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INTRODUCTION: Temporally consolidated beha-
viors such as sleep normally occur in synchrony
with endogenous circadian rhythms and both
have been reported to contribute to global daily
oscillations of transcription in brain. Neurons
have further adapted specialized means to
traffic RNA into distant dendritic and axonal
arbors, where it is locally translated. Together,
these mechanisms allow coordination of physi-
ology with environmental needs.

RATIONALE: About 6% of the forebrain tran-
scriptome oscillates in a time-of-day–dependent
manner, and it has been proposed that this os-
cillation is mostly driven by the sleep-wake state
to enable daily changes in synaptic structure
and function. In turn, such synaptic scaling is
thought to form a critical feature of the sleep-
wake process. Given the highly local capacity
for synaptic remodeling, an essential missing
link in this argument is the effects of circadian
clocks and sleep pressure uponmessenger RNA
(mRNA) and related protein abundance at
synapses themselves. To address this question,
we examined daily rhythms of transcript and

protein abundance in transcriptome and pro-
teome of synapses from the mouse forebrain,
using biochemically purified synaptoneuro-
somes isolated across the 24-hour day both at
normal sleep pressure and at constant high
sleep pressure.

RESULTS: Notably, 67% of synaptic mRNAs
showed circadian oscillations, with a mean
amplitude of about twofold. Further, 93%
of these oscillating transcripts were exclu-
sively rhythmic in synaptoneurosomes, sug-
gesting an entirely posttranscriptional origin
for synaptic mRNA oscillations. This observa-
tion was supported by single-molecule fluores-
cence in situ hybridization. Rhythmic synaptic
transcripts formed two distinct waves, antici-
pating either dawn or dusk, and both required
a functional circadian clock. These two waves
showed completely different functional signa-
tures: synaptic signaling preceded the active
phase, whereas metabolism and translation
preceded the resting phase. Comprehensive
circadian characterization of the synaptic pro-
teome demonstrated the functional relevance

of this temporal gating for synaptic function
and energy homeostasis. Overall, the oscil-
lations of 75% of synaptic proteins were con-
comitant with their rhythmic transcripts,
indicating a key role for local synaptic tran-
slation. Under conditions of high sleep pres-

sure, one-fourth ofmRNAs
remained identically circa-
dian, and most preserved
some degree of circadian
rhythmicity. In contrast,
no substantial circadian
rhythm could be detected

in any protein when sleep pressure was con-
stantly high.

CONCLUSION: Examining the dynamics of
mRNAs in the synaptic landscape revealed the
largest proportion of circadian transcripts in
any tissue, cell, or organelle described to date.
These synaptic oscillations are controlled post-
transcriptionally and the daily dynamics of
transcripts and their related proteins clearly
delineate different cellular modes between
sleep and wake. Our study provides insight
into the connectivity between sleep and cir-
cadian rhythms and suggests an elegant para-
digm whereby a molecular clock provisions
synapses with mRNAs before dawn and dusk,
which are later translated in response to activity-
rest cycles.▪
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Circadian clocks regulate synaptic mRNAs but sleep and wake regulate their proteins.
(A) Workflow: Forebrain synaptoneurosomes were isolated across the day at low and high sleep
pressure. (B) Synaptic transcripts can maintain circadian rhythmicity under high sleep pressure (C) but
protein rhythms are completely abolished. (D) Gene ontology highlights the complete temporal
segregation of predusk (top) and predawn (bottom) synaptic function.
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The forebrain synaptic transcriptome is organized by
clocks but its proteome is driven by sleep
Sara B. Noya1, David Colameo1*, Franziska Brüning2,4, Andrea Spinnler1, Dennis Mircsof1,
Lennart Opitz3, Matthias Mann4,5, Shiva K. Tyagarajan1†, Maria S. Robles2†, Steven A. Brown1†

Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and
axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript
accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts
showing time-of-day–dependent abundance independent of oscillations in the soma. These
transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn
related to metabolism and translation and those anticipating dusk related to synaptic
transmission. Characterization of the synaptic proteome around the clock demonstrates the
functional relevance of temporal gating for synaptic processes and energy homeostasis.
Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations.
Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in
the synapse followed by translation as demanded by sleep-wake cycles.

A
cell-autonomous circadian clock based
upon feedback loops of transcription and
translation functions in nearly every cell
of the mammalian body and influences
most aspects of physiology. In the brain,

the most obvious manifestation of circadian
control is the consolidation of sleep into day
or night. In synchrony with sleep and wake,
daily rhythmic oscillations also occur in a sub-
stantial fraction of the brain transcriptome,
ranging from 3 to 4% in retina, cerebellum,
brainstem, and hypothalamus, to 8 to 10% in
cortex and suprachiasmatic nuclei (1–4). These
oscillations are likely driven in part by rhythmic
assembly and disassembly of transcription
complexes and chromatin modifiers orches-
trated by circadian clock–specific activators
and repressors such as BMAL1/NPAS1, PERIOD
(PER1 and PER2), and CRYPTOCHROME (CRY1
and CRY2), as observed in other tissues (5–8).
However, it has become increasingly apparent
that posttranscriptional processes play an im-
portant role in circadian regulation. In liver and
suprachiasmatic nuclei (SCN), the best-studied
circadian tissues to date, evidence of circadian

mRNA processing, polyadenylation, and trans-
lation have appeared (9–11). Complicating mat-
ters still further, circadian oscillations in mRNA
levels can also be driven by temporally consol-
idated behaviors. In liver, timing of food in-
take contributes to rhythmic transcription (12),
and in cortex, sleep-wake cycles play a major
role (3).
Relative to all other cell types, neurons pre-

sent a special case because mRNA is distrib-
uted to potentially distant compartments such
as axonal terminals and postsynaptic spines.
Although the axodendritic arbor contains only
~10% of total transcripts (13), a large literature
demonstrates that mRNAs are actively trans-
ported to neurites (14–16). Downstream, local
synaptic translation of mRNA has been post-
ulated to be an important mechanism inmem-
ory (17, 18), and both synaptic size and total
protein abundance are dynamically scaled by
wake and sleep (19, 20).
Despite this context, circadian and sleep-

wake–dependent regulation of synaptic tran-
script pools in brain, as well as their functional
importance, remain entirely unexplored ques-
tions. “Multi-omic” approaches have been in-
creasingly used to understand complex questions
of cellular regulation, and thereforemight also
be useful to explore the connectivity between
the clockwork and sleep (21). Here, we used a
combination of biochemical fractionation, deep
sequencing, single-transcript confocal micros-
copy, and mass spectrometry (MS)–based quan-
titative proteomics to analyze the origin and
function of rhythmic daily oscillations in the
transcripts and proteins of forebrain synapses.
From these studies, we derive the simple para-
digm that a clock-gene–dependent mechanism
is needed to provision synapseswithmRNAs in

a circadian fashion, which are then translated
in response to sleep-wake cycles.

The forebrain synaptic transcriptome shows
pervasive daily rhythmicity

To generate a time-resolvedmap of the synaptic
transcriptome from the mouse forebrain, we
purified synaptoneurosomes using biochemical
fractionation with discontinuous Percoll gra-
dients (22). Synaptoneurosomes represent axo-
nal nerve terminals (cytoplasm, synaptic vesicles,
mitochondria, and cytoskeleton) and attached
postsynaptic structures. We collected fore-
brains every 4 hours across the day in biological
triplicates under natural conditions of light
and dark (LD) and identified mRNAs by high-
throughput sequencing in the forebrain homo-
genates and the purified synaptoneurosomes
(Fig. 1A). After normalization and threshold-
ing (see materials andmethods), we identified
14,073unique transcripts. These transcripts over-
lapped almost completely with those identi-
fied in the hippocampal neuropil (23), a highly
projection-enriched brain region (Fig. 1B), as
well as with other similar transcriptomes of
forebrain synapses (24) (fig. S1A). In addition,
quantitative polymerase chain reaction demon-
strated enrichment of known synaptic mRNAs
and depletion of nuclear ones (fig. S1B). These
measures confirmed the validity of our bio-
chemical approach.Reasoning that a fold change
of ≥1.5 in synaptic versus forebrain abundance
should represent a reasonable criterion with
which to identify a specific synaptic element,
we found 3104 unique synaptically enriched
mRNAs (Fig. 1B and table S1). Gene Ontology
(GO) analysis corroborated the overwhelming
predominance of synaptic annotations among
these transcripts, as well as their stepwise en-
richment across the analytical steps of the
procedure (Fig. 1C).
Using the Perseus computational platform

(25), we analyzed these synaptically enriched
mRNAs for evidence of daily rhythmicity (pe-
riod 24 hours, q < 0.05), and found that 2085
(67%) were cycling, the highest proportion of
rhythmic transcripts estimated in any tissue,
cell, or organelle described to date (Fig. 1D and
table S2; results with other q-value cutoffs are
shown in fig. S1C). The average fold change
was 1.8 (Fig. 1E) and the majority showed a
peak-trough amplitude of 1.5 or greater (fig.
S1D). The 2085 cycling features overlapped
substantially with those detected using other
algorithms (91% with the JTK_CYCLE algo-
rithm; period 24 hours, q < 0.05) (26) (fig. S2A).
In parallel, we analyzed the forebrain transcrip-
tomeand found that only 6%of itwas oscillating
(Fig. 1F, fig. S2B, and table S3). Notably, 93%
of synaptic circadian transcripts were cycling
exclusively in the synapse; only 7%were cycling
also in the whole forebrain, and these with
reduced amplitudes (Fig. 1G and fig. S2C). This
minimal overlap implies that daily oscillations
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in the synaptic transcriptome are entirely or
nearly entirely driven by posttranscriptional
processes.
In principle, oscillations in the abundance

of synaptic transcripts could arise either from
transport of mRNAs or from local control of
their stability. Both to verify our transcriptional
results and to distinguish between these pos-
sibilities, we employed single-mRNA fluores-
cence in situ hybridization (FISH) using the
RNAscope strategy (see materials and me-
thods). As test cases, we selected the vesicular
glutamate transporter Slc17a7 (vesicular gluta-
mate transporter 1) and Lingo1 (leucine rich
repeat and Ig domain containing 1), with pre-
viously reported synaptic function, high levels
of expression in hippocampal cornu ammonis
area 1 (CA1) and cortex (27, 28), and high am-
plitude in our circadian analysis. As a control,
the circadian clockmRNACry1was also imaged.

Using custom automated imaging workflows
(see materials andmethods), we visualized and
quantified axodendritic and somatic mRNAs
separately in hundreds of images. Similar to
previous reports (29), Cry1 mRNA in the hip-
pocampus increased toward the end of the
dark period, and the same trend was observed
in the cortex (fig. S3, A and B). For synaptic cycl-
ing mRNAs, robust oscillations were observed
in the axodendritic compartment (Fig. 2A and
fig. S4), with maximum levels at Zeitgeber
time (ZT) 4 and trough levels at ZT12 in both
CA1 and cortex (Fig. 2B). We further quantified
CA1 dendritic structures according to distance
from thepyramidal cell layer. Equal daily rhythms
of mRNA abundance were observed at all dis-
tances (Fig. 2C). Even though synaptic density
dramatically increases with distance (30), we
found identical circadian amplitude at all dis-
tances, suggesting that the synaptic oscillations

of transcript abundance are likely generated
through transport along the dendritic arbor.
However, other explanations such as regulated
RNA stability certainly also remain possible.

Synaptic oscillations anticipate dawn and dusk
and depend on a functional clock

Cycling synaptic transcripts clustered entirely
into two temporal categories, with maxima
anticipating dawnor dusk (lights-on and lights-
off in our laboratory scenario; Fig. 3A). Because
these peaks of transcript accumulation antici-
pated light-dark transitions, we hypothesized
that they were driven by a circadian clock. To
verify this presumption, we did synaptoneuro-
some transcriptome analysis at two time points
(ZT0 and ZT12) frommice kept in normal LD
conditions, mice kept in constant darkness, or
Bmal1-knockoutmice (Bmal1−/−), which lack an
essential clock gene and therefore lack a func-
tional circadian oscillator (31). Transcripts
showing significant differences in abundance
[exact binomial test, Benjamini–Hochberg (BH)-
corrected p < 0.05] between the two times in
wild-type mice under LD conditions (Fig. 3B;
significant values are shown in red) also showed
differences when kept in darkness (Fig. 3C; sig-
nificant values are shown in dark gray). Conver-
sely, no significant changes were observed for
those transcripts in Bmal1−/− mice (Fig. 3C;
significant values are shown in green).
The two waves of transcript abundance that

we detected were not only sharply segregated
by phase but also entirely ontologically distinct
(Fig. 4, A andB; fig. S5; and table S4).Moreover,
the light and dark circadian synaptic clusters
were further enriched in specific biological
processes compared with the whole synaptic
transcriptome (fig. S5 and table S4), empha-
sizing an important temporal and local regu-
lation. mRNAs anticipating dusk participate
in cellular pathways related to synapse orga-
nization, synaptic transmission, and higher
functions relying on themdirectly, suchasmem-
ory, learning, and behavioral outputs (Fig. 4A).
Those anticipating dawn are required for
metabolism, with a high representation of lipid
catabolism, translation, and cell proliferation
or development (Fig. 4B).

Coordination of daily mRNA oscillations by
circadian clocks and sleep cycles

One major behavioral output of the circadian
oscillator in brain is the sleep-wake cycle. At
the level of the whole forebrain, it has been
demonstrated previously that the vast major-
ity of “circadian” transcription is actually sleep-
wake driven (3). To arrive at this conclusion,
the authors systematically deprived mice of
sleep for the 6 hours preceding sacrifice at four
different times of day during the circadian cycle,
thereby keeping sleep pressure high across all
samples (3, 32). By so doing, they observed that
circadian oscillations of most brain transcripts
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Fig. 1. Daily rhythms within the synaptic transcriptome. (A) Workflow: Forebrains from mice
were collected in biological triplicates at six times throughout the day. Synaptoneurosomes were
prepared, RNA isolated and sequenced, and data analysis was performed using Perseus software.
(B) Number of transcripts from successive steps of the synaptoneurosome workflow. Synaptic
transcripts were those 1.5-fold enriched in synapses versus total forebrain. Bottom: Detected
transcripts correspond closely to those identified in synaptic neuropil (23). (C) Top 10 GO cellular
component annotations. BH-adjusted p < 0.001, FunRich analysis (http://www.funrich.org) in
the synaptic transcriptome. Bars show the calculated fold enrichment versus the mouse genome
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transcripts. (D) Pie chart depicting the fraction of cycling mRNAs (Perseus time-series periodic
analysis, period 24 hours, q < 0.05) among enriched synaptic mRNAs. (E) Density distribution of
circadian amplitudes (peak/trough) of cycling synaptic transcripts from (D). (F) Fraction of
cycling mRNAs (Perseus time-series periodic analysis, period 24 hours, q < 0.05) in the whole forebrain.
(G) Fraction of circadian synaptic-enriched RNAs cycling only in synaptoneurosomes. Note that,
of the synaptic cycling mRNAs (n = 2085), only 7% (n = 155) cycle in the forebrain and the synapse
(gray) and 93% (n = 1930) cycle exclusively in synapses.
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disappeared. To test whether synaptic mRNA
oscillations are controlled by sleep pressure, we
first derived an analogous protocol in which
sleep pressure would be kept elevated across
the circadian day at levels roughly equal to its
normal 24-hour maximum under undisturbed
conditions. Typically, sleep pressure is indi-
cated by the amplitude of subsequent electro-
encephalogram (EEG) oscillations during sleep:
The greater the sleep pressure, the greater the
amplitude of “delta” oscillations (0.5 to 4 Hz)
(32). As can be seen in Fig. 5, A and B, across
six equally spaced time points during the day,
4 hours of prior sleep deprivation by gentle
handling leaves at each time point a level of
delta power approximating that maximally ob-
served spontaneously in the day before the
manipulation (top lines), without disrupting
the circadian phase of sleep-wake behavior the
following day (bottom lines). Although some
fluctuation in delta power across time points
is still observed, we estimate it to be less than
one-fifth of that observed under the same con-
ditions across the normal circadian day. At some
times of day (e.g., the start of the day at ZT0 to

ZT4, whenmice are sleeping; fig. S6, A and B),
this sleep deprivation results in a significant
decrease in sleep latency (the time to fall asleep,
fig. S6C) and increase in delta power (Fig. 5, A
and B) relative to control conditions. At other
times (e.g., the start of the night at ZT12 to
ZT16, when mice would normally be awake
anyway; fig. S6, A and B), the same sleep de-
privation results in almost no changes relative
to control conditions (Fig. 5, A and B, and fig.
S6, C andD). In all cases, subsequent sleep and
activity are completely normal, with no shift in
the timing of activity (Fig. 5, A and B).
We next performed this protocol preceding

each time point of our synaptoneurosome tran-
scriptomics (Fig. 5, A and B). Consistent with
observations of the whole-brain transcriptome
by other investigators (3), the rhythmicity of
a large proportion ofmRNAs in synaptoneuro-
somes was significantly altered by sleep de-
privation. In general, cycling features in baseline
(BL) conditions showed reduced statistical sig-
nificance (higher q values) under sleep depri-
vation (SD) (Fig. 5C and table S5). However,
circadian oscillations of one-fourth (561) of
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Fig. 2. mRNA FISH visualization of Slc17a7 (VGlut1) diurnal abundance in hippocampus and cortex.
(A) Confirmation of rhythmicity by single-molecule fluorescence in situ hybridization (FISH) of Slc17a7
(VGlut1) in the stratum radiatum of the CA1 of the hippocampus (top panels) and in the axodendritic
compartment of cortex (lower panels). For better visualization, red line traces nuclei and single mRNA dots
are increased to 0.5 mm. Insets: mRNA in the somatic areas of the cortex. (B) Quantification of mRNA
abundances in (A) (n = 13 to 18 from three biological replicates). (C) Quantification of mRNA in
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synaptic mRNAs were preserved (period
24 hours, q < 0.05) and virtually unchanged in
amplitude compared with BL conditions (Fig.
5, D to F, and fig. S7A), and of the remaining
1524 transcripts, 1271 still showed profiles with
considerable time-of-day–dependent variation
(Fig. 5G and fig. S7B). Ontologically, the analysis
of rhythmic mRNAs presents a picture that
is mostly unchanged (table S6). mRNAs that en-
code proteins involved in synaptic transmission
are enriched in the peak before the transitions
to thewake phase (Fig. 6A). By contrast,mRNAs
peaking before dawn, preceding the sleep phase,
are involved in intracellular signaling, cell
morphology, cell metabolism, and translation
(Fig. 6B).

Daily variations in the synaptic proteome are
dominated by sleep-wake state

Previous studies suggested that mRNAs in the
synapse are translated there, and half of these

locally translated transcripts were also present
in our cycling dataset (24) (fig. S8). To gain
further insights into the functional implica-
tion of daily oscillations of synaptic mRNAs,
we performedMS-based, label-free quantitative
proteomics to characterize temporal patterns
of the total forebrain and synaptic proteome.
Wemeasured, in a single-shotmanner, protein
samples prepared from isolated synaptoneuro-
somes and total forebrain of mice (four bio-
logical replicates) collected every 4 hours across
24 hours (see materials and methods). Our in-
depth analysis allowed us to quantify across all
samples 4477 proteins in total forebrain and
4063 in synapses, with an overlap of 3710 pro-
teins (fig. S9A). Circadian analysis revealed that
in synapses, 11.7% of proteins (476; Fig. 7A and
table S7A) and in total forebrain, 17.2% of pro-
teins (770; fig. S9B) were rhythmic (period
24 hours, q < 0.1; table S7B). [Note that proteo-
mic analyses showed lower circadian range and

relative signal for less abundant components
than transcriptomics; the q value was set at 0.1
at the maximum of the circadian q-value dis-
tribution to ensure comparable coverage and
comparability with transcriptomics (fig. S9, C
and D). Analyses identical to those in Fig. 7 are
also presented in fig. S10, with a q value set at
0.05, arriving at the same conclusions with
smaller numbers of proteins.]
Although both the cycling synaptic and fore-

brain proteomes showed biphasic distributions,
these were markedly different (fig. S11, A and
B, and table S7C), with peak phases differing
across compartments by 6 hours (fig. S11, C
and D). Moreover, from the common proteins
in both datasets (fig. S9A), only 92 were cycl-
ing in both forebrain and synapse, and these
also had substantially different phases of maxi-
mal expression (Fig. 7, B and C, and fig. S11, E
and F), suggesting, as for the transcriptome,
totally different mechanisms for daily protein
rhythm generation in the two compartments.
By contrast, the phase distribution of synap-

tic cycling proteins mirrored that observed for
oscillating synaptic transcripts, with two clusters
preceding dusk and dawn (fig. S11, B and D).
We detected synaptic mRNAs for 1128 synap-
tic proteins (fig. S12A) and, of those with daily
oscillations (fig. S12B), 77.7% also had a cycling
transcript predominantly with a leading or
shared phase (Fig. 7, D and E). As revealed for
transcripts, proteins peaking before dawn were
enriched in categories related to metabolism,
and more specifically to lipid metabolism and
mitochondria, whereas proteins involved in cel-
lular signaling preceded dusk (Fig. 7, F and G,
and table S8). Thus, under normal conditions
of light and dark, the temporal profiles of the
synaptic proteome largely resembled those of
the transcriptome.
Analogously to the transcriptome, we next

examined the daily cycles in theproteomeunder
conditions of high sleep pressure. Here, a
markedly different picture emerged. In the
time course from the serial sleep deprivation,
almost all (98% with a cutoff of q < 0.1 and
99.9% with a cutoff of q < 0.05) of the oscil-
lating proteins in BL lost their rhythms (period
24 hours; Fig. 8, A to C, and table S9). Our data
indicate that daily changes in protein levels
at the synapse are completely determined by
vigilance state rather than by circadian clocks.

Discussion

In various mammalian tissues, between 3 and
16% of total transcripts have been described as
circadian until recently (33), and our own figure
of 6% of oscillatory mRNAs in the whole mouse
forebrain is consistent with these values. How-
ever, synaptic functionality has been shown
to have a strong circadian component. In the
hippocampus, long-term potentiation efficacy
undergoes circadian variation (34), and in the
SCN, dynamic expression and function of ion
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channels or neurotransmitter receptors ensure
distinct effects of light depending on time of
day (4, 35–37). Helping to achieve this circa-
dian functionality, we find that synaptic tran-
script accumulation canoccurwithmuchhigher
rhythmicity: 67% of enriched synaptoneuroso-
mal transcripts show time-of-day variation,
encompassing all aspects of synaptic function.
(It should benoted that other transcripts present
but not specifically enriched at synapses do not

display this overwhelming degree of rhythmic-
ity, implying differences in stability, circadian
active transport, or both.)

Posttranscriptional mechanisms as a primary
circadian motor

Statistically, our results further show that this
rhythmicity is generated at a posttranscriptional
level, because overlap between the set of syn-
aptic cycling transcripts and that in the whole

forebrain is at levels expected by chance alone.
This observation is consistent with several recent
studies showing circadian variation at steps sub-
sequent to transcription initiation (5, 11, 38, 39).
In the brain, we observe rhythms of transcript
abundance microscopically at equal amplitude
throughout the axodendritic arbor in the stratum
radiatum of the hippocampus despite marked
variation in synaptic density. Thus, spine-poor
proximal regions (30) show the same amplitude
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Fig. 5. Circadian and sleep-wake regulation of
synaptic mRNA abundance. (A and B) Mean
(±SEM) time course of EEG relative (to mean
BL delta power; 0.5 to 4 Hz at ZT8 to ZT12)
frontal delta power during NREM sleep
(triangles; percentage of the last 4 hours of
the BL light periods) and time spent in NREM
sleep (circles; minutes/recording hours; left
y-axis) during 24 hours of BL (gray symbols and
lines), 24 hours of recovery, and during and after
4-hour SD finishing at ZT4 (red, sample name
BL4/SD4), ZT8 (orange, sample name BL8/SD8),
ZT12 (yellow, sample name BL12/SD12),
ZT16 (green, sample name BL16/SD16),
ZT20 (blue, sample name BL20/SD20), or
ZT0 (purple, sample name BL0/SD0). Gray
areas delineate the dark periods. The data was
divided into two panels for better visualization
but the baseline is the same in both.
(C) Distribution of q values (Perseus
time-series periodic analysis, period 24 hours)
of the 2085 mRNAs cycling in BL (in red are
q values at BL, in green are q values after SD).
q values > 0.5 were omitted. (D) Pie chart
depicting the fraction of mRNAs that remain
rhythmic (Perseus time-series periodic analysis,
period 24 hours, q < 0.05) in synaptoneurosomes
of SD mice. (E) Density distribution of circadian
amplitudes (peak/trough) of cycling synaptic
transcripts that remain rhythmic after SD.
In gray is the amplitude in BL and in green
the amplitude in SD. (F) Expression profiles
of transcripts cycling in BL and SD (q-value
BL < 0.05 and q-value SD < 0.05; 561 mRNAs).
One hundred randomly selected mRNAs are
shown. (G) As in (F), but for those transcripts
cycling in BL (q < 0.05) but nonsignificant in SD;
n = 1271 transcripts with lower q values in SD
(0.05 < q < 0.5; left) and n = 253 transcripts with
higher q values in SD (q > 0.5; right) are
represented separately. One hundred randomly
selected mRNAs are shown.
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as spine-rich distal regions. For this reason,
we favor the hypothesis that the generation
of synaptic transcript daily oscillations happens
owing to cyclical transport to synapses. Dynam-
ics of cytoskeleton components have already
been linked to the circadian clock (40) and
represent a possible regulatory node for trans-
port in the cytoplasm. However, other interest-
ing posttranscriptional steps could be involved,
including changes in the RNA degradation rate
within the dendritic arbor or at synapses. Be-
cause messenger ribonucleoproteins remain
docked at the nuclear basket for an uncertain
time, constituting a rate-limiting step for mRNA
dynamics (41, 42), export through the nuclear

pore is also an appealing regulatory step for
circadian regulation of mRNA abundance out-
side the nucleus.
A similar lack of parallelismbetween synapse

and whole forebrain can be observed when
examining the proteome. Three-quarters of
cycling synaptic proteins arise from cycling
synaptic transcripts, but only 20% of proteins
show oscillations in the whole brain. It is dif-
ficult to draw conclusions about the relative
percentages of oscillatory transcripts and pro-
teins because different platforms were used for
data generation (deep sequencing versus mass
spectrometry).However, our results are consist-
ent with the reported stability ofmany synaptic

proteins (19), which would correspondingly de-
crease their oscillatory amplitude. There is also
a small difference in overall phase angle be-
tween the two datasets. This phase discrepancy
suggests that local translation of synaptic pro-
teins could be a major rate-limiting step for
daily changes in synaptic protein levels. Sup-
porting this idea, a recent study in neuronal
culture demonstrates that mRNA localization
in the synapse is the primary mechanism con-
tributing to the synaptic proteome compared
with transport of proteins synthesized in the
soma (43).

A major division of biological functions
preparing for sleep and wake

In most mammalian organs, broad peaks of
gene expression precede dusk and dawn (2).
In our own study, nearlywithout exception, both
circadian transcripts and the proteins derived
from them showed peak levels sharply in anti-
cipation of dusk and dawn. Transcripts in these
two phases showed a complete division of bio-
logical function: cell-intrinsic and metabolic on-
tological terms preceded sleep, whereas terms
associatedwith synaptic structure and function
preceded wake. The division that we observed
is consistent with a large literature suggesting
both circadian- and sleep-dependent partition
of cellular function. An inherent circadian clock
is known to regulate learning and memory ef-
ficiencies diurnally (44–47). Mechanistically, it
has being proposed that trafficking of glutamate
receptors ormodulation of spine densities could
be involved (48–50). Along the same lines, syn-
aptic homeostasis has been proposed as amajor
function of sleep-wake states (20), and others
have proposedmacromolecular synthesis and
energy replenishment as potential functions
for sleep (51, 52). Our synaptic GO data are
consistent with both suggested functions of
sleep-wake cycles, neatly partitioned in circa-
dian time. In a companionpaper (53),we further
document the role of synaptic protein phospho-
rylation across the circadian cycle. Again, we
found a purely bimodal distribution of these
ontological states, though with opposite rela-
tive proportions: whereas themajority of cycling
RNAs and proteins reach peak levels at the end
of thewake period in anticipation of dawn, the
majority of circadian phosphosites reach peak
levels at the end of the sleep period in anti-
cipation of dusk (53).

Transcript timing is dominated by clocks,
protein timing by sleep-wake state

Because of the coupling of circadian rhythms
and sleep-wake cycles, distinguishing the contri-
bution of each to cellular biology remains chal-
lenging. By depriving mice of sleep before each
time point, one mostly dampens the normal
diurnal variation of sleep need: during the light
phase, SD induces an increase in sleep pressure,
whereas during the dark phase, no significant
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difference occurs because animals are already
awake (Fig. 5A and fig. S6) (32). Under these
conditions, circadian transcriptional oscillations
of themouse forebrain are strongly dampened
(3). At the synapse, the posttranscriptional me-
chanisms dominating diurnal transcript accu-
mulation are less affected: whereas circadian
rhythmicity is globally decreased, one-fourth
of circadian transcripts remain completely un-
changed, andmost others retain some evidence
of time-dependent variation.
These time-of-day–dependent oscillations in

synaptic transcript abundance persist in con-
stant darkness, ruling out light-driven effects,
but are lost in circadian clock–deficient Bmal1−/−

mice in entrained LD conditions. It is thus
tempting to attribute cyclical abundance purely
to circadian clock control. However, Bmal1−/−

mice (54), as well as all other clock-depleted
strains tested (55), show markedly dampened
daily variation in sleep pressure across the day,
even under normal LD conditions. Therefore,
our experiments do not rule out clock:sleep in-
teractions, even if they demonstrate total de-
pendence of cyclic synaptic RNA accumulation
upon clock function.
Ontological terms related to synaptic orga-

nization and assembly, cell adhesion, and actin
cytoskeleton all retain high statistical signifi-
cance and synaptic enrichment equally under

conditions of sleep deprivation. Thus, sleep-
wake cycle–dependent changes in synaptic
structure (20, 56, 57) appear to be preceded by
a primarily circadian-driven accumulation of
relevant RNAs.
At the protein level, almost no circadian

influence remains under conditions of high
sleep pressure. Although daily cycles of proteins
in the synapse are detected in animals kept
under an LD cycle, sleep deprivation completely
blunts those changes.
Our findings are consistent with cellular liter-

ature suggesting activity-dependent translation
at synapses: new experience triggers the associ-
ation of mRNAs to ribosomes in the synapse,
synaptic activation rapidly releases the trans-
lational repression of mRNAs localized in the
synapse, and local protein translation is essen-
tial for several forms of plasticity that involve
active behavior (58–61). Similarly, evidence of
synaptic downscaling during sleep has been ob-
servedultrastructurally inmouse cortex (56) and
likely occurs because of metabotropic glutamate
receptor 5 (mGluR5)–dependent signaling dur-
ing waking (19). Thus, under the serial SD pro-
tocol that we used, as oscillations in protein
levels are dampened, protein levels are mostly
driven toward peak rather than nadir levels.
Many possibilities exist for the upstream

signaling that drives the sleep- and circadian-
dependent accumulation of RNA and proteins
that we observed.Whereas themechanism con-
necting cellular components of the circadian
oscillator to downstream pathways is well es-
tablished (62, 63), neither the workings of the
sleep homeostat itself nor its connection to
downstream sleep-dependent cellular events
has been deciphered. In addition to the direct
synaptic activity–dependent hypotheses that
we favor (20), indirect mechanisms such as
changes in brain temperature and cortisol levels
are also possible. Changes in transcript abun-
dance associated with small alterations in body
temperature are believed to be mediated either
by an initial posttranscriptional effect by the
cold-inducibleRNA-bindingproteinCIRBP (64)
or by low-level activation of Heat Shock Factor
1 (65).Wehave foundnooverlapbetweenmRNAs
regulated by these factors and our cycling data-
set,making it unlikely that temperature changes
are responsible for the effects that we observed.
Similarly, although cortisol elevations during
wake and especially during sleep deprivation
are well documented, adrenalectomy experi-
ments establish that cortisol is not responsible
for most of the transcriptional effects of SD
(66). Therefore, we also disfavor this indirect
cue as a primary signal.
Overall, our results are consistent with anti-

cipatory circadian delivery of synaptic mRNAs
before dawn and dusk, followed by “need-
dependent” local translation linked to sleep
and wake states. These spatiotemporal dynam-
ics across the synaptic landscape likely play a
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critical role in diurnally regulating all aspects
of forebrain function.

Materials and Methods
Animals and tissue collection

All experiments were performed after approval
by the animal welfare officer of the University
of Zürich and veterinary authorities of the
Canton of Zürich. Ten-week-oldmale C57BL/6
mice were housed with free access to food and
water and entrained to a 12 hour:12 hour LD
schedule for 14 days. Mice were sacrificed at
4-hour intervals over 1 day (ZT0, ZT4, ZT8, ZT12,
ZT16, and ZT20; n = 3 mice for transcriptome
and n = 4 mice for proteome). At the time
points overlapping with light transitions (ZT0
and ZT12), euthanasia was performed right be-
fore the light change. For the around-the-clock
sleep deprivation, mice were allowed to accli-
matize to a 12-hour light/12-hour dark cycle for
14 days. Six groups of mice were sleep deprived
for 4 hours by gentle handling [cage exchange
and introduction of new objects as described
previously (67)] at different times of day [SD4
(sleep deprivation from ZT0 to ZT4), SD8, SD12,
SD16, SD20, and SD0; n = 3 mice for tran-
scriptome and n = 4 mice for proteome]. To
collect synaptoneurosomes frommice kept in
constant darkness and from Bmal1−/− mice,
animals were kept in LD for 2 weeks and then
transferred to constant darkness (DD) 48 hours
before euthanasia at circadian times (CT) CT0
and CT12, respectively (n = 3).

EEG recording and sleep data analysis

Adult C57BL/6mice were used for surgery (8 to
10 weeks old at surgery). Mice were implanted
epidurally under isoflurane anesthesia for EEG
recording. Right before and 24 hours after

surgery, mice were treated with an analgesic
(Temgesic, 0.1 mg/kg, intraperitoneal). Gold-
plated miniature screws (0.9-mm diameter)
were used as EEG electrodes and positioned on
the left hemisphere above the frontal cortex
(1.5 mm anterior to bregma, 1.5 mm lateral to
the midline) and the parietal cortex (2 mm
posterior to bregma, 2 mm lateral to the mid-
line). The reference electrode was placed above
the cerebellum (2mmposterior to lambda, 0mm
lateral to the midline). Screws were connected
to copper wires and fixed to the skull with
dental cement (Paladur two-component system).
Electromyography (EMG) was recorded using
two gold wires (0.2-mm diameter) inserted
bilaterally in the neck muscle. After 1 week of
recovery, EEG and EMG were recorded con-
tinuously for 7 days. Two cohorts of six and eight
mice, respectively, underwent 1 day of BL record-
ing and 3 days of SD recording, with 48 hours
of recovery in between. Cohort 1 underwent
SD at ZT4 to ZT8, ZT12 to ZT16, and ZT16 to
ZT20. Cohort 2 underwent SD at ZT0 to ZT4,
ZT8 to ZT12, and ZT20 to ZT24. SD was per-
formed by gentle handling as described previ-
ously (67). Both EEG and EMG signals were
amplified (factor 2000), analog filtered (high-
pass filter: –3 dB at 0.016 Hz; low-pass filter:
–3 dB at 40 Hz, <–35 dB at 128 Hz), sampled
with 512 Hz, digitally filtered (EEG, low-pass
FIR filter: 25 Hz; EMG, band-pass FIR filter:
20 to 50 Hz), and stored with a 128-Hz resolu-
tion. EEG power spectra were computed for
4-s epochs by a fast Fourier transform routine
within the frequency range of 0.5 to 25 Hz.
Between 0.5 and 5 Hz, 0.5-Hz bins were used,
and between 5 and 25Hz, 1-Hz binswere used.
The corresponding slow-wave-activity (SWA)
was calculated using the raw parietal and fron-

tal EEG, aswell as the raw and integratedEMG,
to visually score three vigilance states: non-
rapid eye movement (NREM) sleep, rapid eye
movement sleep (REM), andwake, for4-s epochs.
Epochs containing artifacts were identified and
excluded from the spectral analysis. Data anal-
ysis was carried out using MATLAB version
R2015a (TheMathWorks, Inc., Natick,MA, USA).
Relative frontal SWAwas calculated relative to
the mean SWA at ZT8 to ZT12 during the BL
day. Sleep loss was calculated by comparing
NREM sleep amount in each 4-h SD slot with
the sleep amount in the same time of day of the
correspondingBLday [p<0.05, one-way analy-
sis of variance (ANOVA)]. Sleep latency was
analyzed by measuring the time each mouse
stayed awake after the end of each 4-h SD until
it slept for >1 min (p < 0.05, one-way ANOVA).

Purification of synaptoneurosomes

Synaptoneurosomes frommouse forebrainwere
prepared as described previously (22). In brief,
brain was isolated and rapidly cooled to 4°C,
washed in ice-cooled sucrose buffer (320 mM
sucrose, 5 mM HEPES, pH 7.4), followed by
homogenizationwith a Teflon-glass tissue grinder
using a motor-driven pestle keeping samples
cooled. Homogenate was centrifuged at 1000g
for 10min. Twomilliliters of the supernatant
was loaded over discontinuous Percoll gradients
(3, 10, and 23% Percoll in sucrose buffer) and
centrifuged at 31,000g for 5 min. The fractions
at the interfaces between 3 and 10% and 10
and 23%were collected and further centrifuged
at 20,000g to pellet synaptoneurosomes. All
centrifugation steps were performed at 4°C. All
solutions were supplemented with complete
protease inhibitor cocktail (Roche), 0.05 mM
dithiothreitol (DTT), 0.1 mM phenylmethyl-
sulfonyl fluoride, and 20 U/10 ml RNaseOUT
(Invitrogen).

RNA sample preparation

Two hundred microliters of homogenate was
used for total RNA extraction. Briefly, tissue
lysate in QIAzol Lysis Reagent (Qiagen) was
vortexed for few seconds. Then, 0.2ml of chloro-
formwas added to lysate andmixed by vigorous
shaking for 15 s. Themixture was incubated at
room temperature for 10min and centrifuged
at 18,000g for 20min at 4°C to separate phases.
The upper aqueous phase containing RNA was
carefully aspirated to a fresh, nuclease-free tube.
The RNAwas then precipitated by adding one
volumeof isopropanol andcentrifugedat 18,000g
for 20 min at 4°C. The RNA pellet was washed
with 70% ethanol, air-dried, and dissolved in
nuclease-free water.
Frozen synaptoneurosome pellets (~500 ml)

were processed with the High Pure RNA Isola-
tionKit (Roche). Samplesweremixedwith600ml
of lysis binding buffer and further steps were
performed according to the manufacturer's
instructions. The dissolved total RNA was
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SD (B) in all biological replicates for each sampled time point (columns). Proteins (in rows) are ordered by
the estimated phase in BL, and all intensities in both conditions were z-scored to BL intensity values.
(Note: of the 474 proteins represented, 98% did not cycle in SD.) (C) Distribution of the q values (Perseus
time-series periodic analysis, period 24 hours) of the cycling synaptic proteome in BL (gray) and the
corresponding q values in the SD dataset (green).
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quantified by NanoDrop (NanoDrop Technol-
ogies) and a Qubit (1.0) Fluorometer (Life Tech-
nologies, Pleasanton, CA, USA). The quality was
assessedwith a 2100 Bioanalyzer (Agilent Tech-
nologies, Waldbronn, Germany).

Library preparation, sequencing, and
data processing

Poly(A) RNA sequencing was performed using
500 mg of total RNA. Strand-specific cDNA
libraries were prepared using Illumina’s TruSeq
Stranded Sample Prep Kit (125-bp single-read
mode) following the manufacturer’s directions,
then sequenced on aHiSeq 4000 (Illumina Inc.,
San Diego, CA, USA). The raw reads were first
cleaned by removing adapter sequences, trim-
ming low-quality ends, and filtering reads with
low quality (phred quality <20) using Trimmo-
matic (versions 0.33 and 0.36) (68). Specific
quality control measures were evaluated and
the following samples were excluded: replicate
number 3 in ZT16 BL because of degradation
during the library preparation; one sample
from ZT8 BL because of reduced read counts
(<10million); and two samples from ZT4 SD,
three from ZT16 SD, and three from ZT20 SD
because of signs of contaminationwith external
material. Sequence alignment of the resulting
high-quality reads to themouse reference genome
(build GRCm38) and quantification of gene-
level expression was performed using RSEM
(versions 1.2.22 and 1.3.0) (69). For downstream
analysis, the mRNA features were filtered ac-
cording to normalized (logmean) feature counts,
which represent aggregated raw counts of
mapped reads at the gene level (RSEM). We
determined a threshold for minimum gene
expression on the basis of the assumption that
a transcript with >10 counts in two of three
replicates is expressed (linear signal thresh-
old of 10).

Bioinformatic and statistical analyses of
transcriptomics data

To search for transcripts that are enriched in
neuronal synapses, we did a differential gene
expression analysis using a pairwise compar-
ison between synaptoneurosomes and whole
brain at two time points, ZT0 and ZT12. The
threshold to consider a gene enriched in the
synapse was a fold change (of the synaptic sam-
ples versus the whole forebrain samples) >1.5 in
one of the two time points.
Cycling analysis was performed using the

computational platformPerseus (25).We fit the
normalized mRNA counts to a cosine with a
fixed period of 24 hours and with amplitude
and phase as free parameters (9). Profiles were
ranked by their variance ratio. Thiswas the part
of the variance explained by the fit divided by
the contribution to the variance that was not
accounted for by the fit. On the basis of this
ranking, we determined a permutation-based
false discovery rate (FDR) by repeating the

same procedure 1000 times on the same pro-
files butwith randomized time labels.We used
a statistical cutoff of q < 0.05 to define the
cycling transcriptome. Hierarchical clustering
was performed in a phase-preserving manner
by restricting the order of elements to that
determined by the output of the cosinemodel-
based fitting. Amplitudes were calculated as the
log2 of the fold change of counts. To evaluate the
effect of constant darkness and the lack of a
functional clock on the generation of the peaks
of synaptic transcript accumulation, we com-
pared the following conditions: ZT0 versus CT0,
ZT0 versus CT0 Bmal−/−, ZT12 versus CT12, and
ZT12 versusCT12Bmal1−/−, by applying a count-
based negative binomialmodel implemented in
the software package EdgeR (R version: 3.4.2,
EdgeR version: 3.20.1) (70). The differential
expression was assessed using an exact test
adapted for overdispersed data. Genes showing
altered expressionwith an adjusted (BHmethod)
p < 0.05were considered differentially expressed.

Protein sample preparation

For protein extraction, 4% SDS was added to
each synaptoneurosomal sample or to the homo-
genate, followed by 5 min of incubation at 95°C.
Samples were flash frozen and stored at –80°C
until used. Samples were lysed (0.1 M Tris-HCl,
pH 7.6, and 4% SDS), sonicated in a Bioruptor
(Diagenode) at 4°C for 15 min or until homoge-
neous suspension was formed, and boiled at
95°C for 5 min. Protein lysates were treated
first with 1 ml of DTT (1 M), followed by 10 ml
2-chloroacetamide (0.5M). Each treatment was
performed at room temperature (22°C) for
20 min. The lysates were precipitated with ace-
tone and protein digested as described previ-
ously (9). In detail, pellets were resuspended
in 500 ml of trifluoroethanol digestion buffer.
For protein digestion 1:100 (protein:enzyme)
trypsin and LysC were added and samples
incubated overnight at 37°Cwith rapid agitation
(1500 rpm). Digested peptides were concen-
trated in a SpeedVac for 15min at 45°C, followed
by acidificationusing 10 ml of 10% trifluoroacetic
acid (TFA). Peptides were then desalted using
StageTips with two layers of styrenedivinylben-
zene–reversed phase sulfonated (SDB-RPS; 3M
Empore), washed twice with wash buffer (0.2%
TFA), and thenwashed oncewith isopropanol
containing 1% TFA. Peptides were eluted
by adding 60 ml of SDB-RPS elution buffer
[80% acetonitrile, 1.25% NH4OH (25% high-
performance liquid chromatography grade)] and
immediately concentrated in a SpeedVac for
30 min at 45°C. Concentrated peptides were
then resuspended in abuffer containing 2%ACN
and 0.1% TFA before chromatography–tandem
mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis and data processing

Samples were measured in a single-shot manner
(71), loading ~1 mg of peptide mixture onto a

50-cm reversed-phase column (diameter 75 mM;
packed in-house with 1.9 mM C18 ReproSil
particles; Dr. Maisch GmbH). The temperature
of the homemade column oven was maintained
at 60°C. The column was mounted to the
EASY-nLC 1200 system (Thermo Fisher Scientific).
The peptides were eluted with a binary buffer
system consisting of buffer A (0.1% formic
acid) and buffer B (80% ACN and 0.1% formic
acid). A gradient length of 140 min was chosen
(5 to 65% buffer B for 130 min followed by
10 min of 80% buffer B) with a flow rate of
300 nl/min. Peptides were then electrosprayed
into a Q Exactive HF mass spectrometer (MS)
(Thermo Fisher Scientific), obtaining full scans
(300 to 1650 m/z, R = 60,000 at 200 m/z) at
a target of 3 × 106 ions. The 15 most abundant
ions were selected and fragmented with higher-
energy collisional dissociation (target 1 × 105

ions, maximum injection time 60 ms, isolation
window 1.4 m/z, underfill ratio 1%), followed
by detection in the Orbitrap (R = 15,000 at
200 m/z). Raw MS data files were processed
using MaxQuant [version 1.5.5.6] to calculate
label-free intensities with the Andromeda
search engine with FDR < 0.01 at the protein
and peptide levels. The default settings were
used with the following modifications: (i) the
variable modification methionine (M), acetyl-
ation (protein N terminus), and the fixed mod-
ification carbamidomethyl (C) were selected;
(ii) only peptides with a minimal length of
seven amino acids were considered; and (iii)
the “match between run” option was enabled
with a matching time window of 0.7 min. For
protein and peptide identification, the UniProt
database from mouse (September 2014) in-
cluding 51,210 entries was used. Each raw file
and replicate was treated as one independent
experiment.

Bioinformatic and statistical analyses of
proteomics data

Processeddatawereuploaded inPerseus software
(25). First, reverse sequences and potential con-
taminants were removed. Then, the total dataset
was log2 transformed and label free intensities
were normalized in each sample by subtracting
themedia of all intensities in the same sample.
Proteins without label free intensities in <10
samples were removed in both the synapto-
neurosomes (SD/BL) and total forebrain data-
sets. Replicates 1 and 4 of ZT4, replicate 4 of
ZT8, and replicate 1 of ZT12 of the total brain
homogenate were not considered because the
protein quantification in these samples was
limited.
Cycling analysis was done as for the tran-

scriptomic data, in this case using label-free
protein intensity values. Amplitudes were as
well calculated as the log2-fold change. For
comparison of transcriptome and the proteome
data, we matched datasets by gene name or
Uniprot ID.
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GO analysis
All ontological analyses were done with the
enrichment analysis tool FunRich using the
Hgcn gene symbols. For analysis of synaptic
enriched mRNAs (3104, of which 2954 were
available in the database), the GO option
“GOTERM Cellular Component” was selected.
A maximum p value of 0.001 was chosen to
select only significant categories. For the eva-
luation of synaptic enrichment, we filtered for
annotations containing the following terms:
“synap*,” “project*,” “dendr*,” “axon,” or “spine.”
The percentage of genes for each annotation
and the fold enrichment in the three catego-
ries, identified, expressed, and enriched features,
were used to validate the enrichment strategy.
Only the top 10 annotations according top value
were included in the graphical representation;
all returned annotations are shown in the sup-
plementary tables. Enriched biological processes
of the cycling transcriptome were identified
separately for light (752, of which 725 were
available in the “Biological Process” database
feature in GO) or dark phases (1263, of which
1217 were available in the Biological Process
database). Featureswere ascribed to each group
using hierarchical clustering according to the
temporal expression profile. Annotation with a
BH-corrected p < 0.001 was included. Enrich-
ment for biological processes in the synaptic
enriched dataset was also performed for com-
parison of the common annotations. To com-
pare the annotation enrichment between the
light and dark clusters, we performed a fold
enrichment analysis between both datasets
and obtained a fold value (included in table S4).
To analyze the gene datasets obtained after the
SD experiment. we followed similar steps. Four
groups of featureswere independently analyzed
according to phase or cycling behavior in SD
(light and q < 0.05, 149 features; light and q >
0.05, 603 features; dark and q < 0.05, 393
features; dark and q > 0.05, 863 features). For
representation, the top 10 enriched annota-
tions (ranked by the fold value between phases
for cycling or not in SD and vice versa and with
BH-corrected p < 0.1) were considered. For the
common cycling features at the mRNA and
transcript levels, the phase of protein was used
to classify each into the light cluster (29 features)
or dark cluster (27 features). For representation,
we selected the top five enriched annotations
(BH-corrected p < 0.01).

Single-molecule RNA in situ hybridization

RNAscope hybridization was performed with
the RNAscope Multiplex Fluorescent v2-kit (Ad-
vanced Cell Diagnostics, Inc.) according to the
manufacturer’s instructions with the following
modifications. Mice were perfused intracardially
with artificial cerebral spinal fluid, the dissected
brains postfixed with 4% paraformaldehyde for
2 hours at 4°C, and subsequently cryoprotected
in 30% sucrose in PBS for 24 hours at 4°C and

frozen at –80°C for up to 3months. The brains
were cut coronally at 14 mm with a cryotome,
mounted on a SuperFrost glass slide (Thermo
Fisher Scientific), and stored at –80°C until
use. Tissue sections were then dried in the
ACD hybridizer at 37°C for at least 1 hour,
treated with hydrogen peroxide for 10 min,
and dried before protease treatment at 60°C
for 30 min. The boiling step in the antigen-
retrieval procedure has been omitted and the
sections were digested in Protease Plus (Ad-
vanced Cell Diagnostics, Inc.) solution for 15 min
at 40°C. Each RNA signal has been developed
sequentially by specifically targeting each probe
with horseradish peroxidase, which converted
fluorescently labeled tyramide (TSA Plus fluo-
rescein, Cy3 or Cy5 kit, PerkinElmer) into an
insoluble stain around the RNA of interest. The
final concentration of tyramide in TSA buffer
solutionwas 1:1500. CustomRNAscope target
probes (all targeting mouse transcripts) were
purchased from Advanced Cell Diagnostics
(Slc17a7, Lingo1, and Cry1), as well as standard
RNAscopepositive (housekeepinggenes:PolR2a,
PPIB and Ubc) and negative (bacterial house-
keeping gene: DapB) control probes.
For imaging, a confocal laser-scanning micro-

scope (LSM 710, Carl Zeiss, ZEN imaging soft-
ware)was used. The imageswere acquiredusing
a 40× (numerical aperture 1.4) objective and
a pinhole set at 1 airy unit, pixel dwell time
3.15 ms, and laser power 1.2 to 2%. The images
spanned the whole thickness of the brain slices
(10 to 12 mm) in 1-mmsteps andwere analyzed as
a maximum-intensity projection across z-stacks.
To reliably quantify mRNA dots in different

brain regions, a custom Python script was writ-
ten using the ImageJ image-processing frame-
work. The script can be used as a plugin and
is openly available on a GitHub repository
(https://github.com/dcolam/Cluster-Analysis-
Plugin). Images were binarized and segmented
to separate nuclei-rich regions (pyramidal cell
layer of the hippocampus and cell nuclei in
cortex), and particle analysis was done using
ImageJ. For representation purposes, mRNA
dots were enlarged to improve visualization.
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