Crystal vibrations - Phonons



so far, we have been considering atoms fixed at a given position withe crystal However, atoms/ions have their own dynamics and they move from such equilibrium positions

TODAY GOAL: Describe crystal vibrations, i.e. collective motion of atoms/ions

1D chain

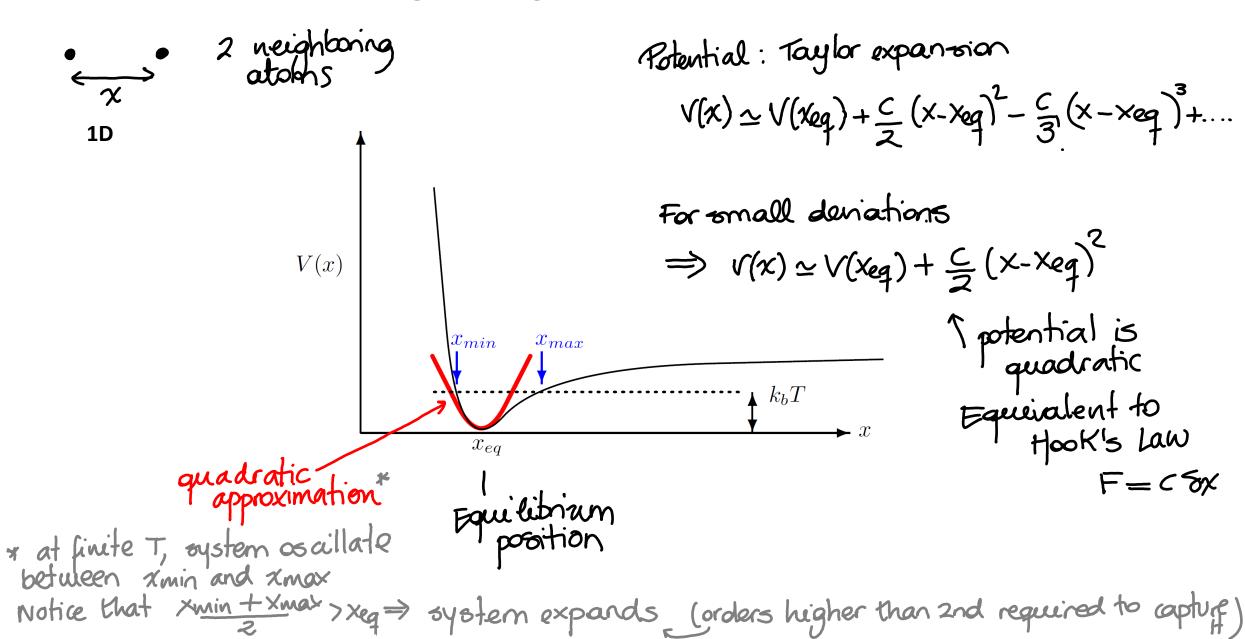
Transverse Acoustical Mode:

Longitudinal Acoustical Mode:

We will start Looking at the vibrations of 1D chain

animated slide. shown in the class

Potential between neighboring atoms



Vibrations of 1D monoatomic chain (I)

We want to find NORTAL MODE(S) = collective oscillation where all particles move at the same frequency.

- atoms restricted to move in a line (longitudinal vibration)

- Harmonic approximation

(displacement) eq. Iposition)

" crystal as atoms interconnected 'by elastic opringo"

$$\Rightarrow F_{\eta} = C(8n+1-8n) + C(8n-1-8n)$$

$$= C(8n+1+8n-1-28n) = M\frac{d^28n}{dt}$$
From in atom

force in atom n comes from the dillerence in

2nd law

=> we must find the displacements on which are solution of this equation

disblacement between this atom n and the neighbours (n+1, n-1)

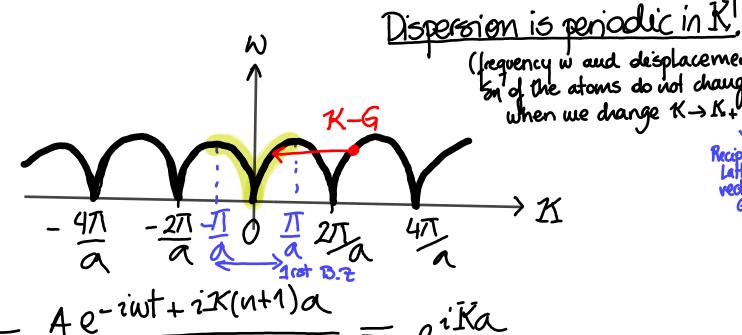
Vibrations of 1D monoatomic chain (II)

of vibration is and waveletter 11

Range of significant K

$$\omega = \sqrt{\frac{4C}{m}} \left| \sin \frac{Ka}{2} \right|$$

Range of significant K: 2 consecutive atoms:



$$= \frac{A e^{-i\omega t + i\kappa \alpha}}{A e^{-i\omega t + i\kappa \alpha}} = e^{i\kappa \alpha}$$

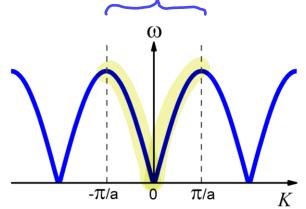
range - M < Ka < M covers all range of vidependent K.

11st Brillouin 20ne

the 1rst. B.Z. covers all information about Lattice motion (again, special role of B.Z.)

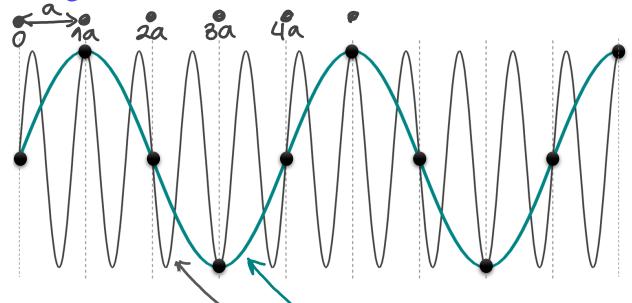
Aliasing of waves

11st B.t. contains all info => wavevector K describes the same wave as wavevector K+G. What does it mean?



"given $\lambda = \frac{271}{6}$, which λ we chose $\frac{277}{K}$ or $\frac{277}{K+6}$?"

Osaill.



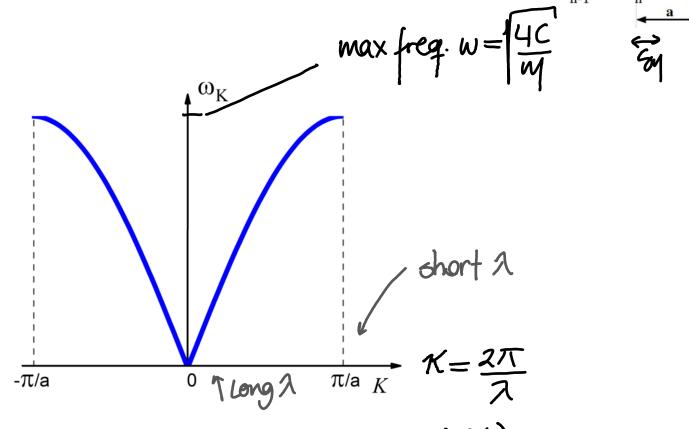
=> the point is to realize that K and K+6 are only aquivalent at the Lattice points by=na

$$\lambda_{1} = 4a \Rightarrow K_{1} = \frac{1}{4} \frac{2\pi}{a} \quad K_{1} = \frac{\pi}{2} = \frac{1}{4} \frac{2\pi}{a} \quad K_{2} = \frac{\pi}{2} = \frac{1}{4} \frac{2\pi}{a} \quad K_{2} = \frac{1}{4} \frac{2\pi}{a} \quad K_{3} = \frac{1}{4} \frac{2\pi}{a} \quad K_{4} =$$

Both waves are equivalent: they take the same values at Lattice points and do not coincide at all other points

Dispersion relation

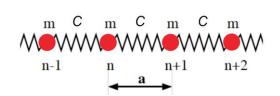
$$\omega = \sqrt{\frac{4C}{m}} \left| \sin \frac{Ka}{2} \right|$$



Frequency is symmetric with respect K: W(K) = W(-K) it corresponds to waves travelling left - night and night - left since these two directions are equivalent in the cystal, W is the same

Dispersion relation

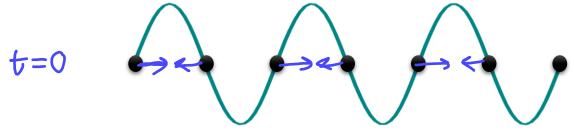
shortest 2 supported by the crystal



$$\Rightarrow$$

i.e.
$$\lambda = 2a$$

$$K = \frac{2\pi}{3} = \frac{\pi}{3}$$



$$t=\pi$$

$$6y = 4e^{i(-\omega t + \kappa na)} =$$

$$= 4e^{i(-\omega t + \kappa na)}$$

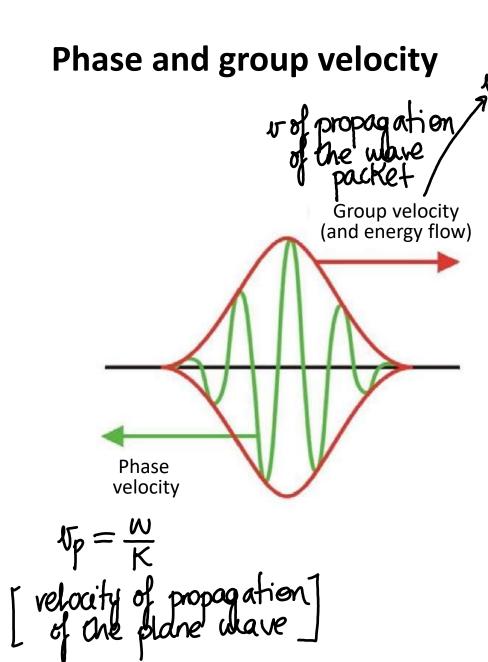
$$= Ae^{-i\omega t} (-1)^{n}$$

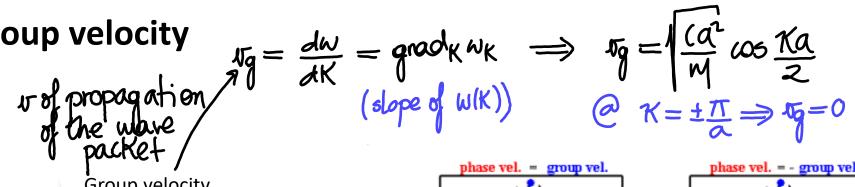
neigh. atoms osaillate in opposite directions

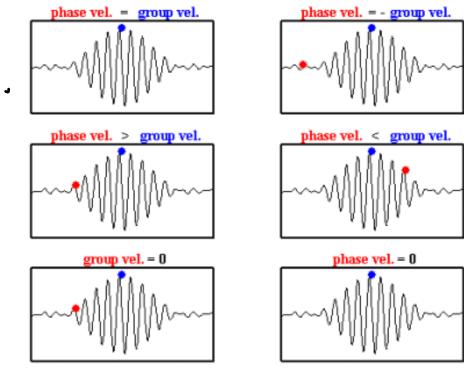
=> At zone boundaries, solutions represent standing waves

see next slide

$$@ K = \pm T_{\alpha} \Rightarrow t_{q} = 0$$







isvr

Dispersion relation

cowpared to interatemic distances (NSA) 1-1 n

Long wavelengths (small K)

$$\Rightarrow \lambda \sim 20 \text{m} - 20 \text{m}$$

$$\omega = \sqrt{\frac{4C}{m}} \left| \sin \frac{Ka}{2} \right|$$

$$\Rightarrow Ka \ll 1$$

for small
$$x$$

$$\sin x = x - \frac{x^3}{3!} - \frac{x^5}{5!} \dots$$

 π /a K-π/a

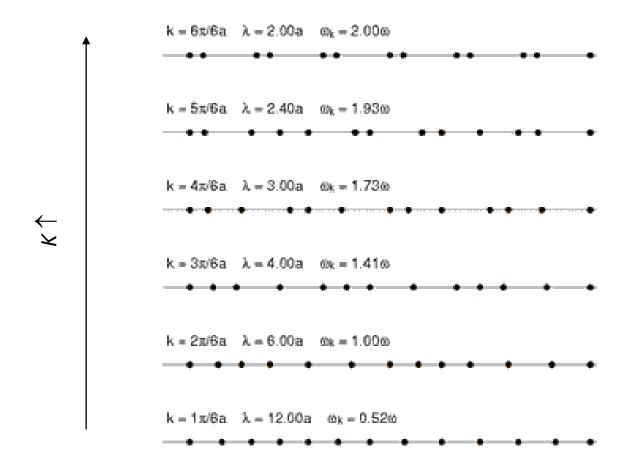
in this limit,
$$w = \sqrt{\frac{4C}{M}} \frac{\sin Ka}{2} \left(\frac{1}{2} Ka \right) = \sqrt{\frac{4C}{M}} \frac{1}{2} Ka$$

For very Large 2, wax

In this regime, the relocity is independent of w $\sqrt{p} = \frac{w}{\kappa} = \sqrt{\frac{c}{M}} \alpha$

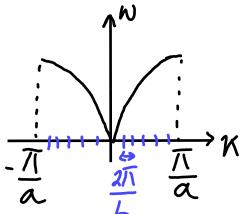
- surbration is an elastic wave

1D monoatomic chain



see, sor instance, mi Kipedia animation for Phonons

Normal modes: how many *K*?



- * N masses ui a row
- Assume periodic boundary conditions: SU+N=SUY

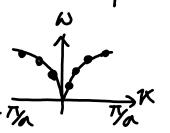
$$60+N=50$$

$$e^{i(-wt+K(n+N)a)}=e^{-i(wt+Kna)}$$

 $e^{iKNa} = 1 \implies K$ must be of the type $K = \frac{2\pi}{\Lambda / a} P = \frac{2\pi}{1} P$

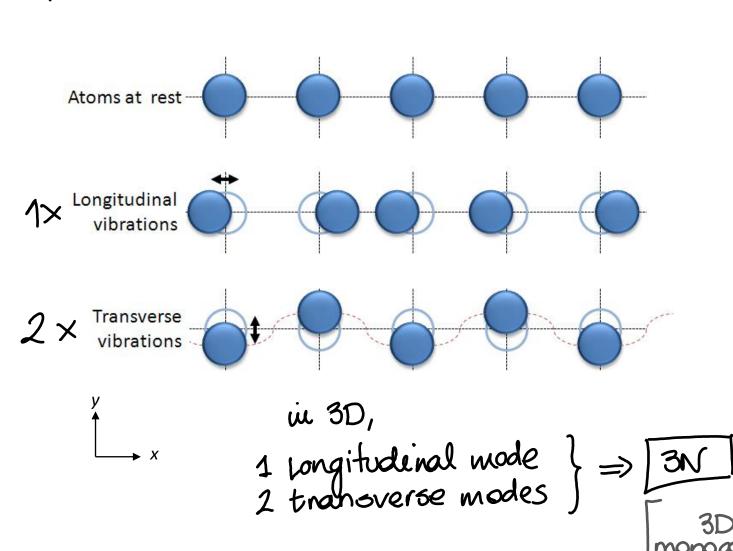
$$\mathcal{K} = \frac{2\pi}{N\alpha} P = \frac{2\pi}{L} P$$

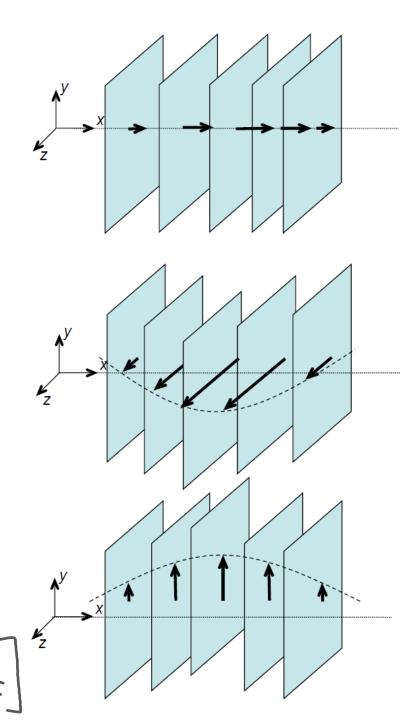
there is a normal mode per mass in the system (remember: we are still dealing with 1D monopotomic)



Excitations in higher dimensions

(monoatomic chain)





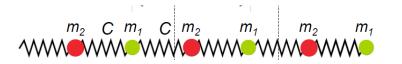
Vibrations of 1D diatomic chain

$$\frac{m_1 \quad m_2}{m_2 \quad m_3 \quad m_4} = c \quad (5n+1+5n-1-25n)$$

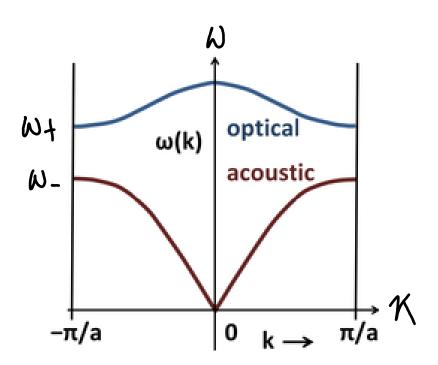
$$\frac{d^2Sn}{dt^2} = c \quad (5n+2+5n-25n+1)$$

substituing Ansatz in the 2 motion and solving the system of linear homogeneous eqs
$$W^2 = C\left(\frac{1}{M_1} + \frac{1}{M_2}\right) + \frac{1}{M_1} + \frac{1}{M_2} - \frac{4\sin^2 Kb}{M_1 M_2}$$
Solution \rightarrow

Diatomic chain: dispersion relation



$$\omega^2 = C\left(\frac{1}{m_1} + \frac{1}{m_2}\right) \pm C\sqrt{\left(\frac{1}{m_1} + \frac{1}{m_2}\right)^2 - \frac{4\sin^2 Ka}{m_1m_2}}$$



2 solutions

=> there are 2 dispersion curves (on the sign)

for the diatomic chain:

* ACOUSTIC BRANCH (upper curve)

* ACOUSTIC BRANCH (Lower curve)