

Comparative physiology and pharmacology of sleep

Circadian rhythms
Circadian and homeostatic aspects of sleep regulation
and their interaction

Peter Achermann

Abteilung Chronobiologie und Schlafforschung Institut für Pharmakologie und Toxikologie Zentrum für Integrative Human Physiologie (ZIHP) Zentrum für Neurowissenschaften Zürich (ZNZ)

BIO 333: HS 2012; 15. Oktober 2012

Learning objectives

At the end of the lecture you should be able to understand:

- the principles of circadian rhythms
- the importance of circadian rhythms for sleep
- the interaction of circadian and homeostatic processes
- their relevance for sleep-wake regulation

Circadian rhythms

Long-term recordings of rest and activity in rats and mice

Running wheel

Infrared sensors

The rest-activity rhythm is an important marker of circadian rhythms in animals

Running wheel activity of a rat

The light-dark cycle of our environment is the most important *synchronizer* ("Zeitgeber") of circadian rhythms

Circadian pacemaker – *in vitro* property

 SCN slices as well as SCN neurons still show rhythmic circadian activity in vitro

Welsh et al., Neuron, 1995

Evidence that the SCN is the «clock» in the brain:

- Lesion leads to loss of circadian rhythms
- circadian activity also in vitro
- SCN transplantation experiments (rhythm of donor is established)

Circadian rhythms are ubiquitous

- animals
- plants
- monad organisms

Question of mechanism and function

- relation to 24-h light-dark cycle of the environment
- anticipation
- coordination of all body rhythms
- seasonal change in photoperiod

Circadian and homeostatic aspects of sleep regulation and their interaction

Sleep homeostasis

- Sleep-wake dependent aspect of sleep regulation
- Sleep propensity
 - augmented when sleep is curtailed or absent
 - reduced in response to excess sleep

Circadian rhythms

- Relation to 24-h light-dark cycle
- Anticipation
- Coordination of all body rhythms
- Seasonal changes in photoperiod

Two process model of sleep regulation

Borbély, Human Neurobiol,1982 Daan et al., Am J Physiol, 1984

- Circadian rhythms: nuclei in the anterior hypothalamus, SCN
- Sleep: no specific center, involvement of different brain regions, networks

Tobler, Borbély, Groos, Neurosci Letters 42, 1983; Mistlberger et al, Sleep 6, 1983; Trachsel et al, Brain Res., 1992

- Increase of SWA after sleep deprivation in rats with SCN lesion
- Intact homeostatic regulation in the absence of a circadian sleep-wake rhythm
- Sleep homeostasis and circadian aspects can be dissociated (rat)

 How is the association between circadian and homeostatic aspects of sleep in humans?

Problem:

normal situation: both components change simultaneously

Interaction of *sleep homeostasis* and *circadian processes* determine

- timing of sleep and wakefulness
- fatigue / alertness
- cognitive performance
- etc.

Additional factors:

- external influences (society, environment, etc.)
- decisions