PHY127

Prof. Ben Kilminster Lecture I Feb. 24th, 2023

we will cover modern physics in a hay that targets modern techniques in medical + biology / chemistry research.

physics atomic physics nuclear physics particle physics anti-matter radiation relativity q nattum physics

bio-med t-rays t-ray computed tomography CT scens PET scans NMR, MRI medical diagnostics freatment Imaging

PHY 127

Physics II for Biomed (Modern Physics) Lecture : Fridays 8:00-10:00, Y15-G20

Professor Ben Kilminster (Email <u>ben.kilminster@physik.uzh.ch</u>) Prof. K's office hours : 36-J-50 Fridays 10:30 – 11:30 (or by appointment) Class page: <u>https://www.physik.uzh.ch/de/lehre/PHY127/FS2023.html</u>(user: physik-phy127, pass: maxwell5%)

Teachers assistants :

Frau Ruth Bründler (<u>ruth.bruendler@physik.uzh.ch</u>) (English/German speaking) (In charge of exercises&sessions)

Matias Senger (matias.senger@physik.uzh.ch) (English/Spanish speaking) In-class TA

Exercise session groups :

Name		Mail address	class room
Sara	Erni	sara.erni@uzh.ch	03-G-95/44-H-05
Yannic	Göldi	yannic.goeldi@uzh.ch	27-H-35/36
Simon	Giesch	simon.giesch@uzh.ch	22-F-62
Patrick	van Workum	patrickblakemillen.vanworkum@uzh.ch	22-F-68
Alec	Strassen	alecmichael.strassen@uzh.ch	21-F-70
José	Cuenca Garcia	josejavier.cuencagarcia@physik.uzh.ch	23-G-04
Yuri	van der Burg	yuri.vanderburg@uzh.ch	36-K-08
James	OLeary	james.oleary@uzh.ch	23-G-04
Philipp	Maier	philippemanueljan.maier@uzh.ch	22-F-62
Maximinio	Adrover	maximinio.adrover@uzh.ch	22-F-68
Heba	Hussein	heba.hussein@uzh.ch	21-F-70
Mariana	Rajado	mariana.rajado@physik.uzh.ch	36-J-33

References: Kilminster Physics 1 & 2 scripts (available on the course web site) Introductory university physics text book. I use the following :

> **Tipler** (Very good explanations, main text I follow) Halliday & Resnick Young & Freedman

(But these are all very similar. Find any one that explains physics well for you.) For modern physics, I will point you to other online resources when relevant.

Assessments : Please register on OLAT: <u>https://lms.uzh.ch/</u>This is how we send you assignments Please log in to see if you can access the course. If not, check your UZH email is registered properly.

- 1) Exercise sessions: Tuesdays/Wednesdays, 13:00-16:00, starting Feb. 28th. You will be assigned to a group above by Feb. 27th. TAs will explain homeworks, answer questions, and go through additional exercises if time. TAs will keep an attendance list. Note: You really have to go to the exercise sessions. This is where you learn how to solve problems. In your exams, you will have to solve similar problems. One problem will be the same.
- 2) Written exercises: every 2 weeks. These will be assigned on Fridays, explained on the following Tuesday/Wednesday, and solutions will be presented the following week. First homework assigned Feb 24th.
- 3) Final exam. (date not known yet). UZH exam schedule
 - a. Exam style :
 - 1. Similar style to written exercises
 - 2. Will be in German and English
 - 3. Expect question from exercise sessions & relating to experiments shown in lecture
 - 4. Formula sheet will be provided. (No private information allowed.)
- 4) Grade : 100% final exam

06:29 Fri 24 Feb

....

PHY411 Condensed Matter Theory	 Ben Kilminster, Introductory Physics 1. 4 Kilminster-IntroPhysics1-PHY111-Script (PDF, 5 MB)
PHY420 Electron Spectroscopy	 Ben Kilminster, Introductory Physics 2. Kilminster-IntroPhysics2-PHY121-Script (PDF, 3 MB)
PHY432 Physik mit Myonen: Von der Atomphysik zur Festkörperphysik	Texts:
PHY451 Elementary Particle Physics	Paul A. Tipler, Gene Mosca: Physics for scientists and engineers. Halliday & Resnick : Fundamentals of Physics
PHY452 Elementary Particle Theory	
PHY461 Experimental Methods in Particle Physics	Additional resources to help with mathematics.
PHY465 Experimental Astroparticle Physics	algebra, coordinate transformations, tensors,)
PHY511 General Relativity	 C.B. Lang und N. Pucker: Mathematische Methoden der Physik, Spektrum Verlag, Heidelberg und Berlin.
PHY519 Applications of General Relativity	↓ Formelsammlung Mittelschulphysik (PDF, 396 KB) is also useful for usage of basic formulas.
PHY551 Quantum Field Theory I	Exercises
PHY552 Quantum Field Theory II	Exercises are posted on OLAT every 2 weeks on Friday after lecture.
PHY563 Standard Model of Electroweak Interactions	Exercise sessions in the following week will help you understand the terms and concepts of the exercises. Exercise sessions in the second week after the exercises are assigned will explain the solutions. It is expected that you will complete the exercises before
PHY571 Physics beyond the Standard Model	this second exercise session.
PHY568 Flavour Physics	There will be no podcasts of exercise classes.
PHY572 Advanced Field Theory	E en esta data
PHY573 Quantum Field Theory III	Exam schedule
PHY575 Introduction to Contemporary Quantum Matter Physics	Exams will be similar in style to the exercises. A formula sheet with all needed equations will be provided to you in the exams. The
PHY576 Understanding Topological Phases of Matter from Toy Models	formula sheet will be sent to you by the end of the semester to help you study. We will provide you with paper and a calculator if needed. The final exam will be printed in english and in german. The following are forbidden in exams :
PHY578 Effective Field Theories for Particle Physics	Any means of communication (mobile phones, smart watches, etc.)
PHY585 Principles of Non-Relativistic Scattering Applications to Quantum Matter	 Any kind of calculator, laptop, or electronic storage device Any additional formula sheets or written notes.
AST241 Introduction to Astrophysics	
SPI301 Computergestütztes Experimentieren I	Grades Your grade is based on the following assessments :
SPI302 Computergestütztes Experimentieren II	100% final examination
PHY1010 Physik für Human-, Zahn- und Veterinärmedizin	Attendance is expected and recorded for exercise sessions. The final examination will be composed of questions similar to those presented in the lectures and the weekly exercises.
PHY1030 Physikpraktikum für Physik für Human-, Zahn- und Veterinärmedizin	
PHY116 Physik I für Nebenfachstudierende	Outline of course The course will cover modern physics topics such as relativity, quantum physics, atomic, nuclear, and particle physics, radiation,
PHY117 Physik für Life Sciences	particle-wave duality, particles interacting in matter, particle detection. These ideas will be used to explain the basics of modern
PHY118 Physik I für Naturwissenschaften	radiation techniques for diagnostics and treatment, and such instruments as X-rays, CT scanners, PET scanners, NMR, MRI, etc.
PHY119 Ergänzungen Physik I für Chemie	
PHY124 Physik für die Biomedizin	
PHY126 Physik II für Nebenfachstudierende	Lecture information
PHY127 Physik für Life Sciences II	
FS2022	
E00000	

6

06:33 Fri 24 Feb 1 of 55

eee physik.uzh.ch ≅ Mathematische Hilfsmittel zur Physik I und II

mit ergänzenden Beispielen und Korrekturen, 15. Februar 2013

Physik - Institut Universität Zürich

Inhaltsverzeichnis

L	Funktionen und ihre Ableitungen	3
	1.1 Funktionen	3
	1.2 Felder	3
	1.3 Ableitungen (von Funktionen mit einer Variablen)	4
	1.4 Ableitungsregeln für elementare Funktionen	5
	1.5 Funktionen mehrerer Variablen	6
	1.5.1 partielle Ableitung	6
	1.5.2 totales Differential von Funktionen mit mehreren Variablen	7
2	Taylor-Reihen und Näherungen	8
3	Messen und Messfehler	10
	3.1 Systematische und zufällige Messfehler	11
	3.2 Wahrscheinlichkeitsverteilung zufälliger Messfehler	11
	3.3 Schätzungen der wahren Werte	13
	3.4 Fehlerfortpflanzung	14

Wahrscheinlichkeitsverteilung zufälliger Messfehler	.1
Schätzungen der wahren Werte	.3
Fehlerfortpflanzung	.4

06:33 Fri 24 Feb

🗢 🕻 53% 💕

algebraisch rechnen, wie mit anderen Symbolen. Es gilt die Gleichung (6). Man beachte aber, dass dy null werden kann, wenn die Funktion horizontal verläuft. Dann muss man aufpassen, dass man nicht durch dy = 0 dividiert.

1.4 Ableitungsregeln für elementare Funktionen

Sei a konstant.

• $y = a$
• $y = axy' = a$
• $y = ax^p \dots y' = apx^{p-1}$, wobei p $\neq 0$
• $y = \sqrt{x} = x^{\frac{1}{2}} \dots y' = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$
• $y = 1/x = x^{-1} \dots y' = (-1)x^{-2} = -1/x^2$
• $y = e^x$ $y' = e^x$ also: $f(x) = f'(x)$
• $y = \ln x \dots y' = 1/x$ (durch Umkehrfunktion)
• $y = \sin x \dots y' = \cos x$
• Ableiten ist eine "lineare Operation": $\frac{d[af_1(x)+bf_2(x)]}{dx} = a\frac{df_1(x)}{dx} + b\frac{df_2(x)}{dx}$
• Produktregel: $y = f_1(x)f_2(x)$ $\frac{dy}{dx} = \frac{df_1}{dx}f_2 + \frac{df_2}{dx}f_1$

5

奈 🖌 54% 🛃

06:29 Fri 24 Feb

●●● physik.uzh.ch 🔒

🗢 🕻 50% 🛃

PHY126 Physik II für Nebenfachstudierende	Lecture inform	nation		
PHY127 Physik für Life Sciences II				
FS2022				
FS2022				
FS2021	Lecture	Topics	PDF of	Additior
F\$2020	schedule		chalkboard	resourc
PUN400 Physik II 69	(12 lectures)			
Naturwissenschaften	Week 1 (Feb	Units, quantization		
PHY129 Ergänzungen Physik II für Chemie	24, 2023)			
F\$2022	Week 2 (Mar.3, 2023)	Electromagnetic radiation is made of photons.		
	Week 3 (Mar. 10, 2023)	But are photons particles or waves ?		
	Week 4 (Mar. 17, 2023)	Waves, standing waves, probabilities		
	Week 5 (Mar. 24, 2023)	Wave-particle duality, wave packets, uncertainty principle, Schroedinger wave equation		
	Week 6 (Mar. 31, 2023)	The quantum nature of electrons in an atom, and emitted light. Standing waves. Particle in a 3D box.		
	Holiday April 7th			
	Holiday April 14th			
	Week 7 (Apr. 21, 2023)	Hydrogen atom in 3D, with 3 quantum numbers. Angular momentum. Standing waves.		
	Week 8 (April 28, 2023)	Many-electron atoms, charge screening, X-rays, Bremsstrahlung, Characteristic X-rays, Thomson scattering, Compton effect, Bragg's law		
	Week 9 (May 5, 2023)	X-ray penetration, attenuation, radiation dose, exposure dose, biological effects of radiation, CT scans with X-rays, pair production, pair annihilation, PET scans		
	Week	microCT, nanoCT, phase-contrast imaging, Fresnel plate focusing,		

●●● physik.uzh.ch 🔒

< 🖒 50%

TTUUN T		
(Mar. 17, 2023)		
Week 5 (Mar. 24, 2023)	Wave-particle duality, wave packets, uncertainty principle, Schroedinger wave equation	
Week 6 (Mar. 31, 2023)	The quantum nature of electrons in an atom, and emitted light. Standing waves. Particle in a 3D box.	
Holiday April 7th		
Holiday April 14th		
Week 7 (Apr. 21, 2023)	Hydrogen atom in 3D, with 3 quantum numbers. Angular momentum. Standing waves.	
Week 8 (April 28, 2023)	Many-electron atoms, charge screening, X-rays, Bremsstrahlung, Characteristic X-rays, Thomson scattering, Compton effect, Bragg's law	
Week 9 (May 5, 2023)	X-ray penetration, attenuation, radiation dose, exposure dose, biological effects of radiation, CT scans with X-rays, pair production, pair annihilation, PET scans	
Week 10 (May 12, 2023)	microCT, nanoCT, phase-contrast imaging, Fresnel plate focusing, synchrotron accelerators, X-ray synchrotron imaging, X-ray free electron laser imaging	
Week 11 (May 19, 2023)	Angular momentum, precession of spinning object in gravity, precession of magnet in magnetic field, nuclear magnetic moment, nuclear magnetic resonance	
Week 12 (May 26, 2023)	nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), strong nuclear force, nuclear structure	
Week 13 (June 2, 2023)	Nuclear stability, nuclear decay, alpha, beta, gamma radiation. Decay series chains. Half lives. Bethe-Bloch energy loss. Dose delivered. Nuclear fission. Nuclear fusion.	

↓ Slide Handy (PDF, 249 KB)

© University of Zurich | 23.02.2023 | Impressum | Datenschutzerklärung

🛧 top

physical quantity (SI base units in blue) (radiation physics units)	Deutsch	Symbol	SI unit	Simplified Formula to help with units	in other SI units	typical units in radiation physics	conversions
Length	Länge	e	meter = m				
time	Zeit	t	second = s				
velocity	Geschwindigkeit	v	m/s			c=~3E8 m/	
acceleration	Beschleunigung	a	m/s ²			-	
mass	Masse	m	kilogram = kg			1eV/c ²	1eV/c ² = 1.78E-36 kg
momentum	Impuls	р	kg*m/s	p=mv			
force	Kraft	F	Newton = N	F = ma	1N = kg*m/s ²		
torque	Drehmoment	τ	N*m	$\tau=rFsin\theta$	kg*m²/s²		
energy, work	Energie, Arbeit	E, W	Joule = J	W = Fx	1J = kg*m²/s²	1eV	1eV = 1.602E-19J
power	Leistung	Р	Watt = W	P = E/t	1W = kg*m²/s		
pressure	Druck	Р	Pascal = Pa	P = F/area	1Pa=1N/m ²		
Electrical charge	Elektrische Ladung	q	Coulomb = C			e = electron charge	1e = 1.602E-19C
Electrical current	Stromstärke	I	Ampere = Amp = A	I = q/t	1A=1C/s		
Electric potential	Elektrische Spannung	V or Φ	Volt = V	Power = IV	1V = 1W/A		
Electric field	Elektrisches Feld	E	N/C = V/m				
Magnetic field	Magnetische Flussdichte	В	Tesla = T	F=BIℓ	1T=1N/(A*m)		
Resistance	Elektrischer Widerstand	R	Ohms = Ω	V = IR	1Ω = 1V/A		
Capacitance	Elektrische Kapazität	с	Farad = F	C=q/V	1F = 1C/V		
Temperature	Temperatur	т	Kelvin = K				
amount of substance	Stoffmenge	N	Mol				
luminous intensity	Lichtstärke	lv	Candela = cd				
radioactivity	Radioaktivität	A _{Bq}	Becquerel = Bq		1/s		
Absorbed dose	Energiedosis	DT	Gray = Gy		m²/s² = J/kg		
Faulticlant data	Åquivalantdasia	H	Sievert - Sv		m2/s21/kg		

Newton's second law: EF = mā (+) 1 $\Xi \vec{F} = -\vec{F} = -m\vec{g} = m\vec{a}$ $P_{f_{g}} = mg$ $-mg=m\overline{a}$ a = -9 $g = 9.8 \text{ m/s}^2$ Experiment 1: ball Floating forag = FD $F_{DRAG} = F_p = -6N_6$ (+) 1 b = 6 Tr 1 r Stokes Law T radius viscosity of the of fluid ball Nor J J J Wind Nor J J J Wind Velocity Flyid = gir

13

$$EF = F_{p} - F_{3} = m f = 0$$

$$F_{p} = F_{3}$$
Cyperiment Z: broyancy
$$f^{(4)} \qquad \int F_{Bhoyancy} = F_{B} \qquad \text{when ball is suspended,}$$

$$f^{(4)} \qquad \int F_{Bhoyancy} = F_{B} \qquad \text{when ball is suspended,}$$

$$F_{3} = F_{g} - F_{3} = ma^{2} = 0$$

$$F_{5} \qquad F_{g} = F_{3}$$

$$F_{g} = F_{3}$$

$$F_{g} = F_{3}$$

$$F_{g} = heright of fluid being displaced by the ball
Archimedes' principle: There is a broyant force
(upward) on an object that is
immersed in a fluid.
$$F_{g} = m_{f} g$$

$$density d fluid, T = m_{f} \qquad m_{f} = density f$$$$

Experiment 3? Buoyancy + drag force
(+)
$$f_{eff}f_{b}$$

 $f_{eff}f_{b}$
 $f_{$

At equilibrium,
$$f_{g} + f_{g} - f_{g} = 0$$

 $\nabla \left(\frac{4}{3}\pi r^{3}\right) + (6\pi n)N_{z} - P\left(\frac{4}{3}\pi r^{3}\right)g = 0$
 $N_{z} = (P - \sigma)\left(\frac{4}{3}\pi r^{3}\right)g$
 $= 0$
 $\int \left(\frac{4}{3}\pi r^{3}\right)g$

we see ! Ne & r² The bigger the ball, the Faster

Case 1: ball Fallins in Fluid, no electric field
(+) T Fran Fr at equilibrium (no acceleration)
ball has terminal velocity (constant)
Fg but
$$F_0 + F_8 - F_7 = 0$$

Case 2: we have electric field, ball goes up.
Fan Fr Case 3: ball suspended in an
E-Field.
Fy Fr EFS - Fr = mA^o at constant Fg
Fe + Fr - Fr = mA^o at constant Fg

5-3