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Abstract

This analysis studies the selection of B0 → K+π−e+e− in the LHCb experiment. The
backgrounds from B0 → K∗(→ K+π−)J/ψ(→ e+e−) and Λ0

b → pK−J/ψ(→ e+e−)
are discussed. The cut-based selection method is used firstly to veto the background
and the best cuts are found. Then selections using a BDT method are studied.
Finally the results from these two methods are compared and the differences are
shown.
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Chapter 1

Introduction

1.1 LHCb experiment

The LHCb experiment is situated at one of the four points around CERN’s Large
Hadron Collider, which accelerates two proton beams to a center-of-mass energy
of 13 TeV. The LHCb detector is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5. The aim of the LHCb experiment is to record the
decay of particles containing b and anti-b quarks and the primary purpose of LHCb
is to search for new physics in CP violation and rare decays of beauty and charm
hadrons, and this requires LHCb has excellent tracking performances in terms of
momentum, primary vertex resolution, excellent particle identification capabilities
and so on[1].

Figure 1.1: LHCb detector[1]
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The tracking system[2] consists of the vertex locator(VELO) and four planar
tracking stations. The VELO is situated around the interaction region inside a
vacuum tank, and the four stations are the Tracker Turicensis(TT) upstream of the
dipole magnet and T1-T3 downstream of the magnet[3]. The VELO contains 42
silicon modules arranged along the beam, each providing a measurement of the r
and φ coordinates. The TT and IT detectors use silicon microstrip sensors with
a strip pitch of 183µm and 198µm, respectively. The Outer Tracker is a drift-
tube gas detector consisting of approximately 200 gas-tight straw-tube modules with
drift-time read-out. Charged hadron identification in the momentum range from
2 to 100GeV/c is achieved by two Ring Imaging Cherenkov detectors(RICH1 and
RICH2) read out by Hybrid Photon Detectors(HPDs). The calorimeter system is
composed of a Scintillating Pad Detector(SPD), a Preshower(PS), a shashlik type
electromagnetic calorimeter(ECAL) and a hadronic calorimeter(HCAL). It provides
the identification of electrons, photons and hadrons as well as the measurement of
their energies and positions, and selects candidates with high transverse energy for
the first trigger level(L0). The muon detection system provides muon identification
and contributes to the L0 trigger of the experiment.

The LHCb data-flow consists of online and offline processes. The PP collisions
rate is much higher than the readout frequency of LHCb tracking detectors, so sev-
eral trigger steps are needed to make sure that the information could be stored
permanently. The LHCb trigger system consists of two levels: the first level is im-
plemented in hardware and is designed to reduce the event rate from the nominal
LHC bunch crossing rate of 40 MHz to a maximum of 1.1 MHz, and the second
level is software trigger, High Level Trigger(HLT). Then the offline step processes
the online-selected data to achieve the best reconstruction quality for the analysis
of data. After reconstruction[4], events are further selected and categorized by a
stripping procedure through stripping line which corresponds to a single process of
interest.

1.2 Flavor changing neutral current processes in

B decays

The flavor changing neutral current processes(FCNC) include particle-antiparticle
mixing, certain rare and radiative meson decays, CP-violating decays and so on. The
FCNC processes have played an important role in the Standard Model, and these
processes are governed by the GIM mechanism[5] which can suppress these processes
naturally. As a result, there are no FCNC processes at the tree level, and the one-
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loop diagrams, the penguin and box diagrams, have the leading contributions. This
fact makes the FCNC processes a very powerful tool for the determination of some
parameters of the CKM matrix[6][7], for example the top-quark couplings |Vtd| and
|Vts| and the CP-violating phases. Besides, the FCNC processes are sensitive to the
contribution from physics beyond the Standard Model, thus they are also a good
tool to study new physics.

Figure 1.2: Some typical Penguin and Box diagrams[8].

At present only a few FCNC transitions have been observed experimentally[8]:

• K0 − K̄0 mixing, the related KL − KS mass difference and the indirect CP
violation in KL → ππ represented by the parameter εK .

• B0
d − B̄0

d mixing and the related mass difference (∆M)d

• KL → µµ̄

• B → Xsγ and B → K∗γ.

The interest in FCNC decays can be formulated as follows[9]:

• They measure the parameters of the CKM matrix and play a central role in
testing the unitarity of this matrix.

• They are vitally important in measuring CP violation in flavor changing pro-
cesses.

• They offer fertile testing grounds for Quantum Chromodynamics(QCD); the
available techniques(Perturbative QCD, Heavy quark effective theory HQET,
Lattice-QCD, QCD-sumrules) are directly applicable in these decays.
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• They may reveal new physics, such as supersymmetry SUSY, more generations,
leptoquarks, etc.

• Most importantly, they are accessible at the present and planned experimental
facilities.

The transition of a bottom quark into a strange quark is an important example of
the FCNC processes, which can occur through the same quantum loop transition of
the GIM mechanism but is dominated by the contribution from the top quark[10]. A
particular rare b-hadron FCNC decay involves the decay of a B0

s hadron into a pair of
muons. Another important FCNC process involves the decay of a bottom quark into
a strange quark and two leptons, b → sll. These processes are called semileptonic
decay, because the decay products include leptons and hadrons. Measurement of the
properties of these decays are sensitive to new particles with masses up to around
100 TeV[11].

For these decays, the simplest property to measure is the branching fraction[10].
For semileptonic decays, the branching fraction is measured as a function of the
squared four-momentum transferred to the two leptons. The influence of new physics
depends on the squared four-momentum, thus this is an important variable. Besides,
the ratio of branching fraction between decays involving electrons and muons can be
considered. The mass of the muon is about 200 times heavier than the mass of the
electron, but except that the muon has exactly the same properties as electron in the
Standard Model. This phenomenon is known as the Lepton Universality. Looking at
the ratio of the branching fraction is a sensitive way to search for new physics, since
new particles which are not predicted by the Standard Model don’t have to follow
the Lepton Universality. In rare b-hadron decays, one famous example is the ratio
RK = B(B+ → K+µ+µ−)/B(B+ → K+e+e−). This ratio is known as to be unity
in the Standard Model with very high precision[12][13][14]. Any measurement that
deviates significantly from unity would be an unambiguous sign of physics beyond
the Standard Model. In addition to studying b-hadron decays into a specific final
state, one can also consider the inclusive b → sll process, where the final state can
comprise any number of hadrons.

Another important ratio RK∗0 is defined by:

RK∗0 =

∫ dΓ(B→K∗0µ+µ−)
dq2

dq2∫ dΓ(B→K∗0e+e−)
dq2

dq2
.

A precise measurement of RK∗0 can provide a deeper understanding of the nature of
the present discrepancies[15]. Some of the leading-order Feynman diagrams for the
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B0 → K∗0l+l− decays, where l represents either a muon or an electron, are shown in
Figure.1.3 for both Standard Model and possible New Physics scenarios. If the new
physics particles couple differently to electrons and muons, lepton universality could
be violated.

Figure 1.3: Feynman diagrams in the Standard Model of the B0 → K∗0l+l− decay
for the (top left) electroweak penguin and (top right) box diagram. Possible new
physics contribution violating Lepton Universality: (bottom left) a tree-level diagram
mediated by a new gauge boson Z ′ and (bottom right) a tree-level diagram involving
a leptoquark.[16]
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Chapter 2

Method

2.1 Estimation of event number

The number of signal and background events in real data need to be estimated, so
that the goodness of a given cut could be evaluated and finally the cuts could be
optimized.

The formula to estimate the event number in real data is as follows:

Nestimated =

∫
Ldt ∗ σbb̄ ∗ εgeo ∗ fhadron ∗ 2 ∗Bdecay.∫

Ldt is the integrated luminosity; σbb̄ is the total production cross section of b − b̄
quarks; εgeo is the geometrical efficiency of a decay channel and this term is due
to the geometrical structure of the detector; fhadron is the hadronization factor of
a certain hadron; the factor 2 is due to the charge conjugate process; Bdecay refers
to the branching fraction of a decay channel or decay chain which is composed of
several decay processes.

2.2 Boosted Decision Tree

2.2.1 Decision tree

A decision tree is an extended cut-based selection. Many events do not have all
characteristics of signal or background, and one should try not to rule out events
failing a particular criterion. One should keep events rejected by one criterion and
see whether other criteria could help classify them properly. Binary trees can be built
with branches splitting into many sub-branches. It’s visualization is like a flowchart
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diagram which easily mimics the human level thinking. That is why decision trees
are easy to understand and interpret.

Figure 2.1: Decision tree[17]

The following is the procedure to grow a tree[18]:

• Start with setting all events(signal and background) in the first(root) node.

• Sort all events by each variable

• For each variable, find the splitting value with best separation between two
children. Mostly signal in one child and background in the other.

• Select the variable and splitting value with best separation and produce two
branches(nodes). The events failing criterion on one side and events passing it
on the other.

• Keep splitting and now have two new nodes. Repeat algorithm recursively on
each node. The same variable can be reused.

• Iterate until stopping criterion is reached.
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• Splitting stops when the terminal node arrives at the final leaf.

The impurity measure should be made when splitting a node. The impurity
measure i(t) is maximal for equal mix of signal and background and it’s symmetric
in the probability psignal and pbackground. It’s minimal for a node with either signal
only or background only. The impurity measure is strictly concave. It rewards purer
nodes or favors end cuts with one smaller node and one larger node. The decrease
of impurity for split s of node t into children tP and tF (goodness of split) is defined
by

∆i(s, t) = i(t)− pP ∗ i(tP )− pF ∗ i(tF ).

The aim is to find the split s∗ such that

∆i(s∗, t) = maxs∈splits∆i(s, t).

Maximizing ∆i(s, t) is just minimizing the overall tree impurity.
There are some common impurity functions:

• misclassification error = 1−max(p, 1− p)

• (cross) entropy = −Σi=s,bpilog(pi)

• Gini index

• cross section = − s2

s+b

• excess significance = − s2

b

The Gini index of diversity is defined for many classes: Gini = Σi 6=j
i,j∈classespipj. Under

statistical interpretation, if we assign a random object to class i with probability
pi and probability of class j is pj, then Gini = probability of misclassification.
For two classes like signal and background, i = s, b and ps = p = 1 − pb, then
Gini = 1− Σi=s,bp

2
i = 2p(1− p) = 2sb

(s+b)2
.

The decision to stop splitting is made under the following conditions:

• Minimum leaf size is reached.

• Insufficient improvement from further splitting.

• Perfect classification(all events in leaf belong to same class)

• Maximal tree depth(like-size trees choice or computing concerns)
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The number of variables is not affected too much by ”curse of dimensionality”
and the CPU consumption scales as nNlogN with n variables and N training events.
The result is insensitive to duplicate variables and the order of the variables doesn’t
matter. The order of training events is irrelevant. The irrelevant variables have no
discriminative power and won’t be used, and it only costs a little CPU time and there
is no added noise. The continuous and discrete variables can be used simultaneously.
The result is completely insensitive to the replacement of any subset of input variables
by (possibly different) arbitrary strictly monotone functions of them. The ranking
of one variable can be determined by adding up decrease of impurity each time the
variable is used, and the largest decrease of impurity indicates the best variable.

There are some common tree parameters[19]:

• Max.depth: how tall a tree can grow.

• Max.features: how many features can be used to build a given tree.

• Min.samples per leaf: how many samples are required to make a new leaf.

These paremeters define the end condition for building a new tree. They are usually
tuned to increase accuracy and prevent overfitting. The Max.depth is usually needed
to be smaller than 10, and sometimes it’s defined by number of leaves. The features
are randomly selected from total set and the tree doesn’t have to use all of the
available features. The Min.samples per leaf is usually needed to be smaller than 1%
of data. Sometimes it’s defined by samples per split.

Ensemble learning, in general, is a model that makes predictions based on a
number of different models[20][21]. By combining a number of different models, an
ensemble learning tends to be more flexible(less bias) and less data sensitive(less
variance).

The two most popular ensemble learning methods are bagging and boosting.
Bagging is to train a bunch of models in parallel way, and each model learns from
a random subset of the data. Boosting is to train a bunch of models sequentially,
and each model learns from the mistakes of the previous model. The application of
bagging is found in Random Forests. Random forests are a parallel combination of
decision trees. Each tree is trained on random subset of the same data and the results
from all trees are averaged to find the classification. The application of boosting is
found in Gradient Boosting Decision Trees.

2.2.2 Boosting

Boosting is a general method and not limited to decision trees. It’s hard to make a
very good learner, but it’s easy to make simple, error-prone ones(but it’s still better
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than random guessing). The goal of boosting is to combine such weak classifiers into
a new more stable one with smaller error.

Figure 2.2: Ensemble of trees[17]

Boosting is a method of combining many weak learners(trees) into a strong
classifier[19]. Usually each tree is created iteratively. The tree’s output h(x) is
given a weight w relative to its accuracy, then the ensemble output is the weighted
sum:

ŷ(x) = Σtwtht(x).

After each iteration each data sample is given a weight based on its misclassification,
and the more often a data sample is misclassified, the more important it becomes.
The goal is to minimize an objective function:

O(x) = Σil(ŷi, yi) + ΣtΩ(ft),

where l(ŷi, yi) is the loss function which stands for the distance between the truth and
the prediction of the ith sample, Ω(ft) is the regularization function which penalizes
the complexity of the ith tree[22].

12



One of the very first boosting algorithms developed was Adaboost. The algorithm
can be summarized as[18]:

• Initialize the first training sample

• Train the first classifier on the first training sample

• Train the Nth classifier on the Nth training sample

• assign weight to each Nth classifier

• Modify Nth classifier into next (N+1)th classifier

• Get boosted output from all the N classifiers and their weights

Gradient boosting algorithm is slightly different from Adaboost[23][24][25]. In-
stead of using the weighted average of individual outputs as the final outputs, it uses
a loss function to minimize loss and converge upon a final output value. The loss
function optimization is done using gradient descent, and hence the name gradient
boosting. Further, gradient boosting uses short, less-complex decision trees instead
of decision stumps.

All the trees are connected in series and each tree tries to minimise the error of
the previous tree. Due to this sequential connection, boosting algorithms are usually
slow to learn, but also highly accurate. In statistical learning, models that learn
slowly perform better. The weak learners are fit in such a way that each new learner
fits into the residuals of the previous step so as the model improves. The final model
aggregates the result of each step and thus a strong learner is achieved.

Hyperparameters are key parts of learning algorithms which effect the perfor-
mance and accuracy of a model. Learning rate and n-estimators are two critical
hyperparameters for gradient boosting decision trees. Learning rate, denoted as α,
simply means how fast the model learns. Each tree added modifies the overall model.
The magnitude of the modification is controlled by learning rate.

There are some common boosting parameters[19]:

• Loss function: how to define the distance between the truth and the prediction.

• Learning rate: how much to adjust data weights after each iteration.

• Subsample size: How many samples to train each new tree.

• Number of trees: How many total trees to create.
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The loss function can use binary logistic when there are two classes. Small learning
rate is better but the training is slower. Usually the learning rate is somewhere
around 0.1. Date samples are randomly selected each iteration. The number of trees
is the same as the number of iteration, and usually more is better but may lead to
overfitting.

The boosted decision tree has many benefits. Both training and prediction is
fast, and the parameter is easy to tune. It’s not sensitive to scale and the features
can be a mix of categorical and continuous data. Training on the residuals gives very
good accuracy so it has a good performance. Finally the boosted tree algorithms are
very commonly used and there is a lot of well supported and well tested software
available. There are also some problems about boosted decision tree. It’s sensitive
to overfitting and noise, therefore one should always crossvalidate. Modern software
libraries have tools to avoid overfitting.

2.2.3 TMVA

The Toolkit for Multivariate Analysis(TMVA) is a powerful method which runs
in a ROOT-integrated environment and can be used for the processing, parallel
evaluation and application of multivariate classification[26]. The multivariate tech-
niques of TMVA use supervised learning algorithms, and they make use of training
events to determine the mapping function which could describes a decision bound-
ary(classification) or an approximation of the underlying functional behavior defining
the target value(regression). The function can be a single global function or a set of
local models and can contain various degrees of approximations. The TMVA soft-
ware package is composed of abstract, objected-oriented implementations in ROOT
for each of these multivariate analysis techniques and other auxiliary tools, and it
provides training, testing and evaluation algorithms and visualization scripts.
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Chapter 3

Selection based on cuts

3.1 Preselection

3.1.1 Dataset

The samples used in this analysis are generated by simulation which correspond to
the data in the year 2016. Three decay channels are studied:

• B0 → K+π−e+e−: the signal mode of this analysis.

• B0 → K∗(→ K+π−)J/ψ(→ e+e−): the background channel to study e-h swap
background.

• Λ0
b → pK−J/ψ(→ e+e−): the background channel to study the background

due to particle misidentification.

3.1.2 Preselection

The same preselection conditions need to be applied to all samples before further
study.

The basic preselection is the requirement of the quality of tracks and particles.
For tracks, the requirements are:

• χ2/ndf < 3

• GhostProb < 0.4

And the quality requirements of electrons are:
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• the detection region in the Electromagnetic Calorimeter ≥ 0

• the projection to x-axis of the detection position in the Electromagnetic Calorime-
ter > 363.6mm or the projection to y-axis > 282.6mm

• within the acceptance of the Electromagnetic Calorimeter

There are some preselections on particle identification:

• All particles: hasRich

• For electrons: hasCalo

The requirements on momentum are:

• For K, π: pT > 250MeV/c

• For e: pT > 500MeV/c, p > 3000MeV/c

And the requirements on the particles identification probabilities are:

• For K: ProbNNk1∗(1−ProbNNp2) > 0.05, the difference of the log-likelihood
between K and π > 0

• For π: ProbNNπ3 ∗ (1− ProbNNk) ∗ (1− ProbNNp) > 0.1

• For e: ProbNNe4 > 0.2, the difference of the log-likelihood between e and π
> 2

The angles between particles are restricted:

• θ(π, e) > 0.0005, θ(K, e) > 0.0005, θ(K, π) > 0.0005

Since the region, where the invariant mass of K, π is smaller than 1GeV , has been
well studied, the requirement on the invariant mass of K, π is:

• m(kπ) > 1GeV

Besides, there is requirement on q2, the square of the invariant mass of the lepton
pair. To avoid the influence from φ(1020) → l+l− and from the J/ψ resonance, the
requirement is:

• 1.1GeV < q2 < 6.0GeV
1the probability to be a Kaon calculated by neural network
2the probability to be a proton calculated by neural network
3the probability to be a pion calculated by neural network
4the probability to be an electron calculated by neural network
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3.2 J/ψ e-h swap background

To optimize the cuts, the cuts efficiencies need to be determined, and then the signal
event number s and background event number b of real data could be estimated.
Then by comparing the significance values s√

s+b
of different cuts, the best cut can be

determined which corresponds to the highest significance value.
The following are the constants that need to be used in the estimation:

• Luminosity of 2016: 1.6 fb−1

• b quark total production cross section: 560 µb [27]

• B0 hadronization fraction: 0.412 [28]

• B0 → K+π−e+e− branching ratio: 10.3 ×10−7 [29]

• detector geometric efficiency for B0 → K+π−e+e−: 16.3223%

• B0 → K∗0J/ψ branching ratio: 1.27 ×10−3 [29]

• J/ψ → e+e− branching ratio: 5.971 ×10−2 [29]

• detector geometric efficiency for B0 → K∗0J/ψ(→ e+e−): 16.678%

As an estimation, the signal event number before multiplying by the total cuts
efficiency is ≈ 124000 .

As an estimation, the background event number before multiplying by the total
cuts efficiency is ≈ 9337500 .

3.2.1 K-e misidentification background

Two variables are used to veto this background:

• Jpsi cons mix cov double kemisid B M: the invariant mass of (Kπee) after swap-
ping the K and the electron of the same charge.

• L1 MC15TuneV1 ProbNNe: the probability of the electron to be an electron.

The procedure to set cuts is: firstly, scan the lower boundary of Jpsi cons mix cov d-
ouble kemisid B M from 4500 to 4590 for 10 cut values: 4500, 4510, 4520, 4530, 4540,
4550, 4560, 4570, 4580, 4590; secondly, scan the upper boundary of Jpsi cons mix cov -
double kemisid B M from 4601 to 5230.1 for 10 cut values: 4601, 4670.9, 4740.8,
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4810.7, 4880.6, 4950.5, 5020.4, 5090.3, 5160.2, 5230.1; thirdly, scan the upper bound-
ary of L1 MC15TuneV1 ProbNNe from 0.21 to 0.561 for 10 cut values: 0.21, 0.249,
0.288, 0.327, 0.366, 0.405, 0.444, 0.483, 0.522, 0.561. Under combination there are
1000 veto cuts.

For each cut, the total cut efficiencies of signal sample and background are calcu-
lated, and then the numbers of signal events s and background events b in real data
are estimated. The significance values of all cuts are calculated and under comparison
the best cut is determined. Figure 3.1 shows the comparison of these 1000 signifi-
cance values, and Figure 3.2 shows the best cut in two-dimensional distributions in
background and signal sample.

Figure 3.1: Plot s√
s+b

according to the order of cuts.

The best cut is: (4580 < Jpsi cons mix cov double kemisid B M < 4601) &
(L1 MC15TuneV1 ProbNNe < 0.21), and then s = 632.06, b = 3.18179, s√

s+b
=

25.0778.
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Figure 3.2: Top left: B mass distribution in background sample; top right: B mass
distribution in signal sample; bottom left: veto cut on background sample; bottom
right: veto cut on signal sample.

In Figure 3.2 the shaded rectangular region stands for the best cut. The region
is rather small and it doesn’t cut away any event. The main reason resulting in this
situation is that there are very few background events.

3.2.2 π-e misidentification background

Two variables are used to veto this background:
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• Jpsi cons mix cov double piemisid B M: the invariant mass of (Kπee) after
swapping the π and the electron of the same charge.

• L2 MC15TuneV1 ProbNNe: the probability of the electron to be an electron.

The procedure to set cuts is: firstly, scan the lower boundary of Jpsi cons mix c-
ov double piemisid B M from 3500 to 3950 for 10 cut values: 3500, 3550, 3600,
3650, 3700, 3750, 3800, 3850, 3900, 3950; secondly, scan the upper boundary of
Jpsi cons mix cov double piemisid B M from 4001 to 4900.1 for 10 cut values: 4001,
4100.9, 4200.8, 4300.7, 4400.6, 4500.5, 4600.4, 4700.3, 4800.2, 4900.1; thirdly, scan
the upper boundary of L2 MC15TuneV1 ProbNNe from 0.21 to 0.561 for 10 cut
values: 0.21, 0.249, 0.288, 0.327, 0.366, 0.405, 0.444, 0.483, 0.522, 0.561. Under
combination there are 1000 veto cuts.

For each cut, the total cut efficiencies of signal sample and background are calcu-
lated, and then the numbers of signal events s and background events b in real data
are estimated. The significance values of all cuts are calculated and under comparison
the best cut is determined. Figure 3.3 shows the comparison of these 1000 signifi-
cance values, and Figure 3.4 shows the best cut in two-dimensional distributions in
background and signal sample.

Figure 3.3: Plot s√
s+b

according to the order of cuts.

The best cut is: (3500 < Jpsi cons mix cov double piemisid B M < 4400.6) &
(L2 MC15TuneV1 ProbNNe < 0.288), and then s = 630.831, b = 9.9431, s√

s+b
=

24.9207.
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Figure 3.4: Top left: B mass distribution in background sample; top right: B mass
distribution in signal sample; bottom left: veto cut on background sample; bottom
right: veto cut on signal sample.

From Figure 3.4 it can be seen that the shaded rectangular region cuts away a
small part of background events. These events have relatively small Jpsi cons mix -
cov double piemisid B M values and small L2 MC15TuneV1 ProbNNe values.
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3.3 Λ0
b → pK−J/ψ(→ e+e−) background

The same procedures as above are performed on this background sample.
The following are the constants that need to be used in the estimation:

• Luminosity of 2016: 1.6 fb−1

• b quark total production cross section: 560 µb [27]

• B0 hadronization fraction: 0.412 [28]

• B0 → K+π−e+e− branching ratio: 10.3 ×10−7 [29]

• detector geometric efficiency for B0 → K+π−e+e−: 16.3223%

• Λ0
bhadronizationfraction

B0hadronizationfraction
: 0.387 [30]

• Λ0
b → pKJ/ψ branching ratio: 3.17 ×10−4 [29]

• J/ψ → e+e− branching ratio: 5.971 ×10−2 [29]

• detector geometric efficiency for Λ0
b → pKJ/ψ(→ e+e−): 17.3665%

As an estimation, the signal event number before multiplying by the total cuts
efficiency is ≈ 124000 .

As an estimation, the background event number before multiplying by the total
cuts efficiency is ≈ 939000 .

3.3.1 π → p misidentification background

Two variables are used to veto this background:

• B M0123 Subst1 pi2p: the invariant mass of (Kπee) after substituting the π
to a proton.

• Pi PIDp: the difference of log-likelihood between π and proton.

The procedure to set cuts is: firstly, scan the lower boundary of B M0123 Subst1 -
pi2p from 4000 to 4450 for 10 cut values: 4000, 4050, 4100, 4150, 4200, 4250, 4300,
4350, 4400, 4450; secondly, scan the upper boundary of B M0123 Subst1 pi2p from
4501 to 5850.1 for 10 cut values: 4501, 4650.9, 4800.8, 4950.7, 5100.6, 5250.5, 5400.4,
5550.3, 5700.2, 5850.1; thirdly, scan the lower boundary of Pi PIDp from -20 to 16
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for 10 cut values: -20, -16, -12, -8, -4, 0, 4, 8, 12, 16. Under combination there are
1000 veto cuts.

For each cut, the total cut efficiencies of signal sample and background are calcu-
lated, and then the numbers of signal events s and background events b in real data
are estimated. The significance values of all cuts are calculated and under comparison
the best cut is determined. Figure 3.5 shows the comparison of these 1000 signifi-
cance values, and Figure 3.6 shows the best cut in two-dimensional distributions in
background and signal sample.

Figure 3.5: Plot s√
s+b

according to the order of cuts.

The best cut is: (4000<B M0123 Subst1 pi2p<5100.6) & (Pi PIDp>0), and then
s = 629.971, b = 3.07363, s√

s+b
= 25.0382.
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Figure 3.6: Left: veto cut on background sample; right: veto cut on signal sample.

From Figure 3.6 it can be seen that the background events and signal events don’t
overlap each other too much, thus the shaded rectangular region cuts away a large
part of background events. These events have relatively large Pi PIDp values.

3.3.2 Kπ → pK misidentification background

Two variables are used to veto this background:

• B M0123 Subst01 Kpi2pK: the invariant mass of (Kπee) after substituting the
K to a proton and the π to a K.

• Pi PIDK: the difference of log-likelihood between π and K.

The procedure to set cuts is: firstly, scan the lower boundary of B M0123 Subst01-
Kpi2pK from 4000 to 4495 for 10 cut values: 4000, 4055, 4110, 4165, 4220, 4275,

4330, 4385, 4440, 4495; secondly, scan the upper boundary of B M0123 Subst01 K-
pi2pK from 4551 to 5405.1 for 10 cut values: 4551, 4645.9, 4740.8, 4835.7, 4930.6,
5025.5, 5120.4, 5215.3, 5310.2, 5405.1; thirdly, scan the lower boundary of Pi PIDK
from -14 to 11.2 for 10 cut values: -14, -11.2, -8.4, -5.6, -2.8, 0, 2.8, 5.6, 8.4, 11.2.
Under combination there are 1000 veto cuts.

For each cut, the total cut efficiencies of signal sample and background are calcu-
lated, and then the numbers of signal events s and background events b in real data
are estimated. The significance values of all cuts are calculated and under comparison
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the best cut is determined. Figure 3.7 shows the comparison of these 1000 signifi-
cance values, and Figure 3.8 shows the best cut in two-dimensional distributions in
background and signal sample.

Figure 3.7: Plot s√
s+b

according to the order of cuts.

The best cut is: (4000<B M0123 Subst01 Kpi2pK<5025.5) & (Pi PIDK>5.6),
and then s = 631.2, b = 3.07363, s√

s+b
= 25.0627.

Figure 3.8: Left: veto cut on background sample; right: veto cut on signal sample.
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From Figure 3.8 it can be seen that the background events are concentrated. The
shaded rectangular region cuts away a small part of background events, which have
relatively large Pi PIDK values.
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Chapter 4

Selection using Boosted Decision
Tree

Now the Boosted Decision Tree method is used to optimize the selection. The same
preselection cuts are applied before BDT selection but the particle identification cuts
need to be removed from the preselection. After preselection there are 13964 signal
events.

4.1 J/ψ e-h swap background

4.1.1 K-e misidentification background

For the K-e misidentification background, after preselection there are 372 events,
and among them 240 events are used for training and 132 events for testing. Among
13964 signal events, 10000 events are used for training and 3964 events for testing.

Eight input variables are chosen for the training. They are: K MC15TuneV1 -
ProbNNk*(1-K MC15TuneV1 ProbNNp), L1 MC15TuneV1 ProbNNe, L2 MC15T-
uneV1 ProbNNe, Jpsi cons mix cov double kemisid B M, L2 PIDe, K PIDK, Pi M-
C15TuneV1 ProbNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbN-
Np), L1 PIDe. Figure4.1 shows their distributions in signal sample and background
sample. The overtraining check of the results is shown in Figure4.2 and the ROC
curve is shown in Figure4.3.
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Figure 4.1: The distributions of input variables in signal sample and background
sample.
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Figure 4.2: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.888 and 0.954; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.978 and 0.988; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.991 and 1.000.

Figure 4.3: The ROC curve of BDT method.

The area integral under the ROC curve is 0.991.

Now reduce the number of input variables to five and see the change of the results.
The second set of input variables used for the training are: K MC15TuneV1 Prob-

NNk*(1-K MC15TuneV1 ProbNNp), L1 MC15TuneV1 ProbNNe, L2 MC15TuneV-
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1 ProbNNe, Jpsi cons mix cov double kemisid B M, L2 PIDe. The overtraining check
of the results is shown in Figure4.4 and the ROC curve is shown in Figure4.5.

Figure 4.4: The overtraining check for classifier.

From the figure above it can be seen that there is a little overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.768 and 0.949; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.972 and 0.986; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.988 and 0.994.

Figure 4.5: The ROC curve of BDT method.

The area integral under the ROC curve is 0.985.
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Now choose another five input varialbes and see the change of the results.
The third set of input variables used for the training are: K MC15TuneV1 Pro-

bNNk*(1-K MC15TuneV1 ProbNNp), Jpsi cons mix cov double kemisid B M, L1 -
MC15TuneV1 ProbNNe, K PIDK, L1 PIDe. The overtraining check of the results
is shown in Figure4.6 and the ROC curve is shown in Figure4.7.

Figure 4.6: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.837 and 0.956; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.974 and 0.986; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.990 and 0.997.

Figure 4.7: The ROC curve of BDT method.
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The area integral under the ROC curve is 0.989.

Now reduce the number of input variables to three and see the change of the
results.

The fourth set of input variables used for the training are: L2 PIDe, K MC15T-
uneV1 ProbNNk*(1-K MC15TuneV1 ProbNNp), L1 MC15TuneV1 ProbNNe. The
overtraining check of the results is shown in Figure4.8 and the ROC curve is shown
in Figure4.9.

Figure 4.8: The overtraining check for classifier.

From the figure above it can be seen that the training is not good. When back-
ground efficiency is 0.01, the signal efficiencies from test and training sample are
0.618 and 0.929; when background efficiency is 0.10, the signal efficiencies from test
and training sample are 0.969 and 0.985; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.987 and 0.994.
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Figure 4.9: The ROC curve of BDT method.

The area integral under the ROC curve is 0.980.

4.1.2 π-e misidentification background

For the π-e misidentification background, after preselection there are 491 events,
and among them 320 events are used for training and 171 events for testing. Among
13964 signal events, 9000 events are used for training and 4964 events for testing.

Eight input variables are chosen for the training. They are: Pi MC15TuneV1 P-
robNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), K PIDK,
L1 PIDe, L2 MC15TuneV1 ProbNNe, K MC15TuneV1 ProbNNk*(1-K MC15Tun-
eV1 ProbNNp), Jpsi cons mix cov double piemisid B M, L1 MC15TuneV1 ProbNNe,
L2 PIDe. Figure4.10 shows their distributions in signal sample and background sam-
ple. The overtraining check of the results is shown in Figure4.11 and the ROC curve
is shown in Figure4.12.
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Figure 4.10: The distributions of input variables in signal sample and background
sample.
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Figure 4.11: The overtraining check for classifier.

From the figure above it can be seen that there is a little overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.542 and 0.901; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.919 and 0.971; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.981 and 0.991.

Figure 4.12: The ROC curve of BDT method.

The area integral under the ROC curve is 0.970.

Now reduce the number of input variables to five and see the change of the results.
The second set of input variables used for the training are: Pi MC15TuneV1 P-

robNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), K PIDK,
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L1 PIDe, L2 MC15TuneV1 ProbNNe, K MC15TuneV1 ProbNNk*(1-K MC15Tun-
eV1 ProbNNp). The overtraining check of the results is shown in Figure4.13 and the
ROC curve is shown in Figure4.14.

Figure 4.13: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.672 and 0.877; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.906 and 0.960; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.973 and 0.989.

Figure 4.14: The ROC curve of BDT method.

The area integral under the ROC curve is 0.967.
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Now choose another five input varialbes and see the change of the results.
The third set of input variables used for the training are: Pi MC15TuneV1 Pr-

obNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), L1 MC15-
TuneV1 ProbNNe, Jpsi cons mix cov double piemisid B M, L2 MC15TuneV1 Pro-
bNNe, L2 PIDe. The overtraining check of the results is shown in Figure4.15 and
the ROC curve is shown in Figure4.16.

Figure 4.15: The overtraining check for classifier.

From the figure above it can be seen that there is a little overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.502 and 0.877; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.906 and 0.960; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.976 and 0.985.
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Figure 4.16: The ROC curve of BDT method.

The area integral under the ROC curve is 0.964.

Now reduce the number of input variables to three and see the change of the
results.

The fourth set of input variables used for the training are: Pi MC15TuneV1 P-
robNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), K PIDK,
L1 PIDe. The overtraining check of the results is shown in Figure4.17 and the ROC
curve is shown in Figure4.18.

Figure 4.17: The overtraining check for classifier.

From the figure above it can be seen that the training is very bad. When back-
ground efficiency is 0.01, the signal efficiencies from test and training sample are
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0.142 and 0.429; when background efficiency is 0.10, the signal efficiencies from test
and training sample are 0.516 and 0.685; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 0.657 and 0.878.

Figure 4.18: The ROC curve of BDT method.

The area integral under the ROC curve is 0.760.

4.2 Λ0
b → pK−J/ψ(→ e+e−) background

4.2.1 π → p misidentification background

For the π → p misidentification background, after preselection there are 881 events,
and among them 600 events are used for training and 281 events for testing. Among
13964 signal events, 9000 events are used for training and 4964 events for testing.

Nine input variables are chosen for the training. They are: Pi PIDp, B M0123 -
Subst1 pi2p, Pi MC15TuneV1 ProbNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi M-
C15TuneV1 ProbNNp), K MC15TuneV1 ProbNNk*(1-K MC15TuneV1 ProbNNp),
L2 MC15TuneV1 ProbNNe, L2 PIDe, L1 MC15TuneV1 ProbNNe, L1 PIDe, K PIDK.
Figure4.19 shows their distributions in signal sample and background sample. The
overtraining check of the results is shown in Figure4.20 and the ROC curve is shown
in Figure4.21.
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Figure 4.19: The distributions of input variables in signal sample and background
sample.
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Figure 4.20: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.953 and 0.995; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.

Figure 4.21: The ROC curve of BDT method.

The area integral under the ROC curve is 0.999.

Now reduce the number of input variables to five and see the change of the results.
The second set of input variables used for the training are: Pi PIDp, B M0123 -

Subst1 pi2p, Pi MC15TuneV1 ProbNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi M-
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C15TuneV1 ProbNNp), K MC15TuneV1 ProbNNk*(1-K MC15TuneV1 ProbNNp),
L2 MC15TuneV1 ProbNNe. The overtraining check of the results is shown in Fig-
ure4.22 and the ROC curve is shown in Figure4.23.

Figure 4.22: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.959 and 0.995; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.

Figure 4.23: The ROC curve of BDT method.

The area integral under the ROC curve is 0.999.

42



Now choose another five input varialbes and see the change of the results.
The third set of input variables used for the training are: Pi PIDp, Pi MC15Tune-

V1 ProbNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), L2 -
PIDe, L1 PIDe, B M0123 Subst1 pi2p. The overtraining check of the results is shown
in Figure4.24 and the ROC curve is shown in Figure4.25.

Figure 4.24: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.941 and 0.993; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.
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Figure 4.25: The ROC curve of BDT method.

The area integral under the ROC curve is 0.999.

Now reduce the number of input variables to three and see the change of the
results.

The fourth set of input variables used for the training are: K MC15TuneV1 Prob-
NNk*(1-K MC15TuneV1 ProbNNp), Pi MC15TuneV1 ProbNNpi*(1-Pi MC15Tun-
eV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), Pi PIDp. The overtraining check of
the results is shown in Figure4.26 and the ROC curve is shown in Figure4.27.

Figure 4.26: The overtraining check for classifier.

From the figure above it can be seen that the training is not so good. When
background efficiency is 0.01, the signal efficiencies from test and training sample
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are 0.763 and 0.945; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 0.992 and 0.995; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.

Figure 4.27: The ROC curve of BDT method.

The area integral under the ROC curve is 0.990.

4.2.2 Kπ → pK misidentification background

For the Kπ → pK misidentification background, after preselection there are 1018
events, and among them 600 events are used for training and 418 events for testing.
Among 13964 signal events, 9000 events are used for training and 4964 events for
testing.

Nine input variables are chosen for the training. They are: K MC15TuneV1 Prob-
NNk*(1-K MC15TuneV1 ProbNNp), Pi PIDK, B M0123 Subst01 Kpi2pK, Pi MC-
15TuneV1 ProbNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp),
K PIDK, L2 PIDe, L1 MC15TuneV1 ProbNNe, L1 PIDe, L2 MC15TuneV1 ProbNNe.
Figure4.28 shows their distributions in signal sample and background sample. The
overtraining check of the results is shown in Figure4.29 and the ROC curve is shown
in Figure4.30.
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Figure 4.28: The distributions of input variables in signal sample and background
sample.
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Figure 4.29: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.983 and 1.000; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.

Figure 4.30: The ROC curve of BDT method.

The area integral under the ROC curve is 1.000.

Now reduce the number of input variables to five and see the change of the results.
The second set of input variables used for the training are: K MC15TuneV1 Prob-

NNk*(1-K MC15TuneV1 ProbNNp), Pi PIDK, B M0123 Subst01 Kpi2pK, Pi MC-

47



15TuneV1 ProbNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp),
K PIDK. The overtraining check of the results is shown in Figure4.31 and the ROC
curve is shown in Figure4.32.

Figure 4.31: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.991 and 1.000; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.

Figure 4.32: The ROC curve of BDT method.

The area integral under the ROC curve is 1.000.
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Now choose another five input varialbes and see the change of the results.
The third set of input variables used for the training are: K MC15TuneV1 ProbN-

Nk*(1-K MC15TuneV1 ProbNNp), B M0123 Subst01 Kpi2pK, Pi MC15TuneV1 P-
robNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), Pi PIDK,
K PIDK. The overtraining check of the results is shown in Figure4.33 and the ROC
curve is shown in Figure4.34.

Figure 4.33: The overtraining check for classifier.

From the figure above it can be seen that there is no obvious overtraining. When
background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.991 and 1.000; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.
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Figure 4.34: The ROC curve of BDT method.

The area integral under the ROC curve is 1.000.

Now reduce the number of input variables to three and see the change of the
results.

The fourth set of input variables used for the training are: Pi MC15TuneV1 P-
robNNpi*(1-Pi MC15TuneV1 ProbNNk)*(1-Pi MC15TuneV1 ProbNNp), K MC15-
TuneV1 ProbNNk*(1-K MC15TuneV1 ProbNNp), B M0123 Subst01 Kpi2pK. The
overtraining check of the results is shown in Figure4.35 and the ROC curve is shown
in Figure4.36.

Figure 4.35: The overtraining check for classifier.

From the figure above it can be seen that the training is not so good. When
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background efficiency is 0.01, the signal efficiencies from test and training sample
are 0.982 and 0.988; when background efficiency is 0.10, the signal efficiencies from
test and training sample are 1.000 and 1.000; when background efficiency is 0.30, the
signal efficiencies from test and training sample are 1.000 and 1.000.

Figure 4.36: The ROC curve of BDT method.

The area integral under the ROC curve is 1.000.

4.3 Compare the BDT method with the cut-based

method

For the K-e misidentification background in the J/ψ e-h swap background, using a
cut-based method, the signal efficiency of the best cut is 0.737, and the background
rejection of the best cut is 0.978. The comparison between the cut-based method
and the BDT method(using the second set of input variables) is shown in Figure4.37.
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Figure 4.37: Curve: the ROC curve from the BDT method. Blue dot: the result
from the cut-based method.

Using a BDT method, when the signal efficiency is 0.737, the background rejection
is improved to 0.992, and when the background rejection is 0.978, the signal efficiency
is improved to 0.820.

For the π-e misidentification background in the J/ψ e-h swap background, using
a cut-based method, the signal efficiency of the best cut is 0.735, and the background
rejection of the best cut is 0.949. The comparison between the cut-based method
and the BDT method(using the second set of input variables) is shown in Figure4.38.

Figure 4.38: Curve: the ROC curve from the BDT method. Blue dot: the result
from the cut-based method.

Using a BDT method, when the signal efficiency is 0.735, the background rejection
is improved to 0.989, and when the background rejection is 0.949, the signal efficiency
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is improved to 0.860.
For the π → p misidentification background in the Λ0

b → pK−J/ψ(→ e+e−)
background, using a cut-based method, the signal efficiency of the best cut is 0.734,
and the background rejection of the best cut is 0.981. The comparison between the
cut-based method and the BDT method(using the second set of input variables) is
shown in Figure4.39.

Figure 4.39: Curve: the ROC curve from the BDT method. Blue dot: the result
from the cut-based method.

Using a BDT method, when the signal efficiency is 0.734, the background rejection
is improved to 1.000, and when the background rejection is 0.981, the signal efficiency
is improved to 0.980.

For the Kπ → pK misidentification background in the Λ0
b → pK−J/ψ(→ e+e−)

background, using a cut-based method, the signal efficiency of the best cut is 0.736,
and the background rejection of the best cut is 0.983. The comparison between the
cut-based method and the BDT method(using the second set of input variables) is
shown in Figure4.40.
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Figure 4.40: Curve: the ROC curve from the BDT method. Blue dot: the result
from the cut-based method.

Using a BDT method, when the signal efficiency is 0.736, the background rejection
is improved to 1.000, and when the background rejection is 0.983, the signal efficiency
is improved to 1.000.
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Chapter 5

Conclusion and Comment

In this analysis, the cut-based method and the BDT method are used to study
the selection of B0 → K+π−e+e−. Two kinds of backgrounds from B0 → K∗(→
K+π−)J/ψ(→ e+e−) and two kinds of backgrounds from Λ0

b → pK−J/ψ(→ e+e−)
are discussed.

For the K-e misidentification background in J/ψ e-h swap background, using a
cut-based method, the best cut is (4580 < Jpsi cons mix cov double kemisid B M
< 4601) & (L1 MC15TuneV1 ProbNNe < 0.21), and the signal efficiency and the
background rejection are 0.737 and 0.978. Using a BDT method, the background re-
jection is improved to 0.992 under the same signal efficiency, and the signal efficiency
is improved to 0.820 under the same background rejection.

For the π-e misidentification background in J/ψ e-h swap background, using a
cut-based method, the best cut is (3500 < Jpsi cons mix cov double piemisid B M
< 4400.6) & (L2 MC15TuneV1 ProbNNe < 0.288), and the signal efficiency and the
background rejection are 0.735 and 0.949. Using a BDT method, the background re-
jection is improved to 0.989 under the same signal efficiency, and the signal efficiency
is improved to 0.860 under the same background rejection.

For the π → p misidentification background in Λ0
b → pK−J/ψ(→ e+e−) back-

ground, using a cut-based method, the best cut is (4000 < B M0123 Subst1 pi2p
< 5100.6) & (Pi PIDp>0), and the signal efficiency and the background rejection
are 0.734 and 0.981. Using a BDT method, the background rejection is improved to
1.000 under the same signal efficiency, and the signal efficiency is improved to 0.980
under the same background rejection.

For theKπ → pK misidentification background in Λ0
b → pK−J/ψ(→ e+e−) back-

ground, using a cut-based method, the best cut is (4000 < B M0123 Subst01 Kpi2pK
< 5025.5) & (Pi PIDK>5.6), and the signal efficiency and the background rejection
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are 0.736 and 0.983. Using a BDT method, the background rejection is improved to
1.000 under the same signal efficiency, and the signal efficiency is improved to 1.000
under the same background rejection.

From the results above it can be seen that the BDT method is better than the cut-
based method on the selection of these four kinds of backgrounds, and the background
rejections and the signal efficiencies are improved using the BDT method.
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