

## Solid State Physics Exercise Sheet 12 Band structure

HS19 Prof. Dr. Marta Gibert

Assistant: Gabriele De Luca

Received on 6<sup>th</sup> December Discussed on 13<sup>th</sup> December

## Exercise 1 Band structure of a semi-metal

The band structure of semi-metals (As, Sb, Bi) is characterized by the fact that the valence and conduction bands overlap in such a manner that the corresponding dispersion relations are described by:

$$E(V) = -(\hbar^2/2m_h^*)k^2 + E_0 \qquad E(C) = (\hbar^2/2m_e^*)k^2 \tag{1}$$

where  $E_0 > 0$ ,  $m_e^*$  and  $m_h^*$  are the effective masses of electrons and holes such that  $m_e^* < m_h^*$ .

- 1. Draw the band diagram for a semi-metal and compare it with that of an alkali metal and a semiconductor.
- 2. Starting from the density of states for a free electron gas, find the expression for the density of conduction electrons n and the density of holes p.
- 3. Knowing that in semi-metals n = p, express the Fermi energy  $E_F$  as a function of  $E_0$ ,  $m_e^*$  and  $m_h^*$ .

## Exercise 2 Semiconductor band structure with multiple valence bands

Let's consider the case of an intrinsic semiconductor with two valence bands  $E_v$  with effective masses  $m_{h1}^*$  and  $m_{h2}^*$  and a conduction band  $E_c$  with effective mass  $m_e^*$ . The valence bands and the conduction band are separated by a bandgap  $E_q$ .

- 1. Express the chemical potential  $\mu(T)$  as a function of the given parameters.
- 2. Compare the obtained result with the one described in the lecture for a single valence band: Where is located the chemical potential in this case for  $m_h^* = m_e^*$ ?
- 3. The presence of the second valence band will change the value of the potential. Does this kind of displacement seem logical to you? Explain.

Exercise 3 Quantum oscillations on quasi two-dimensional systems In  $\text{Tl}_2\text{Ba}_2\text{CuO}_{6+\delta}$ , quantum oscillations with a frequency of  $F = 18.1\,\text{kT}$  are observed (B. Vignolle et al., Nature 455, 952-955 (2008)).

- 1. Use the Onsager relation  $(S=2\pi\frac{eF}{\hbar})$  to calculate the Fermi surface area.
- 2. If we assume a circular Fermi surface shape, what is the Fermi momentum?

## Exercise 4 Quantum oscillations in gold

Estimate the Fermi energy of gold (in eV) based on the oscillations of the spin susceptibility in a magnetic field, see figure 1. Which of the two superimposed oscillations corresponds to the largest orbit on the Fermi-sphere? Compare the result with the literature value  $\epsilon_F = 5.51 \,\text{eV}$ . Where is the other oscillation originating from?



Figure 1: The spin susceptibility of gold in a magnetic field.