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I. INTRODUCTION

Resonant inelastic x-ray scattering (RIXS) is a fast
developing experimental technique in which one scatters
x-ray photons inelastically off matter. It is a photon-in
photon-out spectroscopy for which one can, in principle,
measure the energy, momentum, and polarization change of
the scattered photon. The changes in energy, momentum,
and polarization of the photon are transferred to intrinsic
excitations of thematerial under study, and thusRIXS provides
information about those excitations. RIXS is a resonant
technique in which the energy of the incident photon is chosen
such that it coincides with, and hence resonates with, one of
the atomic x-ray transitions of the system. The resonance
can greatly enhance the inelastic scattering cross section,
sometimes by many orders of magnitude, and offers a unique
way to probe charge, magnetic, and orbital degrees of freedom
on selected atomic species in a crystal. Early experimental
work includes Sparks (1974), Bannett and Freund (1975),
Eisenberger et al. (1976a, 1976b), and more recent reviews
are Blume (1985), Kotani and Shin (2001), and Schülke
(2007).

A. Features of RIXS as an experimental method

Compared to other scattering techniques, RIXS has a
number of unique features: It covers a large scattering phase
space, is polarization dependent, element and orbital specific,
bulk sensitive, and requires only small sample volumes. We
briefly illustrate these features below and discuss them more
extensively in the sections to follow.

(1) RIXS exploits both the energy and momentum depen-
dence of the photon scattering cross section. Comparing the
energies of a neutron, electron, and photon, each with a
wavelength on the order of the relevant length scale in a
solid, i.e., the interatomic lattice spacing, which is on the
order of a few angstroms, it is obvious that an x-ray photon
has much more energy than an equivalent neutron or electron;
see Fig. 1. The scattering phase space (the range of energies
and momenta that can be transferred in a scattering event)
available to x rays is therefore correspondingly larger and is
in fact without equal. For instance, unlike photon scattering
experiments with visible or infrared light, RIXS can probe the
full dispersion of low-energy excitations in solids.

(2) RIXS is element and orbital specific: Chemical sensi-
tivity arises by tuning the incident photon energy to specific
atomic transitions of the different types of atoms in a mate-
rial. Such transitions are called absorption edges. RIXS can
even differentiate between the same chemical element at sites
with inequivalent chemical bondings, with different valencies
or at inequivalent crystallographic positions if the absorption
edges in these cases are distinguishable. In addition, the type
of information that may be gleaned about the electronic
excitations can be varied by tuning to different x-ray edges
of the same chemical element (e.g., a K edge for exciting 1s

FIG. 1 (color online). Kinetic energy and momentum carried by
the different elementary particles that are often used for inelastic
scattering experiments. These determine the scattering phase
space—the range of energies and momenta that can be transferred
in a scattering event—of x rays, electrons, and neutrons.
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