

Due on 27^{th} May

Exercise 1 Chemical potential in two dimensions

(a) Show that the chemical potential of a Fermi gas in two dimensions is given by:

$$\mu(T) = k_{\rm B} T \ln\left[\exp\left(\frac{\pi n\hbar^2}{mk_{\rm B}T}\right) - 1\right],\tag{1}$$

where $n = N/L^2$ is the area density of particles. Hint: Use $N = \int_0^\infty D(\epsilon) f(\epsilon) d\epsilon$ and remember that $D(\epsilon)$ is a constant in two dimensions.

- (b) In two dimensions, derive the Fermi energy $E_{\rm F}$ and express $\mu(0)$ in terms of the Fermi energy $E_{\rm F}$.
- (c) Make a plot of equation (1).

Exercise 2 Fermi energy $E_{\rm F}$ and Fermi temperature $T_{\rm F}$

The atom ³He has spin ¹/₂ and is a fermion. The density of liquid ³He is 0.081 g/cm^3 near T = 0 K. Calculate the Fermi energy $E_{\rm F}$ and Fermi temperature $T_{\rm F}$.

Exercise 3 Kinetic energy of an electron gas

Show that the kinetic energy of a three-dimensional gas of N free electrons at 0 K is $U = \frac{3}{5}NE_{\rm F}$.

Exercise 4 Occupation of states

Plot $D(E) \cdot f(E,T)$ against the energy E in units of the chemical potential μ , where D(E) is the electronic density of states in three dimensions and f(E,T) is the Fermi-Dirac distribution. You may neglect all the pre-factors for your plot. Use the temperatures (in units of μ) $k_{\rm B}T = 10^{-4}$, 10^{-3} , and 10^{-2} . In the legend of your plot, write the corresponding temperatures in Kelvin. If you need any material parameters for your plot, take the ones for copper.