The GERDA Experiment: Search for the Neutrinoless Double Beta Decay

$\label{eq:microaddata} Microadovic \\ \text{on behalf of the } GERDA \ \ Collaboration \\ \end{array}$

Universität Zürich

PASCOS 2018 Cleveland (Ohio), June 4-8, 2018

Universität Zürich^{™™}

Contents

1. Introduction

- Neutrinoless double beta decay
- Detection signature
- Consequences of discovery
- 2. The GERDA Experiment
- Set-up and detection method
- Background reduction techniques
- Results
- 3. Upgrade and Future
- Upgrade details
- Future of the experiment

4. Conclusion and Outlook

Ettore Majorana

Decay channels of ⁷⁶Ge:

 ΔE

• Beta decay β^- to ⁷⁶As energetically forbidden.

3

Decay channels of ⁷⁶Ge:

Double beta decay $\beta\beta$

4

Double beta decay $2\nu\beta\beta$:

- Rarest observed decay.
- Possible for Dirac and Majorana neutrinos, SM ΔL=0.
- 2 neutrinos in the final state.

Neutrinoless double beta decay $0\nu\beta\beta$:

- **Postulated** decay channel.
- Involved Majorana neutrinos annihilate, non-SM ΔL=2.
- 0 neutrinos in the final state.

Signature of Neutrinoless Double Beta Decay of ⁷⁶Ge

Summed energy spectrum of final state electrons:

Double beta decay $2\nu\beta\beta$:

Continuum

2νββ Events 0νββ Energy QBB (peak not to scale)

Consequences of discovery:

- Neutrinos have Majorana mass component.
- Rate of decay clue on absolute neutrino mass and hierarchy.
- Violation of lepton number conservation

Neutrinoless double beta decay $0\nu\beta\beta$:

• Peak at $Q_{\beta\beta} = 2039 \text{ keV}$

The GERDA Collaboration

The GERDA Experiment: Search for the Neutrinoless Double Beta Decay

The GERDA Experiment [Eur.Phys.J. C73 (2013)]

- Germanium Detector Array searches for neutrinoless double beta decay (0νββ) of ⁷⁶Ge.
- Ge detectors enriched to >86% in ⁷⁶Ge immersed in liquid argon act simultaneously as detector and source material.
- Located underground Laboratori Nazionali del Gran Sasso (LNGS) with 3400 mwe shielding.
- Surrounded by water tank with photomultipliers (PMTs) to detect Cherenkov light induced by muons.

1 Water tank 2 Cryostat 3–5 Clean room & Lock system 6 Plastic scintillator

Inside the cryostat: LAr and Ge strings

- Cryostat filled with liquid argon (LAr) for cooling and shielding.
- PMTs and silicon photomultipliers (connected to optical fibre shroud) detect induced LAr scintillation light to veto background events.
- 36 kg enriched Ge detectors arranged on 7 strings and directly submerged in LAr.

Background Suppression in the Search for $0\nu\beta\beta$ Decay

Rare decay measurement requires low background.

- Operation of the experiment **underground**.
- Background suppression with water and LAr shielding.
- Active veto for cosmic muons and external radiation.
- Minimise radioactivity of materials close to detectors.
- Detector anti-coincidence.
- Pulse Shape Discrimination (PSD).

Background limited scenario:

$$\mathsf{T}^{0
u}_{1/2} \propto \sqrt{rac{M\cdot t}{\Delta E\cdot BI}}$$

 $M \cdot t$: exposure, ΔE : energy resolution, BI: background index.

Zero background regime:

$${\sf T}_{1/2}^{0
u} \propto M\cdot t$$

Goal: Achieve zero background regime to enable proportional scaling with exposure.

June 2016

- Exposure: 10.8 kg·yr.
- Published in Nature 554 (2017). June 2017
- Exposure: 23.2 kg·yr.
- Published in PRL 120 (2018).

June 2018

1.0

0.8

0.6

0.4

0.2

ive time fraction

- Exposure: 58.9 kg·yr. ►
- Going to be published in Science.

LAr Veto

Suppression and Acceptance

- \blacktriangleright For $^{228} Th$ calibration source: Suppression factor of (98 \pm 4). Depends on event type.
- In calibration and physics data: ⁴⁰K/⁴²K Compton continuum strongly suppressed.
- ► Acceptance: (97.7 ± 0.1)%.

GERDA Ge detector types

Semi-coaxial Ge detectors (Coax)

- ▶ 7 enriched Coax detectors.
- ▶ 3 non-enriched natural Coax detectors.
- Total enriched Coax mass: 15.6 kg

Broad Energy Ge detectors (BEGe)

- 30 enriched BEGes.
- Total enriched BEGe mass: 20.0 kg.
- Superior resolution and Pulse Shape Discrimination (PSD) compared to Coax.

weighting potential

Calibration Procedure

- ▶ Weekly ²²⁸Th calibrations.
- Comparison of known peaks in data.

FWHM resolution curves

- BEGe: 3.0 ± 0.1 keV at $Q_{\beta\beta}$.
- Coaxial: 3.6 ± 0.1 keV at $Q_{\beta\beta}$.

• Pulse Shape differences: Single location $(0\nu\beta\beta)$ and multiple location (γ) .

- ▶ PSD: Select target signal (SSE), reject background (MSE) through pulse shape.
- ► For BEGes based on Current Amplitude (A) to Energy (E) ratio: A/E.

PSD rejection at work

- ⁴²K and ⁴⁰K lines and other MSE due to low A/E value.
- High energy α events with high A/E.

Estimated $0\nu\beta\beta$ signal efficiency

- ▶ BEGe: (87.5 ± 2.6)%
- ► Coax (with artificial neural network): (84 ± 5.0)%

Background prediction before unblinding

- Events with energy Q_{ββ} ± 25 keV hidden until all analysis cuts frozen.
- Projected flat background around $Q_{\beta\beta}$.

preliminary

Background

- Prominent: $2\nu\beta\beta$, ⁴²K &⁴⁰K lines, α .
- **BEGe BI** at $Q_{\beta\beta}$: $0.6^{+0.4}_{-0.3} \cdot 10^{-3} \text{cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})$
- Coax BI at $Q_{\beta\beta}$: $0.6^{+0.4}_{-0.3} \cdot 10^{-3} cts/(keV \cdot kg \cdot yr)$

Unblinding

- One new event.
- Located in region of interest.
- Energy: 2042 keV.

Signal or background?

• Energy 2042 keV \iff **2.4** σ from $Q_{\beta\beta}$.

Bayesian Analysis

- Sensitivity for limit setting: 0.82 · 10²⁶ yr (90% C.I.).
- Background only as best fit.
- $T_{1/2}^{0\nu} > 0.76 \cdot 10^{26}$ yr (90% C.I.).

Frequentist Analysis

- Sensitivity for limit setting: 1.08 · 10²⁶ yr (90% C.L.).
- No signal as best fit.
- $T_{1/2}^{0\nu} > 0.91 \cdot 10^{26}$ yr (90% C.L.).

Duration

Started in April and finished in May.

Upgrade Works

- ▶ 9.5 kg of new enriched inverted coaxial detectors.
- ▶ New fiber curtain with factor 2 increase in light yield.
- Lower activity HV and signal cables.
- JFET exchange and holder modification.

The GERDA Experiment: Search for the Neutrinoless Double Beta Decay

Experiment	Active Mass	BI	$T_{1/2}^{0\nu}$
	[kg]	[counts/(keV·kg·yr)]	Sensitivity [yr]
GERDA (current)	36	10 ⁻³	$1.08\cdot 10^{26}$
LEGEND-200 (projected)	200	10 ⁻⁴	$pprox 10^{27}$
LEGEND (projected)	1000	10 ⁻⁵	$pprox 10^{28}$

Legend

- ▶ New collaboration with MAJORANA and institutions based all over the world.
- ▶ Based on GERDA approach with LAr cryostat.
- First stage with 200 kg at LNGS.
- Ultimate goal to reach 1 t of Ge detectors.

GERDA results:

- ► Collection of 58.9 kg·yr exposure with zero background experiment.
- Limit on the ⁷⁶Ge $0\nu\beta\beta$ decay half life: $T_{1/2}^{0\nu} > 0.91 \cdot 10^{26}$ yr (90% C.L.)
- World's best sensitivity: $T_{1/2}^{0\nu} > 1.08 \cdot 10^{26}$ yr (90% C.L.)

$\operatorname{Gerda}\, Outlook$

- Faster exposure collection with new detectors.
- Lower background with better LAr veto.

LEGEND Outlook

▶ Worldwide collaboration to ultimately build 1 t Ge detector experiment.

The GERDA Experiment: Search for the Neutrinoless Double Beta Decay