same time en-
able and force students to uncover and reify their knowledge-building activities,
provide a motivating and powerful medium for self-paced reviewing, discussing,
and reflecting upon one's own thought processes. Collins and Brown (1988) have
framed the notion of the computer as a “tool for learning through reflection.”
This refers to the unique power of the computational medium to “keep track of
the actions used to carry out a task” (p. 1), to display thinking paths, and to allow
students to focus and reflect on the why's and how’s of their own problem
solving—all at their individual pace and according to their own direction. Giving
students over and over again opportunities to monitor on-line the visually dis-
played traces of their planning and thought processes, including alternative
routes taken through problem spaces, and to retrospectively analyze those traces
and products by reconsidering what has been done, may eventually lead—be-
yond the acquisition of domain-relevant strategies and control structures—to an
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overall reflectiviry which characterizes more mature and expert learners and
problem solvers.

From Robinson-Crusoe-Learning® to Supportive
Contexts of Collaborative Learning

Intelligence should not be seen as a property of the mind alone but rather as a
quality that is distributed among the components of learning systems and the
social-cognitive environments in which they are embedded (Bruner, 1986; Pea,
1987; Salomon, Perkins, & Globerson, 1991). Apprentices and nascent experts
of almost any demanding domain don't develop professional knowledge and skill
like the lonely Robinson, that is. as single and independent learners. Instead,
they receive substantial expert guidance in instructional settings which supply
rich knowledge sources and competent scaffolding. A significant part of learning
occurs in interaction with more knowledgeable and skilled, significant others
(Mead, 1934; Vygotsky, 1978). It is, in contrast, a certainly questionable feature
of our traditional culture of schooling that students are treated almost exclusively
as lonely, single learners—as solo learners, as Bruner (1986) says. It is unlikely
that in the near future computers will become really good conversational partners
or sensitive coaches and critics. However, as components that help foster cooper-
ative learning, they can play an important role in classroom learning where
collaborative work is supported.

P8. Extend the use of computer-based instruetional tools into a supportive
classroom cuiture of collaborative learning.

Computers should not be seen primarily as isolated tools for single learners
but rather as instructional devices in classroom environments that support col-
laborative learning. Computers permit teachers to arrange a broad variety of
collaborative learning activities around the reified conceptualizations of students:

* Small learning groups can look back over their comprehension or solution
paths and mutually discuss their situation models;

¢ learning dyads and groups might also view (abstracted) replays or animated
traces of solution paths (including those of experts), interrogate aspects that were
different, and reflect by which changes they could be improved (Collins &
Brown, 1988; Lajoie, this volume);

“Robinson Crusoe, the hero of Daniel Defoe’s (1720) famous adventure story. who is cast up on a
lonely island and condemned to reinvent and rediscover the tools of culture on his own, is the
prototype of the lonely individual leammer. Another romantic prototype of lonely leaming is Jean
Jacques Rousseau’s (1762) solo learner Emile.
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e study partners can collaborate in ways similar to patterns of cognitive
apprenticeship, where partners alternatively assume the job of monitoring pro-
cesses or of scaffolding a set of strategies;

« finally, pairs of students can engage in a dialogue while jointly planning a
solution or constructing a shared situation model, thereby developing, refining,
tuning, or repairing each other’s mental models of the task (Roschelle, 1990;
Salomon, 1990.)

HERON: A COGNITIVE TOOL FOR UNDERSTANDING
AND SOLVING COMPLEX MATHEMATICAL
WORD PROBLEMS

In the second part of the chapter, I describe a computer-assisted learning system
called HERON,’ developed for the domain of mathematical word or story prob-
lem solving, which was designed around the pedagogical and cognitive prin-
ciples outlined above. 1 begin with a brief overview of the system and then
describe the cognitive-pedagogical analysis of the task. In so doing I concentrate
on solution trees as the representational format used for instruction in planning
and problem conceptualization in this domain. Finally, I describe in some detail
an example of how it can be used for instruction.

As is known from educational practice and from countless studies conducted
over the past decade (for a review, see Verschaffel, in press), mathematical word
problems are difficult for students at all grade levels. At critical points of stu-
dents’ school careers, applied mathematical problems are often used to assess
situated mathematical knowledge and cognitive skills, such as planning, prob-
lem-solving, reasoning, or abstraction.

Mathematical word problems contain a description of an action, story, or
process structure and an implicit or latent mathematical structure. Both textual
worlds, which are interwoven with each other, are related by a problem question
defining a variable, the value of which has to be determined.

The system HERON was designed to assist children to improve on this curric-
ular task. It is related to three main lines of work: to the theory of discourse
comprehension of van Dijk and Kintsch (1983), to our cognitive simulation work
on problem comprehension and mathematization (Reusser, 1985, 1989a, 1990a),
and to the cognitive and instructional framework of Aebli (1980, 1981, 1983),
including work on solving complex mathematical story problems (Aebli &
Staub, 1985; Aebli, Ruthemann, & Staub, 1986).

HERON is a graphics-based instructional tool for facilitating and fostering

7After the Greek mathematician HERON of Alexandria (appr. 100 BC) who created some of the
first mathematical word problems, still found in modern mathematical text books, and who, in his
book De automatis, far ahead of our time thought about the facilitation of life by building machines.
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self-directed understanding and solving of complex mathematical story prob-
lems. The system is designed to assist students from grade levels 3 through 9 in
understanding the language of a problem in order to construct internally a con-
crete episodic situation model, and to construct externally an explicit and reified
mathematical problem model from which a linear equation can be derived.

The system provides the user with a basic instructional format or tool for
problem representation—tree structures—and two kinds of instructional strat-
egies that can be accessed. Solution trees or planning trees are used by the
system to conceptualize mathematical problems at an intermediary, bridging
stage between text-surface and underlying equation. The first kind of strategy is
directed at text comprehension: the analysis of the problem-text in order to build
an internal model of the problem situation (situation model). These relatively
weak strategies, which the user can call on as needed, supply explanatory help
with respect to the vocabulary, the syntactic and the semantic structure of com-
plex texts. The second kind of strategy aid is directed at the constructive abstrac-
tion of the mathematical structure of a problem. It helps students to identify,
analyze, and conceptualize the relevant pieces of information, and supports the
reified planning and construction of a mathematical problem model, including
the derivation of an equation.

HERON gives the student a fair amount of interactive flexibility and a high
degree of control both in conceptualizing the problem and in planning the mathe-
matical solution. Although HERON does provide instructional help according to
students’ needs, it does not perform any behavioral diagnosis on the basis of
student modeling. Instead, our approach follows the design philosophy of unin-
telligent tutoring put forth in ANIMATE by Nathan, Kintsch, and Young (1990).
However, in contrast to ANIMATE, which does not try to understand the student
at all, HERON performs a behavioral analysis of what the student is doing on the
basis of cognitive task analysis.

Cognitive Task Analysis I: From Text to
Situation to Equation

Professional teaching should be based on a sound cognitive psychological and
didactic decomposition of the curricular task at hand, including an analysis of the
product and of the processes involved. As a starting point for teaching children to
understand and solve mathematical word problems, one needs first a clear picture
not only of the mathematical and the domain concepts involved, but also of the
underlying comprehension and mathematization skills by which students of vari-
ous levels of ability and practice extract mathematical information from verbal
problem statements. .

Understanding mathematical' text problems is a complex and knowledge-in-
tensive inferential and highly constructive process that requires skillfull interac-
tion of more than one kind of ‘knowledgc, including linguistic, situational, as
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well as mathematical knowledge. In school mathematics, this interaction entails
transforming natural-language problem texts into some canonical form of mathe-
matical expression, for example, an equation. In this process, the mathematical
deep structure of a word problem is merely one constraining factor for getting at
the right arithmetic strategies. Indeed, factors other than mathematical skill are a
major source of difficulty with word problems (Cummins, Kintsch, Reusser, &
Weimer, 1988; Staub & Reusser, 1991). Thus, linguistically cued situational and
mathematical understanding is not optional, or superfluous, but a helpful and
mandatory achievement (for empirical evidence see, ¢.g., De Corte, Verschaffel,
& de Win, 1985; Hudson, 1983; Reusser, 1988, 1989b).

By integrating work from Aebli (1980) and from Kintsch and Greeno (1985),
I have developed a rule-based simulation model (Reusser, 1985, 1990a) that
illuminates the role of language and situational factors in understanding and
solving word problems, and that provides explicit and detailed descriptions about
the tacit knowledge involved in these processes. The computational model takes
elementary addition and subtraction word problems as input, understands and
solves them by using various strategies (in the sense of van Dijk & Kintsch,
1983) and by creating several transient representations based on the words in the
problem texts. The process includes the construction of four interrelated and
mutually constraining mental representations or levels of comprehension: a text-
base as a propositional representation of the textual input, a situational model as
an elaborated qualitative representation of what the text is about, a mathematical
problem model as the abstract gist of the situation, and an equation (Fig. 5.4).

FIG. 5.4. Four interconnected
levels of comprehension in solv-
ing mathematical word prob-
lems (after Reusser, 1985).
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The ideal didactic sequence for learning the right mapping between text,
situation model, and equation, is to consciously go through and elaborate these
levels of comprehension. But it will be no surprise that students often deviate in
characteristic ways from this pattern. There are the skilled students, on the one
hand, who frequently skip a detailed qualitative modeling of the structure of the
situation. Their mathematical strategies, deeply connected with rich patterns of
situational knowledge, allow them to get directly at an abstract mathematical
problem model or the numerical equation. When reading a problem they can
almost immediately “see” the right mathematical schema, trigger a smart super-
strategy and map it onto the problem situation. Weaker or novice students, on the
other hand, who adopt similar strategies of “direct translation” (see Bobrow,
1964) by trying to jump from the text to an equation, fai} with the same tasks.
Still other students, who are severely lacking in all types of relevant knowledge
and skills (linguistic comprehension skills, domain knowledge, and efficient
mathematical knowledge) sometimes adopt even worse coping strategies that
bypass the logic of mathematical sense-making activities (Lehtinen, 1989; Reus-
ser, 1984, 1988, Schoenfeld, 1989). For example, there are students who simply
plug numbers into some equations, or perform various kinds of “‘magic” number
work. These students need the guidance of an adequate pedagogical setting.
They have to learn to analyse and conceptualize a problem step by step:

* First, they need help putting the problem into a language that allows them to
connect its semantic content with their everyday and intuitive concepts and
experience; )

* next, they must work towards constructing a mathematical understanding of
the problem (by establishing the appropriate intermediary problem representa-
tions;

¢ finally, they must map these onto a formalized notation in a canonical
format.

Cognitive Task Analysis |l: Solution Trees as
Representational Tools

Conceptual representation, which is related to the crucial issues of task analysis
and of problem space reification, has been the major driving force for the design
of HERON. Although ordinary language provides us with the single most impor-
tant medium (Bruner et al., 1966) for communication and representation of
meaning, there are certain kinds of information that cannot be adequately ex-
pressed linguistically. Because it lacks explicitness and because it contains many
irrelevant details, ordinary language is not an efficient instructional representa-
tion for mathematical structure, for example, for the quantitative entities and
relations implied by mathematical story problems. The mathematization of a
word problem requires a step-by-step transformation of its textual structure into
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more adequate, perceptually enhanced and computationally efficient (Larkin &
Simon, 1987) forms of representation, ultimately a numeric format. A crucial
step in this process is to find auxiliary representations (Paige & Simon, 1966)
which are intermediary to both the textbase (Kintsch, 1974) and the underlying
mathematical structure, that is, which mediate between language and situation
comprehension and quantitative, or mathematical thinking.

HERON uses a graphical format for problem representation, planning, and
reflection, called calculation or solution trees (Aebli, Ruthemann, & Staub,
1986; Derry & Hawkes, 1989),8 or conceptual planning trees. As an analytic
tool, solution trees supply a network formalism of dynamically linked entities
designed to capture the operative, semantic-mathematical deep structures implied
in a broad range of story (algebra) problems. As a mental modeling tool for
students, the tree structures, which can be flexibly manipulated and visually
inspected, provide a means for reifying both planning and construction processes
and the (intermediary) products of understanding.

The semantic building blocks of solution trees are domain-specific relational
schemata, each schema forming a subgoal in an arbitrary complex, hierarchical
solution tree. Each relational schema or triad consists of a pair of qualitatively
and numerically specified situation units, allowing the computation of a third,
unknown unit. Each situation until is expressed as a box containing three sub-
fields of information: a field for the numerical value, which may be unknown, a
field for the unit of measurement, and a textual label field, containing semantic
information about the unit’s situational role which links the quantitative informa-
tion to a qualitative situation model.

Examples of the graphical form of the situational elements composing differ-
ent relational schemata are depicted in Fig. 5.5. Domain-specific relations—
Sachverhdltnisse, as Selz (1922) called them—form the basic semantic units of
HERON. Their conceptual complexity is a major source of the difficulty of
(algebra) word problems, requiring situated, world-knowledge-based reasoning.

Solution trees in HERON are constructed through mixed forward- or back-
ward-inferencing activity. Forward-inferencing means that the student’s solution
starts by constructing triads based on the quantities given in the problem state-
ments. Backward-inferencing means that the student starts with the goal element
contained in an explicitly stated or inferred problem question and works back-
wards to the given elements via some intermediate calculational levels. In any
case, quantitative elements of the problem text, which are recognized as solu-
tion-relevant, problem-specific mathematical relations, are combined first with
local, then with progressively larger, hierarchical compositions of triadic sche-
mata. The (sub)goal-driven construction proceeds until the mathematical solu-

8Derry and Hawkes (1989) use an almost identical concept of solution trees as a basic representa-
tional format in their system, TAPS. Both groups have developed their ideas completely independent-
ly of each other.



162 REUSSER

@) ®)
Ewuﬂqlﬂn R hourty wage E-Ww E.u“-:ynx-
167 [rows 10.60 [ S howr 730 |s 12 [a woen
; dme to wak
I [weske
()
] capital N rkorest rate
sse0 |3 376 [w
" annusl profit
35826 |3

FIG. 5.5. Three nascent versions of domain-specific relational sche-
mata or Sachverhéitnisse (Selz, 1922) as examples of the building
blocks of solution trees. (a) and (b) are incomplete, (c) is completed.
Each schema relates (R) two semantic concepts in a mathematically
meaningful way. Other examples: R (distance, speed, time); R (initial
price, discount, sale price); R {(volume, mass, density).

tion, constrained by the form of the completed planning-tree, can be computed
from a final triadic schema.

Figure 5.6 shows two solution trees describing alternative mathematical con-
ceptualizations of the same problem including different final equations. Both
solution paths can be mapped onto each other through the laws of associativity
and commutativity.

Taken together, there are many reasons to consider solution trees (ST) as
cognitively plausible and useful representational and conceptual tools in HERON
and as a goal for instruction. Solution trees incorporate most of the qualitative
features outlined earlier (see principle P5): .

* they are transparent, self-explanatory, and visually inspectable cognitive
instruments for representing, -evaluating, and communicating the processes of
understanding and solving of a large class of word problems;

¢ they are manipulable, perceptual, highly dynamic and flexible forms for

constraining knowledge-construction processes and their (intermediary) prod-
ucts;
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FIG. 5.6a. Two different solution trees mirroring two paths of com-
prehension of the same task: Little Simon and his fat!mer are w?ten n'g
their vegetable garden. The father has a 15-liter watering can. Simon’s
can holds one fifth of that. Both fill their cans 12 times. After that, there
are still 24 liters in the rain barrel. How much water can the rain barrel
hold? (translation from German)

o they illuminate the hidden construction processes by which the student
determines the structure of problem situations;

« in so doing they make students’ thinking overt and accessible to reflection
and discussion;

» they encourage generative understanding, i.e., one can start constructing a
tree without already having completely understood the problem;

o they provide an efficient form of written calculus that can be directly trans-
lated into informationally equivalent equations;

« they provide a bridging representation intermediate to both text and implicit
mathematical structure;
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FIG. 5.6b. (Cont.)

* they facilitate movement between textual (situational) and mathematical
understanding;

* they are usable for students from a very early age;
* they provide a basis for the design of feedback.

’l."he concept of solution or calculation trees was theoretically derived from an
f:arhcr notion of Simplex-Complex structures (Breidenbach, 1963, Fricke, 1987)
introduced as thinking tools (Bauersfeld, 1965) into mathematics educati(;n in thé
"60s. Bauersfeld defined a simplex as “a relational network across three mathe-
rpatically relevant domain-concepts” (p. 125), whereas a complex is a combina-
tion of simplex structures. Solution trees are used in Swiss and German mathe-

matics text books as an intelligible, but hardly flexible tool (with respect to pencil
and paper manipulation).®

®A formalism similar to the framework of solution i
¢ trees was proposed by Shalin and Bee
(Greeno, 1987), and further discussed by Hall, Kibler, Wenger, and Truxaw {1989). In Shalin and
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Solution trees allow simultaneous grasping of both the semantic (situational)
and the mathematical deep structure denoted by a problem text. By following the
different converging semantic and mathematical constraints propagated through
the network structure of a solution tree, the corresponding problem can be
understood on three levels: on a purely semantic level of domain relations
(Sachverhiltnisse); on the level of numbers and quantitative operations that
progressively constrain the mathematical unknown; and finally, on the level of
units of measurement.

With regard to instruction, the crucial aspect of solution trees is that they do
not allow one to focus only on the latent or implicit mathematical structure of a
problem; that is, they are tools of both quantitative and qualitative reasoning. By
providing subfields of information describing the semantic role of every quan-
titative entity processed in a tree and Telating these to the problem as a whole,
students are forced to reconstruct a problem at its mathematical and semantic
(linguistic-situational) level. In HERON the labels that interpret the semantic
meaning of a quantity in the qualitative context of an episodic situation, or
action, are called situation concepts. To find adequate and concise situation
concepts, which give episodic meaning to any quantity employed in the construc-
tion of a tree, is not a trivial task. Good situation concepts are both products of
task analysis and conceptual tools for the synthesis of the solution. While the
network of quantities in a tree provides a mathematical interpretation, the net-
work of situation concepts provides a semantic interpretation of the problem.

Solution trees and the tool kit for their construction ip HERON not only give
students a way to express graphically what they think the content-specific mathe-
matical deep structure of a wide class of problems is, but also provide students
with a constraining schematic format or a control structure for how the mathe-
matical problem model ought to look. That is, by means of their schematic
properties, solution trees provide a structural form for the planning and construc-
tion of mental models. While the mathematical understanding of a problem
situation takes shape in a student’s head, the schematic form of the solution tree
serves as a perceptual constraint that must be satisfied by overtly constructing it
on the screen of the computer.

Bee's conceptual language (which inspired also work by Thompson, 1990), networks of quantitative
entities are used 10 describe the quantitative forms of classes of mathematical story algebra problems.
Differences with the representational format used in HERON have to do with how mathematical
entities and operations are treated. To my understanding, Shalin and Bees’ formalism is closer to a
more static and formalist view of mathematical structure, whereas solution trees, with their explicit
notation of mathematical operations, are closer to an operative view of mathematical thinking (Aebli,
1980; Piaget, 1970). According to Piaget, mathematical operations are the developmental derivatives
of certain classes of sensorimotor actions bearing an abstract mathematical meaning to be expressed
by the set of elementary mathematical operations. However, it is beyond the scope of this chapter to
provide a detailed comparison of the two conceptual approaches.
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A Sample Session with HERON

HERON has been designed to facilitate the solving of any story problem that can
be represented by solution trees. There are two implementations of the system: A
prototype version is written in' Loops and runs on a Xerox workstation (Kampfer,
1991); another version designed for use in classrooms is written in C and runs on
IBM-type machines (Stiissi, 1991).

Only a little instruction is needed to achieve almost full use of the functions in
HERON. It takes third graders about 20 minutes to become familiar with the
entirely mouse-driven interface of the system. Most commands and graphical
tools are available as buttons displayed on the screen. Some important menus,
as, for example, for filling situation concepts in solution trees, can be activated
by pushing a mouse button in an appropriate, active region of the screen. In order
to demonstrate the functioning of the system, the following section describes two
examples of how students can use it.

The problem text of the first example is shown in Fig. 5.6. Previous to any
overt construction, the student selects a problem and reads it. Following reading,
the student is asked by the computer to identify relevant quantitative information
in the problem text. This is done by highlighting numbers or number-
placeholders in the text with the mouse-cursor. When a piece of numerical
information is selected, the system creates a graphical situation unit with the
selected number already filled in. The student is then asked to fill in a unit of
measurement (for example liters) and a textual label (for example content of
father's can). The label can be selected as a whole from a menu, or it can be
constructed from a list of word elements from a menu. After the situation unit has
been completed, a new piece of information is selected from the text. Depending
on how the system is initialized (e.g., for weak or novice students), the student
gets an error message if he or she selects a piece of irrelevant information from
the text or fails to select a relevant piece. In the standard (non-novice) condition,
the student decides on his or her own when to stop selecting numbers and
creating situation units.

After setting up some situation elements, the student can start planning and
constructing a tree-structure for the solution (Fig. 5.7). In order to create and
instantiate a preliminary relational schema, for example, in order to achieve the
subgoal of computing the content of Simon’s can, the units labeled content of
father’s can and part of father's can are selected with the mouse, moved to the
upper left comer of the screen and linked together. The latter is done by select-
ing, placing, and linking an empty operator node (circle) and two line segments.
With the selection of an operator node, an empty box is automatically generated
by the system. That is, for every pair of situation elements linked by an empty
operator slot (circle), the system completes the nascent relational schema by
creating an empty element or subgoal-slot. Before the user, with the help of
menus, can fill the unit of measurement and the label into the emerging third
element, he/she is asked to select the appropriate mathematical operation from a
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FIG. 5.7. Partial solution tree of the Simon task {for problem text see
Fig. 6; implementation on IBM AT compatible; translation from Ger-
man).

menu which appears by pushing the mouse on the operator node. Now the
student can fill in the label (content of Simon's can) and the unit of measurement
(liters) and decide if he/she wants to calculate the subgoal immediately. The
calculation can be done with or without system support: for example, clicking on
the numerical field lets the system calculate and display the correct result in the
numerical field. '

After each relational schema is instantiated, its resulting element can be used
to generate new schemata and to achieve further subgoals. It is up to the student
to choose which comprehension path to follow, that is, how to navigate through
the problem space. In order to determine the intermediate level subgoal of the
total amount of water carried by father and son, there are two main paths open.
In the first path (Figs. 5.7 and 5.8), an additive schema is first generated which
computes the content of both watering cans, and then a multiplicative schema is
instantiated computing the total amount of water. In a second, slightly more
complicated path (depicted in Fig. 5.6a), the order of mathematical operations is
reversed: The instantiation of two -multiplicative schemata

MULTIPLY (number of fillings, content of father’s can)
MULTIPLY (number of fillings, content of Simon’s can)

is followed by an additive schema



168 REUSSER

fontent of bart of Tathers |
Y art at
ather’s can E;.

i5 [T I

Little Simon and his father are
vatering their vegetable garden .

The father has 2 [N uatering

Woer used X gg}:’f‘m;"" can. Sinon’ s can hold one of
(-4 . .
T3 T I that . Both fill their cans filltines .

After 1hat , there are still
liters inthe rain barrel . Hou much
vater can the rain barrel hold 7

el O [P

FIG. 5.8. Complete solution tree of the Simon task.

]
[ <ca5+¢15:522012>024=240 |

ADD (amount of water carried by the father, amount of
water carried by the son)

leading to the same intermediate result (216 liters). Relating the total amount of
waler carried to the amount of water remaining in the rain barrel (24 liters) and
computing the final schema leads to the final result of the amount of water in the
rain barrel before watering (240 liters).

In order to generate equations from the solution tree, the student can click the
right side of the mouse-button on any numerical value in the tree. The system
then displays the equation with the selected value. For example, clicking on the
value “216” in Fig. 5.6a would produce the partial equation

(15 * 12) + (15:5) * 12 = 216,

while clicking on the same value in Fig. 5.6b would produce the following
equation:

12 * (15 + (15:95)) = 216.

And clicking on the final value of *240” in Fig. 5.8 will produce the goal-
generating equation :

((15 + (15:5)) * 12) + 24 = 240.
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An example of a much more complex problem is the Afghanistan task. It was
developed by Aebli and Staub (1985) as a new type of authentic and rich situation
problems to be used in mathematics education. The elaborated story contains a
nontrivial episodic, that is nonmathematical structure, describing an agent who is
planning and executing a complex action leading from an initial state to an end
state. The successful execution of each of its parts requires that certain situational
conditions, which are either produced or encountered by the agent, be fullfilled.

Afghanistan is a mountainous country, just like Switzerland, but much drier. There
are fewer springs and streams, and water is rare and valuabie. From a small village
a muletrack leads over a pass into a small town. To drive animals into town, one
needs several days. At the end of the first day, one comes to an alp. Here a shepherd
boy keeps 18 sheep and 15 goats. Above the alp, there is a snowfield which melts in
the course of the summer. The water then flows towards the alp and gives 110 liters
of drinking water a day for the animals. But now, the snow has not melted. Until it
does, the animals drink from a waterhole below the rocks in which the water from a
spring is coliected. The hole is not leak-proof, so 35 liters of water ooze away every
day. Each sheep drinks about 5.4 liters a day, each goat 3.8 liters.

The shepherd drinks about 2.3 liters of goatmilk a day. The spring yields 350
liters of water a day. Every day $ liters evaporate. Each evening the shepherd drains
the waterhole. He leads all the water that is left through a small canal into a basin.
He has just done that this evening. He estimates that there are 90 liters of water in
the basin at the moment. Another 120 liters of water ooze away as it flows to the
basin. It is not lost, however. It irrigates the meadow below the small canal. As a
result, more grass grows here. The shepherd can cut it 3 times a year and obtains
150 kilograms of hay each time. The hay is brought to the village and fed to the
animals during wintertime. The basin is fenced with poles, so the sheep and the
goats cannot drink from it. From time to time, the peasants drive some cows from
the village over the pass into the town and sell them at the market. On the first day,
they find water on only at the alp. When they get there, the shepherd boy takes the
poles away from the basin and lets the cows drink from it. On the day on which he
has estimated the available water, his father arrives at the alp late in the evening. He
says to his son: “1 want to bring 24 cows to the market as soon as possible. 1 think
that they’ll need a total of 320 liters of water up here.” The boy says: “l can
calculate when you can come.” When can his father come with the cows?

As with the mathematization of any demanding word problem, the solving of
the Afghanistan task requires the implicit quantitative structure to become ex-
plicit as an interconnected system of mathematical relations. However, before the
underlying quantitative structure can be generated in its ultimate representational
format of a solution equation, one has to understand, in a constructive effort after
meaning, the problem text, the situation denoted by the text, and the implicit
mathematical relations involved. The complexity of these processes of under-
standing, and the fact, that they require sequential and hierarchical planning,
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makes solution or planning trees especially suitable to the solving of semantically
rich action problems like the Afghanistan task.

Figure 5.9 shows a solution tree (one among several possible trees) in staru
nascendi, while Fig. 5.10 shows the same tree in its completed form as a
coherent and hierarchical system of mathematical relations to be mapped onto a
corresponding solution equation. From the operational perspective set up by the
quantitative problem question, this solution equation represents the most concise
synoptic form of the relevant mathematical aspects of the complex action.

While using HERON the student can call on a HELP component for both
deeper comprehension of the problem text and for the construction of solution
trees. Text comprehension aids mainly consist of explanations of words, para-
phrasing of sentences, and of giving hints about which text fragments belong
together and should be processed together. Construction aids for solution trees
operate in conjunction with the aids for text comprehension, and provide help in
operating the system (how to use the tools of the interface), with planning, and
with constructing the trees (cf. Kampfer, 1991; Stiissi, 1991). With the latter type
of help the system provides the student (on request) with progressively more
detailed hints about what to do next, ultimately offering a next operative step.

With respect to feedback, HERON is unintelligent, but nevertheless fairly
powerful. The system does not perform cognitive diagnosis based on indi-
vidualized student modeling. So far, it knows nothing about the thinking of
individual students while solving a problem. However, HERON does know how
to build conceptual networks, and what students are overtly doing when con-
structing their solution trees. HERON is thus able to provide feedback and
customized help to the individual student on the basis of a detailed task analysis.
With respect to tasks, HERON knows which quantified situation elements can or
must (not) be connected in a solution tree, and which labels and units of measure-
ment are to be attached to each quantified situation unit. HERON is able to
monitor the students’ overt constructive activity of planning and creating a solu-
tion tree, and to provide feedback on four types of errors: (a) mathematical
operation errors (two situation units are connected by a false operation), (b)
labeling errors, if an incorrect situational role concept is attached to a quantity
box or situation unit, (c) errors on the selection of units of measurement, and (d)
errors regarding the false inclusion or ommission of (ir)relevant mathematical
information in a solution tree.!®

Ongoing Work: The Use of HERON for Instruction

The Afghanistan task gives an impression of the constructive power and flexibil-
ity of HERON, which allows the student to decompose a problem into relational

'0A different and more “intelligent” approach to error handling is used by Derry and Hawkes
(1989) in the TAPS system, which is very similar to HERON in its representational format. TAPS
treats errors as deviations from recognizable and preset ideal solution paths.
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building blocks or subgoals and to create solution trees of almost any complexity
and in any arbitrary sequence in which subgoals can be achieved. The task also
illustrates the diverse and demanding language and situation comprehension
activities that are required in solving mathematical word problems (Staub &
Reusser, 1991). HERON thus can be applied as a cognitive tool to the two
fundamental curricular tasks of schooling, mathematics education and reading or
language comprehension instruction. Moreover, HERON can also be considered
as a preparatory tool for algebra instruction: The combination of the hierarchical
nature of solution trees, which are easily translatable into equations, and the
system’s ability to form a parameter for any given number in a problem, makes
it possible to redescribe any solution tree in terms of the assigned param-
eters.

For the most part, the students in HERON work in pairs. After an instructional
phase of 10 to 20 minutes that includes the construction of a sample solution tree,
students are able to construct the solution tree for a simple problem. Complex
tree, such as the Afghanistan task, may take much longer. In constructing solu-
tion trees, most students thus far have followed a modus operandi of forward
chaining similar to the strategy described by Derry and Hawkes (1989): After a
first relational unit is schematically constructed (by drawing three boxes or
situation units), the boxes are numerically and situationally interpreted by filling
in the numbers (one of them to be computed). the units of measurement, and the
situation concepts. Then, the next schema is constructed that includes the pre-
vious result set as one of its elements. The construction—proceeding stepwise
from the given information to the anticipated goal state—continues in this man-
ner until the tree is completed.

HERON records in a log file all activities performed on the screen, including
time characteristics and turn taking with the mouse. This allows the comprehen-
sion (solution) paths to be replayed. Pairs of students can reflect upon and
discuss their solution paths. Replays are used to elicit more complete retro-
spective reports on what the students were thinking while solving the problem.

HERON is currently being evaluated in classroom settings that encourage
collaborative problem solving in groups or pairs. It is also being tested in an
empirical study comparing the solving of word problems by single users and by
pairs with and without HERON. We think that pairs of students working together
can support each other in many ways beneficial to each other. On the one hand,
pairs of students share the diverse activities directly related to solving the prob-
lems, such as jointly constructing understanding of problems, monitoring and
refining each other’s constructions of mental models, or discussing alternative
solution paths. By working together they are also able to use the system more
effectively. Computer-based learning environments may still be relatively weak,
compared to a sensitive human teacher, and thus require multiple and combined
expertise—from the system’s own (modest) intelligence and from intelligent
users alike.
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