Free electron model

Electronic Transport

Lecture 3

Kittel Ch. 6

Recape electron density
(unrent density:
$$\vec{J} = -ne\vec{v}$$

 $L = -ne\vec{v}$
 $L = -ne\vec{v}$
 $A = L$
 $L = -ne\vec{v}$
 $A = L$
 $A =$

How are these results modified when Q.M. is considered?

* estimation of current density (now from Q.M. point of view):

$$\frac{U}{V_{F}} \quad \text{fraction } d = \text{ which become uncomparison to } \\
n \underbrace{U}_{V_{F}} \quad \text{fraction } d = \text{ which become uncomparison to } \\
n \underbrace{U}_{V_{F}} \quad \text{concentration } d = \text{ " " " " } \\
e \text{ density } \\
\text{since each } e \text{ has stelocity } v U_{F} : \\
\left[\underbrace{J}_{F}^{2} = -en(\underbrace{U}_{V_{F}}^{2}) \cdot U_{F}^{2} = -en \underbrace{J}_{V_{F}}^{2} \right] \\
\text{source resolt fand before ! } \\
(but remember that " dassoical" and !!) \\
\text{since now enly } e \text{ at Fermus surface contribute } \\
\text{monoductive are } \neq !!) \\
\text{source resolution of the end of the end$$

Electrical resistivity in metals

Electrical resistivity in metals

e-undergo collissions becaus lattice is not perfectly regular: i) "static" imperfections" (i.e. defects, impunities ii) lattice vibrations (phonons)
$e = \frac{n!}{ne^2 z}$; $\frac{1}{z}$: probability of an electron scattering per muit time $z \sim 10^{-14} s \Rightarrow 10^{14}$ collisions in 15
$\Rightarrow \frac{1}{2} = \frac{1}{4} + \frac{1}{4}$
$P = Pi + Pph \left[= \frac{M}{Ne^2 \tau_i} + \frac{M}{Ne^2 \tau_p} \right]$
Mathiessen

Electrical resistivity in metals

Example: samples of potassium

Equation of motion in the presence of an electric field, a magnetic field and scattering

e- with p at time t What is the momentum at time trat? i) probability dt that there is a collision before time to dtii) probability $(1 - dt_{E})$ that e^{-does} not scaller : $\overline{p}(t) + \overline{F}.dt$ $\langle \overline{p}(t+dt) \rangle = (1-\underline{\phi})(\overline{p}(t)+\overline{F}dt) + 0 \underline{\phi}$ | 報=戸-ぞ Keeping only linear order terms in dt: where $\vec{F} = -e(\vec{E} + \vec{\nabla} \times \vec{B})$ For F=-eF ____ vi steady state dp=c $i \left\{ \begin{array}{l} E = 0 \\ B = 0 \end{array} \right\} \quad \overrightarrow{p}(t) = \overrightarrow{p}(t) = e^{-t/z}$ one can think the scattering terry $-\overrightarrow{P}/z$ as just a drag force on => recover previous_ rosults J = ezcyme

$$M\left(\frac{d}{dt} + \frac{1}{z}\right)\overline{s} = -e(\overline{E} + \overline{v} \times \overline{B})$$
Consider $\overline{B} = (0, 0, B)$

$$\begin{cases}
M\left(\frac{d}{dt} + \frac{1}{z}\right)\overline{s}_{x} = -e(\overline{E}x + B\overline{v}y) \\
M\left(\frac{d}{dt} + \frac{1}{z}\right)\overline{v}y = -e(\overline{E}y - B\overline{v}x) \\
M\left(\frac{d}{dt} + \frac{1}{z}\right)\overline{v}x = -e\overline{E}z
\end{cases}$$
In steady state, $d\overline{v} = 0 \longrightarrow d\overline{v}t$ velocity:
$$\begin{cases}
V_{x} = -e\overline{c}\overline{z} Ex - A_{z}\overline{v}\overline{v}y \\
V_{y} = -e\overline{z} Ey + 4c\overline{c}\overline{v}x \\
V_{z} = -\frac{e\overline{c}}{M}\overline{E}z
\end{cases}$$
 $W_{z} = -\frac{e\overline{c}}{M}\overline{E}z$

Comparison of the valence of various atoms to the measured (via Hall resistivity) number of free electrons per atom

Metal	Valence	$-1/R_H ne$	
Li	1	0.8	Very and agreement between measurements
Na	1	1.2	and calculation of 1 conduction e-per atom
К	1	1.1	
Rb	1	1.0	
Cs	1	0.9	
Cu	1	1.5	
Ag	1	1.3	/ strong disagreement!
Au	1	1.5	And even the sign is opposite
Ве	2	-0.2	negatively charged el !!
Mg	2	-0.4	this regult will be explained
In	3	-0.3	using band theory E 1
Al	3	-0.3	$R_{H} = \frac{L_{y}}{i B} = -\frac{1}{ e n }$
			J x = z $[-] v e$

Thermal conductivity of metals

$$() Heat Flow T_2 \longrightarrow T_1$$

Heat amont density
$$\overline{Jq} = -K \frac{dT}{dX}$$

thermal conductivity

Insulator: heat carried by phonons
Metals: heat carried by both phonons and electrons
$$X = K_e + K_{ph}$$

T2>T1

Cel = Fledbronic Heat Capacity

$$K = \frac{1}{3} \text{ Cell } \overline{Fl}$$

 $K = \frac{1}{3} \text{ Cell } \overline{Fl}$
 $Cel = Fledbronic Heat Capacity
 $L = \text{mean Free path of } e^- \text{ at } F_F$
 $Cel = \frac{\pi^2 N K_B^2}{2} \frac{\pi}{E_F}$
 $T = \frac{1}{3} \left(\frac{\pi^2 N K_B^2}{2} \frac{\pi}{E_F}\right) \cdot \delta_F \ell = \frac{\pi^2 N K_B^2 z T}{3m}$
 $F_F = \frac{1}{2} m V_F^2$
 $T = \frac{ne^2 \tau}{M}$
 $\ell = \tau \cdot \sigma_F$
 $\int \frac{K}{T} = \frac{1}{3} \left(\frac{\pi K_B}{e}\right)^2 T = LT$
 $Lorentz number = 2.45 \cdot 10^8 \frac{W R}{Hegz} = ct independent$
electrical aud conductivity are
intimately related (expected since both camed by e-)$

$L \times 10^8$ watt-ohm/deg ²			$L \times 10^8$ watt-ohm/deg ²			
0°C	100°C	Metal	0°C	100°C		
2.31	2.37	Pb	2.47	2.56		
2.35	2.40	Pt	2.51	2.60		
2.42	2.43	Su	2.52	2.49		
2.23	2.33	W	3.04	3.20		
2.61	2.79	Zn	2.31	2.33		
	× 10 ⁸ watt-ohm/d 0°C 2.31 2.35 2.42 2.23 2.61	$ \begin{array}{c cccc} \times 10^8 \text{ watt-ohm/deg}^2 \\ \hline 0^{\circ}\text{C} & 100^{\circ}\text{C} \\ \hline 2.31 & 2.37 \\ 2.35 & 2.40 \\ 2.42 & 2.43 \\ 2.23 & 2.33 \\ 2.61 & 2.79 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

value predicted is fairly dose to the experimental one.

Summary

Free electron model is the simplest way to describe metals and gives a good insight into properties such as