

Assistant: Gabriele De Luca

Solid State Physics Exercise Sheet 1 Crystal Structure

HS19 Prof. Dr. Marta Gibert

Received on  $20^{\text{th}}$  September Discussed on  $27^{\text{th}}$  September

## Two-dimensional lattices

**Exercise 1** Wigner-Seitz cell

Construct the Wigner-Seitz cell of the 5 Bravais lattices (BL) that exist in two dimensions.

# **Exercise 2** Primitive unit cells

The common building blocks for most high temperature superconductors are copper oxide  $(CuO_2)$  layers (Left figure, Cu in black, O in white).

In La<sub>2</sub>CuO<sub>4</sub>, the CuO<sub>2</sub> lattice is not flat, but the oxygen atoms are moved a small amount out of the plane ("up" or "down") in an alternating fashion (Right figure, a + means up and a - means down).



- 1. Sketch the Bravais lattice, the unit cell, the basis and the primitive vectors of the  $\rm CuO_2$  lattice.
- 2. Repeat the previous steps for the distorted  $CuO_2$  planes. What are the main differences?

## Three-dimensional lattices

### **Exercise 3** Crystal structures

Describe the crystal structures represented in the following. In particular, indicate Bravais lattice, basis and chemical formula.



### **Exercise 4** Lattice systems

Assume a lattice constant of a and that atoms are hard spheres of radius r.

- 1. Calculate the packing fraction, volume of the conventional unit cell and volume of the primitive unit cell for the following structures:
  - (a) simple cubic (sc)
  - (b) body-centered cubic (bcc)
  - (c) face-centered cubic (fcc)
  - (d) diamond

#### Questions

1. Why is there no tetragonal base-centred crystal lattice? (Draw a figure!)