Solid State Physics

Exercise Sheet 1
Prof. Dr. Marta Gibert

Two-dimensional lattices

Exercise 1 Wigner-Seitz cell

Construct the Wigner-Seitz cell of the 5 Bravais lattices (BL) that exist in two dimensions.

Exercise 2 Primitive unit cells

The common building blocks for most high temperature superconductors are copper oxide $\left(\mathrm{CuO}_{2}\right)$ layers (Left figure, Cu in black, O in white).
In $\mathrm{La}_{2} \mathrm{CuO}_{4}$, the CuO_{2} lattice is not flat, but the oxygen atoms are moved a small amount out of the plane ("up" or "down") in an alternating fashion (Right figure, $\mathrm{a}+$ means up and a means down).

Distorted CuO_{2} lattice

1. Sketch the Bravais lattice, the unit cell, the basis and the primitive vectors of the CuO_{2} lattice.
2. Repeat the previous steps for the distorted CuO_{2} planes. What are the main differences?

Three-dimensional lattices

Exercise 3 Crystal structures

Describe the crystal structures represented in the following.
In particular, indicate Bravais lattice, basis and chemical formula.

Structure \#1

Structure \#2

Structure \#3

Exercise 4 Lattice systems

Assume a lattice constant of a and that atoms are hard spheres of radius r.

1. Calculate the packing fraction, volume of the conventional unit cell and volume of the primitive unit cell for the following structures:
(a) simple cubic (sc)
(b) body-centered cubic (bcc)
(c) face-centered cubic (fcc)
(d) diamond

Questions

1. Why is there no tetragonal base-centred crystal lattice? (Draw a figure!)
