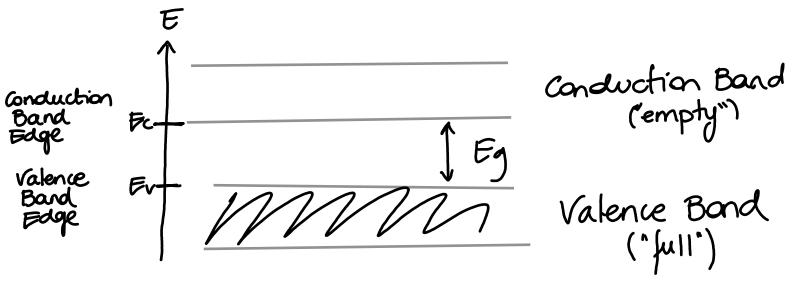
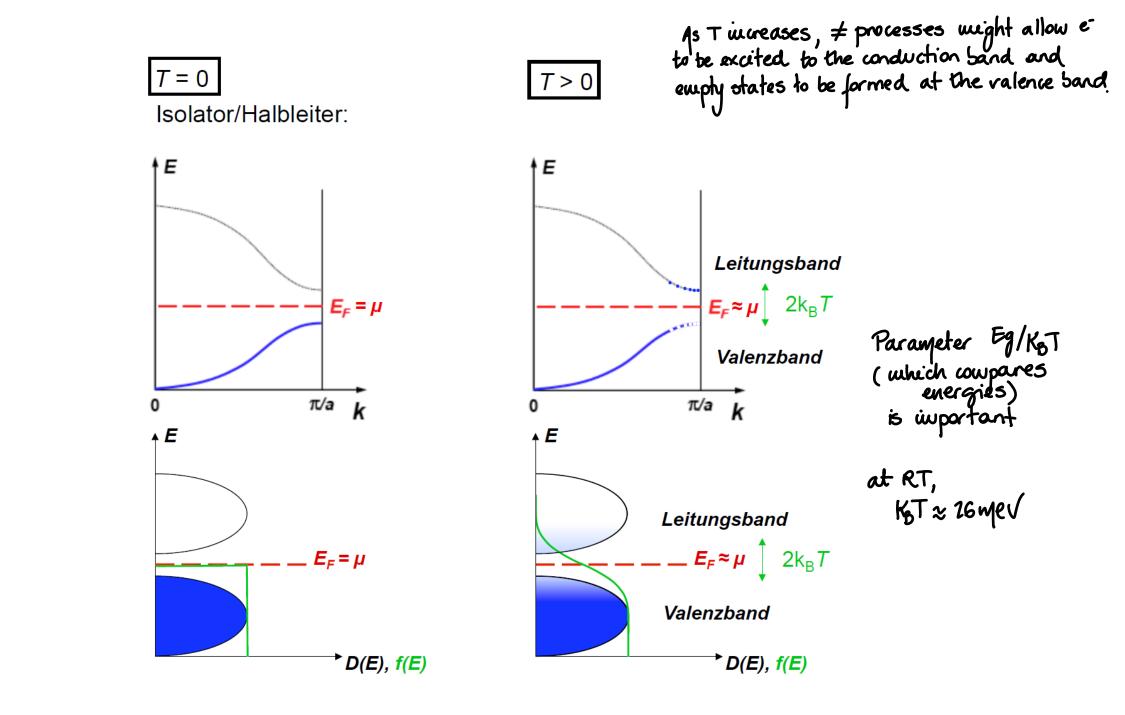

Semiconductors

Kittel Chapter 8 Simon (Oxford) - Chapter 17




Ladungsträgerkonzentration: Halbleiter, Halbmetalle, Metalle

Semiconductors – useful nomenclature

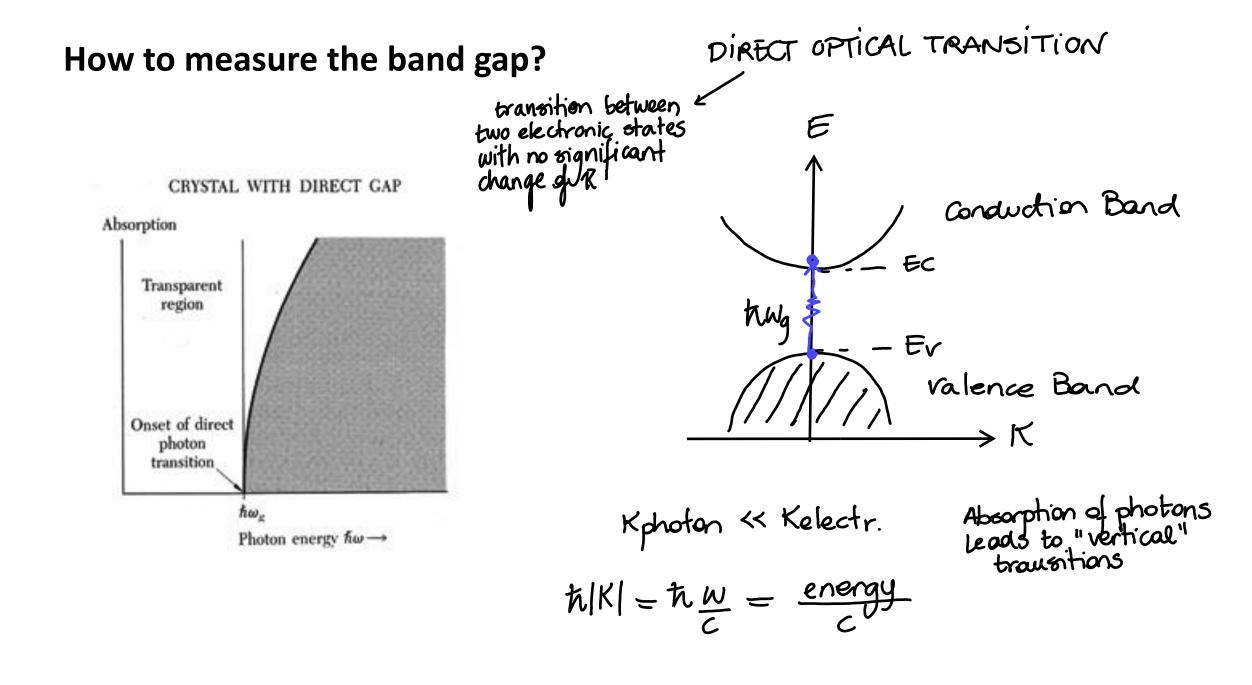
AB (chemical formula) III-V GaAs, Insb II-VI 2ns, CAS IV-IV Sic type Diamond Ge, Si

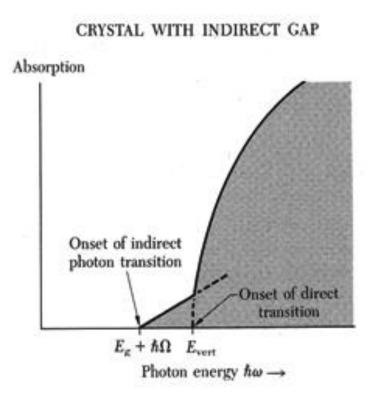
Band structure and optical properties

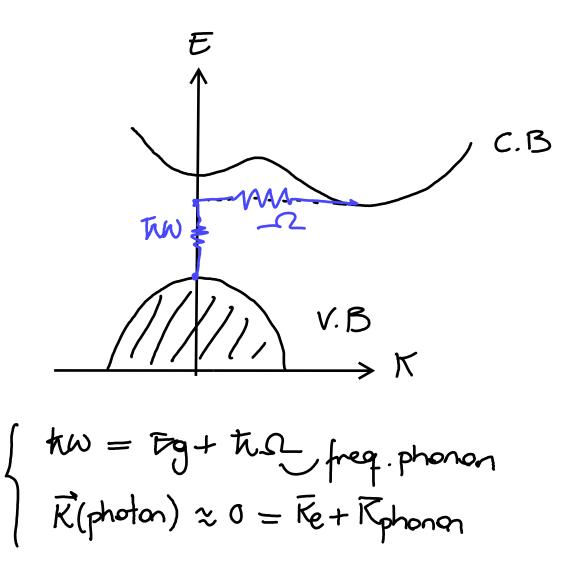
Semiconductors	$E_g(0 \text{ K})$ (eV)	$\frac{E_g(300\mathrm{K})}{(\mathrm{eV})}$
Si	1.17	1.12
Ge	0.75	0.67
GaAs	1.52	1.43
InSb	0.24	0.18
InAs	0.43	0.35
InP	1.42	1.35
ZnO	3.44	3.2
ZnS	3.91	3.6
CdS	2.58	2.42
CdTe	1.61	1.45

Colors corresponding to photon energies

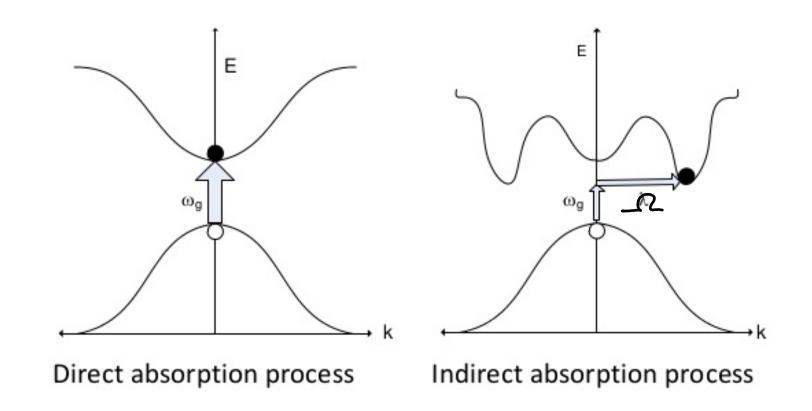
Color	ħω
Infrared	< 1.65 eV
Red	\sim 1.8 eV
Orange	~ 2.05 eV
Yellow	~ 2.15 eV
Green	~ 2.3 eV
Blue	~ 2.7 eV
Violet	~ 3.1 eV
Ultraviolet	~ 3.2 eV



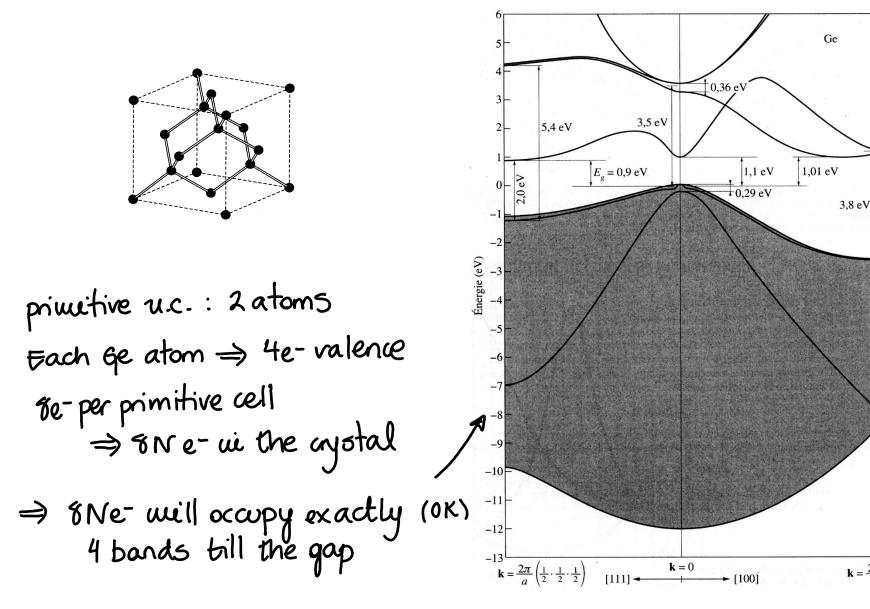


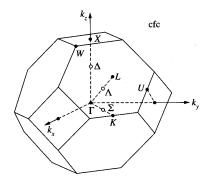

Optical absorption of several semiconductors

			- Photon energy (eV)
			5 4 3 2 1 0.9 0.8 0.7
			1×10^8
Semiconductors	E _g (0 K) (eV)	E _g (300 K) (eV)	$Ge In_{0.7}Ga_{0.3}As_{0.64}P_{0.36}$
Si	1.17	1.12	Si In _{0.53} Ga _{0.47} As
Ge	0.75	0.67	1×10 ⁶
GaAs	1.52	1.43	H GaAs
InSb	0.24	0.18	$\alpha (m^{-1})$
InAs	0.43	0.35	1×10 ⁵
InP	1.42	1.35	a-Si:H
ZnO	3.44	3.2	
ZnS	3.91	3.6	
CdS	2.58	2.42	1×10 ⁴
CdTe	1.61	1.45	
			1×10^{3} $ 0.2$ 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
			Wavelength (µm)

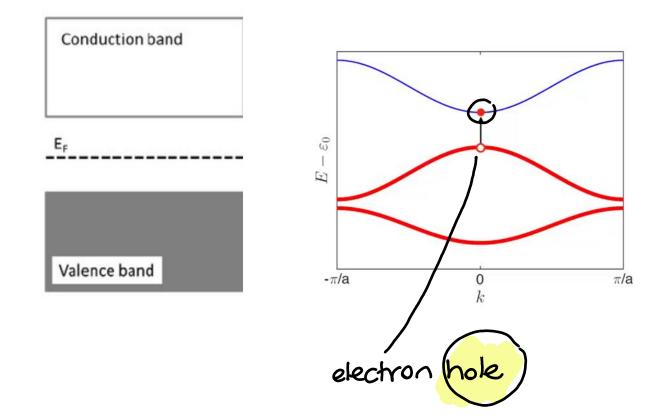


INDIRECT ABSORPTION PROCESS



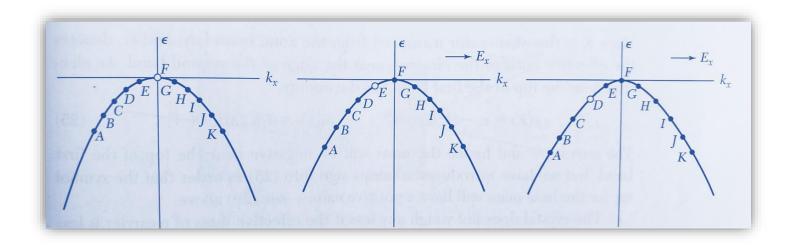


Direct and indirect absorption


Germanium

 $\mathbf{k} = \frac{2\pi}{a} (1.0.0)$

the properties of empty states in an otherwise filled bands are important in semiconductors!


Holes

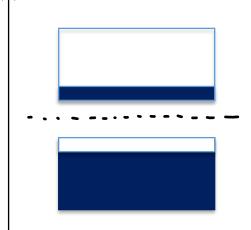
/ C.B

· For a full band : $\overline{Z_{j}}\overline{K_{j}} = 0$ If we remove an e-to create an excitation \longrightarrow HOLE the band gets a net wavector $\overline{K_h} = \overline{f_{\neq e}K_j} = -\overline{K_e} \longrightarrow \overline{K_h} = -\overline{K_e}$ · Energy/En(Kn) = - Ee(Ke) Group velocity $\overline{v_h} = \frac{1}{\hbar} \overline{v_k} \overline{E}_h = \frac{1}{\hbar} \overline{v_{-K_e}} \left[-\overline{E}(K_e) \right] = \overline{v_e}$ • Effective mass $\frac{1}{M^*} = \frac{1}{K^2} \frac{d^4t}{dK^2}$ $\left| \frac{1}{m_{h}} = \frac{1}{h^{2}} \frac{d}{d(-\kappa_{e})} \frac{d}{d(-\kappa_{e})} \left(-\varepsilon_{e} \right) = -\frac{1}{h^{2}} \frac{d^{2}\varepsilon}{d\kappa^{2}} = -\frac{1}{m_{e}} \frac{d^{2}\varepsilon$

- A filled band does not transport wrrent:

$$\vec{1} = \vec{\zeta}(-e)\vec{v_1} = 0$$

if we remove an e^- ,
 $\vec{\zeta}(-e)\vec{v_1} = \vec{\zeta}(-e)\vec{v_2} - (-e)\vec{v_2} = 0 + e\vec{v_2} = +e\vec{v_1}$
 $\vec{z_1}(-e)\vec{v_1} = \vec{\zeta}(-e)\vec{v_2} - (-e)\vec{v_2} = 0 + e\vec{v_2} = +e\vec{v_1}$
 $\vec{z_1}(-e)\vec{v_1} = \vec{\zeta}(-e)\vec{v_2} - (-e)\vec{v_2} = 0 + e\vec{v_2} = +e\vec{v_1}$
 $\vec{z_1}(-e)\vec{v_1} = \vec{\zeta}(-e)\vec{v_2} - (-e)\vec{v_2} = 0 + e\vec{v_2} = +e\vec{v_1}$


we want to know the number of e-and holes ui the conduction and valence band, respectively.

Intrinsic carrier concentration

let's consider the case: - Fermi level (u) is in the gap - sufficiently low-T to the thermal occupation of the conduction band is low E-u(T) >> KBT, the Fermi Dirac distribution $f^{\text{FD}}(E,T) = \frac{1}{e^{\left(\frac{E}{K}\right)} + 1} \sim e^{\frac{\mu(T) - E}{K_{\text{B}}T}}$

> semiconductor Eg~1e√ 1[ev] 2 Kg 11600[K] 26[mev]~ Kg 300 [K]

Energy

Concentration of electrons in the conduction band

Concentration of holes in the valence band

$$f_{FD,e}(E_{1}T) + f_{FD,h}(E_{1}T) = 1 \quad - \circ f_{h} = 1 - f_{e}$$

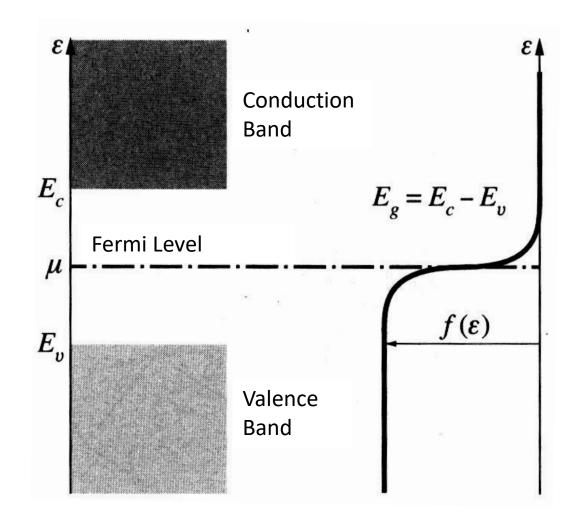
$$f_{FD,h} = 1 - \frac{1}{e^{\frac{E-\mu}{K_{0}T} + 1}} \sim e^{\frac{E-\mu}{K_{0}T}}$$

$$\mu(T) - E > 0 >> K_{B}T$$

$$\mu(T) - E > 0 >> K_{B}T$$

$$N_{h}(E) = \frac{2^{1/2} (M_{h}^{*})^{3/2}}{71^{2} h^{3}} (E_{V} - E)^{V/2}$$

$$N_{h} = \int_{-\infty}^{E_{V}} N_{h}(E) f_{FD,h}(E_{1}T) dE$$


$$M_{h} = 2 \left(\frac{M_{h}^{*} K_{B}T}{2T h^{2}}\right)^{3/2} e^{\frac{(E_{V} - \mu(T)}{K_{B}T}} = p$$

Law of mass action

$$n \cdot p = 4 \left(\frac{K_{B}T}{2\pi \hbar^{2}}\right)^{3} \left(m_{e}^{*}m_{h}\right)^{3/2} e^{-\frac{E_{g}}{K_{B}T}} \frac{1}{E_{g}} = E_{c} - E_{v}$$

$$E \times np = 6.55 \times 10^{12} \text{ cm}^{-6} \text{ GaAs} \\ 2.1 \times 10^{19} \text{ cm}^{-6} \text{ Si} \\ 2.89 \times 10^{26} \text{ cm}^{-6} \text{ Ge}$$

For all intrinsic semiconductor
$$m' = Pi$$

 $n = p = \sqrt{np} = 2 \left(\frac{K_{\text{B}}T}{2\pi h^2}\right)^{3/2} \left(\frac{m_{\text{e}}^{\nu} m_{\text{h}}^{\nu}}{M_{\text{h}}^{\nu}}\right)^{3/4} e^{-\frac{E_{9}}{2K_{\text{B}}T}}$
 $\frac{P}{n} = \left(\frac{M_{\text{h}}^{\nu}}{M_{\text{e}}^{\nu}}\right)^{3/2} e^{\frac{E_{\text{F}}}{2}} - \frac{M_{\text{F}}}{M_{\text{F}}} + \frac{E_{\text{F}}}{K_{\text{B}}T}\right)^{3/2} e^{\frac{E_{\text{F}}}{2}} + \frac{E_{\text{F}}}{K_{\text{B}}T} + \frac{E_{\text{F}}}{K_{\text{B}}T}\right)^{3/2} e^{\frac{E_{\text{F}}}{2}} + \frac{E_{\text{F}}}{K_{\text{B}}T} + \frac{E_{\text{F}}}{K_{\text{B}}T}\right)^{3/2} e^{\frac{E_{\text{F}}}{K_{\text{B}}T}} = 1$
 $\frac{3}{2} \ln \left(\frac{m_{\text{h}}^{\nu}}{M_{\text{e}}^{\nu}}\right) + \frac{E_{\text{F}} + E_{\text{F}}}{K_{\text{B}}T} - \frac{2\mu(T)}{K_{\text{B}}T} = 0 \implies \mu(T) = \frac{E_{\text{F}} + E_{\text{C}}}{2} + \frac{3}{4} K_{\text{B}}T \ln \frac{m_{\text{h}}^{\kappa}}{M_{\text{e}}^{\kappa}}$
Chemical potential is close to the middle of the gap

