The LHCb experiment
 [PHY213 Kern- und Teilchenphysik II]

Rafael Silva Coutinho
May 23 ${ }^{\text {rd }}, 2018$

Outline

This lecturer will cover some aspects involved in the "flavour sector"

- Why LHCb?
[Physics programme, b-physics, design]
- The LHCb detector
- How to perform an analysis at LHCb?
[e.g. CP violation and LFU measurement]
- Lots of material taken from (thanks!)
[Roger Forty: ICFA, School]
[Monica Pepe-Altarelli, Carfu Summer School]
[Daniel Saunders, iCSC]

Flavour physics

Flavour (particle physics)

From Wikipedia, the free encyclopedia
In particle physics, flavour or flavor refers to a species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles, including composite ones. For hadrons, these quantum numbers depend on the numbers of constituent quarks of each particular flavour.
> "The term flavour was first used in particle physics in the context of the quark model of hadrons. It was coined in 1971 by Murray GellMann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena. Just as ice cream has both colour and flavour so do quarks."

RMP 81 (2009) 1887

Flavour in particle physics

Flavour quantum numbers

- Isospin: I or I_{3}
- Charm: C
- Strangeness: S
- Topness: T
- Bottomness: B^{\prime}

Related quantum numbers

- Baryon number: B
- Lepton number: L
- Weak isospin: \mathbf{T} or T_{3}
- Electric charge: Q
- X-charge: X

Flavour physics

Flavour (particle physics)

From Wikipedia, the free encyclopedia
In particle physics, flavour or flavor refers to a species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles, including composite ones. For hadrons, these quantum numbers depend on the numbers of constituent quarks of each particular flavour.
"The term flavour was first used in particle physics in the context of the quark model of hadrons. It was coined in 1971 by Murray GellMann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena. Just as ice cream has both colour and flavour so do quarks."

RMP 81 (2009) 1887

Flavour physics

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles

$$
\text { + } 1 \text { phase }
$$

- $3+3^{*}$ lepton masses
- (3 lepton mixing angles +1 phase)

Flavour physics

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles

$$
+1 \text { phase }
$$

- $3+3^{*}$ lepton masses
- (3 lepton mixing angles +1 phase)

Flavour parameters

How do we search for New Physics?

Direct production of new particles
[PRL 33 (1974) 1404, PRL 33 (1974) 1406]

Indirect effects of new particles on well-predicted observables, e.g., the flavour anomalies

[Belle arXiv:1612.05014, ATLAS-CONF-2017-023
CMS-PAS-BPH-15-008]

[^0]
How do we search for New Physics?

Direct production of new particles, such as the initial excess observed by ATLAS/CMS at 750 GeV di-photon

Indirect effects of new particles on well-predicted observables, e.g., the flavour anomalies
[LHCb JHEP 02 (2016) 104]

[Belle arXiv:1612.05014, ATLAS-CONF-2017-023
CMS-PAS-BPH-15-008]

How do we search for New Physics?

Direct production of new particles, such as the initial excess observed by ATLAS/CMS at 750 GeV di-photon

Indirect effects of new particles on well-predicted observables, e.g., the flavour anomalies
[LHCb JHEP 02 (2016) 104]

[Belle arXiv:1612.05014, ATLAS-CONF-2017-023 CMS-PAS-BPH-15-008]

The indirect approach

Decays that are forbidden at tree level are sensitive to quantum corrections from degrees of freedom at larger scales

This indirect approach has historically been used to predict the existence of new particles before direct observation was possible

[^1]
The indirect approach

Decays that are forbidden at tree level are sensitive to quantum corrections from degrees of freedom at larger scales

This indirect approach has historically been used to predict the existence of new particles before direct observation was possible

[^2]A lesson from history ...

New physics shows up at precision frontier before energy frontier

- GIM mechanism before discovery of charm
- CP violation / CKM before discovery of bottom \& top
- Neutral currents before discovery of Z

Particularly sensitive - loop processes

- Standard Model contributions suppressed / absent
- Flavour changing neutral currents (rare decays)
- CP violation
- Lepton flavour / number violation / lepton universality

LHCb roadmap: search for NP in flavour sector!

Why the b quark?

- Heaviest quark that forms hadronic bound states
- All decays are CKM suppressed
- Long lifetime (~1.6 ps)
* Experimentally favourable
* High mass: many accessible final states with different expected rates
- Dominant: "tree" $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Very suppressed "tree" b $\rightarrow \mathrm{u}$ transition

* FCNC: "penguin" $b \rightarrow s$, d transition
- Flavour oscillation
* CP violation - expect large CP asymmetries in some B decays

Why the b quark?

- Heaviest quark that forms hadronic bound states
* All decays are CKM suppressed
- Long lifetime (~1.6 ps)
* Experimentally favourable
* High mass: many accessible final states with different expected rates
- Dominant: "tree" $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Very suppressed "tree" b $\rightarrow \mathrm{u}$ transition

* FCNC: "penguin" $b \rightarrow s$, d transition
- Flavour oscillation
* CP violation - expect large CP asymmetries in some B decays

Why the b quark?

* Heaviest quark that forms hadronic bound states
* All decays are CKM suppressed
- Long lifetime ($\sim 1.6 \mathrm{ps}$)
* Experimentally favourable
* High mass: many accessible final states with different expected rates
- Dominant: "tree" $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Very suppressed "tree" b $\rightarrow \mathrm{u}$ transition

* FCNC: "penguin" $b \rightarrow s$, d transition
- Flavour oscillation
* CP violation - expect large CP asymmetries in some B decays

Why the b quark?

- Heaviest quark that forms hadronic bound states
* All decays are CKM suppressed
- Long lifetime (~1.6 ps)
* Experimentally favourable
* High mass: many accessible final states with different expected rates
- Dominant: "tree" $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Very suppressed "tree" b $\rightarrow \mathrm{u}$ transition

* FCNC: "penguin" $b \rightarrow s$, d transition
- Flavour oscillation
* CP violation - expect large CP asymmetries in some B decays

Why the b quark?

- Heaviest quark that forms hadronic bound states
* All decays are CKM suppressed
- Long lifetime ($\sim 1.6 \mathrm{ps}$)
- Experimentally favourable
* High mass: many accessible final states with different expected rates
- Dominant: "tree" $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Very suppressed "tree" b $\rightarrow \mathrm{u}$ transition

* FCNC: "penguin" $b \rightarrow s, d$ transition
- Flavour oscillation
* CP violation - expect large CP asymmetries in some B decays

Why the b quark?

- Heaviest quark that forms hadronic bound states
- All decays are CKM suppressed
- Long lifetime ($\sim 1.6 \mathrm{ps}$)
* Experimentally favourable
* High mass: many accessible final states with different expected rates
- Dominant: "tree" $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Very suppressed "tree" b $\rightarrow \mathrm{u}$ transition

* FCNC: "penguin" $b \rightarrow s$, d transition
- Flavour oscillation
* CP violation - expect large CP asymmetries in some B decays

LHCb design

Detector designed to maximise the acceptance of the b-quark production

The correlation of the bb-pair produced is crucial in the design

LHCb design

Detector designed to maximise the acceptance of the b-quark production

Luminosity at LHCb

At nominal LHC luminosity multiple $p p$ interactions per bunch crossing
$\left.<N_{\text {int } / \mathrm{BX}}\right\rangle=\frac{N_{\text {int }} / t}{N_{\mathrm{BX}} / t}=\frac{L \times \sigma_{\text {inelastic }}^{p p}}{N_{\mathrm{BX}} / t}=\frac{10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 80 \mathrm{mb}}{31.6 \times 10^{6} \mathrm{~s}^{-1}} \approx 25$
Particle densities are very high in the forward acceptance covered by LHCb

- Events with multiple $p p$ interactions
\Rightarrow high detector occupancy, low trigger and reconstruction efficiency, poor S/B
- Multiple primary vertices in one event \Rightarrow risk to assign wrong PV and reconstruction

Solution: slightly mis-align LHC beams in LHCb interaction point \Rightarrow operate at the same time as ATLAS/CMS

LHCb running conditions

Universität Zürich ${ }^{\text {UZH }}$

ATLAS/CMS harsh environment would significantly affect the physics programme

LHCb running conditions

ATLAS/CMS harsh environment would significantly affect the physics programme

One of the hardest cases - Pb collisions in ALICE, a real event.

Luminosity Levelling at LHCb

Keep luminosity in LHCb constant throughout LHC fills

* Continuously monitor instantaneous luminosity in LHCb at the interaction point, reduce beam separation when lumi drops below a pre-defined limit
- Larger integrated luminosity (= area underneath the curve)
- Constant data taking conditions (detector occupancies, trigger thresholds, etc)

The LHCb detector

The LHCb detector

The LHCb detector

The LHCb detector

[^3]
The LHCb detector

The LHCb detector

The LHCb detector

The LHCb detector

Vertex Locator (Velo)
21 stations of silicon strip detectors ($\mathrm{r}-\phi$)
$\sim 8 \mu \mathrm{~m}$ hit resolution
~25 um IP resolution

The LHCb detector

Vertex Locator (Velo)
 21_stations_of_silicon_strin

Example: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}$

The LHCb detector

The LHCb detector

4 layers Si:
~200 $\mu \mathrm{m}$ pitch

The LHCb detector

The LHCb detector

The LHCb detector

The LHCb detector

The LHCb detector

Mass reconstruction

From relativistic kinematics, the relation between energy E, momentum p, and (rest) mass m is: $E^{2}=p^{2}+m^{2}$
[The full expression: $E^{2}=p^{2} c^{2}+m^{2} c^{4}$ but factors of c are often dropped]
Consider a particle that decays to give two daughter particles:

The invariant mass of the two particles from the decay:

$$
\mathrm{M}^{2}=\mathrm{m}_{1}^{2}+\mathrm{m}_{2}^{2}+2\left(\mathrm{E}_{1} \mathrm{E}_{2} \quad \mathrm{p}_{1} \mathrm{p}_{2} \cos \theta\right)
$$

to reconstruct the parent mass a precise knowledge of the momentum and the angle θ of decay products is needed, from the tracking system, as well as their particle type, which determines their masses m_{1} and m_{2}

Mass reconstruction

Universität
Zürich ${ }^{\text {ULH }}$

Typical example of reconstruction of a particle decay: $\pi^{0} \rightarrow \gamma \gamma$
one of the first composite particles reconstructed in the LHC experiments
This technique an also be used to search for more exciting signals:

Tracking - Pattern recognition

Universität
Zürich ${ }^{\text {UZH }}$

LHCb VErtex LOcator example

Tracking - Pattern recognition

Looking side on:

- Particle tracks clearly visible to eye
- Extra hits: typically electrical noise and/or secondary show tracks
"Transform" data points into
(x, y, z time)

Target: find an algorithm to track using this information:

- Many possible choices, combinatorial, "seeding" ...

Tracking - Pattern recognition

Name	Description	Scalability
Combinatorial	- Form every track from each possible combination of hits. - Access each track by quality $\left(\right.$ e.g. χ^{2}) and tag.	$\mathrm{n}_{\text {Tracks! }}$

LHCb VELO data event (2d projection, top half)

Tracking - Pattern recognition

Name	Description	Scalability
Combinatorial	Form every track from each possible combination of hits. - Access each track by quality $\left(\right.$ e.g. χ^{2}) and tag.	$\mathrm{n}_{\text {Tracks! }}$

LHCb VELO data event (2d projection, top half)

Tracking - Pattern recognition

Universität
Zürich ${ }^{\text {UZH }}$

Name	Description	Scalability
Combinatorial	- Form every track from each possible combination of hits. - Access each track by quality (e.g. χ^{2}) and tag.	nTracks!
Hough Transform	- Transform points into a system where clusters form. - If straight tracks, take the difference between consecutive hits. - Group (e.g. in a histogram) and tag peaks.	n^{2}

Tracking - Pattern recognition

Universität
Zürich ${ }^{\text {UZH }}$

Name	Description	Scalability
Combinatorial	- Form every track from each possible combination of hits. - Access each track by quality $\left(\right.$ e.g. χ^{2}) and tag.	$\mathrm{n}_{\text {Tracks! }}$
Hough Transform	- Transform points into a system where clusters form. - If straight tracks, take the difference between consecutive hits. Group (e.g. in a histogram) and tag peaks.	n^{2}

LHCb VELO data event (2d projection, top half)

Tracking - Pattern recognition

Universität
Zürich ${ }^{\text {UZH }}$

Name	Description	Scalability
Combinatorial	- Form every track from each possible combination. - Access each track by quality (e.g. χ^{2}) and tag.	nTracks!
Hough Transform	- Transform points into a system where clusters form. - E.g. for straight tracks, take the difference between consecutive hits. - Group (e.g. in a histogram) and tag peaks.	n^{2}
Seeding	- Form seeds from pairs of hits on a sub set of the detector. - Extrapolate the seed and count hits intercepted. - Tag if sufficient number of hits.	$n \log (\mathrm{n})$

LHCb VELO data event (2d projection, top half)

Tracking - Pattern recognition

Three main features used to decide most appropriate algorithm

- Efficiency: fraction of real tracks found
- Purity: fraction of tracks that are real
- Computational speed

Simplified simulation using LHCb VELO design

Tracking - Pattern recognition

Three main features used to decide most appropriate algorithm

- Efficiency: fraction of real tracks found
- Purity: fraction of tracks that are real
- Computational speed

Simplified simulation using LHCb VELO design

Tracking - Pattern recognition

Universität
Zürich ${ }^{\text {ULH }}$

In general experiments use a combination of these approaches

- Combinatorial often used at testbeams:
- Low occupancy, so fast.
- Efficient and pure.
- Hough transforms used for more complicated shapes (e.g. rings in LHCb RICH*).
- All LHC experiments use seeding extensively (highest occupancy).

Timepix3 Tracking Telescope

LHCb RICH Subdetector

ATLAS Tracker

Testbeam Data

ATLAS Inner Layers

Tracking Fitting

Tracking particles through the detectors involve two steps

- Pattern recognition: identify detector hits in order to build a track
- Track fit: approximate the path of the particle with an equation

Mostly approximated using a "Kalman-Fitter":

- Track is approximated as a "zig-zag"
- Start with a seed to estimate of track parameters
- propagate to the next plane
- Predict position of next particle, weighting by closest hits

Kalman Filter Example

Tracking refinement

Common to tune pattern recognition to be efficient and impure: refine selection later using addition information

- Can use χ^{2} to find well fitted tracks
- Typically combine with information from different detectors and number of hits
- For optimal approach a MVA is often used in experiments

Detector hits can also be part of multiple tracks:

- Detector spatial resolution too low to separate tracks
- Secondary tracks produced with the interaction with material

Vertexing

Vertexing involves clustering tracks that originated from the same point

- Easy in cases that the vertex location is known - extrapolate all tracks and apply some selection
- Physics inputs can narrow search region significantly
- Some analytical methods can also be used to seed search
- Common approach to seed by projecting in 2D plane and searching for a point with high track density

Vertex example in LHCb Velo.

Particle identification

- Classify each track as a type of particle event by event
- Many kinds of particle, not just fundamental particles, also composite hadrons (e.g. Pion, Kaon)
"Simple" example in CMS:

Particle identification

- RICH detector at LHCb uses Cherenkov radiation:
- Light emitted when a particle slows passing through a material
- Emission is isotropic, and forms rings on detectors
- Not required to reconstruct the ring itself - instead, test different hypotheses

Light produced in a cone with $\cos \theta_{c}=1 / \beta n$ can be detected as a ring image

By measuring θ_{c} (\propto radius of ring) the velocity β of the particle is found Then with knowledge of its momentum the mass of the particle can be found

Particle identification

Universität
Zürich ${ }^{\text {ULH }}$

- RICH detector at LHCb uses Cherenkov radiation:
- Light emitted when a particle slows passing through a material
- Emission is isotropic, and forms rings on detectors
- Not required to reconstruct the ring itself - instead, test different hypotheses

Simulated event in RICH-1 Large rings: aerogel, small: $\mathrm{C}_{4} \mathrm{~F}_{10}$

Particle identification

Universität
Zürich ${ }^{\text {UZH }}$

- Separating two particle types using the signal from a RICH detector is illustrated for K and π from a test beam
- Adjusting the position of the cut placed between the two peaks to identify a ring as belonging to a K or π gives a trade-off between efficiency and misidentification
- LHCb particle identification is actually built by combining not only information from the RICH, but also from other sub-detector in a multivariate analysis

Particle identification performance

Universität
Zürich ${ }^{\text {ULH }}$

* Example: clean separation of $\mathrm{B}_{\mathrm{d}, \mathrm{s}} \rightarrow$ hh modes

Criteria inly applied in the bachelor Kaon

How to perform an analysis?

Physics case - Previous lecture by Nico

CP Violation in the Early Universe

- Very early in the universe might expect equal numbers of baryons and anti-baryons
- However, today the universe is matter dominated (no evidence for anti-galaxies, etc.)
- From "Big Bang Nucleosynthesis" obtain the matter/anti-matter asymmetry

$$
\xi=\frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \approx \frac{n_{B}}{n_{\gamma}} \approx 10^{-9}
$$

i.e. for every baryon in the universe today there are 10^{9} photons

- How did this happen?
\star Early in the universe need to create a very small asymmetry between baryons and anti-baryons
e.g. for every 10^{9} anti-baryons there were 10^{9+1} baryons
baryons/anti-baryons annihilate \Rightarrow
1 baryon $+\sim 10^{9}$ photons + no anti-baryons
\star To generate this initial asymmetry three conditions must be met (Sakharov, 1967):
(1) "Baryon number violation", i.e. $n_{B}-n_{\bar{B}}$ is not constant
(2) "C and CP violation", if CP is conserved for a reaction which generates a net number of baryons over anti-baryons there would be a CP conjugate reaction generating a net number of anti-baryons
(3) "Departure from thermal equilibrium", in thermal equilibrium any baryon number violating process will be balanced by the inverse reaction

How to perform an analysis?

Analysis framework: e.g. $B \rightarrow \pi \pi$ decays

How to perform an analysis?

"Offline" selection: apply a set of criteria to have a "clean" signal distribution

How to perform an analysis?

"Offline" selection: apply a set of criteria to have a "clean" signal distribution

- Typically experiments use a "multivariate" approach, which can then classify the events as "signal-backgrounds"

Where to apply a "cut"?

How to perform an analysis?

"Offline" selection: apply a set of criteria to have a "clean" signal distribution

- Typically experiments use a "multivariate" approach, which can then classify the events as "signal-backgrounds"

CP violation in B decays

Physics case (II) - flavour anomalies

12 fermions (+12 anti-matter)
increasing mass \longrightarrow

Measurements of lepton flavour universality (LFU) constitute theoretically very clean probes of this hypothesis

The SM predicts that particles couple universally to leptons
of different flavours

[PRD 69074020 (2004)]

Physics case (II) - flavour anomalies

12 fermions (+12 anti-matter)
increasing mass \longrightarrow

Measurements of lepton flavour universality (LFU) constitute theoretically very clean probes of this hypothesis

Beyond the SM, theories can feature non-universal couplings

[PRD 69074020 (2004)]

Physics case (II) - flavour anomalies

12 fermions (+12 anti-matter) increasing mass \longrightarrow

Measurements of lepton flavour universality (LFU) constitute theoretically very clean probes of this hypothesis

These flavour transitions can be measured through ratios of decay rates

[PRD 69074020 (2004)]

How to select $\mathrm{B} \rightarrow \mathrm{K}^{\left(+,{ }^{*}\right)} \mathrm{e}^{+} \mathrm{e}^{-}$events?

[^4]How to obtain the number of events?
Universität
Zürich ${ }^{\text {br }}$

Low $q^{2}: 285 \pm 18$

Low $q^{2}: 89 \pm 11$

Central $q^{2}: 353 \pm 21$

Central $q^{2}: 111 \pm 14$
[LHCb, LHCB-PAPER-2017-013]

J/ ψ region : 274K

J / ψ region : 58K

Analyses results

Ratios of "branching fractions" - lepton flavour universality

Intriguing! What happens next? Measure, measure, measure ...

New Physics?

[^5]
R. Coutinho (UZH)

[^0]: R. Coutinho (UZH)

[^1]: R. Coutinho (UZH)

[^2]: R. Coutinho (UZH)

[^3]: R. Coutinho (UZH)

[^4]: R. Coutinho (UZH)

[^5]: R. Coutinho (UZH)

