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Abstract
The Standard Model of particle physics is a theory that has been remarkably
successful in describing the behaviour of the microscopic particles that constitute
the world around us. However, experimental evidences such as the non-zero
masses of the neutrinos and the presence of dark matter and dark energy in the
universe, clearly indicate that this theory needs to be extended.

Flavour changing neutral current transitions are forbidden at the tree level
in the Standard Model and are therefore rare. Contributions coming from yet
unobserved interactions, could be comparable in size with the Standard Model
amplitudes and be observed indirectly as shifts in some physical observables
with respect to their predictions. This class of decays is therefore considered an
ideal venue to probe the limits of the Standard Model.

In recent years, some tensions have indeed been observed between the
measurement of branching ratios and angular observables in b → s ℓ+ℓ−

transitions and their corresponding predictions. The nature of these tensions,
still below the discovery threshold of five standard deviations, could however be
explained by large hadronic contribution difficult to estimate reliably from first
principles, which could mimic the effect of a new interaction. Lepton flavour
universality tests are in these regards protected by the inherent lepton flavour
universality of Quantum Chromodynamics, and currently provide the cleanest
benchmark to test the Standard Model in semileptonic decays. An update on the
ratio of branching ratio between B+ → K+µ+µ− and B+ → K+e+e− decays
provided by the LHCb experiment in 2021 has reported the first evidence of
lepton flavour universality violation in flavour changing neutral currents, further
sparking interest in this class of decays.

This thesis presents the first attempt to perform a simultaneous amplitude
analysis of the decays B0 → K∗0µ+µ− and B0 → K∗0e+e− to extract, in a
single direct measurement, the difference between the observables that encode
potential non-equal couplings between muons and electrons, ∆C9 and ∆C10.
This lepton flavour universality test naturally combines the ratio of branching
fractions and the differences of angular observables between B0 → K∗0µ+µ−

and B0 → K∗0e+e− decays as a function of dilepton invariant mass squared,
providing an unprecedented discovery potential.

The measurement is performed using the 9 fb−1 collected by the LHCb
experiment between the years 2011 and 2018, and is limited to the region of
dilepton invariant mass squared between 1.1 and 7 GeV/c2. While the fit results
of this analysis are currently blinded, an estimation of the realistic statistical
uncertainty obtained directly from a likelihood profile on data, together with the
sensitivity obtained from realistic toys, is provided as the main result of this work.
Additionally, an heuristic estimation of the dominant systematic uncertainties
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expected is also discussed, suggesting that with the data currently available the
sensitivity of the measurement will be dominated by the statistical uncertainty.
The result, when unblinded, will provide the most sensitive measurement of ∆C9
and ∆C10 obtained from B0 → K∗0ℓ+ℓ− decays.
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Chapter 1

Theoretical background
This chapter aims to provide a short overview of the key features of the Standard
Model (SM), a theory that in the last 60 years has proven to describe particle
physics phenomena with astonishing accuracy. After a short introduction where
the main components of the SM are presented, it follows a more detailed and
formal presentation describing how the theory is built, with a particular attention
to the features more relevant for the physics of flavour. In conclusion, an outline
of some of the limitations of the SM is provided.

1.1 Introduction

The Standard Model of particle physics has been one of the most successful
theories of all time, capable of describing under the same formalism three of the
four fundamental forces of nature: the weak, electromagnetic and strong force.
The gravitational force, currently not included in the SM, has a strength that is
much smaller than the other forces and has therefore no relevance for particle
physics at the energy scales presently explored. After years of experimental
work, culminated by the discovery of the Higgs boson in 2012[1, 2], the physics
community settled on a set of particles that are considered to be fundamental, i.e.
with no internal structure. These particles, shown schematically in Figure 1.1,
can be sorted by their properties.

• Fermions. These are particles with spin 1/2 that follow the Fermi-Dirac
statistics. They can be further divided into quark and leptons. The first
ones correspond to the six quarks u, d, c, s, t and b and experience all three
forces in the SM, since they have weak isospin, electric and colour charge.
Leptons do not take part in strong interactions as they are colour neutral.
The three charged leptons e, µ and τ participate in the electromagnetic
and weak interactions, while the neutrinos νe, νµ, ντ only interact via the
weak force. Both quark and leptons can be further categorized in three
generations. The first generation constitutes the great majority of all the
matter in the Universe, for this reason quarks and leptons are also referred
to as matter fields. The second and third generations are exact copies of
the first one, with the difference that they are heavier and thus unstable.
Flavour physics is the branch of particle physics that studies transitions
between these different generations.

• Bosons. These are particles with integer spin that follow the Bose-Einstein
statistics. They can be divided into gauge bosons, with spin 1, and scalar
bosons with spin 0. The first ones are force mediators and correspond
to the Z0 and W±, that mediate the weak interactions, the photon γ,
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1. Theoretical background

Figure 1.1: Schematic view of the fundamental particles of the Standard
Model [3].

responsible for electromagnetic interactions, and the gluons, mediators of
the strong force. Of the four gauge bosons only W± are not electrically
neutral. The Higgs boson is the only elementary particle that is a scalar
boson. This particle is responsible for the mass of all fermions and gauge
bosons except for gluons and photons.

1.2 The Standard Model of particle physics

All properties outlined in Sec. 1.1 can be mathematically formalized in the context
of a Quantum Field Theory (QFT), where elementary particles are described
as excitations of the corresponding quantum fields. The SM can then be built
starting from a free Lagrangian of the matter fields, in which the interactions are
introduced by transforming a global symmetry of the theory into a local (gauge)
symmetry by means of a covariant derivative; an approach usually referred to as
minimal coupling. To perform this transformation, additional fields with spin 1
must be introduced, the so-called gauge bosons. With this prescription, the SM
is then built starting from three main pillars:

• the symmetry (gauge group) of the theory: SU(3)C ⊗ SU(2)W ⊗ U(1)Y ,
associated to the colour, weak isospin and hypercharge, respectively;

• the representations of the matter fields under those symmetries;

• the spontaneous symmetry breaking mechanism (SSB).

This last step is fundamental to make the theory phenomenologically accurate,
since it is responsible for the breaking of SU(2)W ⊗ U(1)Y → U(1)em, which
gives rise to electromagnetism and to the dynamical generation of the mass
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The Standard Model of particle physics

terms for the matter fields, Z0 and W± gauge bosons. The matter fields have
strong and electroweak charge and are therefore grouped in the multiplets of the
gauge group. The leptonic fields

EiL =
(
νiL = 1

2 (1 − γ5)νi
eiL = 1

2 (1 − γ5)ei

)
(1, 2)−1/2 ,

eiR =1
2(1 + γ5)ei (1, 1)−1 , (1.1)

correspond, when considering the first generation (i = 1), to an electron and
an electronic neutrino with negative helicity1 and to an electron with positive
helicity. These fields describe also the corresponding antiparticles: a positron
and positronic antineutrino with positive helicity and a positron with negative
helicity. The column on the right in Eq. 1.1 explicitly states, between parenthesis,
under which representation the different fields transform with respect to the
symmetries (SU(3)C , SU(2)W ), while the subscript corresponds to the value
of the hypercharge linked to the U(1)Y symmetry. The matrices 1

2 (1 − γ5)
and 1

2 (1 + γ5) correspond to the left- and right-handed projectors PL and PR,
respectively.

The quark fields are composed of two types for each generation, up and down,
grouped as

QiL =
(
uiL
diL

)
(3, 2)1/6 ,

uiR (3, 1)2/3 ,

diR (3, 1)−1/3 . (1.2)

In this notation, parity is clearly violated, since different weak quantum numbers
are assigned to left- and right-handed components of the matter fields. The
left-handed fields are doublets of SU(2)W , while right-handed fields are singlets.
In other words, the first ones interact weakly, while the second ones do not.

Starting from these premises, it is possible to write the most general
renormalizable Lagrangian density L that contains the required fields and is
compatible with Lorentz and gauge invariance:2

LSM = −1
4

8∑
a=1

F aµνF aµν − 1
4

3∑
i=1

AiµνAiµν − 1
4B

µνBµν

+ (Dµφ)†Dµφ+ µ2φ†φ− λ(φ†φ)2

+ iĒiLγ
µDµEiL + iQ̄iLγ

µDµQiL

1The helicity of a particle is the projection of its spin onto the direction of its momentum.
A particle has a positive helicity when the direction of its spin is the same as the direction
of its motion. It is important to point out that this quantity is Lorentz-invariant only for
massless particles, since in this case it is equivalent to their chirality.

2For simplicity, the term in the gluon fields − θs
64π2

∑8
a=1 F

aµνϵµνρσFaρσ has been ignored
since, in the SM, the coeffiecient θs is compatible with zero [4].
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1. Theoretical background

+ iēiRγ
µDµeiR + iūiRγ

µDµuiR + id̄iRγ
µDµdiR

− Λe,ij [ĒiLφ]ejR − Λd,ij [Q̄iLφ]djR − Λu,ij [Q̄iLφc]ujR + h.c. (1.3)

The first row contains the kinematic terms that describe the free propagation
in space-time and self-interaction of the strong, weak and hypercharge gauge
bosons fields, defined as

Gaµ(8, 1)0, Aaµ(1, 3)0, Bµ(1, 1)0 , (1.4)

and the corresponding field strengths given by

F aµν = ∂µGaν − ∂νGaµ − gsf
abcGbµGcν ,

Aiµν = ∂µAiν − ∂νAiµ − gϵabcAbµAcν ,

Bµν = ∂µBν − ∂νBµ , (1.5)

where gs (g) is the strong (electroweak) coupling constant, and fabc (ϵabc) are the
structure constants of SU(3)C (SU(2)W ). The second row contains the Higgs
sector, expressed as a function of the scalar field φ(1, 2)1/2, and responsible for
the spontaneous breaking of the electroweak symmetry. The third and fourth
rows contain all the matter fields (leptons and quarks) coupled minimally to the
gauge fields through the covariant derivative

Dµψi = ∂µψi + igAiµT
iψi + iyg′Bµψi + igsG

a
µt
a
sψi, (1.6)

where

• tas are the SU(3)C generators (3×3 Gell-Mann matrices λa/2 for triplets,
0 for singlets),

• T i are the SU(2)W generators (2×2 Pauli matrices σi/2 for doublets, 0
for singlets),

• y is the U(1)Y hypercharge and g′ is the weak hypercharge coupling
constant.

The fifth row contains the Yukawa couplings between the matter fields and
the Higgs boson. Notice that the field φc = iσ2φ∗ is used instead of φ∗ in the
Lagrangian density. The advantage of this notation is related to the fact that
φc corresponds to a Higgs field with hypercharge of − 1

2 rather than 1
2 , keeping

manifest the invariance under hypercharge of the expression. This term is also
responsible for the breaking of the global flavour symmetry of the gauge part of
the Lagrangian and for the transition between different fermion generations.

The Lagrangian density, written in this very compact form, completely
describes the SM, and it clearly shows the symmetries of the theory before the
SSB takes place.
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The Standard Model of particle physics

1.2.1 SSB, Higgs and the gauge fields

The phenomenon of spontaneous breaking of a symmetry happens when a physical
system, whose dynamics is invariant with respect to a continuous symmetry group
G, does not have a unique state of minimum energy (void state or configuration)
but a continuos family of configurations of minimal energy that is invariant
only with respect to a subgroup of G. In the case of the Higgs field, its void
configuration can be found by studying the minima of the potential introduced
in Eq. 1.3

V (φ) = −µ2φ†φ+ λ(φ†φ)2 → φ†φ = µ2

2λ ≡ v2

2 . (1.7)

This relationship fixes the modulus of the complex vector at two components φ,
partially breaking the symmetry of the potential. Without loss of generality, the
state of minimum energy for the Higgs fields can be chosen as

φ0 = 1√
2

(
0
v

)
. (1.8)

Expanding the Higgs field φ around these minima and using the gauge
transformation φ → eiα

j(x)σj2 +iβ(x)/2φ (unitary gauge) to remove three of the
four components of φ, the fields can be written as

φ(x) = 1√
2

(
0

v + h(x)

)
. (1.9)

The potential term of the Higgs then becomes:

V (h) = λv2h2 + λvh3 + λ

4h
4, (1.10)

which describes a massive field of mass m2
h = 2λv2, characterized by cubic and

quartic self-interaction vertices. As a consequence, the couplings between the
Higgs and the gauge bosons are simplified to:

(Dµφ)†Dµφ = 1
2∂

µh∂µh+ v2

8
[
g2A1

µA
1µ + g2A2

µA
2µ (1.11)

+
(
gA3

µ − g′Bµ
) (
gA3µ − g′Bµ

) ] (
1 + h

v

)2
.

(1.12)

The purely quadratic terms in the second part of Eq. 1.11 can be interpreted as
mass terms produced from the interaction of the Higgs field with the electroweak
gauge fields. The mass spectrum of these fields after the spontaneous symmetry

5



1. Theoretical background

breaking appears clearly when performing the following transformations

W± = 1√
2

(A1 ∓ iA2) → m2
W = v2

4 g
2,

Z = 1√
g2 + g′2

(gA3 − g′B) → m2
Z = v2

4 (g2 + g′2),

A = 1√
g2 + g′2

(g′A3 + gB) → m2
γ = 0. (1.13)

In this base, the Lagrangian term then takes the following simple form:

(Dµφ)†Dµφ = 1
2∂

µh∂µh+
[
m2
WW

+W− + m2
ZZ

2

2

]
(1 + 2h

v
+ h2

v2 ) . (1.14)

By recognizing that the field component that stays massless corresponds to the
electromagnetic field, Aµ, it is possible to define the electric charge Q and the
electromagnetic coupling constant e as

Q = T 3 + Y and e = gg′√
g2 + g′2

, (1.15)

and rewrite the electroweak part of the covariant derivative as

Dµ ⊃ i
g√
2

(
W+
µ T

+ +W−
µ T

−)
+ i

g

cos θW
(
T 3 − sin2 θWQ

)
Zµ + ieQAµ , (1.16)

where sin θW = g′√
g′2+g2

, cos θW = g√
g′2+g2

and θW is usually referred to as the
Weinberg mixing angle.

1.2.2 Yukawa couplings

The last row in Eq. 1.3 is also modified by the choice of unitary gauge, becoming

−LYuk = v
2 Λe,ij ēiLejR

(
1 + h

v

)
+ v

2 Λd,ij d̄iLdjR
(
1 + h

v

)
+ v

2 Λu,ij ūiLujR
(
1 + h

v

)
+ h.c.

(1.17)
The matrices Λe,ij , Λd,ij and Λu,ij are generic complex matrices in flavour space
that can allow interactions between different lepton and quark generations. This
expression can be further simplified with the diagonalization of these matrices by
means of a bi-unitary transformation Λ = V DW , where V and W are unitary3

matrices. By performing the following transformations:

Λe = Ve diag(λe, λµ, λτ )We ,

Λu = Vu diag(λu, λc, λt)Wu ,

Λd = Vd diag(λd, λs, λb)Wd , (1.18)

3A matrix U is unitary if U†U = UU† = I.

6



The Standard Model of particle physics

and

e′
R = WeeR, d′

R = WddR, u′
R = WuuR ,

e′
L = V †

e eL, d′
L = V †

d dL, u′
L = V †

uuL , (1.19)

Eq. 1.17 can be rewritten in the simplified form

−LYuk = v
2λe,iēiLeiR

(
1 + h

v

)
+ v

2λd,id̄iLdiR
(
1 + h

v

)
+ λu,iūiLuiR

(
1 + h

v

)
+ h.c.
(1.20)

The fields redefined in Eq. 1.19 diagonalize the quadratic part of the SM and
are for this reason also called mass eigenstates of the fermion fields. As it can
be seen, only 9 real parameters survived: mf,i = v

2λf,i, where f = e, d, u and
i = 1, 2, 3. Additionally, since the Yukawa matrices Λ have been diagonalized,
no interaction between the different fermion generations is possible in this part
of the Lagrangian.

1.2.3 Charged and neutral currents

With the updated definition of the covariant derivative shown in Eq. 1.16, it
is possible to partially reorganize the terms describing the interaction between
the matter and gauge fields that appear in the third and fourth line of Eq. 1.3.
Neutral currents can be written as

LNC = −gZµJµn − eJem,µA
µ, (1.21)

where

Jµn = 1
cos θW

[
(−1

2 + sin2 θW )ēLγµeL + 1
2 ν̄Lγ

µνL

+ (1
2 − 2

3 sin2 θW )ūLγµuL + (−1
2 + 1

3 sin2 θW )d̄LγµdL

+ sin2 θW ēRγ
µeR − 2

3 sin2 θW ūRγ
µuR + 1

3 sin2 θW d̄Rγ
µdR

]
,

Jµem = − ēγµe+ 2
3 ūγ

µu− 1
3 d̄γ

µd , (1.22)

while charged currents are described by

LCC = −g(J+
µW

+µ + J−
µ W

−µ) , (1.23)

where

J+µ = 1√
2

(ν̄LγµeL + ūLγ
µdL) ,

J−µ = 1√
2

(ēLγµνL + d̄Lγ
µuL) . (1.24)

The change of basis in Eqs. 1.18 and 1.19, which greatly simplified the Yukawa
sector, must be propagated to the remaining parts of LSM . In the SM, the only

7
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b s

ℓ+

ℓ−

u, c, t

W

γ,Z0

(a) “Penguin” diagram

b s

ℓ+ℓ−

u, c, t

W W

ν

(b) “Box” diagram

Figure 1.2: Feynman diagrams corresponding to the “penguin” and “box” loop
level diagrams used to describe the b→ s ℓ+ℓ− FCNC transition in the SM.

terms affected are the charged current interactions between matter fields and
gauge boson of Eq. 1.24, which transform into:

J+µ = 1√
2

(ν̄LγµVee′
L + ū′

Lγ
µV †

uVdd
′
L) ,

J−µ = 1√
2

(ē′
Lγ

µV †
e νL + d̄′

Lγ
µV †

d Vuu
′
L) . (1.25)

In the leptonic charge current, the matrix Ve can be removed simply by the
redefinition νL = Veν

′
L, and no mixing between leptons of different generations is

possible. On the contrary, in the quarkonic charged current, the unitary matrix
VCKM = V †

uVd, called Cabibbo-Kobayashi-Maskawa matrix (CKM), cannot be
removed and transitions between different quark generations are possible. It is
important to stress that, even though the CKM matrix appears explicitly in
charged current interactions, it originated in the Yukawa sector, specifically due
to the misalignment in flavour space of the matrices Λd and Λu.

Charged current interactions are the only processes through which a quark
can change its flavour in the SM. As a consequence, flavour changing neutral
currents (FCNC) are forbidden at the tree level and can only occur at loop level,
as a combination of charged currents and other interactions. These transitions
are mediated by the so-called “penguin” or “box” diagrams, two examples of
which are shown in Figure 1.2. Being loop suppressed, these interactions are
expected to have small branching ratios. This makes FCNC an ideal venue
to search for potential New Physics (NP) contributions, since the interference
between SM and NP amplitudes could be observed indirectly as a shift of the
measured observables with respect to the corresponding SM prediction. It is for
this reason that FCNC in b→ s ℓ+ℓ− transitions have been chosen as the main
topic of this thesis.

1.2.4 CKM matrix

The CKM matrix is a generic unitary 3 × 3 complex matrix that depends on
three real rotational angles, θij , and a single phase, δ, sole responsible for CP

8
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violation in the SM. The standard parametrization of the CKM matrix[5] isVud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −s23c12 − s12c23s13e
iδ c23c13


(1.26)

with cij = cos θij and sij = sin θij . The off-diagonal elements of the CKM
matrix show a strongly hierarchical pattern: |Vcd| and |Vus| are close to 0.22, the
elements |Vts| and |Vcb| are of order 4 · 10−2, whereas |Vub| and |Vtd| are of order
5 · 10−3. The Wolfenstein parametrization[6] is a convenient way to exhibit this
hierarchy:  1 − λ2

2 λ Aλ3(ρ− iη)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

 + O(λ4) (1.27)

where λ = |Vus| ≈ 0.22, A, ρ and η are free parameters of O(1).
The unitarity of the CKM matrix implies the following relations between its

elements: ∑
k=1..3

V ∗
ikVki = 1,

∑
k=1..3

V ∗
ikVkj ̸=i = 0 , (1.28)

Among the second type of relations, the one obtained for i = 1 and j = 3, namely

VudV
∗
ub

VcdV ∗
cb

+ VtdV
∗
tb

VcdV ∗
cb

+ 1 = 0 , (1.29)

is particularly interesting since it involves the sum of three terms all of the
same order in λ. For this reason, it is usually represented as a triangle in
the complex plane, referred to as unitarity triangle, and shown in Figure 1.3
on the left. Both angles and sides of the unitarity triangles are observable
quantities that can be determined experimentally, with multiple decays that
can be used to access the same parameter. The possibility to overconstrain the
CKM elements is an important goal of flavour physics, since it could possibly
reveal new sources of flavour symmetry breaking. On the right, Figure 1.3
shows the global fit performed on the parameters of the unitarity triangle by
the CKMfitter collaboration [7](see Ref. [8] for a Bayesian approach), including
results from charmless semileptonic B decays (|Vub|), mass differences in the
Bd (∆md) and Bs (∆ms) systems, CP violation in the neutral kaon system
(ϵK) and in the Bd systems (sin 2β), and the combined constraints on α and γ
from various B decays. As can be seen the available phase space for non-SM
contributions in flavour changing transitions is small.

1.2.5 Standard model after SSB

The SM, ignoring neutrino masses, depends on 19 parameters: three coupling
constants (gs, g and g′), a parameter that governs CP violation in the strong

9



1. Theoretical background

Figure 1.3: On the left, a schematic view of the CKM unitarity triangle. On the
right, the result of the global fit performed on the parameters of the unitarity
triangle (see Ref. [7]). The individual constraints used in the global fit and
described in the text are also shown.

sector, two parameters for the Higgs potential (µ24 and λ5), nine Yukawa
parameters corresponding to the masses of six quarks and three charged leptons,
four parameters from the CKM matrix, three angles and a phase.

In addition to the symmetries of the gauge group, the SM is invariant under
CPT, as required by any relativistic theory. Charge conjugation and parity
are violated fundamentally by the chiral nature of the electroweak interactions,
while the violation of CP is more subtle: it only happens in the weak sector
due to the complex phase of the CKM matrix. This is made possible by the
fact that the number of quark generations is greater than two. Additionally,
there are four accidental 6 symmetries in the SM: leptonic number conservation,
separately for each lepton generation, and baryon number conservation. When
accounting for neutrino mixing, the first three are broken into generic lepton
number conservation.

Even if it has proven to be one of the most accurate theories ever built, the
SM cannot be the fundamental Lagrangian of Nature, since it fails to provide
answers for some of its peculiar characteristics and it does not explain all the
experimental observations currently available, the most important of which are
summarized in the following:

• Gravity - Gravity is currently not included in the SM, but it is only natural
to think that these two theories are just two faces of a more general Grand

4This is the only dimensional parameter of the SM. All the others are adimensional.
5Different from the parameter in VCKM in the Wolfenstein parametrization.
6Accidental symmetries correspond to global symmetries of an effective theory (SM) that

are not imposed as constraints in the determination of the Lagrangian density, but emerge as
a consequence of gauge and Lorentz invariance.
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Unified Theory (GUT).

• Three generations - The number of lepton and quark generations is chosen
to fit the experimental evidence: there is no fundamental reason bounding
the number of generations to three. Additional generations are currently
excluded by the study of Higgs decays [9] and by the measurement of the
decay width of the Z boson at LEP [10].

• The hierarchy problem - The observed value of the Higgs mass is much
smaller than the Plank mass. This is unexpected since this mass is
not protected by any symmetry and it should get quantum corrections
proportional to the fundamental scale.

• Matter-Antimatter asymmetry - While matter is ubiquitous, antimatter
can only be briefly produced in collision experiments or in the atmosphere.
However, during the Big Bang, the same amount of matter and antimatter
must have been created out of the energy available in the early Universe.
The amount of CP violation allowed in the SM does not seem sufficient to
explain the current abundance of matter over antimatter.

• Neutrino masses - Neutrinos are massless in the SM. However, recent
experimental measurements [11, 12] have shown that oscillations between
different generations are possible, implying a non-zero difference in the
masses of neutrinos. Neutrino masses can be added to the SM by
introducing right-handed neutrinos (mirroring the mechanism already
seen in the quark sector) or by many other mechanisms as reported for
example in Ref. [13].

• Flavour problem - A large mass hierarchy is present between the lepton
and quark generations, spanning over six orders of magnitude between the
electron and top quark. If the masses of the neutrinos are included, the
mass difference between the lightest and heaviest fermion increases of six
additional orders. No explanation for such dispersion is present in the SM.

• Dark matter and Dark energy - Looking at the Universe from Earth, only
5% of the mass-energy out there is described by the SM. Of the remaining,
few things are known: it interacts gravitationally but does not interact
with photons. From this point of view, it seems that the great majority
of matter and energy in the Universe are described by a set of rules just
waiting to be unravelled.

For these (and more) reasons, the Standard Model is regarded by most
physicist as an effective theory, a low energy approximation of a more fundamental
theory above the TeV scale. Currently, two main strategies seem to be able to
improve our understanding of the possible extensions of the SM to be considered:
direct and indirect searches. The first ones aim to produce new particles on-shell
and study their decays within the detector. They have the advantage of a clear
interpretation but are limited by the centre-of-mass energy of the experiment.
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1. Theoretical background

The second ones exploit the fact that new particles can participate in some decays
as additional quantum fluctuations, slightly modifying the expected value of an
observable with respect to the SM prediction. The new particles can therefore
leave a trace on some specific interactions even if the energy involved in the
process is lower than the energy necessary to produce them. The disadvantage is
that, to see such small contribution, high precision from both theory predictions
and experiments is required. However, such feats have been proven possible in
the past, where the existence of the charm and top quark had been predicted
to improve the description of the data in the KL → µ+µ− decay and in B0-B0

oscillations, respectively. Particularly interesting for this purpose is the study
of decays that are greatly suppressed or prohibited in the SM: in that case NP
effects could compete or be the only mechanism through which a certain process
can be observed.
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Chapter 2

Rare B0 → K∗0ℓ+ℓ− decays as
probes for New Physics
Flavour changing neutral current decays are considered rare in the SM due to
their branching ratios of the order of 10−6. As discussed in Ch. 1, they are
forbidden at tree level in the SM and can only occur at loop-level. Additionally,
the CKM matrix is approximately diagonal, further suppressing these generation-
changing transitions. These decays are expected to be particularly sensitive to
some NP scenarios, since the additional NP amplitudes could compete in size
with the SM ones, producing a sizable shift in some of the observables of the decay.
This chapter aims to provide an overview of the theoretical and experimental
knowledge currently available on FCNC in B decays and is divided as follows:
Section 2.1 outlines the difficulties of describing these decays with the full SM
Lagrangian of Eq. 1.3, and introduces the formalism of effective field theories
in the context of rare b→ s ℓ+ℓ− transitions; Section 2.2 exploits the effective
Lagrangian obtained to describe the differential decay rate of B0 → K∗0ℓ+ℓ−

decays and Section 2.3 concludes this chapter describing the measurements
currently available for this channel and how they relate to each other.

2.1 Weak interactions as an Effective Field Theory

Weak decays of B mesons are characterized by three main different energy scales
µ:

• µ ≈ MW (O(80 GeV/c2)) - The scale at which the weak transition between
quarks responsible for the decay of mesons takes place.

• µ ≈ mb(O(5 GeV/c2)) - The typical energy scale of the initial and final
state of the particles involved in the decay.

• µ ≈ ΛQCD(O(200 MeV/c2)) - The typical energy scale at which the
confinement effects binding the quarks into the mesons need to be taken
into account.

The presence of these widely separated energy scales greatly complicates the
calculations in the full SM Lagrangian because large logarithms of the type
log(MW /ΛQCD) may appear, breaking the ordinary perturbation theory. This
problem can be greatly simplified by deriving an effective field theory (EFT) at
low-energy that allows to efficiently calculate the amplitudes of weak decays by
taking into account the dynamical effects at all scales.

The fundamental idea is that, in the description of a physical system, it is
enough to focus on the degrees of freedom relevant at the energy scale under
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2. Rare B0 → K∗0ℓ+ℓ− decays as probes for New Physics

consideration, while the degrees of freedom relative to much smaller scales do not
appear explicitly and their integrated effect can be considered instead. Consider
the generic amplitude ⟨f |i⟩, written using the path integral formalism [14]:

⟨f |i⟩ =
∫

Dφ⃗e iℏSfull(φ⃗) , (2.1)

where φ⃗ is the set of fields that enter the full theory described by the action Sfull,
and

∫
Dφ⃗ represents an integration from the initial configuration of the fields φ⃗i

to the final configuration φ⃗f . The fields φ⃗ can be divided between heavy (φ⃗H)
and light (φ⃗L) fields, depending on the energy scale of the process considered.
The integration of the heavy fields can then be formally performed, obtaining:

⟨f |i⟩ =
∫

Dφ⃗LDφ⃗He
i
ℏSfull(φ⃗L,φ⃗H) =

∫
Dφ⃗Le

i
ℏSeff(φ⃗L) , (2.2)

where the dependence of the heavy field has disappeared explicitly but is encoded
in the effective interactions inside the action Seff(φ⃗L), which only depends on the
light fields. While this procedure is conceptually easy to understand, integrations
as the one shown in Eq. 2.2 are rarely feasible and the use of a more general
procedure, known as the Operator Product Expansion (OPE) [15], is preferred.
The idea is to identify a complete basis of local operators Oi compatible with
the symmetries of the system and expand the effective Lagrangian as:

Leff = −
∑
i

Ci(µ)Oi , (2.3)

where the Ci(µ) couplings, called Wilson coefficients, in general depend on
the scale µ at which the theory needs to be used. This expansion would
technically run over an infinite sum of operators, however, it converges rapidly
when rearranged based on the mass dimension of the local operators involved. It
can be shown [16] that for weak decays of B mesons, limiting the expansion at
all the operators of dimension six provides already a very good approximation.

The effective Lagrangian can then be rewritten as:

Leff = −4GF√
2

∑
i

C(6)
i (µ)O(6)

i , (2.4)

where the subscript referring to the dimensionality of the operator will be
dropped in the rest of the text. It is important to notice that the scale µ acts as
a separator of short- and long- distance effects; while the first ones are included
in the Wilson coefficients, the second ones are left as explicit degrees of freedom
in the EFT.

Once the set of operators for the expansion has been obtained, the set of
Wilson coefficients that describes the full theory at the energy scale µ needs to
be determined. This is done by performing a matching procedure between the
effective and full theory at the electroweak scale µ ≈ MW , where all amplitudes
can be calculated in perturbation theory, and a set of initial conditions for the
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Weak interactions as an Effective Field Theory

Wilson coefficients Ci(MW ) can be obtained. These initial conditions are then
used to determine the evolution of the Ci(µ) from the electroweak scale down to
the energy scale of the physical process µ ≈ mb, using the renormalization-group
equations (RGE) [17–19]. The last remaining step corresponds to the evaluation
of the matrix elements of the effective Lagrangian for the hadronic process,
that involves energy scales between the mass of the mesons and ΛQCD. It is
important to stress that NP contributions can only contribute to the first step of
this procedure and only by either changing the initial conditions of the Wilson
coefficients at µ ≈ MW or introducing new operators that describe interactions
forbidden in the SM. This corresponds to either a shift on the observed Wilson
coefficients with respect to the expected SM values, e.g. Ci = CSMi + CNPi or
to the necessity of including another operator and Wilson coefficient to better
describe the data. The remaining steps are insensitive to the physics at smaller
scales by construction.

In the specific case of b→ s ℓ+ℓ− transitions, the effective Lagrangian in the
SM can be split in two terms [20]:

Lsℓ+γeff = 4GF√
2
VtbV

∗
ts(C7O7γ + C9O9V + C10O10A) (2.5)

and

Lhadeff = −4GF√
2

{VubV ∗
us[C1(Ou

1 − Oc
1) + C2(Ou

2 − Oc
2)]

−VtbV ∗
ts[C1Oc

1 + C2Oc
2 +

∑
i=3..6

CiOi + C8O8g]} . (2.6)

The first term in the Lagrangian, Lsℓ+γeff , contains effective operators that
contribute to the transition at tree level, while the second one, Lhadeff , describes
terms of the type b → sqq̄ that contribute in the decay at loop-level, as shown
in Figure 2.1. This Lagrangian can be further simplified by neglecting terms
proportional to VubV ∗

us that are doubly-Cabibbo suppressed and terms involving
the operators O3..6,8g, whose Wilson coefficients at the b-quark scale are small
(O(10−2)).
The expressions of Eqs. 2.5 and 2.6 simplify to:

Lb→s ℓ+ℓ− = 4GF√
2
VtbV

∗
ts[C1Oc

1 +C2Oc
2]+ 4GF√

2
VtbV

∗
ts(C7O7γ +C9O9V +C10O10A) ,

(2.7)
where the operators Oi are defined as:

O7γ = e

16π2mbb̄
α
Rσ

µνsαLFµν ,

O9V = 1
2
αe
4π b̄

α
Lγ

µsαLℓ̄γµℓ ,

O10A = 1
2
αe
4π b̄

α
Lγ

µsαLℓ̄γµγ5ℓ ,

Oc
1 = b̄αLγ

µcαLc̄
β
Lγµs

β
L ,

Oc
2 = b̄αLγ

µcβLc̄
β
Lγµs

α
L , (2.8)
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b
O7γ

s

ℓ+

ℓ−

(a)

b
O9V,10A

s
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ℓ−

(b)

b
O1c,2c

s

ℓ+

ℓ−

(c)

Figure 2.1: Feynman diagrams involving the operators O7γ , O9V,10A and O1c,2c,
as defined in Eq. 2.8.

and b, s, c and ℓ are the SM fermionic fields, α and β denote the colour indices
and Fµν is the electromagnetic tensor, as discussed in Ch. 1. A definition of the
operators described in Eq. 2.6 and neglected in Eq. 2.7 can be found in Ref. [21].
It is important to notice that the V-A structure of weak interactions discussed
in Ch. 1 remains valid in this effective theory and is enforced by the combination
of the vector operators such as O7γ , O9V and the axial-vector operator O10A.
Even if the operators O1,2 only enter at the loop-level, their Wilson coefficients
at the b-quark scale are sizable 1 and cannot be neglected. The most prominent
effects of these contributions are the narrow resonance peaks at the J/ψ and
ψ(2S) mass, as highlighted in grey in Figure 2.2 for B0 → K∗0µ+µ− decays. It
is however important to stress that their contribution is present in the entire
dilepton mass region even if less noticeable, where they can interfere with the
tree-level diagrams.

0 5 10 15
q2 [GeV2/c4]

dB
(B

0
→

K
∗0
µ
+
µ
− )
/d

q2

C(′)
7 −C(′)

9
interference

C(′)
7

C(′)
9 −C(′)

10

narrow cc̄ broad cc̄ and
DD̄ thresholds

C(′)
9 −C(′)

10

Figure 2.2: Schematic view of the B0 → K∗0µ+µ− spectrum as a function of the
dilepton invariant mass squared, with the dominant Wilson coefficients displayed
and possible cc̄ contributions.

1The values of the WCs for the operators O1,2 at µ = 4.2 GeV/c2 correspond to C1 = −0.3
and C2 = 1, comparable in size to C7 =-0.3, C9 =4.3 and C10 =-4.2 [22, 23].
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The B0 → K∗0ℓ+ℓ− differential decay rate

Additional operators can be included if specific scenarios beyond the
SM (BSM) are considered. The most important ones correspond to:

• Chirality-flipped operators, O′
7γ,9V,10A that can be easily obtained starting

from the unprimed operators defined in Eq. 2.8 by means of the simple
substitution qL(R) → qR(L).

• Scalar and pseudoscalar operators OS,S′ and OP,P ′ , defined as:

OS(S′) = b̄αLs
α
R(L) ℓ̄ℓ , (2.9)

OP (P ′) = b̄αLs
α
R(L) ℓ̄γ5ℓ , (2.10)

• Tensor operators OT,T5, defined as:

OT = b̄αLσ
µνsαL ℓ̄σµνℓ , (2.11)

OT5 = b̄αLσ
µνsαL ℓ̄σµνγ5ℓ . (2.12)

Of these three additional set of operators only the first one will be explicitly
considered in the following, since the impact of the remaining two sets of operators
is either heavily constrained [24] or expected to be negligible in most of the
possible SM extensions. Similarly, the WCs are treated as real parameters,
since imaginary contributions to the WCs are expected to be sizable only for
CP-violating observables [25], not considered in the following.

2.2 The B0 → K∗0ℓ+ℓ− differential decay rate

Starting from the effective Lagrangian in Eq. 2.7 and including the NP
contribution from chirality flipped operators, it is possible to write down
the matrix element of the decay B0 → K∗0(→ K−π+)ℓ+ℓ−. Under the
approximation of lepton factorization2(LFA) the matrix element M becomes:

M = GFαe√
2π

VtbV
∗
ts{[⟨Kπ|s̄γµ(C9PL + C′

9PR)b|B̄⟩

−2mbMB

q2 (⟨Kπ|s̄iσµνqν(C7PR + C′
7PL)b|B̄⟩ + 16π2

MBmb
Hµ)](ℓ̄γµℓ)

+⟨Kπ|s̄γµ(C10PL + C′
10PR)b|B̄⟩(ℓ̄γµγ5ℓ)} . (2.13)

The terms ⟨Kπ|s̄Γb|B̄⟩ in the first two rows represent the matrix elements of
the flavour changing quark currents between an initial B0 meson and the final
state K∗0. The third term, Hµ, describes instead the non-local hadronic effects,
which appear when the lepton pair couples with the electromagnetic current,
through a penguin contraction of four quark operators O1,2 ∼ s̄bc̄c.

The B0 → K∗0ℓ+ℓ− channel is studied considering the decay of K∗0 → K−π+.
The additional information provided by the angle between K and π allows having

2In this approximation the hadronic and leptonic part of the amplitude factorize.
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information on the polarization of the K∗0, providing an increased number of
observables that can be used to study the effective Lagrangian Lb→s ℓ+ℓ− . The
decay is described as a function of four variables: q2, the invariant mass squared
of the dilepton system and three decay angles Ω⃗ = (θℓ, θK , ϕ), whose definition
is sketched in Figure 2.3. Different angular conventions are typically used by
experimentalists and theorists: while most theorists follow the definitions in
Refs. [26, 27], this analysis uses the convention adopted in previous LHCb
publications [28, 29]. The angle between the ℓ− (ℓ+) and the direction opposite
to that of the B0 (B0) in the rest frame of the dilepton system is denoted θℓ.
The angle between the direction of the K− (K+) and the direction opposite to
that of the B0 (B0) in the rest frame of the K∗0 (K∗0) system is denoted θK .
The angle between the plane defined by the dilepton pair and the plane defined
by the kaon and pion in the B0 (B0) rest frame is denoted ϕ.

The differential decay rate can be written, after squaring the matrix element
M, summing over the external helicities and averaging over the final state spins,
as:

d4Γ[B̄0 → K̄∗0ℓ+ℓ−]
dq2 dΩ⃗

= 9
32π

∑
i

Ii(q2)fi(Ω⃗)

= 9
32π

[
I1s sin2 θK + I1c cos2 θK

+I2s sin2 θK cos 2θℓ + I2c cos2 θK cos 2θℓ
+I3 sin2 θK sin2 θℓ cos 2ϕ+ I4 sin 2θK sin 2θℓ cosϕ
+ I5 sin 2θK sin θℓ cosϕ+ I6 sin2 θK cos θℓ
+ I7 sin 2θK sin θℓ sinϕ+ I8 sin 2θK sin 2θℓ sinϕ

+ I9 sin2 θK sin2 θℓ sin 2ϕ
]
,

(2.14)

where Ii are angular coefficients that implicitly depend on q2. These coefficients
can be conveniently expressed in terms of transversity amplitudes, AL,R

0,⊥,∥ and
At, where λ = 0,⊥, ∥, t refer to the polarization and L and R to the chirality of
the lepton current [30]. The angular coefficients are defined as

I1s = 2 + β2
l

4

[
|AL

⊥|2 + |AL
∥ |2 + (L → R)

]
+ 4m2

l

q2 Re
(

AL
⊥AR∗

⊥ + AL
∥ AR

∥
∗)
,

I1c =
[
|AL

0 |2 + |AR
0 |2

]
+ 4m2

l

q2

[
|At|2 + 2 Re(AL

0 AR
0

∗)
]
,

I2s = β2
l

4

[
|AL

⊥|2 + |AL
∥ |2 + (L → R)

]
,

I2c = −β2
l

[
|AL

0 |2 + |AR
0 |2

]
,
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(a) θK and θℓ definitions for the B0 decay
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(c) φ definition for the B0 decay
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Figure 2.3: Graphical representation of the angular basis used for B0 → K∗0ℓ+ℓ−

and B0 → K∗0ℓ+ℓ− decays in this work. The notation n̂ab is used to represent
the normal to the plane containing particles a and b in the B0 (or B0) rest frame.
An explicit description of the angular basis is given in the text.

I3 = β2
l

2

[
|AL

⊥|2 − |AL
∥ |2 + (L → R)

]
, (2.15)

I4 = −1 · β
2
l√
2

Re
[
AL

0 AL
∥

∗ + (L → R)
]
,

I5 =
√

2βl Re
[
AL

0 AL
⊥

∗ − (L → R)
]
,
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I6s = −1 · 2βl Re
[
AL

∥ AL
⊥

∗ − (L → R)
]
,

I7 = −1 ·
√

2βl Im
[
AL

0 AL
∥

∗ − (L → R)
]
,

I8 = β2
l√
2

Im
[
AL

0 AL
⊥

∗ + (L → R)
]
,

I9 = −1 · β2
l Im

[
AL

⊥AL
∥

∗ + (L → R)
]
,

where βl =
√

1 − 4m2
l /q

2. Notice that the factor −1 in front of the terms
I4,6s,7,9 in Eq. 2.15 is needed to align the adoption of the LHCb angular notation
with the definition of the transversity amplitudes, as obtained in the theory
convention [31].

The transversity amplitudes are the physical quantities that describe the
decay process and can be expressed as [23, 32]

AL,R
⊥ = N

{[
(C9 + C′

9) ∓ (C10 + C′
10)

]
F⊥

+ 2mbMB

q2

[
(C7 + C′

7)FT
⊥ − 16π2MB

mb
H⊥

]}
,

AL,R
∥ = −N

{[
(C9 − C′

9) ∓ (C10 − C′
10)

]
F∥

+ 2mbMB

q2

[
(C7 − C′

7)FT
∥ − 16π2MB

mb
H∥

]}
,

AL,R
0 = −N

{[
(C9 − C′

9) ∓ (C10 − C′
10)

]
F0

+ 2mbMB

q2

[
(C7 − C′

7)FT
0 − 16π2MB

mb
H0

]}
,

At = −2N (C10 − C′
10)Ft , (2.16)

where N is a normalization factor given by

N = GFαeVtbV
∗
ts

√
q2βl

√
λ

3 · 210π5MB
, (2.17)

and λ is the kinematic Källén function defined as

λ(M2
B ,M

2
K∗0 , q2) = M4

B +M4
K∗0 + (q2)2 − 2M2

B(M2
K∗0 + q2) − 2q2M2

K∗0 . (2.18)

Additionally, the expressions depend on the seven form factors F (T )
i , defined

with respect to ⟨Kπ|s̄Γb|B̄⟩ by the following equations [23]:

⟨Kπ(k, η)|s̄γµPL(R)b|B̄(q + k)⟩ = η∗
α(F⊥S

αµ
⊥ ∓ (F∥S

αµ
∥ + F0S

αµ
0 + FtSαµt )) ,

⟨Kπ(k, η)|s̄iσµνqνPR(L)b|B̄(q + k)⟩ = iMB η
∗
α(FT

⊥S
αµ
⊥ ∓ (FT

∥ S
αµ
∥ + FT

0 S
αµ
t )) ,

(2.19)
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and on the charm-loop contribution Hµ [23], whose definition is:

η∗
αHαµ = i

∫
d4xeiq·x⟨Kπ(k, η)|T{jµem(x), C1O1(y) + C2O2(y)}|B̄(q + k)⟩

= η∗
α(M2

B [H⊥S
αµ
⊥ − H∥S

αµ
∥ − H0S

αµ
0 ]) . (2.20)

The Lorentz structures Sαµλ can be defined as a function of the momentum of
the kaon, k, and of the momentum transferred to the dilepton system, q, and are
discussed more in detail in Ref. [23]. A parametrization of the form factors and
charm-loop terms as a function of q2 is difficult to obtain from first principles,
since the dynamic that governs the transition from a B0 to a K∗0 meson is
dominated by QCD in a non-perturbative regime. Multiple attempts to estimate
these contributions have been pursued in the last decades, greatly improving
the theoretical understanding of these terms (see Appendices A and B for the
parametrizations considered in this work), however, as it is discussed in Sec. 2.3,
they still correspond to the main sources of uncertainty in the SM prediction of
the measured observables in B0 → K∗0ℓ+ℓ− decays.

An expression formally identical to Eq. 2.14 can be obtained for the decay
B0 → K∗0ℓ+ℓ− by substituting the angular coefficients Ii with Īi. This is
possible thanks to the choice of the angular basis described in Figure 2.3, which
is able to counterbalance the change of signs that occur on the angular coefficients
Ī7,8,9 after a CP-transformation. In this way, the joint differential decay rate such
as d4(Γ ± Γ̄)/dq2 dΩ⃗ will only contain either CP-symmetric or CP-asymmetric
quantities, as discussed in Sec. 2.3.2.

2.3 Conventional observables and experimental results in
B0 → K∗0ℓ+ℓ−

The differential decay rate expressed in Eq. 2.14 clearly shows that the angular
structure of the decay is solely determined by conservation of linear and angular
momentum; the only dependence on the dynamics of the decay is encoded in the
angular coefficients Ii(q2). This provides an ideal venue to test the Standard
Model in a model independent way, by comparing its predictions with the
measured values of the branching ratio or of the angular coefficients as a function
of q2. In the following, the most recent set of measurements is presented, together
with the definition of the corresponding observables.

2.3.1 Branching ratio

A branching ratio simply represents the probability that, of all the channels a B0

is allowed to decay to, it decays through a specific channel such as B0 → K∗0ℓ+ℓ−.
Formally, it can be defined as:

B(B0 → K∗0ℓ+ℓ−) = τB
ℏ

∫
dΩ⃗dq2 d4Γ[B0 → K∗0ℓ+ℓ−]

dΩ⃗dq2
, (2.21)
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Figure 2.4: Differential branching ratio of B0 → K∗0ℓ+ℓ− as a function of
q2. In black the data overlaid with the SM prediction from Refs. [34, 35].
The uncertainties shown here are the quadratic sum of the statistical and
systematic uncertainties including also the uncertainty on the normalization
mode B0 → K∗0J/ψ (→ µ+µ−).

where the parameters τB and ℏ correspond to the lifetime of the B0 meson and
the reduced Plank constant, respectively. Alternatively, it is possible to study
the differential branching ratio as a function of q2, computed in the bin ∆q2, by
using the expression

dB(B0 → K∗0ℓ+ℓ−)/dq2|∆q2 = τB
∆q2ℏ

∫
∆q2

dΩ⃗dq2 d4Γ[B0 → K∗0ℓ+ℓ−]
dΩ⃗dq2

. (2.22)

LHCb measured both these quantities [33] averaging between B0 and B0

contributions, obtaining their most precise measurements up-to-date. For the
total branching ratio, the measurement corresponds to

B(B0 → K∗0ℓ+ℓ−) = (0.904+0.016
−0.015 ± 0.010 ± 0.006 ± 0.061) · 10−6 , (2.23)

where the uncertainties are, from left to right, statistical, systematic, due to
the extrapolation to the full q2 region and due to the branching ratio of the
normalization mode. The differential decay rate is shown instead in Figure 2.4.
As it can be seen, the observed dB/dq2 lays systematically below the expected
SM predictions. The significance of this deviation is currently limited by the
theoretical prediction on this measurement, whose main contribution is linked
to the current knowledge on the hadronic matrix elements.

2.3.2 Angular observables

Once enough statistics is available, it is possible to exploit the rich angular
structure of B0 → K∗0ℓ+ℓ− decays to estimate the eleven angular coefficients Ii
as a function of q2. Conventionally, it has always been preferred to use a set of
derived angular observables defined as

Si = (Ii + Īi)/(
d(Γ + Γ̄)

dq2 ) and Ai = (Ii − Īi)/(
d(Γ + Γ̄)

dq2 ) , (2.24)
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Figure 2.5: Result of the CP-averaged angular observables FL, AFB and S5 in
bins of q2 as obtained by the LHCb experiment [29]. The experimental data, in
black, is overlaid with the SM predictions based on the prescriptions of Refs.[34,
36]

corresponding to the sum (CP-symmetry) and difference (CP-asymmetry) be-
tween the angular coefficients for the decay of B0 and B0, normalized to the
sum of the decay rates. Additionally, it is possible to define two other angular
observables:

FL = S1c and AFB = 3
4S6c , (2.25)

corresponding to3 the fraction of longitudinal polarization of the K∗0 and to
the forward-backward asymmetry of ℓ−(ℓ+) with respect to the B0 (B0) in the
dilepton rest frame.
The full set of CP-averaged and CP-asymmetric observables Si and Ai has
been measured by LHCb [28, 29], and a discrepancy with respect to the SM
predictions has been seen also in this case. A direct interpretation of such
discrepancies was however hindered by the sizable uncertainty in theoretical
predictions, dominated by the form factor parametrization. Figure 2.5 shows
some of the most interesting observables as measured by LHCb [29].

Starting from the S-basis, it is possible to define an alternative set of optimized
observables, for which the form factor uncertainty cancels at leading order. The

3This definition is only valid under the approximation of massless leptons, in which
S1c = −S2c. The more general definition corresponds to FL = (3/4I1c − 1/4I2c).
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Figure 2.6: A summary of the available measurements of the P ′
5 observables in

the B → K∗µ+µ− channel as a function of q2, including the contributions from
LHCb [29, 37], Belle [38], ATLAS [39] and CMS [40]. The experimental data, is
overlaid with the SM predictions based on the prescriptions of Refs. [34, 36, 41,
42].

observable basis, also referred to as P -basis [43, 44], corresponds to:

P1 = 2S3

(1 − FL) = A
(2)
T ,

P2 = 2
3

AFB
(1 − FL) ,

P3 = S9

(1 − FL) ,

P ′
4,5,8 = S4,5,8√

FL(1 − FL)
,

P ′
6 = S7√

FL(1 − FL)
. (2.26)

Figure 2.6 shows a summary of the measured values of P ′
5 in the B0 → K∗0ℓ+ℓ−

and B+ → K∗+µ+µ− channels as a function of q2. Analogous plots can be found
in the corresponding references for some or all of the remaining P observables.
A coherent discrepancy between the SM predictions and the observed values in
LHCb can be noticed for the q2 bins ∆q2 = {[4, 6], [6, 8]} GeV2/c4, corresponding
to a local tension of 2.5σ and 2.9σ respectively. A direct interpretation of these
results as NP contributions is however non-trivial, since the vector-like nature
of these deviations might also be explained by large hadronic contributions
from b → sc̄c operators, that could mimic a NP contribution if not properly
estimated [41, 42, 45–51].

2.3.3 Lepton flavour universality tests

The two sets of observables described in Sec. 2.3.1 and 2.3.2 have clearly pointed
out the existence of a series of discrepancies between data and SM predictions. In
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Figure 2.7: On the left, a comparison of the LHCb RK∗ measurements [52]
with experimental results obtained from the B factories [53, 54]. On the right,
a comparison of the measurement of the Q5 observable by Belle [38] with the
SM (blue) and NP scenario (orange) corresponding to a shift in the Wilson
coefficients for B0 → K∗0µ+µ− of CNP9 =-1.1 [56].

most situations, the significance of the discrepancy is limited by the uncertainty
of the theoretical prediction, specifically by our knowledge of local and non-local
hadronic matrix elements, which are difficult to compute from first principles. A
possible way to overcome these limitations is to consider ratios or differences of
observables between B0 → K∗0ℓ+ℓ− decays, where the lepton ℓ corresponds to
either a muon or an electron. Thanks to the fact that hadronic matrix elements
are described by QCD, a theory that cannot distinguish between different lepton
generations, it is possible to assume that the differential decay rate of Eq. 2.14
has to be identical for all lepton generations in the SM, up to corrections due
their different masses. Any unaccounted difference between lepton generations
would then be a clear sign of NP. Figure 2.7 shows the experimental results
obtained by LHCb [52], Babar [53] and Belle [54] for the observables RK∗0(left)
and by Belle for the angular observable Q5 [38](right). The first one is defined
as the ratio of the branching ratios in the bin ∆q2:

RK∗0(∆q2) = B(B0 → K∗0µ+µ−)|∆q2

B(B0 → K∗0e+e−)|∆q2
, (2.27)

and, in regions of the phase space where the mass difference between electrons
and muons can be neglected, is expected to be unity within an uncertainty of
O(10−2) [55]. The second one is defined as the difference between the observable
P ′

5 between muons and electrons, Q5(∆q2) = P
µ(′)
5 −P

e(′)
5 , and is expected to be

zero in the SM [56]. All measurements are compatible with their SM predictions,
except for the value observed for RK∗ by LHCb, where a tension of 2.1 and 2.5σ is
observed in the two q2 bins of ∆q2 ∈ {[0.045, 1.1], [1.1, 6]} GeV2/c4, respectively.
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2.4 Hunting for NP and compatibility with SM

The set of deviations presented so far is not peculiar of B0 → K∗0ℓ+ℓ− decays,
but it seems to repeat itself in a coherent way also in other b→ s ℓ+ℓ− transitions.
Examples of it are the deficits observed for the branching ratio measurements
of B+ → K+µ+µ− [57], Bs → ϕµ+µ− [58], the deviations observed in the
angular analysis of Bs → ϕµ+µ−[59] and B+ → K∗+µ+µ−[37] and in the
ratios of branching ratios RK [60], RK0

S
[61], RK∗+ [61] and RKp[62] corresponding

to the decay modes B+ → K+ℓ+ℓ−, B0 → K0
Sℓ

+ℓ−, B+ → K∗+ℓ+ℓ− and
Λb → pKℓ+ℓ−, respectively. All together these deviations are referred to as
b→ s ℓ+ℓ− anomalies.4

Several attempts have been made in the last years to interpret the impact
of these experimental results in a model independent way, using the well
established EFT approach described in Sec. 2.1. This has usually been
accomplished by selecting a subset of the measurements described above and,
after a parametrization of the observables of interest as a function of the Wilson
coefficients and some remaining nuisance parameters, performing a global fit
by minimizing the distance with respect to the published results. Most of
these fits are obtained varying a small number of WCs, typically one or two.
Figure 2.8(a) shows a comparison between some recent global fit results [69–72]
when including most of the observables mentioned before, while Figure 2.8(b)
shows the same comparison when considering only the LFU observables and the
Bs → µ+µ− branching ratio. The parameters of interest of the fit correspond to
NP contributions in C9 and C10 exclusively in muons. Three main points are of
particular interest:

• The best fit results are scattered in a diagonal that goes roughly from (-1,0)
to (0.5, 0.5) depending on the hypothesis used to perform the global fit.

• All approaches point to a best fit scenario whose compatibility with the
SM hypothesis (0,0) is above 5σ.

• The preferred scenarios are mainly of two kinds: a NP contribution in CNPµ9
only or a combined shift in CNPµ9 and CNPµ10 , such that CNPµ9 = −CNPµ10 .
This last scenario is particularly appealing since it would preserve the V-A
structure of the leptonic current in the SM.

• There is a complete agreement between the different approaches when
considering only LFU observables and the branching ratio of Bs → µ+µ−.
This is a consequence of the effective cancellation of the hadronic
uncertainties in these observables. The scatter shown in Figure 2.8(a)

4Another very promising set of anomalies has been observed in LFU tests of charged current
transitions of the type b → cℓ−ν̄, where ℓ is either a tau or a muon. While some attempts to
explain b → cℓ−ν̄ and b→ s ℓ+ℓ− anomalies in a common framework have been investigated in
the literature [63–67], the following work will be focused exclusively on the anomalies observed
in b→ s ℓ+ℓ− transitions. More information can be found in Ref. [68] and references therein.
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Figure 2.8: (a) Global fit results obtained floating simultaneously the NP
contributions CNP9 and CNP10 in muons using the four different approaches
described in Refs. [69–72]. (b) A comparison between the four approaches when
only LFU observables and the branching ratio of Bs → µ+µ− are considered in
the fit.

is dominated by the choice of parametrization of the hadronic matrix
elements and of the measurements considered.

While these results are usually quite interesting and valuable, since they
can be used by the theoretical community to build NP models or prioritize
the experimental work, in general they should not be used to estimate the
global compatibility of these measurements with the SM hypothesis. The main
reason is that, by limiting the number of WC used in the fit to a subset (one or
two) of those that enter the effective Hamiltonian, a bias might be introduced
in the estimation of the significance of the NP hypothesis. A more robust
and conservative estimation of the significance has been computed taking into
account this issue, equivalent to considering the look-elsewhere effect (LEE) in
searches of new resonances, showing the global significance with respect to the
SM hypothesis is of 4.3σ[25].
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Chapter 3

The LHCb detector at LHC

3.1 The large hadron collider at CERN

The Large Hadron Collider (LHC) [73] is the largest and most powerful particle
accelerator in the world, situated at the European Organization for Nuclear
Research (CERN) on the Franco-Swiss border just outside Geneva. The
accelerator is installed in a 26.7 km tunnel, roughly 100 m underground, that
originally hosted the Large Electron-Positron collider (LEP). Its main goal is
to study proton-proton collisions at high energies to precisely test the SM of
particle physics. Additionally, it can also be operated to collide heavy ions such
as lead, to study strongly interacting matter in conditions similar to the first
moments after the Big Bang. The LHC operation time consisted of two main
runs, referred to as Run 1 and Run 2 in the following. Run 1 started in 2010 and
ended in 2012, and in the first two years was characterized by a centre-of-mass
energy of

√
s = 7 TeV/c2 that was then ramped up to

√
s = 8 TeV/c2 for 2012.

Run 2 started in 2015, after the end of the first long shutdown (LS1), where the
machine was prepared to run at the energy of

√
s = 13 TeV/c2. The accelerator

ran in this configuration until 2018, when it was shut down to prepare the
machine for the Run 3.

In LHC, protons are extracted from hydrogen gas by means of ionization
and are accelerated in four steps using the LINAC, booster, Proton Synchrotron
(PS) and Super Proton Synchrotron (SPS), respectively, until they are ready to
be injected in the LHC at the energy of 450 GeV/c2. Protons are then split in
two separate beams travelling in opposite directions that are accelerated up to
7 TeV/c2, reaching almost the speed of light. Each proton beam is composed
of 2808 bunches, roughly 10 cm in length, with a spacing of 7 m with respect
to each other. Each bunch contains roughly 1.2 · 1011 protons, completing a
full revolution roughly 11000 times per second. The beams are bent in quasi-
circular trajectories by superconducting dipole magnets, producing magnetic
fields up to 8.3 T, and further focused by quadrupole or higher-order magnets
that, before a collision, squeeze the beams down to ∼ 1µm in the transverse
direction. The two proton beams are then collided in four interaction points,
each of which hosts one of the large LHC experiments: ALICE [74], ATLAS [75],
CMS [76] and LHCb [77]. ATLAS and CMS operate at the peak luminosity
of L = 1034cm−2s−1 and are general-purpose detectors (GDP): their aim is to
study collisions that produce high transverse momentum particles to search for
on-shell production of NP particles and precise measurements of the properties
of the Higgs boson, that they observed in 2012 for the first time [1, 2]. LHCb
and ALICE are instead two experiments with a more focused physics program:
the first one is optimized for the study of B-decays and will be discussed in more
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detail in the rest of the chapter, while ALICE is a dedicated ion experiment
where lead ions are collided to study the properties of quark-gluon plasma.

3.2 The LHCb detector

LHCb is a dedicated heavy flavour physics experiment, whose main goal is the
search for indirect signatures of NP in CP violating and rare decays of beauty
and charm hadrons. This is possible thanks to the large production cross-section
of b- and c-hadrons [78–80] available at LHC, that allowed collecting a total of
9 fb−1 of integrated luminosity1 between Run 1 and Run 2, corresponding to
roughly 1012 bb̄ and 1013 cc̄ pairs. At the energies of the LHC, the heavy hadrons
are produced through two main processes [81], qq̄ → QQ̄ and gg → QQ̄, shown
diagrammatically in Figure 3.1(a). As a result, bb̄ and cc̄ pairs are predominantly
produced in the forward or backward direction with respect to the proton beam,
as shown by Figure 3.1(b) for bb̄. This has important consequences for the design
of a detector: to efficiently collect large numbers of bb̄ pairs it is sufficient to
instrument one of these two regions. This efficiency principle has driven the design
of the LHCb detector to its current set-up as a single-arm forward spectrometer
covering the pseudorapidity region 1.8 < η < 4.9; by covering only 4% of the
solid angle, is able to collect 25% of all bb̄ pairs produced. For comparison, GDPs
experiments covering the pseudorapidity region η < |2.4|, corresponding to 90%
of the solid angle, collect less than twice the fraction of bb̄ pairs in the LHCb
acceptance. Proton-proton collisions allow the production of all b hadron species;
allowing the study of the decays of Bs, Λb, etc., not accessible at electron-positron
accelerators such as BaBar [83] and Belle [84]. This advantage comes however
with a price: the heavy hadrons of interest are produced together with hundreds
of particles emerging from the inelastic scattering of the two protons. In such
a polluted environment, finding the decay of a b- or c- hadron can become
very challenging. To overcome this issue, LHCb was built with and excellent
vertex resolution, that enables it to distinguish between primary vertices (PV),
where the p-p collisions happened and the heavy hadrons were produced, and
secondary vertices (SV), where the heavy hadrons decayed after flying for few
millimetres in the detector. The backgrounds that survive can then be further
reduced employing a good momentum and invariant mass resolution and an
excellent charged particle identification, which allows to identify and eventually
suppress exclusive background. These excellent performances are achieved also
thanks to a reduction of the delivered instantaneous luminosity of two order of
magnitudes with respect to ATLAS and CMS experiments, corresponding to
roughly 2 · 1032 cm−2 s−1. The luminosity is kept constant by an appropriate
offset of the proton beams, allowing to have events dominated by single proton-
proton interactions and reducing the occupancy and radiation damage to the
detector. This configuration has the additional advantage of reducing systematic

1The integrated luminosity L is a measurement of the size of the collected dataset and
corresponds to the time integral of the instantaneous luminosity L, i.e. L =

∫
Ldt, where L is

the number of collisions that are produced in LHCb per cm2 per second.
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Figure 3.1: (a) Leading-order diagrams for heavy-quark pair production [81]. (b)
Distribution of the pseudorapidity of a b and b̄ quark produced at the center-
of-mass energy of 8 TeV [82]. In red and yellow are highlighted the acceptances
covered by LHCb and a GPD respectively.

uncertainties, since it allows keeping the trigger configurations of the detector
more constant over time. For these reasons LHCb is now the leading beauty
physics experiment.

Figure 3.2 shows a sketch of the detector with its main components. A
right-handed coordinate system is adopted with the z-axis along the beam pipe
and the y-axis along the vertical axis of the page. Its design, conceptually very
similar to the spectrometers of ATLAS and CMS, is dictated by the different
ways in which electrons, photons, hadrons and muons interact with ordinary
matter. The spectrometer is characterized by a forward angular coverage of
approximately [10,300] mrad and [10,250] mrad in the bending (x-z) and non-
bending (y-z) plane, respectively. Its subdetectors can be grouped in two main
categories: vertex and track reconstruction systems and particle identification
systems, discussed in Secs. 3.2.1 and 3.2.2, respectively.

3.2.1 Tracking and vertex reconstruction systems

The tracking detectors are built to record the passage of charged particles
originating from p-p collisions before and after they are bent by a magnet. The
knowledge of the trajectory of these particles allows reconstructing the vertex
where they originated and to estimate their momenta. Tracking detectors are
therefore built with a great attention to material budget, reducing as much as
possible the interactions with charged and neutral particles to avoid biasing
their estimation of momenta or stopping them too early in the detector. In
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Figure 3.2: Later view of the LHCb detector [85]. For clarity, it is superimposed
the right-handed coordinate system described in the text, where the z-axis runs
horizontally from left to right along the beam pipe, the y-axis runs vertically
from the bottom to the top of the figure and the x-axis is perpendicular to the
picture, entering the page.

LHCb, starting from the interaction point, the tracking system is composed of
the VErtex Locator (VELO), Tracker Turicensis (TT), dipole magnet and three
tracking stations T1, T2 and T3 composed each of an Inner Tracker (IT) and
Outer Tracker (OT). In the following is presented a brief discussion of the most
important features for each of these elements.

3.2.1.1 Dipole magnet

In LHCb, a warm dipole magnet [86] is used to bend charged particles along the
x-z plane and measure their momentum. It is characterized by saddle-shaped
coils in a window-frame yoke with sloping poles that match the acceptance of
the spectrometer, with an integrated bending power of 4 Tm for tracks of 10 m.
The magnet has been designed to combine, on one side, magnetic fields inside
the Hybrid Photon Detectors (HPD) of the RICH below 2 mT and, on the other
side, a field as high as possible in the region between the VELO and TT. The
first requirement ensures the proper operation of the HPDs, very sensible to
external magnetic fields, while the second one allows for a rough estimation of
the momentum of those particles that are swept outside the spectrometer before
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(a) (b)

Figure 3.3: (a) A sketch in the (x, z) plane of the positions of the silicon sub-
modules along the beam axis (top) and a front view of the first module in a
closed and open configuration (bottom). (b) Sketch illustrating the r-ϕ geometry
of a VELO sensor.

T1. The magnetic field, measured in (x, y, z) with precisions of 4 · 10−4 in the
volume of interest, is used to determine the expected trajectory of the charged
particles and improve the performance of the tracking algorithms. Its polarity is
regularly inverted during data-taking to avoid potential detection asymmetries,
that could introduce systematic effects in measurements of CP observables.

3.2.1.2 VELO

The VELO detector [77] is a silicon detector designed for the precise measurement
of track coordinates close to the interaction region and the location of primary
and secondary vertices, which are fundamental aspects of the identification of
heavy hadrons decays. The detector, whose geometry is sketched in Figure 3.3(a),
is composed of 21 circular silicon modules, each of which provides a measurement
of the radial and azimuthal coordinate, r and ϕ, of a hit. The two types of
sensors have a thickness of 300µm, and are characterized by strips with a pitch
that increases linearly from 38µm to 101.6µm for the r-sensor and by strips
that are disposed in a dog-leg design with a pitch that goes from 38(39)µm to
78(97)µm for the inner (outer) part of the ϕ sensor. A sketch of this geometry
is shown in Figure 3.3(b).

The positioning of the modules along the beam axis has been optimized to
ensure that any particle produced within 10.6 cm of the interaction point and
inside the LHCb acceptance hits at least three modules, providing at the same
time a short track extrapolation distance to the PV position. This last feature
is so important that each of the circular modules is composed of two retractable
halves that, during injection, are opened up to a radius of 3 cm but can be closed
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(a) (b)

(c)

Figure 3.4: (a) and (b) show the primary vertex resolution in the x and z
coordinate as a function of the number of tracks composing the vertex for
the Run 1 offline and Run 2 (used both offline and online) PV reconstruction
algorithms [87]. (c) shows the impact parameters resolution along the x-axis as
a function of the inverse transverse momentum of the particle for Run 1 and
Run 2. Similar performances are obtained along the y-axis [87].

down to 8 mm during physics runs. This has the additional advantage of greatly
reducing the ageing of the silicon strips.

To minimize the amount of material between the primary and secondary
vertices, the VELO is encapsulated in a secondary vacuum container, which
preserves a void higher than in the rest of the LHC and reduces the effects that
the beams could induce on the silicon modules. This keeps the average radiation
length of the VELO below 18% of a radiation length.

The excellent performance observed in LHCb is justified by the careful design
of the detector, that has allowed to measure positions of PVs composed of 20
tracks with a resolution of ∼100µm (15µm) along (perpendicularly to) the beam
axis and impact parameters with resolutions better than 40µm for tracks with
transverse momenta of 1 GeV/c, as shown in Figure 3.4.
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3.2.1.3 Silicon tracker

The Silicon Tracker [77] consists of two detectors: the Tracker Turicensis and
the Inner Tracker. The first one is located upstream of the dipole magnet, and
it has a planar geometry that covers the full LHCb acceptance. Thanks to a
fringe field that leaks from the dipole magnet into the detector, it allows having
a rough estimate of the momenta for those particles that are deflected outside
the detector acceptance after the magnet. The second one constitutes the inner
part of the tracking stations T1, T2 and T3, downstream of the magnet. Each
of the four ST stations is composed of four detection layers, referred to as x, u,
v and x, depending on the orientation of their silicon micro-strips. As shown
in Figure 3.5(a) for the TT, in the first and last layer the strips are orientated
vertically, while in the second and third layer the strips are rotated of an angle
-5◦ and +5◦ with respect to the x-layer. This geometry is chosen to allow a
faster track reconstruction.

Since the momentum resolution of the spectrometer is dominated by multiple
scattering, it is fundamental to keep the material budget of the detector as small
as possible. For this reason, the TT was designed to have the front-end readout
electronics and mechanical support outside the acceptance of LHCb. Due to its
central position, the same was not possible for the IT and a significant effort
was made to keep the amount of material needed as small as possible. With
the current geometry and the use of silicon micro-strip sensors with a pitch of
200µm, it has been possible to reach single hit resolutions of 50µm, needed to
fulfil the tracking requirements of the experiment.

The TT layers are housed in the same light-tight, thermally and electrically
insulated volume that ensures a constant temperature of 8◦C, and are arranged
in two pairs, (x-u) and (v-x), with a distance of 27 cm with respect to each other,
as shown in Figure 3.5(a). Each layer is constituted of half-modules, covering
half of the height of the TT and composed of a column of seven silicon sensors
with a width of 9.64 cm, a length of 9.44 cm and a thickness of 500µm. The
sensors are electronically grouped in read-out sectors consisting of one, two,
three or four sensors. This is done to keep the maximum strip occupancy within
few percent.

The three IT stations are instead composed of four individual boxes, arranged
in a cross-like structure around the beam pipe, as shown in Figure 3.5(b). Each
box has four (x-u-v-x) layers composed of seven detector modules, consisting of
one or two silicon sensors depending on the position of the box. The thickness of
the sensors goes from 320µm for single-sensor modules to 410µm for two-sensor
modules, while they all have the same size of 7.6 cm ×11 cm.

The four ST stations were designed to operate for ten years at nominal
luminosity. The evolution of their radiation damage has been monitored using
measurements of leakage currents and effective depletion voltages. At the end of
Run 2 the innermost sensors had not yet reached the point of type inversion,
fulfilling the goal of their designers.
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Figure 3.5: (a) A schematic view of the different layers of the Tracker Turicensis,
where the diffent orientation between the (x-u-v-x) is clearly represented.The four
different types of read-out sectors employed are indicated by different shadings of
orange and circled in red. [88]. (b) Layout of an x detection layer in the second
IT station [89].

3.2.1.4 Outer Tracker

The Outer Tracker (OT) [77] is a gaseous drift-time straw tube detector, built for
the tracking of charged particles and the measurement of their momentum over
a large acceptance area. The detector is composed of three stations, subdivided
in four layers where the orientation of the straw tubes follows the stereographic
configuration (x-u-v-x) already discussed for the ST. Together with the IT, the
OT forms the tracking stations T1, T2 and T3 shown in Figure 3.2, covering
the full LHCb acceptance. The relative size between IT and OT was chosen to
ensure OT occupancies below 10% in its inner parts.

Each layer consists of approximately 90 modules, where two staggered rows
of gas-tight straw tubes are filled with a gas mixture of Ar/CO2/O2, ensuring
drift-times below 50 ns. As shown in Figure 3.6, each straw is characterized
by a conductive cylinder with an internal diameter of 4.9 mm that acts as a
cathode, while at the centre an anode wire with a diameter of 25µm is set at a
voltage of +1550V. A charged particle traversing the detector, will ionize the
gas mixture along its trajectory. The electrons and ions produced, accelerated
by the electric field in the cylinder, will drift towards the anode and cathode,
respectively. By measuring the time it takes between the passage of the particle
and the first signal in the straw detector, it is possible to estimate the drift-time
and, consequently, the distance of closest approach of the charged particle with
respect to the anode wire. This technique allows obtaining a hit resolution on
x-coordinates of roughly 200µm.
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(a) (b)

Figure 3.6: (a) Sketch of the cross-section of an OT module [90]. (b) Schematic
description of the interaction of a charged particle with a straw detector [90].

3.2.1.5 Track reconstruction

The hits deposited in VELO, TT, IT and OT stations by a charged particle
can then be combined to reconstruct its trajectory in the detector. Depending
on their path, it is possible to define different types of track, as sketched in
Figure 3.7(a):

• VELO tracks, tracks reconstructed only inside the VELO and usually
characterized by large angles that might also point backwards. They are
especially useful for PV reconstruction.

• Upstream tracks, tracks reconstructed only in the VELO and TT stations
and usually characterized by momenta so low that are ejected from detector
after the magnet.

• Downstream tracks, tracks reconstructed only between the TT and T
stations and fundamental for the identification of long-lived particles.

• Long tracks, tracks that traverse the full tracking systems leaving hits in
the VELO and T stations, optionally in the TT.

Long tracks are the most important type of tracks and, since they have traversed
the whole magnetic field and left hits over many different detector planes, they
have the most precise estimate of momentum, with resolutions of about 0.5% for
particles below 20 GeV/c, rising to about 0.8% for particles around 100 GeV/c (see
Figure 3.7(b)). They are therefore the tracks usually used for physics analysis.
Their reconstruction [91] starts with the search of straight line segments in the
VELO, called VELO-seed, requiring at least three hits in r- and ϕ-sensors. From
this seed, two complementary algorithms are used to build the final track. The
first one, referred also as forward tracking, associates a seed with a single hit in
the T station and uses the detailed knowledge of the magnetic field profile of
the magnet to estimate the particle trajectory and look for additional hits in the
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(a) (b)

Figure 3.7: (a) A schematic illustration of the various track types [77]: long,
upstream, downstream, VELO and T tracks.(b) Relative momentum resolution as
a function of momentum for long tracks reconstructed in data using J/ψ → µ+µ−

decays [91].

remaining T stations compatible with it. The second one, called track matching,
searches for straight segments in T stations exploiting their stereo geometry and
matches them with the VELO-seeds. In both cases the trajectory is extrapolated
in the TT and compatible hits are added to improve the momentum resolution
of the track. The final parameters of the tracks are then recomputed using a
Kalman filter, an algorithm mathematically equivalent to the least square fit
and capable of taking into account the effects of multiple scattering and the
energy lost ionizing the material encountered by the particle in its path. A χ2

per degree of freedom, χ2
track/ndf , is then used to determine the quality of the

reconstructed track. In LHCb, particles with momenta greater than 10 GeV/c
going through all stations have a probability to be reconstructed as long tracks
of 94%, while the fraction of fake tracks, misreconstructed tracks that do not
correspond to the trajectory of a real particle, can go from few percents up to
20% depending on the multiplicity of the event. This fake rate can be further
reduced using a neural network classifier, GhostProb, based on the result of the
track fit, track kinematics and the number of measured and expected hits in the
different tracking stations.

3.2.1.6 Tracking and bremsstrahlung: the BremAdder algorithm

The momentum resolution shown in Figure 3.7(b) does not hold for all particle
species, but it can degrade based on the specifics of the particle considered. For
energies above 100 MeV/c2, muons are minimum ionizing particles (MIP) and
loose a small fraction of their energy in the tracking stations. Electrons, instead,
interact with matter mainly through bremsstrahlung, where collinear photons
are emitted along the trajectory of the lepton carrying away a sizable fraction
of its energy. Depending on the region of the detector where this radiation has
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Figure 3.8: (a) Schematic representation of the bremsstrahlung emission of
an electron before and after the magnet. No representation of the emitted
radiation inside the magnet is shown as it can be considered negligible [92].
(b) Comparison between the dilepton invariant mass distributions in simulated
decays of B0 → K∗0J/ψ (→ µ+µ−), in blue, and B0 → K∗0J/ψ (→ e+e−), in
orange and green. The two distributions represent the dilepton invariant mass
obtained using, in orange, the momentum estimation directly from the tracks
and, in green, the momentum corrected using the BremAdder algorithm.

been emitted, the quality of the electron momentum determined can vary. The
emission can happen in three main regions: upstream, inside and downstream
of the magnet, as sketched in Figure 3.8(a). Bremsstrahlung photons emitted
downstream of the magnet usually do not affect the momentum determination of
the electron since they leave its trajectory unaltered. Additionally, they usually
end up in the same calorimeter cells of their corresponding electron, providing
also an unbiased estimation for its energy. The radiation emitted by electrons due
to the bending inside the magnet, usually referred to as synchrotron radiation, is
very small and can be usually safely neglected. Bremsstrahlung photons emitted
upstream of the magnet are instead the most dangerous ones, since the energy
they carry away lowers the momentum of the electron before the magnet. As a
consequence, the momentum estimated from the bending of the electron in the
magnetic field after the emission will be biased. This leaves a clear sign when
considering invariant mass shapes as the dilepton invariant mass m(ℓ+ℓ−): a
long radiative tail that is represented in Figure 3.8(b) by the yellow histogram.
As expected, for the muons (in blue) the distribution is more symmetric and
with a better resolution.

To mitigate this effect, LHCb has developed an algorithm, called BremAdder,
that finds clusters in the ECAL that are compatible with a photon hypothesis
and assigns them to electron tracks that might have produced them, partially
recovering the lost energy. The procedure can be summarized with four main
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steps:

i. The tangents to the fitted electron track at the origin vertex and at the TT
are extrapolated to the ECAL, defining a search window in the calorimeter.

ii. Photon candidates whose position is compatible with the search window
defined are then associated with the considered electron track.

iii. The direction of the photon 4-momentum is then approximated using the
direction of the 3D barycentre of the photon shower in the ECAL from the
PV of the event, while its magnitude corresponds to the energy registered
in the calorimeter.

iv. The photon 4-momentum is then added to the electron 4-momentum to
correct for the emitted bremsstrahlung.

This correction improves the momentum resolution for electrons, as can be
seen in Figure 3.8(b) in green. Here, the reconstructed invariant mass m(e+e−)
is more symmetric around the true value MJ/ψ , with a better invariant mass
resolution. Additionally, electrons that are corrected with one or more photons
are characterized by a better PID performance with respect to the electrons, for
which no photon candidate was found.

3.2.2 Particle identification systems

The particle identification systems are mainly built to provide additional
information on the identity of a reconstructed track or to detect the presence
of neutral particles. They are composed of two Ring Imaging CHerenkov
detectors (RICH) placed before and after the magnet, a PreShower (PS) and
Scintillator Pad Detector (SPD), an electromagnetic calorimeter (ECAL), a
hadronic calorimeter (HCAL) and five muon stations (M1-M5). The last three
elements of the detector can be thought as a series of successive destructive
filters for electrons and photons, hadrons and muons, respectively.

3.2.2.1 RICH detectors

The Ring Imaging CHerenkov (RICH) [77] detectors of LHCb provide information
on the identity of the charged particles that traverse them thanks to their
emission of Cherenkov radiation. Cherenkov radiation is produced every time
a charged particle in a material medium moves faster than the speed of light
in that medium. This creates an electromagnetic shockwave, as sketched in
Figure 3.9(a), consisting of a coherent wavefront of conical shape that is emitted
at a well-defined angle θC , with respect to the trajectory of the particle. This
angle depends on the speed of the particle as described by

cos θC = 1
βn

, (3.1)
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Figure 3.9: (a) Sketch of the geometrical construction of the Cherenkov
wavefront [93]. (b) Reconstructed Cherenkov angle for isolated tracks, as a
function of track momentum in the C4F10 radiator. The Cherenkov bands for
muons, pions, kaons and protons are clearly visible [94].

where n is the refractive index of the medium and β = v/c, with v being the speed
of the particle and c the speed of light in vacuum. The identity of the particle
can then be inferred by the momentum information obtained from the tracking
stations combined with its Cherenkov angle θC , as shown in Figure 3.9(b).

The main goal of the RICH detectors in LHCb, composed of RICH1 and
RICH2, is to distinguish kaons, protons, electrons and muons from pions in a
range of momenta that goes from 1 to 100 GeV/c. RICH1 is located upstream of
the magnet, between the VELO and the TT, covering the angular region from
±25 mrad to ±300 (250) mrad in the bending (non-bending) plane. Its volume
is filled with C4F10, a gaseous radiator with refractive index of n = 1.0014,
covering the low momentum range from 1 to 60 GeV/c. RICH2 is instead located
downstream of the magnet, between the last tracking station and the first muon
station, covering the angular region from ±15 mrad to ± 120(100) mrad in the
bending (non-bending) plane. Its volume is filled with a CF4, a gaseous radiator
with refractive index of n = 1.0005, covering the high momentum range of 15 to
100 GeV/c.

In both detectors, the Cherenkov photons emitted are reflected and focussed
outside the spectrometer acceptance by a set of spherical and flat mirrors, whose
geometry is shown for RICH2 in Figure 3.10(a). The light is then detected by
Hybrid Photon Detectors (HPD), where the characteristic circular pattern shown
in Figure 3.10(b) can be used to estimate θC . Also for the RICH systems, the
material budget has been kept at minimum, with a total radiation length of 8%
and 15% for RICH1 and RICH2, respectively. This was achieved positioning the
HPDs outside the acceptance, since they need to be surrounded by iron shields
to permit their proper operation in the fringe field of the LHCb magnet.
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(a) (b)

Figure 3.10: (a) Schematic of the RICH2 detector [77].(b) Display of a typical
LHCb event in RICH1 [77].

3.2.2.2 Calorimeters

The calorimeter system allows the identification of electron, photons and
hadrons and the measurement of their energy and position. This information is
fundamental in the operation of the LHCb experiment, since they are heavily used
by the first level trigger (L0) for the selection of candidates with high transverse
energy. The calorimeter is composed of three subsystems: the Scintillator Pad
Dectector/PreShower (SPD/PS), the Electromagnetic CALorimeter (ECAL) and
the Hadronic CALorimeter (HCAL). The ordering of the last two calorimeters
follows a classical geometry and is motivated by the different ways electrons,
photons and hadrons interact with matter.

For electrons and photons with energies above 1 MeV, the interaction
with matter is dominated by bremsstrahlung and pair-production, respectively.
Electrons (photons) entering a dense material will therefore interact with its
nuclei producing photons (electron-positron pairs), as shown in Figure 3.11(a).
The energy of the initial particles is therefore split into an electromagnetic
cascade or shower until the energy of its final components is small enough to
be dominated by either ionization or Compton scattering (photoelectric effect).
The longitudinal size of this shower can be described by the electromagnetic
radiation length, X0 ≈ 180A/Z2g cm−2. This quantity corresponds to (9/7 of)
the average distance that an electron (photon beam) needs to travel in material
to reduce its energy (intensity) of 1/e.

Analogously to photons and electrons, hadrons interact with matter producing
hadronic showers, whose development is mainly caused by strong interactions.
These interactions usually produce many secondary hadrons that in turn interact
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(a)

(b)

Figure 3.11: Schematic of the development of electromagnetic (a) and hadronic
(b) showers [96].

with further nuclei, leading to a growth in the number of particles in the cascade.
Two types of cascades are possible: electromagnetic or hadronic, as sketched
in Figure 3.11(b). Also in this case, the shower development can be described
by an average mean free path (“hadronic interaction length”) between inelastic
collisions, λ ≈ 35A1/3g cm−2 [95]. By comparing X0 and λ, it is possible
to note that the size of electromagnetic showers is in general much smaller
than the hadronic ones. This justifies the standard choice of positioning the
electromagnetic calorimeter before the hadronic one.

The SPD/PS detector is positioned in front of the ECAL and consists of two
almost identical planes of rectangular scintillator pads divided by a 15 mm thick
lead converter, with interactions lengths of ∼ 2.5X0 and ∼ 0.06λ. Electrons and
photons have a much higher probability to “shower” than hadrons, allowing to
distinguish between them by looking at the energy deposited in the PS, as shown
in Figure 3.12 on the left. Photons and electrons can then be distinguished
based on the absence or presence of an energy deposit in the corresponding SPD
pad. The information on the number of hits registered in the SPD (nSPDHits)
is additionally used in the trigger decision to estimate the multiplicity of the
event observed.

The ECAL is a sampling calorimeter built with a “shashlik” geometry, where
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Figure 3.12: On the left, the energy deposition of (a) 50 GeV electrons and (b)
pions in the PS [77]. On the right, an exploded view of two scintillator-absorber
layers illustrating the periodic structure of a HCAL module [77].

4 mm thick scintillating tiles are alternated to 2 mm thick lead tiles, for a total
length of 84 cm. This length, corresponding to 25X0 and 1.2λ, ensures a full
containment of the electromagnetic showers, allowing a measurement of the
energy of electrons and photons with a resolution of σE/E = 10%/

√
E ⊕ 1%(E

in GeV) [77]. The HCAL is a sampling calorimeter where iron and scintillating
tiles of 16 mm and 4 mm are alternated, acting as absorber and active material,
respectively. Its geometry is characterized by an orientation of the scintillating
tiles parallel to the beam axis rather than perpendicular. In particular, as
shown in Figure 3.12(b), the scintillating tiles are interspaced in the lateral
direction with 1 cm iron whereas the longitudinal dimension of the iron and
scintillating spacers corresponds to the hadron interaction length in steel. Due
to space limitations, its length along the beam pipe is 1.65 m, corresponding to
roughly 5.6λ, not enough to fully contain the hadronic showers started inside
the calorimeter. Since a sizable fraction of the energy of the hadronic shower
is lost, the HCAL is used mainly to provide a trigger for charged hadrons with
high transverse energy, rather than an unbiased measurement of the energy of
the hadronic showers.

In all three calorimeters the signal is collected following the same principle: the
light produced by the energy deposited in the scintillating tiles is transmitted to
the photomultiplier tubes (PMTs) by wavelenght-shifting fibres. The dimension
of the calorimeters are chosen to match projectively those of the tracking systems,
with an exception made for the region between 10 and 25 mrad that remains
uncovered due to the high radiation level. To keep the occupancy of the detectors
more constant across their surfaces, the SPD/PS and ECAL are subdivided into
inner, middle and outer sections as shown in Figure 3.13(a), while the HCAL is
divided in inner and outer sections as shown in Figure 3.13(b).
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Figure 3.13: Calorimeter cells segmentation of the SPD, PS, and ECAL (a), and
the HCAL (b) [77].

3.2.2.3 Muon system

The muon system [77] provides fast information for the high-pT muon trigger at
the earliest level, muon identification for the high-level trigger and additional
hits for the track reconstruction in muons. Since muons enter in the final states
of many CP-sensitive or FCNC decays, such as the B0 → K∗0µ+µ− decays
discussed in this work, it is a fundamental part of the LHCb detector. It is
composed of five stations of rectangular shape, referred to as M1-M5, positioned
in two main regions, as shown in Figure 3.14(a): M1 is placed in front of
the calorimeters while the remaining are positioned after and interleaved with
80 cm thick iron absorbers, called muon filters. Their position at the end of
the spectrometer is justified by the fact that muons in LHCb are MIP and can
therefore traverse many meters of material before loosing all their energy. For
this reason, they are the most penetrating charged particles in LHCb and they
can be selected by simply trying to progressively stop the remaining hadrons
after the calorimeters. M1 is an exception on this regard: it is placed in front
of the calorimeters to provide the muon stations with a hit minimally affected
from multiple scattering, improving the estimation of the transverse momentum
of muons used in the trigger.

As shown in Figure 3.14(b), each muon station is divided in four regions,
referred to as R1-R4. The linear dimensions and segmentation of the four
regions scale as 1:2:4:8 depending on their distance from the beam axis, ensuring
comparable particle fluxes and channel occupancies in the four regions. Similarly
to the other detectors in LHCb, the transverse dimensions of the muon stations
scale with their distance from the interaction point, covering an inner and outer
acceptance from ±20(16) mrad to 306(258) mrad in the bending (non-bending)
plane and allowing the collection of roughly 20% of the total muons produced
from semileptonic decays of b-hadrons.

Two main technologies have been used to build these stations: multiwire
proportional chambers (MWPC) and triple gas electron multipliers (triple-GEM).
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(a) (b)

Figure 3.14: (a) Side view of the muon system [77]. (b) Front view of one of the
quadrants in stations M2 and M3, showing the partitioning into sectors and the
definitions of the logical pads [77].

The first one is by far the dominant one, with a total of 1380 chambers used,
while the second one has been installed only in the inner region of M1 to better
withstand its high particle fluxes. MWPC are gaseous detectors that, in their
simplest design, are characterized by a plane of equally spaced anode wires
centred between two cathode planes, as shown in Figure 3.15(a). In LHCb, the
wire plane is characterized by an inter-wire spacing of 2 mm placed symmetrically
in a 5 mm gas gap filled with a fast gas mixture of Ar/CO2/CF4 in the ratios
40/55/5, allowing for a time resolution of 5 ns. The triple-GEMs are also gaseous
detectors, but they are composed of three gas electron multipliers placed in
between an anode and cathode plane. As it is shown in Figure 3.15(b), when a
charged particle enters the triple-GEM it ionizes the gas inside it. The electrons
produced in the drift gap are then attracted by the electric fields through holes
etched in the different GEM foils, where they are multiplied. The electron
cascade drifts then to the anode, inducing a current signal on the pads. The
gas mixture used in LHCb for the triple-GEM is Ar/CO2/CF4 in the ratios
45/15/40, allowing to obtain time resolutions smaller than 3 ns. Each station is
partitioned into fine rectangular logical pads, whose dimensions scale depending
on the region of the detector considered, as shown in Figure 3.14(b). When they
are traversed by a charged particle, they provide a hit position in the x-y plane.
This information is then used by the muon trigger where, after having required
five aligned hits coming from all muon stations, a muon track is reconstructed
together with its transverse momentum with respect to the interaction point,
obtaining a resolution of roughly 20%. Most of the spatial resolution comes from
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Figure 3.15: (a) Basic configuration of a multiwire proportional chamber, where
every wire acts as an independent proportional counter [97]. (b) Schematic cross-
section of a triple-GEM detector [77]. Superimposed, a sketch of the passage of a
charged particle, together with the drifting trajectory of the electrons produced
due the ionization of the gas.

the first three stations, while the last two are mainly used to identify penetrating
particles. The characteristics of the muon stations are such that allow LHCb to
obtain trigger efficiencies of 95% in a window that is smaller than 25 ns.

3.2.2.4 Combined particle identification

The knowledge of the reconstructed tracks obtained from the track reconstruction
algorithm, together with the information extracted from the RICH detectors,
calorimeters and muon stations, can be used to determine the identity of the
charged particles observed. Only five particle species are considered for this
identification: electrons, muons, pions, kaons and protons. As it is schematically
shown in Figure 3.16, their interaction with the different subsystems is quite
different and can be summarized as:

• Electrons, being so light, when passing through the RICHs emit light with
the maximum allowed angle, θC ∼ 1/n. Additionally, they deposit energy
in the SPD and ECAL where they are completely stopped. For this reason
no additional response is present in HCAL or muon stations.

• Muons traverse the whole spectrometer loosing small amounts of energy in
the detector elements they encounter. They can be hardly distinguished
from pions in the RICHs, however their difference becomes clearer when
interacting with the HCAL and the muon stations. Protons and pions
are the particles that are most often misidentified as muons: it usually
happens due to a combination of spurious hits aligned in the muon stations
with genuine hadron tracks or due to the existence of a true muon either
pointing in their same direction or produced by the decay in flight of one
of the hadrons.
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Figure 3.16: Illustration of the responses that different particles have in the
LHCb systems [98].

• Hadrons have similar responses in the calorimeters, where a sizable fraction
of their energy is deposited, and their separation is mainly achieved by the
RICH systems.

From the information collected from these subsystems, two sets of Global PID
variables are obtained: DLL and ProbNN. In the first one, signal and background
likelihood distributions are built for each particle species and subdetector. For
the RICHs, the ring size and the momentum information of the associated track
t are used to build a likelihood function LRICH

i (t) for the i-th particle hypothesis.
The energy deposits in the calorimeters systems, together with the momentum
of the associated track t are used to build the likelihood functions LCAL

i (t),
where i represents the hypothesis of being or not-being an electron. Likelihoods
describing the probability of track being muon or not, LMUON

µ,not−µ(t), are computed
based on the average square distance between the associated track and the
hits in the muon stations that are closest to the extrapolation points. The
number of muon stations used for this calculation is a function of the measured
momentum of the track, since only muons with momenta above 6 GeV/c are able
to reach the last station M52. The three likelihoods are then combined by simple
multiplication in the following way:

Ltotµ (t) = LRICH
µ (t) · LCAL

not−e(t) · LMUON
µ (t) (3.2)

Ltote (t) = LRICH
e (t) · LCAL

e (t) · LMUON
not−µ (t) (3.3)

Ltoth (h) = LRICH
h (t) · LCAL

not−e(t) · LMUON
not−µ (t) (3.4)

From these it is possible to build the DLL variables, defined as the difference
between the log-likelihood of a track t belonging to the particle species j rather

2As it will be seen in Sec. 5.2.2 an additional variable, called IsMuon can be defined for the
preselection of muon candidates. It corresponds to a loose binary selection that is exclusively
based on the number of muon stations where a hit is found within a certain spatial window
around the track extrapolation.
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than being a pion:

DLLj(t) = log Ltotj (t) − log Ltotπ (t) . (3.5)

The second approach aims to improve on the previous work by exploiting
the categorization power of six binary one-layer artificial neural networks (NN),
one for each of the five particle species plus the introduction of a ghost category.
The NNs are trained using simulation, providing as input information from the
tracking systems, RICHs, calorimeters and muon stations. The ProbNN variables
obtained from the NN correspond to the probability that the track considered
was produced by one of the six particle categories considered. Their performance
is overall better than DLL variables, especially for what concerns kaon-proton
separation [98].

3.2.3 Trigger

Of the 40 million proton-bunch crossings that each second happen in LHCb,
only a small fraction produces an event where at least a B meson decays with
all its products inside the spectrometer. The role of the LHCb trigger systems is
to retain as many charm and beauty hadron decays as possible, rejecting at the
same time uninteresting or background decays. This needs to be done taking
into account the real-life limitations of computing power, data storage capacity
and rates. In LHCb this is achieved with two trigger levels: Level-0 (L0) and
High Level trigger (HLT) [77, 99].

The L0 trigger is a hardware-trigger, implemented using custom-made
electronics capable of operating synchronously with the bunch crossing frequency
of the LHC. Since B mesons have a large mass, their daughters are usually
characterized by large transverse momenta and energies. These features are
exploited by the L0 trigger to decide which events to keep and reject, effectively
reducing the rate to roughly 1 MHz, frequency at which the whole detector can be
read out. The L0 trigger is divided into three independent units: L0-Calorimeter,
L0-Muon and L0-PileUp trigger. Each component, described briefly in the
following, provides information to the L0 Decision Unit (L0 DU), where the
final decision on the rejection of the event is taken. The L0-Calorimeter unit
combines the information obtained from SPD/PS with the transverse energy Et
3 measured in ECAL and HCAL, providing different trigger candidates. The
most relevant in this work are:

• L0Hadron, corresponding to the candidate with the highest Et deposit in
HCAL, to which is also added the energy observed in the matching cells of
ECAL;

• L0Electron, corresponding to the candidate with the highest Et deposit
in ECAL, with hits in the corresponding SPD/PS cells in front of it.

3The transverse energy is defined as Et = E sin θ, where E is the observed deposited energy
in a cluster of 2×2 cells and θ is the angle between the z-axis and the center of the 2×2 cells
with respect to the primary vertex.
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A candidate passes the L0Hadron or L0Electron selection if its transverse
energy is above a threshold given by the specifics of the run considered. Typical
values of these two thresholds in 2012 correspond to 3.6 GeV/c2 and 2.7 GeV/c2,
respectively [100]. The L0-Muon unit computes the transverse momentum of all
candidates leaving hits in the muon stations, retaining only the two candidates
with highest pT for each quadrant of the detector. As seen before, a candidate
passes the L0Muon selection if its transverse momentum is above a threshold,
that for 2012 was typically 1.8 GeV/c [100]. The L0-PileUp trigger, using two
sets of overlapping VELO r-sensors positioned upstream of the VELO detector,
estimates the number of interactions produced per bunch-crossing and vetoes
events where more than a single interaction is observed. To further reduce the
contribution of high multiplicity events, a further cut on nSPDHits is applied,
requiring them to be below 600 and 450 in Run 1 and Run 2, respectively. This
has the advantage of removing events characterized by a difficult reconstruction,
saving time for the High Level Trigger.

The HLT is composed of two software applications, HLT1 and HLT2, that
run asynchronously on a processor farm using commercially available equipment.
Their aim is to reduce the rate of events obtained from the L0 trigger to ≈
5 (10)kHz for Run 1 (Run 2), allowing their offline storage. For each of the
types of L0 trigger selections available, the HLT1 algorithm performs a partial
reconstruction of the tracks in the VELO and T-stations, confirming the decision
at the L0, and performing additional selections on the quality of the reconstructed
tracks. The events, the tracks and vertices obtained are then passed on to the
last step of the trigger, HLT2, where a full event reconstruction can be carried
out. Thanks to the fact that the two HLT levels can be run independently,
is possible to obtain high-quality alignment and calibrations before this last
step is performed, ensuring reconstructed events ready to be used in the offline
analysis already after the trigger. The reconstruction is followed by mixture
of several exclusive and inclusive selections designed to collect specific types of
events. The selections that are most interesting for this work are the topological
lines, referred to as Hlt2Topo[2,3]BodyBBDT (Hlt2Topo[2,3]Body) in Run 1
(Run 2), and designed to cover all b-hadron decays with at least two or three
charged particles in the final state and a displaced decay vertex. These lines
correspond to a cut- or MVA-based selection on discriminating variables such
as the minimum transverse momenta, the minimum χ2

IP, the minimum and
maximum track χ2, the sum of the transverse momenta, the distance-of-closest-
approach (DOCA) of all input particles, to name just a few. Additional lines such
as Hlt2TopoE[2,3]Body, Hlt2TopoEE[2,3]Body, Hlt2TopoMu[2,3]Body and
Hlt2TopoMuMu[2,3]Body are also used and built similarly, but include some
additional electron and muon identification information. More information can
be found in Ref. [101].
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Analysis strategy
The tensions observed in the measurement of the branching fraction and angular
observables of B0 → K∗0µ+µ− decays, together with the remaining set of B
anomalies, have caused a great excitement in the physics community, that lead to
the publication of several models capable of explaining the deviations observed as
hints of physics beyond the SM [102–120]. However, the vectorial nature of the
observed pattern could also be explained by an unexpectedly large contribution
from b → scc̄ operators, which could either mimic or camouflage any genuine
NP effect [41, 42, 45–51]. Attempts to improve the current understanding
of these hadronic contributions by performing an unbinned amplitude fit to
B0 → K∗0µ+µ− decays including an explicit parametrization of the charm-loop
contribution from data-driven analysis [121–123] or exploiting the analytical
properties of its structure [23, 124, 125] have been recently proposed and are
currently under study. Their sensitivity to NP is still however intrinsically limited
by the assumptions that enter the parametrization of the dilepton invariant mass
distribution.

A complementary strategy to investigate the set of B anomalies is the
study of LFU tests such as RK∗ [52–54] and Qi [38], which correspond to
ratios of branching ratios and differences in the angular observables for the
B0 → K∗0ℓ+ℓ− modes that involve muons or electrons. Their precise theoretical
prediction results from the fact that local (form factors) and non-local (charm
loop) hadronic contributions, being derived from QCD, are expected to be the
same for different lepton generations, resulting in a convenient cancellation
of all hadronic uncertainties. While the tensions observed in this class of
measurements are still inconclusive, when joined with the other deviations
observed in b→ s ℓ+ℓ− transitions, they give rise to a non-trivial and coherent
pattern, as it is shown by global fit analyses.

In the following, an attempt to enhance the sensitivity of previous LFU
measurements in B0 → K∗0ℓ+ℓ− decays is presented. It relies on a simultaneous
unbinned amplitude fit to the full decay rate of B0 → K∗0µ+µ− and B0 →
K∗0e+e− decays, benefitting from the full description of the two decays and
combining the discovery potential of the ratio RK∗ and the difference of the
angular observables Qi in a single quantity. The key feature of this approach,
presented for the first time in Ref. [126], corresponds to the description of the
two differential decay rates using the exact same parametrization, except for
the Wilson coefficients C9 and C10, which are parametrized separately between
the two lepton generations. The hadronic contributions are identical for muon
and electron channels and are treated as nuisance parameters obtained mainly
from the large statistics of the former. Their description relies, for the B0 → Kπ
form factors, on a parametrization that combines the predictions available at
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low and high q2 using QCD Light-Cone Sum Rules and Lattice QCD [34],
respectively; while the charm-loop is described as a combination of singular
terms, which describe the analytical properties of Hλ(q2) at the mass of the
J/ψ and ψ(2S) resonances, and a simple polynomial expansion truncated at
the second order [23]. More details on the exact parametrization used for the
description of these hadronic matrix elements are provided in Appendix A and
B.

The sensitivity of this analysis has been previously studied on a series of
signal-only simulations, generated under the NP scenario C̃µ9 − C̃e9 = −1, where
the usual WCs Ci are renamed as C̃i, since an accurate disentanglement between
the physical meaning of the WCs and the hadronic pollution cannot be achieved
at the current stage of the theory. C7 is also included in the fit but fixed to its SM
value, due to its strong constraint from radiative decays [127]. The sensitivity
of the analysis to the WC C̃µ,e9 and C̃µ,e10 has then been tested considering
different parametrizations for the non-local hadronic contributions, as shown
in Figure 4.1(a). As it can be seen, the sensitivity to C̃µ9 and C̃e9 is strongly
dependent on the model assumptions used for the non-local matrix element. This
should not be of surprise, since it is exactly the reason why a direct determination
of the WCs in the muon channel alone is so difficult. However, it is noticeable
that the high correlation of C̃µ9 and C̃e9 is sufficient to preserve the true underlying
physics regardless of the hadronic parametrization used: the two-dimensional
pull estimator with respect to the LFU hypothesis (dashed diagonal line) is
unbiased.

(a) (b)

Figure 4.1: Two-dimensional sensitivity scans for the pair of Wilson coefficients
C̃µ9 , C̃e9 (a) and ∆C9 ,∆C10 (b) for different non-local hadronic parametrisation
models evaluated in the NP scenario ∆C9 = −1 and with the expected
statistics after LHCb Run 2 [126]. The contours correspond to 3σ statistical-only
uncertainty bands and the dotted black line indicates the LFU hypothesis.
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This remarkable feature lead to the definition of two new parameters of
interest: the difference in WC between muons and electrons

∆Ci = C̃µi − C̃ei . (4.1)

In these observables, the cancellation of the hadronic uncertainties becomes
manifest: if an erroneous ansatz for the non-local hadronic matrix element is
used in the parametrization of the amplitude, it biases the observed value of the
Wilson coefficients by the quantity Chadri . However, since the parametrization
is shared, the same bias is expected for all lepton generations. Therefore, the
difference between the WCs becomes

∆Ci = C̃µi −C̃ei = Cµ,truei −���Chadri −Ce,truei +���Chadri = Cµ,truei −Ce,truei = CNP,µ
i −CNP,e

i ,
(4.2)

where Cℓ,truei = CSM
i + CNP,ℓ

i is the combination of the WC predicted by the SM
together with a possible NP contribution. As can be seen, only a LFU-breaking
NP contribution could cause a difference between the WCs observed in two
different lepton generations. When investigating the sensitivity as a function the
observables ∆C9 and ∆C10, as shown in Figure 4.1(b), the cancellation becomes
evident. The sensitivity is found to be completely independent not only on the
parametrization of the non-local hadronic contributions, but also on the form
factors uncertainties. Additionally, the inclusion of the observed signal yield as a
constraint on the WCs that describe the differential decay rate has been shown
to stabilize the fit and increase the sensitivity to NP, as shown in Figure 4.2.

Figure 4.2: Statistical sensitivity projected (signal only) for the current LHCb
dataset to the difference in WCs between muons and electrons, under the NP
hypothesis of ∆C9 = −∆C10 = −0.7, taken from Ref. [126]. The different analysis
approaches and corresponding sensitivities are overlaid.
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Overall, the method discussed allows to exploit the full set of observables
available in B0 → K∗0ℓ+ℓ− decays, providing an unprecedented precision of
LFU in a single analysis. Starting from the best fit values of ∆C9 and ∆C10, the
branching ratios and angular observables can then be derived as function of q2

or binned in q2 and m(Kπ) to compare against the values measured in previous
analysis and the corresponding theoretical predictions. Such a comparison is
shown in Figure 4.3, as an example, for the binned angular observables FL,
P ′

5 [29], the differential branching ratio [33] for B0 → K∗0µ+µ− decays and the
LFU test RK∗ (in black). The bands are obtained using signal-only toys, where
the best fit value considered correspond to the SM and two other NP scenarios
(green, blue and red).
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Figure 4.3: Comparison between the values of the measured binned observables
FL, P ′

5[29] and the differential branching ratio [33] for B0 → K∗0µ+µ− (black)
and the values obtained from the signal parametrization under the scenarios
of SM, ∆C9 = −1 and ∆C9 = −∆C10 for a set of signal-only toys. The bottom
right plots correspond to the RK∗0 observable. Additionally, the theoretical
predictions ABSZ [34, 104] and BSZ [34] are overlaid.
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4.1 Analysis overview

The main goal of this work is to determine the observables ∆C9 and ∆C10 directly
from data, performing an unbinned amplitude analysis of B0 → K∗0µ+µ− and
B0 → K∗0e+e− decays, using the datasets collected at the LHCb experiment
during Run 1 and Run 2, corresponding to a total of 9 fb−1.

The main experimental challenges of the analysis originate in the different
behaviour that electrons and muons have when interacting with the material
of the spectrometer, due to their different masses. At the energies of a typical
B0 → K∗0ℓ+ℓ− decay, the momentum of the leptons is in a range between 0.1
and 100 GeV/c. In this regime, a muon is a minimum ionizing particle, going
through the detector and loosing a small fraction of its total energy. Being so
penetrating, the muon will likely leave a set of aligned hits in the muon stations,
allowing the L0Muon trigger to easily recognize its signature. For an electron
with the same momentum, the interaction with matter is instead dominated
by bremsstrahlung emission. If these photons are emitted before the magnet,
the momentum estimated from the bending of the electron trajectory will be
biased. This effect is mitigated by the use of the BremAdder algorithm, described
in Sec. 3.2.1.6, that is capable of partially recovering the energy radiated by
associating compatible photon clusters in the ECAL back to the corresponding
electron from which the radiation originated. Additionally, due to the high
number of particles that shower in the ECAL, only those electrons that deposit
transverse energies above 2.4-3 GeV/c2 are able to fire the trigger and saved for
offline analysis.

As a consequence, decays involving muons or electrons in the final state differ
mainly in two fundamental aspects: the statistics available for the two collected
modes, which due to the higher trigger efficiency, is roughly four times larger for
muons than for electrons, and the resolution of the measured momenta, that due
to the longer trajectories in the detector and negligible bremsstrahlung emission,
is much better in muons than in electrons.

In order to reduce some of these differences, an alternative definition of the
dilepton invariant mass squared is chosen as default variable used in the electron
channel. This variable is computed by constraining the signal candidates to
originate from the primary vertex and to have an invariant mass corresponding
to the nominal mass of the B0 meson. For this reason, this alternative dilepton
invariant mass is hereafter referred to as constrained q2 or q2

c . The use of this
variable is expected to have two main effects: mitigate the differences with
respect to the muon mode (resolution and migration) and to reduce the size of
the leakage of B0 → K∗0J/ψ (→ e+e−) decays into the signal region. The last
one allows the central-q2 region, usually defined as [1.1,6] GeV2/c4 [128], to be
extended to [1.1,7] GeV2/c4, increasing the statistics of the rare electrons sample
of roughly 20%. Notice that this variable is not used in the muon case as the
difference between q2 and q2

c in that case is found to be of minimal importance.
Once the choice to enlarge the central-q2 region for the electron is taken, the

remaining dilepton invariant mass regions are chosen accordingly, making sure
that the two lepton flavours considered are aligned. In the following are reported
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the main q2 (q2
c ) regions used in this analysis:

i. central-q2(q2
c ) region: 1.1 < q2(q2

c ) < 7.0 GeV2/c4 for muons (electrons),

ii. J/ψ -q2(q2
c ) region: 7 < q2(q2

c ) < 11 GeV2/c4 for muons (electrons).

To further increase the statistics of the electron mode, signal candidates are
selected not only from those events for which an electron in the final state has
triggered, but also in those events that were triggered independently of signal.
A similar extension is performed in the muon mode for consistency.

The different behaviour of muons and electrons in the detector has an
additional drawback: many of the effects linked to the detection, reconstruction
and identification of the two modes are uncorrelated between each other, and
therefore a separate control of the systematic uncertainties must be ensured to
avoid the introduction of spurious LFU-breaking effects. In order to verify that
the corrections applied to the simulation can be trusted, a series of cross-checks
are performed in the J/ψ-q2 (J/ψ-q2

c ) region for the B0 → K∗0J/ψ (→ µ+µ−)
(B0 → K∗0J/ψ (→ e+e−)) channels, hereafter referred to as resonant or control
modes. The first check corresponds to the measurement of the ratio of branching
ratios between the normalization modes, expected to be unity in the SM [129].
This measurement requires a direct control of the efficiencies obtained for the
electron and muon modes, since none of the possible systematic uncertainties are
expected to cancel. A second powerful check is provided by the measurement of
the angular observables of B0 → K∗0J/ψ (→ µ+µ−) and B0 → K∗0J/ψ (→ e+e−)
decays, exploiting the amplitude and acceptance parametrization procedure that
will then be used for the final fit to the rare mode. The compatibility between
the observables measured in the two different lepton generations requires the
control of the efficiency across the different variables needed to describe the decay
of interest. In both these cases, thanks to the high statistics of the resonant
mode, the dominant uncertainty is expected to be systematic. A measurement
that is compatible with the expected result is therefore a very stringent test of
our understanding of the simulation used for electron and muons.

Once these cross-checks have been passed, an unbinned maximum likelihood
fit to the selected B0 → K∗0µ+µ− and B0 → K∗0e+e− candidates can be
performed, as a function of the angles cos θK , cos θℓ and ϕ, q2, the invariant mass
of the Kπ system, m(Kπ), and the invariant mass of the Kπℓℓ system, m(Kπℓℓ).
The likelihood is minimized to obtain the best estimates for the parameters ∆C9
and ∆C10, together with their corresponding uncertainty. The last one will then
be used, together with the corresponding systematic uncertainties, to estimate
the compatibility of the best fit results with the SM hypothesis.

Currently, the measurement presented in this work is still under the
collaboration review and the corresponding best fit result is blinded. Additionally,
the computation of the systematic uncertainties of the analysis is ongoing and
only those contributions that are expected to have a sizable effect on final the
measurement are investigated here.

The remainder of the thesis is organized as follows. Chapter 5 presents the
data and simulation samples used in the analysis, together with the selections
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requirements needed to isolate candidates of B0 → K∗0ℓ+ℓ− decays in data.
These criteria result in a sample of approximately 2000 and 500 B0 → K∗0µ+µ−

and B0 → K∗0e+e− candidates in central-q2 and central-q2
c regions, respectively.

Chapter 6 describes the different steps needed to reduce the known discrepancies
between data and simulation, fundamental to avoid the introduction of spurious
LFU-breaking contributions in the final measurement. Chapter 7 discusses the
effect of the selections on the total number of events and their impact on the
angular and dilepton distributions by computing the total efficiencies and effective
acceptances of the rare and resonant modes. Chapter 8 reports the results of the
mass fits performed on B0 → K∗0J/ψ (→ ℓ+ℓ−) candidates in data, whose yields
are needed for the calibration of the constraint on the observed number of events
of rare mode in the final fit. Chapter 9 tests the quality of the correction chain,
fit strategy and background composition performing two LFU test on the control
channels B0 → K∗0J/ψ (→ µ+µ−) and B0 → K∗0J/ψ (→ e+e−). Additional
cross-checks involving the B0 → K∗0ψ(2S)(→ ℓ+ℓ−) are also discussed. In
Chapter 10, the signal and background parametrizations, together with the
constraint on the observed yield are discussed in detail. Follows a presentation
of the blind fit results to the rare mode candidates in data, together with its
expected sensitivity to NP and the most important systematics. The conclusions
are presented in Chapter 11.
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Selecting B0 → K∗0ℓ+ℓ− decays
The chapter begins with the introduction of the datasets used in the analysis of
B0 → K∗0ℓ+ℓ− decays in Sec. 5.1. The selections used to isolate the decays of
interest and to reject the many possible sources of backgrounds are discussed
instead in Sec. 5.2.

5.1 Data and simulation samples

5.1.1 Data samples

The measurement is based on the p-p collision data collected by the LHCb
experiment during the years 2011 and 2012 (Run 1), 2015 and 2016 (Run 2p1),
and 2017 and 2018 (Run 2p2). Table 5.1 reports the integrated luminosities and
centre-of-mass energies for each of the years considered.

The final states of the decay of interest, i.e. B0 → K∗0ℓ+ℓ− with ℓ = e, µ, are
reconstructed based on the combination of four charged tracks: two oppositely
charged tracks corresponding to either a muon or an electron couple, and two
oppositely charged tracks corresponding to a kaon and pion. Since the charge
of the kaon unambiguously identifies the b or b̄ nature of the decaying B0, the
decay is self-tagging and no external information is needed to distinguish B0

and B0 mesons.

Table 5.1: Summary of the integrated luminosity and centre-of-mass energy
corresponding to the data samples used.

Year L [ fb−1 ]
√
s [ TeV ]

2011 1.1 7
2012 2.1 8
2015 0.3 13
2016 1.7 13
2017 1.7 13
2018 2.2 13

5.1.2 Simulation samples

The use of simulated samples is fundamental in many aspects of this measurement,
from the determination of the efficiencies, mass distributions and angular
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distributions of the decays of interest, to the study of the contamination
of specific backgrounds in our final datasets. These samples are produced
starting from p-p collisions generated using Pythia [130], where a specific LHCb
configuration [131] is used. The decays of unstable particles are subsequently
described by EvtGen [132], in which the emission of final state radiation (FSR)1

is included using Photos [133]. The interaction of the generated particles
with the detector, and its response, are implemented using the Geant4
toolkit [134] as described in Ref. [135]. Many aspects of the simulation are
afterwards cross-checked in a data-driven way and, whenever some differences
are thought to impact the final observables of interest, a corresponding correction
is performed. Additional samples for which the reconstruction with Geant4
has not been performed, referred to as generator level samples, are also used
in the measurement. They are particularly useful in the parametrization of
the acceptance for the decays of B0 → K∗0ℓ+ℓ− and B0 → K∗0J/ψ (→ ℓ+ℓ−)
or in the correction of specific variables before the reconstruction. In the
following, B0 → K∗0ℓ+ℓ− decays are generated according to the form factor
parametrization of Ref. [136], while B0 → K∗0J/ψ (→ ℓ+ℓ−) decays are generated
using the helicity amplitudes reported in Ref. [137].

Different selection, or truth-matching, criteria are applied to simulated events
depending on the purpose:

i. When designing the selection (Sec. 5.2), only reconstructed candidates
in which each of the particles generated is correctly assigned to the
corresponding tracks, clusters and mass hypothesis are considered. Events
that pass this truth-matching condition are referred to as Signal.

ii. When performing corrections to simulation (Ch. 6), two other types of
reconstructed candidates are kept together with Signal candidates:

– Quasi-signal candidates, where the only difference with the Signal
category is the misidentification of an intermediate resonance;

– Low-mass candidates, corresponding to partially reconstructed decays
where the common mother particle is at maximum 100 MeV/c2 above
the mass of the B0 meson and all reconstructed particles have been
identified correctly.

iii. When performing mass fits to simulation (Sec. 8.2), calculation of efficiencies
and parametrization of detector effects (Ch. 7), the candidates in which
at most one of the reconstructed final state particles is a ghost are kept
together with the Signal, Quasi-signal and Low-mass candidates.

The inclusion of Low-mass candidates in the truth-matching definition for most
applications is due to the fact that these candidates actually peak in the Kπℓ+ℓ−

invariant mass, since they correspond for the biggest part to signal events where
bremsstrahlung photons have been emitted. The inclusion of ghosts in most

1In the following, with final state radiation we refer to the electromagnetic emitted by final
state particles during the decay process.
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applications is due to the presence of this background in data, and neglecting
this contribution could bias our estimation of mass shapes, efficiencies and
acceptances. Reconstructed candidates of background channels are always truth-
matched checking particles identities and daughter-mother relationships.

5.2 Selections

Signal candidates of B0 → K∗0ℓ+ℓ− decays are isolated in data thanks to a chain
of selections that, conceptually, is composed of seven main steps:

i. A cut-based selection on the quality of the tracks and vertices used for the
reconstruction of the decay.

ii. Cuts on PID variables to reduce misidentified (mis-ID) backgrounds,
together with a set of fiducial cuts needed to ensure that data-driven
corrections to the PID efficiencies can be computed.

iii. Trigger requirements and corresponding fiducial cuts.

iv. The definition of the ranges in q2, m(Kπℓℓ) and m(Kπ) where the analysis
is performed.

v. Cuts developed to reduce the presence of specific exclusive backgrounds.

vi. A cut on a multivariate classifier trained to reduce the contribution from
combinatorial backgrounds.

vii. A cut for the removal of multiple candidates per single event.

The following sections describe each of these steps in more detail.

5.2.1 Requirements on the quality of the reconstructed decay

Sets of four reconstructed charged tracks need to pass the following quality
requirements:

• Each of the four tracks must be of a good quality and have a high probability
to be produced by a real charged particle. This is enforced requiring that
the χ2 per degree of freedom of the track fit, χ2

track/ndf, and the ghost
probability of the track are small.

• Any two tracks in the final state must have an angular distance larger than
0.5 mrad. This ensures that the number of clones, defined as tracks that
share at least 70% of their total hits, is reduced.

• The four tracks must be compatible with being originated in a single
point in space, corresponding to the decay vertex of the B0 meson, while
their compatibility with the PV of the event is small. This is a powerful
condition to discriminate B decays, since they are characterized by a flight
distance of roughly 1 mm before decaying in the detector. These criteria
are enforced requiring that:
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i. the χ2 per degree of freedom (χ2
vtx/ndf) corresponding to a vertex

fit to the Kπ system, to the dilepton pair and to all four particles
together are small, suggesting that the three vertices considered are
of good quality;

ii. the χ2 difference between the fits to the PV with and without the
inclusion of:

∗ each of the four tracks separately (χ2
IP(PV, track)),

∗ the dilepton pair (χ2
FD(PV, ℓℓ)),

∗ all four tracks together (χ2
FD(PV, B0)),

are expected to be large if the four charged tracks form a detached
SV. To a first approximation, these quantities can be understood as
the χ2 distances of the four tracks and the two vertices with respect
to the PV vertex.

• The B0 candidate built from a kinematic fit to the four charged tracks must
point back to the PV. This is enforced requiring that χ2

IP(PV, B0) and that
the angle θDIRA, corresponding to the angle between the reconstructed
momentum of the B0 meson and its direction of flight from the PV to the
decay vertex, are small.

• The invariant masses of the Kπℓ+ℓ−, Kπ and ℓ+ℓ− are restricted within
some very loose intervals, out of which no decay of the type B0 → K∗0ℓ+ℓ−

is expected.

• Events with large occupancies are not considered, as the reconstruction
performances greatly decreases with large track multiplicities.

A summary of the requirements applied is reported in Table 5.2 for brevity.

5.2.2 Particle identification requirements

The association of a reconstructed track with the particle specie that generated it
is fundamental to reduce the contributions of mis-ID backgrounds and multiple
candidates per events. The selections reported in the first row of Table 5.3 are
designed to increase the purity of real kaons, pions, muons and electrons in the
data samples. To avoid relying on the PID response obtained from simulation, the
effect of these selections is studied in specific high-statistics calibration samples
that contain muons, pions, kaons, protons and electrons identified without any
cut on PID variables. The cuts listed under “Fiducial, Calibration” in Table 5.3
correspond to the selections that are needed to align the data of this analysis
with the datasets from which the PID response is calibrated. The cuts listed are
of two main types: momentum cuts that ensure the same phase space coverage
of the calibration samples, and acceptance cuts that require that the final state
particles are in the acceptance of the PID detectors needed for their identification
and that they have interacted with them. Of the last type are cuts such as:
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Table 5.2: Summary of decay quality requirements, as described in the text.

Type Requirement

Multiplicity cut nSPDHits < 600(450) Run 1 (Run 2)

B0

|m−mPDG
B | < 1500 MeV/c2

cos θDIRA > 0.9995
χ2

IP(PV) < 25
χ2/ndf(Kπℓℓ) < 9
χ2

FD(PV) > 100

K∗0 |m−mPDG
K∗0 | < 300 MeV/c2

origin vertex χ2/ndf < 25

ℓℓ

m < 5500 MeV/c2

χ2/ndf(ℓℓ) < 9
χ2

FD(PV) > 16

K, π, µ, e
χ2
track/ndf < 3
χ2

IP(PV) > 9
GhostProb < 0.4

Clones
θ(ℓ1,2, h) > 0.5 mrad
θ(ℓ1, ℓ2) > 0.5 mrad

• hasRICH==1, that requires that the RICH has registered some photons
emitted by the track considered;

• InAccMuon==1, that requires that the track considered is within the
acceptance of the muon stations;

• IsMuon==1, a loose binary selection that is exclusively based on the number
of muon stations in which a hit is found within a certain spatial window
around the track extrapolation;

• InAccEcal==1 an hasCalo==1, that require respectively that the track is
within the acceptance of the ECAL and that an energy cluster is associated
with it;

• not(|xProjectionL0CaloTool
ECAL | < 363.6 mm and |yProjectionL0CaloTool

ECAL | <
282.6 mm), where the tracks that intersect the ECAL in its innermost
region are not considered since the corresponding cells are not read out
during data-taking;

• (ee)−ECALDistance > 100 mm, where the distance between the two electron
tracks extrapolated at the position of the ECAL is required to be larger
than 100 mm to reduce potential non-factorization effects both in PID and
trigger corrections.
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Table 5.3: Summary of the PID selection requirements with their corresponding
fiducial cuts.

Type Requirement

PID
K

DLLKπ > 0
ProbNNk · (1 − ProbNNp) > 0.05

π ProbNNpi · (1 − ProbNNk) · (1 − ProbNNp) > 0.1
µ ProbNNmu > 0.2

e
DLLeπ > 2

ProbNNe > 0.2

Fiducial,
Calibration

Multiplicity nSPDHits < 600(450) Run 1 (Run 2)

all tracks hasRICH==1

χ2
track/ndf < 3

K,π

pT > 250 MeV/c
p > 2000 MeV/c
InAccMuon==1

e

pT > 500 MeV/c
p > 3000 MeV/c && p < 200 GeV√
p2
x,track + p2

y,track > 200 MeV/c
hasCalo==1

InAccEcal==1

(ee) − ECALDistance > 100 mm
not(|xProjectionL0CaloTool

ECAL | < 363.6 mm
and |yProjectionL0CaloTool

ECAL | < 282.6 mm)
ee pT > 500 MeV/c

µ

pT > 800 MeV/c
p > 3000 MeV/c && p < 200 GeV

InAccMuon==1

IsMuon==1

K∗0 pT > 500 MeV/c

5.2.3 Trigger requirements

As already discussed in Sec. 3.2.3, the trigger is the first filtering step in the
collection of events produced at p-p collisions in LHCb. Only the events that pass
the selections applied for L0, HLT1 and HLT2 trigger are saved for successive
offline analysis. In the following, a description of the selections applied at each of
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these subsequent steps is given, together with the additional fiducial cuts needed
to simplify the alignment with simulation.

5.2.3.1 Basic requirements

After the reconstruction of the event, it is possible to distinguish between two
main classes of triggered events: events in which the reconstructed candidate
caused the trigger to fire, referred to as Trigger-On-Signal (TOS), and events
for which the triggering was caused by the underlying decay of the other b-
hadron produced in the p-p collision and referred to as Trigger-Indipendent-of-
Signal (TIS). Only events that pass the following L0 selections, hereafter referred
to as trigger categories, are considered:

• L0I: L0Hadron_TIS (B) or L0Muon_TIS (B) or L0Electron_TIS (B),
available in electrons and muons in the final state;

• L0M!: (L0Muon_TOS (µ1) or L0Muon_TOS (µ2)) and not L0I (B),
available only for samples with muons in the final state;

• L0E!: (L0Electron_TOS (e1) or L0Electron_TOS (e2)) and not L0I
(B), available only for samples with electrons in the final state;

where the definition of the L0Hadron, L0Electron and L0Muon trigger decisions
can be found in Sec. 3.2.3. The three trigger categories defined are mutually
exclusive. The main trigger category of the analysis is L0I, in which the differences
between muons and electrons are expected to be minimized. The remaining
categories are defined by excluding the main category L0I, as it is denoted by
the negation sign “!”. Two additional trigger categories are considered for some
specific applications, e.g. corrections to signal simulation:

• L0M: (L0Muon_TOS (µ1) or L0Muon_TOS (µ2)), available only for samples
with muons in the final state,

• L0E: (L0Electron_TOS (e1) or L0Electron_TOS (e2)), available only for
samples with electrons in the final state,

which correspond to the trigger categories L0M! and L0E!, without the removal
of the events in L0I. For this reason, these categories are also referred to as
inclusive.

After passing one of the three set of selections for the L0, the events are
reconstructed and selected by the HLT, always requiring to have triggered
on-signal. Table 5.4 summarizes the selections applied for the different years
and leptons involved in the final state. The trigger lines Hlt1TrackAllL0 and
Hlt1TrackMVA select events in which at least a single detached high momentum
track is found, applying a cut based selection and an MVA, respectively. The
lines used in HLT2 select events mainly based on their topology and are designed
to select two or more charged particles coming from a displaced vertex, as
discussed in more detail in Sec. 3.2.3.
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Table 5.4: Summary of the HLT lines used in the measurement.

Muon modes Electron modes

2011, 2012

HLT1 Hlt1TrackAllL0

HLT2
Hlt2Topo[2,3]BodyBBDT

Hlt2TopoMu[2,3]BodyBBDT Hlt2TopoE[2,3]BodyBBDT

2015

HLT1 Hlt1TrackMVA

HLT2
Hlt2Topo[2,3]Body

Hlt2TopoMu[2,3]Body

2016, 2017, 2018

HLT1 Hlt1TrackMVA

HLT2
Hlt2Topo[2,3]Body

Hlt2TopoMu[2,3]Body Hlt2TopoE[2,3]Body

Hlt2TopoMuMu[2,3]Body Hlt2TopoEE[2,3]Body

5.2.3.2 Alignment of data and simulation

The trigger configurations for L0 and HLT can change with time. For this
reason, to each trigger configuration used in data is assigned a unique Trigger
Configuration Key (TCK). The precise evolution of the trigger configuration in
data is therefore always available. When producing the simulation however, it
is common to reconstruct the events using a single TCK per year and magnet
polarity, usually the one that has been used more frequently in that period. In
the following, three main approaches will be pursued to limit the impact of
potential misalignments due to this approximation:

• In the case of simulation requirements that correspond to tighter cuts
than those used in data, two possible approaches are possible: either
selecting in data those TCKs that perfectly match or are tighter than the
simulation, or apply an additional cut on both data and simulation that
is comparable to the tightest cut used in simulation. The first approach
is used in the determination of the prior trigger corrections discussed in
Sec. 6.3, while the second one is used to improve the agreement between
data and simulation for the L0E! trigger category.

• In the case of simulation requirements that are looser than those used
in data, it is possible to improve the agreement between the two by
appropriately tightening the selections in simulation. This is the approach
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used to improve the agreement of the HLT1 responses for the years 2012
and 2016.

A comparison between the variation of the TCK configurations for the L0 trigger in
data and simulation has been done for each year and magnet polarity. Table 5.5
shows an example of such comparison for the year 2012. As it can be seen, while
less than 5% of the data was collected with a L0Muon_TOS trigger threshold that
differs from the simulated one, a large variation is observed for L0Electron_TOS.
Data and simulation can however be realigned, at least threshold-wise, if the
choice of a common and tighter selection is chosen for both. It is important
to highlight that the transverse energy as registered by the calorimeter for a
given final state particle is not accessible, and a direct cut on this quantity is
therefore not possible. It is however possible to use an offline proxy of this
variable, corresponding to the projected transverse energy EL0

T at the position
in which the particle track intersects the calorimeter. The definition of the L0E!
category can then be modified to accommodate this additional fiducial cut, by
simply substituting:

L0Electron_TOS(ei) → L0Electron_TOS(ei) and EL0
T (ei) > EL0

threshold.
(5.1)

A redefinition of the thresholds for L0Electron_TIS (B) should also technically
be done, but is ignored due to its expected limited impact. A summary of the
thresholds used for each year is shown in Table 5.6. As can be seen, a threshold
of 3000 MeV/c2 is chosen for 2012, higher than the highest used in data and
simulation for that year.

Table 5.5: L0-TCK thresholds for 2012 data taking period.
2012 (MagUp) 2012 (MagDown)

L0-TCK (hex) % data pL0ADC
T (µ)[ MeV/c] EL0ADC

T (e)[ MeV/c2]
MC 100% >1760 >2960
0x990042 37.53 >1760 >2720
0xa30044 16.77 >1760 >2960
0x94003d 15.45 >1760 >2720
0x97003d 11.34 >1760 >2720
0xa10045 7.36 >1760 >2960
0x990044 3.03 >1760 >2960
0xa10044 2.74 >1760 >2960
0x9f0045 2.73 >1760 >2960
0xa30046 1.83 >1760 >2860
0xac0046 0.79 >1760 >2860
0x990043 0.27 >1760 >2720
0xa20044 0.15 >1760 >2960
0x95003d 0.01 >1760 >2720
0xad0046 <0.01 >1760 >2860
0x9a0042 <0.01 >1760 >2720

L0-TCK (hex) % data pL0
T (µ)[ MeV/c] EL0

T (e)[ MeV/c2]
MC 100% >1760 >2960
0x990042 19.81 >1760 >2720
0xa30044 14.22 >1760 >2960
0x97003d 13.71 >1760 >2720
0x990044 11.1 >1760 >2960
0xac0046 9.58 >1760 >2860
0x8c0040 9.56 >1480 >2500
0x94003d 9.29 >1760 >2720
0xa90046 5.97 >1760 >2860
0xab0046 4.85 >1760 >2860
0xa30046 1.04 >1760 >2860
0x860040 0.67 >1480 >2500
0x95003d 0.09 >1760 >2720
0x8e0040 0.07 >1480 >2500
0x7f0040 0.02 >1480 >2500
0x7e003a 0.01 >1480 >2500
0xad0046 0.0 >1760 >2860

Similarly to the L0 trigger, a comparison between the HLT1 trigger lines
in data and simulation is performed for each year and magnet polarity. The
main differences are observed in the years 2012 and 2016, where the TCK in
simulation is always looser or equal to the one used in data. To reduce the
differences between data and simulation, a tightening of the selections applied
in simulation to match the ones applied in data is performed. In doing so, the
different fractions of data associated with each cut are reproduced in simulation.

67



5. Selecting B0 → K∗0ℓ+ℓ− decays

Table 5.6: L0E! thresholds used in the offline alignment of the
L0Electron_TOS(ei) trigger decision in data and simulation.

Year EL0
threshold[ MeV/c2]

2011 >2500.
2012 >3000.
2015 >3000.
2016 >2700.
2017 >2700.
2018 >2400.

5.2.4 Fit domains in q2, m(Kπℓℓ), m(Kπ)

5.2.4.1 Fit domains in q2

The decays B0 → K∗0ℓ+ℓ−, B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→
ℓ+ℓ−) originate from the same b→ s ℓ+ℓ− transition, but correspond to two
different regimes of the cc̄ loop contribution described in Sec. 2.2: at the dilepton
invariant mass corresponding to mass of the J/ψ and ψ(2S) resonances, MJ/ψ

and Mψ(2S), the energy is exact to produce these charmonium states on-shell.
Since they originate from the same amplitudes, a strict separation between
these different regimes is not possible and an interference between these modes
permeates the whole phase space. It is however possible to conventionally
divide the dilepton invariant mass spectrum in regions, where one of the three
contributions is expected to dominate with respect to the others.

Figure 5.1 shows, on the left and on the right, the distributions of
reconstructed Kπℓ+ℓ− data candidates after the full selection for muons and
electrons, respectively. Three main features can be noticed: in red, two diagonal
bands that peak around the mass of the B0 meson in m(Kπℓℓ) and around
the J/ψ and ψ(2S) resonances in q2; in black, two horizontal bands at the
q2 values of MJ/ψ and Mψ(2S), which seem to decrease monotonically from
left to right; in yellow, a vertical band at the mass of B0 meson in m(Kπℓℓ).
The events that remain have almost no structure, and seem to decrease with
higher m(Kπee) and q2 values. The diagonal bands correspond to the control
mode decays of B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−). The
diagonal structure comes from the correlation between m(Kπℓℓ) and q2, since
an under- or over-estimation of the momenta of the two leptons will bias
coherently the two reconstructed masses. This feature, that is rather mild
for the muon case, becomes greatly accentuated for the electron mode due to
higher energy loss caused by FSR, bremsstrahlung and the stochastic effect of
the bremsstrahlung recovery algorithm. The horizontal bands correspond to
a mixture of backgrounds that contain real J/ψ , ψ(2S) → ℓ+ℓ− decays, where
the hadronic part is either partially reconstructed or combinatorial, showing
therefore no strong correlation with the reconstructed m(Kπℓℓ) mass. These
two bands meet at the masses of the B0 meson and J/ψ (ψ(2S)) resonance. The
vertical bands correspond to the rare B0 → K∗0ℓ+ℓ− decays. Even though is
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Figure 5.1: Figure 5.1(a) and (b) show the distribution of B0 → K∗0µ+µ− and
B0 → K∗0e+e− candidates after the full selection as a function of the invariant
masses m(Kπℓℓ) and q2. In red are highlighted the contributions corresponding
to the resonant modes B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−),
in black backgrounds containing a real J/ψ or ψ(2S) and in yellow the candidates
for the rare B0 → K∗0ℓ+ℓ− decay.

not as clear as for the B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−)
decay modes, a correlation between m(Kπℓℓ) and q2 is present also in this case.
The remaining events do not have a specific structure and are constituted by
the different backgrounds discussed in Sec. 5.2.5 and 5.2.6.

As Figure 5.1 clearly shows, due to the correlation between m(Kπℓℓ)
and q2, the regions where B0 → K∗0ℓ+ℓ−, B0 → K∗0J/ψ (→ ℓ+ℓ−) and
B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays each respectively dominate must be chosen
with a two-dimensional cut in these variables. Since the final aim of the analysis
is to measure the properties of the B0 → K∗0ℓ+ℓ− decays and the sensitivity
is limited by the mode with the lowest yield, i.e. the electron mode, it is
fundamental to choose the B0 → K∗0e+e− decay region to have as many
candidates as possible. So far, the region2 preferred in the literature has been
the one corresponding to 1.1 < q2 < 6.0 GeV2/c4 [52], highlighted in red in
Figure 5.2(a). As an alternative, it is also possible to consider a selection in q2

c

rather than in q2; this variable has already been used in Ref. [138] and is chosen
in the following as default dilepton mass squared variable for the electron modes.
The use of q2

c causes almost a rotation in the distribution shown in Figure 5.2(b),
for which the control mode events correspond to the horizontal bands while the
J/ψ and ψ(2S) charmonium backgrounds are now diagonal. This simplifies the
cut-based selection in q2 by allowing the inclusion of more events of signal with
an extension of the q2 range: central-q2

c is defined as 1.1 < q2
c < 7.0 GeV2/c4

and, as Figure 5.2(b) shows in red, it is a region dominated by B0 → K∗0e+e−

decays.
2We are referring here only to the regions above the ϕ resonance.
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Figure 5.2: (a) Representation of the q2 regions defined in Ref. [52], corresponding
to central-q2 (RK∗0), J/ψ-q2 (RK∗0) and ψ(2S)-q2 (RK∗0) for the red, orange
and yellow band, respectively. (b) Representation of the nominal q2 regions used
in this analysis: central-q2

c and J/ψ-q2
c in red and orange, respectively.

This allows an increase of 20% in the statistics available for the rare electron
channel. Moreover, the use of the q2

c variable reduces the migration of events
whilst imposing a good rejection power on background sources for which the
assumption of invariant mass equal to the nominal mass of the B0 meson does
not hold. Such improvement in the q2 resolution is a crucial aspect in the
unbinned approach used in this analysis. Once this decision is made, all the
other q2 regions are readapted to be mutually exclusive, while the muons are
aligned accordingly. Notice that, since the difference between q2 and q2

c is small
in muons with respect to electrons, q2 is used in their selection. In the following,
the q2 regions used hereafter (and already defined in Sec. 4.1) are reported for
completeness:

• Electron mode regions

i. central-q2
c : 1.1 < q2

c < 7.0 GeV2/c4,
ii. J/ψ-q2

c : 7 < q2
c < 11 GeV2/c4,

• Muon mode regions

i. central-q2: 1.1 < q2 < 7.0 GeV2/c4,
ii. J/ψ-q2: 8 < q2 < 11 GeV2/c4,

Additionally, an alternative set of q2 regions that can partially overlap with the
previous, is used for specific cross-checks:

• Electron mode regions

i. central-q2 (RK∗0): 1.1 < q2 < 6.0 GeV2/c4,
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ii. J/ψ-q2 (RK∗0): 6 < q2 < 11 GeV2/c4,
iii. ψ(2S)-q2 (RK∗0): 11 < q2 < 15 GeV2/c4,

• Muon mode regions

i. J/ψ-q2 (RK∗0) : |m(ℓ+ℓ−) −MPDG
J/ψ | < 100 MeV/c2,

ii. ψ(2S)-q2 (RK∗0) : |m(ℓ+ℓ−) −MPDG
ψ(2S)| < 100 MeV/c2,

iii. interRes-q2: 11 < q2 < 12.5 GeV2/c4,

The extension of the central-q2 region is not a trivial task. It can only be
achieved by using the variable q2

c and showing that the contributions leaking
from the resonant mode into the central bin, called J/ψ -leakage, can be kept
under control. In Sec. 5.2.5.1 the performance of different definitions of the
central bin in q2 is presented and shows that, with this definition of central-q2

c ,
it is possible to neglect the J/ψ -leakage contribution in the final fit and assign a
systematics due its small remaining contribution.

5.2.4.2 Fit domains in m(Kπ) and m(Kπℓℓ)

Candidates of B0 → K∗0ℓ+ℓ− and B0 → K∗0J/ψ (→ ℓ+ℓ−) decays are selected in
m(Kπ) by requiring a mass window of 200 MeV/c2 centred around the nominal
mass of the K∗0, corresponding to roughly twice its expected width. This
selection has a high efficiency in rare and resonant modes both for electrons and
muons, corresponding to (90 ± 1)%. This range is also large enough to allow
the discrimination between the decays where the Kπ system is not produced by
the decay of the K∗(892)0 spin-1 resonance, but rather non-resonantly or from
higher scalar resonances.Background events from decays that do not originate
from a real K∗0 are rejected with high efficiency by this cut, as discussed in
Sec. 5.2.5.

The choice of the Kπℓ+ℓ− invariant mass ranges is fundamental to remove,
suppress or include contributions from partially reconstructed decays or leakages
from resonant modes in the different regions of q2 considered. Two types of
Kπℓ+ℓ− invariant masses are considered:

• m(Kπℓℓ), corresponding to the invariant mass obtained after refitting the
decay chain constraining the final state particles to be originated from the
same primary vertex [139];

• m
J/ψ
DTF and mψ(2S)

DTF , where together with the primary vertex constraint, the
decay is refitted constraining also the dilepton pair mass to the nominal
mass of the J/ψ and ψ(2S), respectively [139].

The former are used in the amplitude and mass fits of B0 → K∗0ℓ+ℓ− and
B0 → K∗0J/ψ (→ ℓ+ℓ−) candidates needed e.g. to impose a constraint on the
observed rare mode yield in the final fit, while the latter are used in the mass
fits to B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays needed to
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Table 5.7: Summary of the m(Kπℓℓ) and mψn
DTF (Kπℓℓ) ranges, where ψn =

J/ψ , ψ(2S), used for the different amplitude and mass fits discussed in this work.

m(Kπℓℓ) mψn
DTF (Kπℓℓ)

B0 → K∗0e+e− [4900, 5700] MeV/c2 -
B0 → K∗0µ+µ− [5170, 5700] MeV/c2 -

B0 → K∗0J/ψ (→ e+e−) [4600, 5700] MeV/c2 [4900, 6200] MeV/c2

B0 → K∗0J/ψ (→ µ+µ−) [5100, 5800] MeV/c2 [5100, 6200] MeV/c2

B0 → K∗0ψ(2S)(→ e+e−) - [5100, 5950] MeV/c2

B0 → K∗0ψ(2S)(→ µ+µ−) - [5100, 5750] MeV/c2

perform the LFU cross-checks of Secs. 9.1.2 and 9.1.3. Table 5.7 summarizes the
mass ranges used throughout this work.

In muon fits, the mass resolution is so narrow that 95% of the signal candidates
lay within 200 MeV/c2 of the nominal mass of the B0 meson, regardless of the
use of an additional constraint on the dilepton resonance. In fits to the rare
mode, this allows to choose a mass range between 5170 and 5700 MeV/c2 to reject
partially reconstructed contributions that peak at low mass, and to include a
sizable fraction of combinatorial background needed to constrain this component
under the signal. In fits to the resonant modes, the mass range is enlarged to
include a small fraction of partially reconstructed background in the fit, since
it improves the constraint of the right-hand tail of this component under the
signal and reduces the differences between electron and muon modes.

In electron fits, a noticeable difference can be seen between invariant masses
computed with and without the use of an additional constraint on the dilepton
resonances. While for mJ/ψ

DTF the resolution is similar between muon and electrons
thanks to the improved resolution that the J/ψ (ψ(2S)) mass constraint provides,
m(Kπee) is characterized by a full width at half maximum (FWHM) that is
roughly six times larger than what is obtained for mJ/ψ

DTF (see Figure 5.3).
Additionally, it is characterized by a long left tail that needs to be included
in the fit to ensure high efficiency in the selection of the signal. Between the
mass ranges considered, the one that removes the highest fraction of signal
is [4900, 5700] MeV/c2, used in the fit of B0 → K∗0e+e− decay candidates,
and corresponds to a cut efficiency that is around 90%. This choice, as it is
discussed in more detail in Sec. 5.2.5.1, aims to suppress to a negligible level
the J/ψ -leakage component from the final amplitude fit. More details on the
parametrization of the invariant masses m(Kπℓℓ), mJ/ψ

DTF and m
ψ(2S)
DTF and their

fits are provided in Ch. 8.
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Figure 5.3: (a) Distribution of the m(Kπµµ) in central-q2 (red) and J/ψ-q2

(blue) regions superimposed to the distribution ofmJ/ψ
DTF in the central-q2 (yellow)

region. (b) Distribution of the m(Kπee) in central-q2
c (red) and J/ψ-q2

c (blue)
regions superimposed to the distribution of mJ/ψ

DTF in the central-q2
c (yellow)

region. Dashed in blue are represented the lower limits in the ranges used for the
mass and amplitude fits, as defined in Table 5.7. The FWHM of each distribution
are reported in the legend.

5.2.5 Exclusive background rejection

A good understanding of the different processes that might fully or partially
overlap with the signal and control modes is fundamental to have a reliable
estimation of their properties. It is possible to divide these different contributions,
referred to as backgrounds, in three main categories:

• Decays of b-hadrons that share with the signal the same final state particles.
These decays can be further subdivided in two: partially reconstructed
backgrounds, where the four tracks of interest are just a subsample of the
final state particles produced in the decay e.g. B+ → K+π+π−ℓ+ℓ−, and
decays with the exact same final state e.g. B0

s → K∗0ℓ+ℓ−.

• Decays of b-hadrons in four charged final state particles where, due to
the misidentification of one or more of the tracks, the decay can be
reconstructed as the signal. Example of these decays are Λ0

b → pKℓ+ℓ−,
where a proton is misidentified as a pion, and B0 → K∗0J/ψ (→ ℓ+ℓ−)
decays, where the kaon and pion are reconstructed as pion and kaon,
respectively. The last type of joint mis-ID is also referred to as swap.

• Backgrounds of total or partial combinatorial nature. These backgrounds
are built by joining four tracks that are either fully or partially unrelated.
Due to the sheer amount of particles produced in each event, it is
possible that a (partially) random combination of tracks might pass
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all selections. An example of such backgrounds are the combinatorial
background discussed in Sec 5.2.6 or the events in the black band highlighted
in Figure 5.1, that contain a real J/ψ or ψ(2S) resonance.

These categories are not mutually exclusive and, in general, backgrounds deriving
from a mixed contribution of the three are expected. In the following, it is
provided a discussion of the main sources of background considered for each of
the regions of interest in this analysis, together with the additional selections
that have been developed to reduce their contributions.

5.2.5.1 Leakage from J/ψ and ψ(2S) resonances

The regions of q2, m(Kπℓℓ) and m(Kπ) defined in Sec 5.2.4 have been chosen to
simplify the isolation of the contributions of B0 → K∗0ℓ+ℓ−, B0 → K∗0J/ψ (→
ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays in data. Each of these three modes
can have a non-negligible component outside its q2 bin of reference and needs to
be included in the analysis as a source of background. Backgrounds of this type
are referred to as leakages. As shown in Figure 5.2, the size of these background
components heavily depends on the q2 and m(Kπℓℓ) regions used in the analysis.
Once again, can be instructive to compare the different q2 strategies discussed
in Sec. 5.2.4 to further justify our nominal choice:

• When considering the q2 regions central-q2, J/ψ-q2 and ψ(2S)-q2 as in
Figure 5.2(a), it is clear that the J/ψ -leakage component leaks both in the
central-q2 and ψ(2S)-q2 regions due to its radiative tail.

• When considering the q2 regions central-q2
c and J/ψ-q2

c as in Figure 5.2(b),
it can be seen that a large fraction of the radiative tail is now contained
inside the corresponding q2 bin and the leakage reduced for the same limits
of q2.

This can be clearly understood when considering the sizes of the expected
J/ψ -leakage and B0 → K∗0e+e− components obtained from simulation in the
central-q2 and central-q2

c regions, as shown in Figure 5.4. While the size of
the J/ψ -leakage component above 4900 MeV/c2 between the two approaches
is compatible, the amount of signal in the same range is increased of roughly
19% when the q2 range is extended. The only additional complication is the
introduction of combinatorial background containing true J/ψ in the upper
mass side band of the central-q2

c region. This contribution is however heavily
suppressed by the combinatorial multivariate classifier (see Sec. 5.2.6).

5.2.5.2 Other backgrounds with the same final state

In addition to the possible leakages from different q2 bins, two other exclusive
backgrounds with same final state particles as the signal and control modes need
to be considered:
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Figure 5.4: Comparison between the distributions of the B0 → K∗0e+e−

decay (solid) and J/ψ -leakage (filled) normalized to expected number of events
in Run 1 (a) and Run 2 (b), for the two regions of central-q2 (RK∗0) and
central-q2

c . While the J/ψ -leakage contribution is comparable between the two
above 4900 MeV/c2, indicated by the black dashed line, an increase of roughly
19% is observed for the expected yield of B0 → K∗0e+e− decays.

• B0
s → K∗0ℓ+ℓ− decays and the corresponding charmonium channels:

These backgrounds cannot be vetoed due to the small mass difference
between B0 and B0

s mesons. They are therefore either parametrized, as
in B0

s → K∗0J/ψ (→ ℓ+ℓ−) and B0
s → K∗0ψ(2S)(→ ℓ+ℓ−) mass fits, or

neglected, as in B0 → K∗0ℓ+ℓ− amplitude fits. Their contributions are
expected to be around few percent with respect to the B0 modes due to a
CKM and fs/fd suppression.

• B0 → [K+π−]J=0 ℓ
+ℓ− decays and corresponding charmomium channels:

Decays of this type originate from the same b → s ℓ+ℓ− transition of
the signal, but differ for the configuration of the hadronic system in the
final state: the K and π are produced either directly in a non-resonant
configuration or via the decay of a scalar resonance, such as the K∗(1430)0,
and are in both cases characterized by a total angular momentum of J = 0.
These decays cannot be vetoed as they are indistinguishable from the signal,
with which they can interfere. To differentiate between these two decays
we will refer to B0 → [K+π−]J=0 ℓ

+ℓ− as S-wave and to B0 → K∗0ℓ+ℓ−

as P-wave. These two processes can only be disentangled thanks to their
different angular and m(Kπ) distribution, and they must be either included
as an additional component in the fit or neglected. Being non-resonant
around the mass of the K∗0, they are suppressed by the choice of the
m(Kπ) mass discussed in Sec. 5.2.4.
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ℓ+

νℓ

ℓ−

ν̄ℓ

b̄ c̄ s̄

W+ W−

Figure 5.5: Feynman diagram of the generic double-semileptonic transition
Hb → Hcℓ

+νℓ, where the Hc further decays semileptonically as Hc → Hsℓ
−ν̄ℓ.

The corresponding spectator quark(s) are not represented.

5.2.5.3 Partially reconstructed decays

Partially reconstructed backgrounds originate from decays that have five or more
particles in their final state, four of which can be combined and reconstructed as
the decays of interest. Since part of their energy is carried away by the particles
that have not been reconstructed, their m(Kπℓℓ) mass populates a lower mass
sideband with respect to the B0 meson mass. In the following, the two most
important contributions to these class of decays is considered.

B→ K+π−π ℓ+ℓ− decays and corresponding charmonium channels:

The decays B→ K+π−π ℓ+ℓ−, where the leptons have been produced directly
or from a charmonium resonance, have the same final state particles of the signal
and can be reconstructed as such when the π is lost. Due to the missing energy of
the pion, they are characterized by a broad reconstructed mass that peaks roughly
200 MeV/c2 below the nominal mass of the B0 meson. Whenever the m(Kπℓℓ)
mass resolution is small compared to this gap, these decays can be vetoed by a
simple choice of the mass window: this is the strategy used in the analysis of muon
modes and of B0 → K∗0J/ψ (→ e+e−) and B0 → K∗0ψ(2S)(→ e+e−) decays, if
the resolution on m(Kπee) mass is improved by constraining the dilepton system
to the mass of the resonance. This approach cannot be used in the decays of
B0 → K∗0e+e−, where no additional constraint is possible and the overlap with
the partially reconstructed background does not allow for an efficient veto. The
same is true for B0 → K∗0J/ψ (→ e+e−) decays if no additional constraint is used.
In both situations, these backgrounds need to be parametrized (see Secs. 8.3.1
and 10.2.3). When performing fits to B0 → K∗0J/ψ (→ e+e−) candidates in data,
an additional selection is introduced:

∣∣∣m(B)ψ(2S)
DTF −m(B)PDG

∣∣∣ > 200 MeV/c2.
The aim of this selection is to reduce the contribution of B → ψ(→ J/ψX)Y
decays, which are known to be poorly simulated in the inclusive samples of B
meson decays available.
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Double-semileptonic cascade decays

Another class of partially reconstructed decays are the so-called double-
semileptonic cascade (DSL) decays, represented in Figure 5.5 by the correspond-
ing tree-level Feynman diagram. They are characterized by the semileptonic
decay of a beauty hadron in a charm hadron, that subsequently decays semilep-
tonically into a strange hadron. When the two semileptonic decays produce
leptons of the same generation, these decays have the same final state particles of
the decays of interest, with the addition of two neutrinos, that travel undetected
in our spectrometer. Due to the fraction of the total energy that they carry,
the reconstructed m(Kπℓℓ) peaks at lower masses with respect to the fully
reconstructed signal.

These are naturally suppressed by the requirements applied in Sec 5.2.1, since
the two subsequent semileptonic decays happen in different points in space rather
than in a single decay vertex. However, being characterized by branching ratios
roughly three orders of magnitude larger than the signal, these can still constitute
a sizable source of background for the rare mode even if greatly suppressed.

The most important contribution is expected to come from B0 → D−ℓ+νℓ
decays, with the D− that decays as D− → (K∗0 → K+π−)ℓ−ν̄ℓ. Even though
the particle identification or m(Kπ) selections have no effect on these decays,
it is possible to partially veto them by requiring that the invariant mass of the
Kπℓ− system is larger than the mass of the D− meson, the effect of which is
shown in Figure 5.6. This effectively corresponds to removing all configurations
in which ℓ− is much less energetic than ℓ+. This heavily distorts the angular
distributions of the signal in cos θℓ, since it can be approximated as the energy
asymmetry of the two electrons:

cos θℓ ≈ Eℓ+ − Eℓ−

Eℓ+ + Eℓ−
. (5.2)

This distortion can be avoided by performing a cut above 0.8 or lower in the
absolute value of cos θℓ, at the cost of a less performant veto, as shown in
Figure 5.6.

An alternative strategy has been designed for this thesis. In fits to the
electron rare mode, this contribution is not vetoed, but rather included as an
additional background component. In fits to the muon mode, this component
is ignored, since its contribution is expected to be negligible in the mass range
considered. More details on the parametrization of this background component
can be found in Sec. 10.2.2.

5.2.5.4 Backgrounds from misidentification

Since particle identification is a stochastic process, each of the PID cuts discussed
in Sec 5.2.2 has associated a corresponding misidentification probability that
depends on the particles considered. This probability can go up to a few percent
depending on the particle characteristics. Decays that have final states similar to
the decay of interest, except for one or two particles that can be misidentified to
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Figure 5.6: Impact of two possible vetoes for the simulated decays B0 → (D− →
(K∗0 → K+π−)e−ν̄e)e+νe as a function of cos θℓ (a) and m(Kπe−) (b).

match the required particle identification, can therefore be wrongly reconstructed
as signal candidates. In the following, the most relevant sources of mis-ID
backgrounds are considered. Depending on the size of the expected background,
a maximum of two misidentified particles are considered. An additional reduction
factor can be achieved if the misidentified decay happens through intermediate
resonances, since it is possible to isolate them by an appropriate swap of the
mass hypothesis and a tightening of the PID selection.

K → π misidentification

The most relevant sources of K → π misidentification come from B0
s → ϕ(→

K+K−)ℓ+ℓ− and the corresponding charmonium channels. They are particularly
dangerous because they are expected to peak right below the signal, potentially
biasing the observed yield. Their contribution is reduced by vetoing all events
for which the invariant mass m(KK→π) is equal or lower than the ϕ mass. To
ensure a higher signal efficiency, a tighter PID selection is used in this region
rather than veto. This contribution is included in the fit to the resonant modes,
while a systematic is assigned based on the expected number of events for the
rare mode.

p → h misidentification

Decays that produce a proton in the final state must originate from a b-baryon.
The dominant source of such decays is constituted by Λ0

b → pKℓ+ℓ− decays and
the corresponding charmonium channels, since the decays involving a pion are
Cabibbo suppressed. These backgrounds can be reconstructed as signal when
a proton is misidentified as a pion (p→πK, single mis-ID) or when a proton is
misidentified as a kaon and the kaon as a pion (p→KK→π, double mis-ID). In
both configurations, the reconstructed decays peak broadly under the signal
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in m(Kπℓℓ), potentially biasing the observed yield. These contributions are
reduced by the choice of the m(Kπ) window and PID requirements, but no
efficient veto can be constructed due to the lack of an intermediate resonance
in the hadronic system. This contribution is included in the fit to the resonant
modes, while a systematic is assigned based on the expected number of events
for the rare mode.

K ↔ π and h ↔ ℓ swaps

The decays of B0 → K∗0ℓ+ℓ− and the corresponding charmonium channels can
be a source of background themselves, when two particle hypotheses in the final
state are swapped. Two main configurations are possible: K ↔ π swaps and
h ↔ ℓ swaps. In both cases these contributions can be particularly dangerous
since they still peak below the nominal B0 meson mass and are characterized
by a distortion of the angular distributions. While for the K ↔ π swaps no
other efficient veto can be designed, two different strategies are followed in
h ↔ ℓ swaps depending on the lepton generation considered. For the muon
modes, an additional veto can be applied by reconstructing the invariant masses
m(K→µµ) and m(µπ→µ) and veto the regions corresponding to the J/ψ and
ψ(2S) resonances. The same veto is not as efficient in the electron modes due to
the worse invariant mass resolution, and cut on the invariant masses constrained
to either the J/ψ or ψ(2S) resonance is preferred. It is important to notice that
h ↔ ℓ swaps are particularly dangerous for the rare mode, since these decays do
not peak at the nominal masses of the J/ψ and ψ(2S) resonances.

h → ℓ misidentification

Semileptonic cascade decays, where only one between the B and the D meson
decays semileptonically, constitute a source of background if one of the final
state hadrons is misidentified as a lepton. As already seen for DSL, these decays
are characterized by large branching ratios with respect to the rare signal modes
and can contribute significantly to the signal region even after the full chain of
selections, including the PID requirements. Since not all the particles in the
final state are reconstructed (at least one neutrino from the semileptonic decay),
these decays populate a region of m(Kπℓℓ) that is below the nominal B0 meson
mass.

These backgrounds can be divided in two main categories:

• Hb → Hc(→ KπX)ℓ+νℓ, where the b-hadron Hb decays semileptonically
and the c-hadron Hc hadronically. These include decays of B0 →
(D∗− → (D0 → K+π−)π−)ℓ+νℓ, B0 → (D0 → K+π−)π−ℓ+νℓ and
B0 → (D− → (K∗0 → K+π−)π−)ℓ+νℓ.

• Hb → Hc(→ Kπℓ−νℓ)π, where the b-hadron decays hadronically and c-
hadron semileptonically. These include decays such as B+ → (D0 →
K∗0(→ K+π−)ℓ+νℓ)π+ and B0 → (D− → (K∗0 → K+π−)ℓ−νℓ)π+.
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Decays of the first type can be effectively vetoed by reconstructing the D0

and D− invariant masses as m(K+π−
→ℓ) and m(K+π−π−

→ℓ), and applying a
strong PID requirement within a 30 MeV/c2 window from their nominal masses.
When swapping the hypothesis from an electron to a different particle, the use of
the corresponding track momentum is used to avoid biases from bremsstrahlung
corrections. Decays of the second type cannot be vetoed in this way, but are in
general suppressed by the same requirements discussed in the double-semileptonic
cascade decays.

Purely hadronic decays are strongly suppressed due to the necessity of a
double misidentification of hadrons into leptons. However, due to the broad
spectrum of selection efficiencies and branching ratios that these background
could have, an exhaustive estimation of the expected contribution is not available.
Attempts to estimate the impact of these contributions directly from data has
been performed in the ongoing measurements of the RK∗ branching fraction
ratio [128] and angular analysis of B0 → K∗0e+e− decays [140]. In these
analyses, contributions from such decays corresponded to the largest single
source of systematic uncertainty in the final measurement. More details on the
potential impact that these misidentified backgrounds could have in this analysis
can be found in Sec. 10.6.

5.2.5.5 Over-reconstructed backgrounds

Over-reconstructed backgrounds are built from decays for which the particles
in the final state are a subset of the ones of the decay of interest, while the
remaining particles come from the underlying event. The main source of over-
reconstructed background comes from B+ → K+ℓ+ℓ− decays, when a slow
pion coming from a different interaction points to the decay vertex of the B+,
allowing this decay to be reconstructed as signal. Due to the additional pion
considered, the reconstructed m(Kπℓℓ) peaks above the B0 meson mass and
the angular distribution still retains much of the original kinematic of the decay.
This contribution can be suppressed by a veto on the masses m(Kℓ+ℓ−) and
m(π→Kℓ

+ℓ−), requiring both of them to be below 5100 MeV/c2, corresponding
roughly to mB0 − mπ. Since part of these decays is combinatorial in nature,
these contributions are further suppressed by the combinatorial multivariate
classifier described in Section 5.2.6.

5.2.5.6 Summary of backgrounds considered in fits

The set of additional selections applied to reduce the specific backgrounds
discussed in this section is summarized in Table 5.8. The signal efficiency of all
applied vetoes is very high and corresponds to (97.62 ± 0.14)%, (94.86 ± 0.67)%,
(97.34 ± 0.11)%, (94.24 ± 0.74)%, for B0 → K∗0µ+µ−, B0 → K∗0e+e−,
B0 → K∗0J/ψ (→ µ+µ−) and B0 → K∗0J/ψ (→ e+e−) decays, respectively.

When possible, the expected size of the backgrounds discussed is estimated in
different regions of q2 through the use of simulated events. The expected number
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Table 5.8: Summary of the exclusive background selection requirements.
Background Requirement Applied to

B0
s → ϕℓ+ℓ− not

(
m(K(π→ K)) < 1040 MeV/c2 all

and Pi_ProbNNpi < 0.8
)

B0 → (D0 → Kπ)π−ℓ+ν
not

(
|m(K+ℓ−

→π) −mPDG(D0)| < 30 MeV/c2) all
andL_ProbNNl < 0.8

)
B0 → (D− → Kππ)ℓ+ν

not
(
|m(K+π+ℓ−

→π) −mPDG(D−)| < 30 MeV/c2 all
and L_ProbNNl < 0.8

)
h ↔ ℓ swap

not
(
|m(µ→hµ) −mPDG

J/ψ ,(ψ(2S))| < 60 MeV/c2 all µµ
and M_ProbNNmu < 0.8

)
not

(
|mJ/ψ ,(ψ(2S))constr.(h→ehe→he) −mPDG

B0 | < 60 MeV/c2 all ee
and E_ProbNNe < 0.8

)
B+ → K+ℓ+ℓ− max

(
m(Kℓℓ),m((π→ K)ℓℓ)

)
< 5100 MeV/c2 all

of background events, NBKG, is estimated using the following expression:

NBKG = fBKG

fcontrol
· BBKG

Bcontrol
· ϵBKG

ϵcontrol
·Ncontrol , (5.3)

where fHb represents the probability that a b quark hadronizes in the hadron
species Hb, BX is the branching ratio of the process Hb → X, ϵX is the
reconstruction efficiency of the decay as obtained from the corrected simulated
samples and Ncontrol is the observed number of events of the control modes
B0 → K∗0J/ψ (→ ℓ+ℓ−) or B0 → K∗0ψ(2S)(→ ℓ+ℓ−), depending on the q2

region considered. Due to the limited statistics available for some of the simulated
samples after the full selection, the estimated background is provided as an
upper 90% confidence interval rather than a central value with its uncertainty.
Table 5.9 (top) reports the estimated efficiency and expected number of events
separately for Run 1 and Run 2 for the regions of central-q2

c and J/ψ-q2
c .

Tables for the corresponding q2 regions in the muon channels can be found
in Table 5.9 (bottom).

Based on these tables, it is clear that not all backgrounds can be reduced
to a negligible level and must therefore be included in the final fits. Table 5.10
summarizes the decay modes that are considered for the different regions of q2

under study.

5.2.6 Combinatorial background rejection

Random combinations of particles coming from the fragments of the same p-p
collision can become an important source of background when they have invariant
masses close to the B0 meson mass. Even though the requirements discussed
in Sec. 5.2.1 greatly reduced the size of this background, a sizable fraction still
survives. A multivariate analysis (MVA) has been designed to further reduce this
contribution. The algorithm takes, as input, samples that have been labelled
as signal and background, together with a list of variables, usually referred to
as features, which are used for the discrimination of the two samples. The
algorithm is then trained to exploit the discriminating power of the different
features, including their multidimensional correlations. The output is a single
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Table 5.10: Sources of background which must be taken into account in data fits
to B0 → K∗0ℓ+ℓ− and B0 → K∗0J/ψ (→ ℓ+ℓ−) decays, along with the q2 region
of importance.

Decay mode q2
c (q2) region Importance in fit

B+ → K+π+π−ℓ+ℓ− central in ee mode
B0 → (D− → K∗0ℓν)ℓν central in ee mode
B0 → K∗0J/ψ (→ ℓ+ℓ−) central in ee mode
B0
s → K∗0J/ψ (→ ℓ+ℓ−) J/ψ yes

Λ0
b → pKJ/ψ (→ ℓ+ℓ−) J/ψ yes

B0 → K∗0J/ψ(→ ℓ+ℓ−)(h ↔ h) J/ψ yes
B → XJ/ψ(→ ℓ+ℓ−) J/ψ yes
B0
s → ϕJ/ψ (→ ℓ+ℓ−) J/ψ yes

B0 → K∗0ℓ+ℓ− J/ψ merged with signal component
B0 → (D− → K∗0ℓν)ℓν J/ψ merged with combinatorial

function, called multivariate classifier, that optimizes the separation of the signal
and background categories in the training samples. Given a set of features,
the multivariate classifier used in this work will provide a value between zero
and one, where values close to zero (one) indicate a large probability of the set
of features to come from a signal (background) candidate. A selection on this
classifier will effectively correspond to a multidimensional cut in the features
provided for the training. An optimization procedure allows determining the
threshold on the classifier response that guarantees the best compromise between
signal efficiency and background rejection. In this thesis, the MVA used is a
gradient-boosted decision tree [141], as implemented in the XGBoost python
library [142]. The algorithm makes use of an ensemble of decision trees, i.e. a
set of sequential binary cuts in the features provided, which are applied one
after the other to improve the description of data with respect to the previous
prediction step (gradient-boosting). Even if taken singularly the decision trees
have a poor performance, they become very efficient classifiers when considered
collectively.

5.2.6.1 Training and testing the multivariate classifier

The MVA is trained to distinguish between combinatorial background data and
signal simulated decays. It is trained separately for electrons and muons and for
the different runs Run 1, Run 2p1 and Run 2p2, while no distinction in trigger
categories is considered.

The background training samples are obtained from data that correspond
to the regions of m(Kπℓℓ) above 5450 MeV/c2 and 5600 MeV/c2 for muons and
electrons, respectively. The choice of the higher invariant mass threshold for
the electrons is justified by the worse invariant mass resolution with respect to
muons. Multivariate techniques greatly increase in discriminating power as the
size of the samples used grows. For this reason, some requirements of the nominal
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Table 5.11: Summary of the selection requirements that are modified from the
nominal choice for training samples.

Type Requirement

PID

K
DLLKπ > −5

ProbNNk · (1 − ProbNNp) > 0.05
π ProbNNpi · (1 − ProbNNk) · (1 − ProbNNp) > 0.1
µ ProbNNmu > 0.05

e
DLLeπ > 0

ProbNNe > 0.05
K∗0 K∗0 |m(Kπ) −mPDG

K∗0 (895.81)| < 200 MeV/c2

Kinematic

µ+µ− 0.1 < q2 < 8.0 MeV2/c4

e+e− 0.1 < q2
c < 7.0 MeV2/c4

mB0→K∗0µ+µ− (bkg) > 5450 MeV/c2

mB0→K∗0e+e− (bkg) > 5600 MeV/c2

Removed

B0 → (D0 → Kπ)π−ℓ+ν
not(|m(K+ℓ−

→π) −mPDG(D0)| < 30 MeV
and L_ProbNNl < 0.8)

B0 → (D− → Kππ)ℓ+ν
not(|m(K+π+ℓ−

→π) −mPDG(D−)| < 30 MeV
and L_ProbNNl < 0.8)

h ↔ ℓ swap

not(|m(µ→hµ) −mPDG
J/ψ ,(ψ(2S))| < 60 MeV

and M_ProbNNmu < 0.8)
not(|mJ/ψ ,(ψ(2S))constr.(h→ehe→he) −mPDG

B0 | < 60 MeV
and E_ProbNNe < 0.8)

selection are either removed or loosened to increase the statistics available. The
changes correspond to:

• the removal of the vetoes against B0 → (D0 → Kπ)π−ℓ+ν and B0 →
(D− → Kππ)ℓ+ν decays;

• the removal of the cuts against h ↔ ℓ swap and clones, that are expected
to have a negligible impact in this region of the m(Kπℓℓ) spectrum;

• a wider m(Kπ) mass window around the K∗0 mass;

• a wider central-q2 and central-q2
c definition for muons and electrons, where

the lower limits are shifted to 0.1 GeV2/c4 while in muons the higher limit
is shifted to 8 GeV2/c4;

• looser requirements on identification of all particle species, as summarized
in Table 5.11.

This allows to increase the statistics available for the training of roughly twice
for the muon sample and three times for the electron.

The signal samples are obtained from B0 → K∗0µ+µ− and B0 → K∗0e+e−

simulated samples after the full chain of corrections described in Ch. 6. The
selections applied on these simulated samples are aligned to the ones described for
the background samples with two main exceptions: the additional requirement
that the selected events are truth-matched as Signal and the inclusion of events
from the whole m(Kπℓℓ) spectrum, not just the sideband. The set of features
used in the training of the MVA is established by means of a search procedure
between a list of variables that are expected to provide a good separation between
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Table 5.12: Summary of the input features used in the MVA training that
provided the most discriminating perfomance.

Particle Variables

B0 pT, χ2
IP_OWNPV, χ2

FD_OWNPV, χ2
vtx/ndf, χ2

DTF/ndf, DIRA
K∗0, J/ψ χ2

vtx/ndf
h min(pT,K , pT,π), min(χ2

IP_OWNPV,K , χ
2
IP_OWNPV,π)

ℓ min,max(pT,e+ , pT,e−), min,max(χ2
IP_OWNPV,e+ , χ2

IP_OWNPV,e+)

signal and candidates. The features considered are mainly related to the quality
of tracks and vertices of the reconstructed decay, the transverse momentum of
the final state particles and of the B0 meson. Multiple classifiers are then trained
with different combinations of these features and the configuration that gives the
best discriminating performance is chosen as default (see Table 5.12). To make
the best use of the statistics available, the training and testing of the MVA is
done using a k-folding approach. This corresponds to randomly split the signal
and background samples in k sub-samples of roughly the same size and use k− 1
sub-samples to train the algorithm, while the MVA performance in tested on the
sample that was not used for the training. In the following, a k-folding approach
with ten folds is chosen. Whenever an MVA score is assigned to an event, the
output of one of the classifiers that never encountered that event is chosen at
random.

The outcome of the training for the MVA considered is summarized in
Figures 5.7, which show the ten ROC curves obtained in Run 2p2 for muons and
electrons, respectively. Similar performances have been obtained for Run 1 and
Run 2p1. The ROC (Receiver Operating Characteristic) curve is a standard tool
to describe the performance of classifier at all possible thresholds. It represents
in a two-dimensional plane the true positive rate, defined as the fraction of signal
events that have been classified as signal, against the false positive rate, defined
as the fraction of backgrounds events that have been classified as signal. The
area under the curve (AUC) provides a way to evaluate the performance of the
classifier: the closer its AUC is to unity, the better a classifier is considered to
be. This is also the criterion used to select the set of features in Table 5.12. All
ten folds of each classifier behave similarly and are characterized by large values
of the AUC, suggesting a classifier with good signal-background separation.

The performance of the classifier on training and test samples is studied by
comparing the MVA response for the two sets of samples. Figure 5.8 shows
this comparison for muons and electrons, respectively. Some differences can
be noticed for MVA scores close to one, suggesting that the classifier might be
slightly overtrained3. This behaviour is expected to be irrelevant and will not

3With the term overtrain we refer to the fact that a classifier performs better in the sample
that was trained with respect to the test sample, suggesting that some of its discriminating
power came by learning a specific feature of the training sample that is not present in the test
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Figure 5.7: ROC curves corresponding to the muon (left) and electron (right)
mode classifiers for Run 2p2.
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Figure 5.8: Comparison between the performance of the muon (left) and
electron (right) mode classifiers on the signal and background training and
testing samples for Run 2p2.

be further discussed, since it only implies a small reduction of the performances
of the algorithm on events that it has never seen.

The uniformity of the classifier response is studied by computing the fraction
of signal and background events that pass a set of different MVA thresholds as a
function of the angles cos θK , cos θℓ and ϕ, the dilepton invariant mass squared
q2 (q2

c ) and the masses m(Kπℓℓ) and m(Kπ). The thresholds correspond to the
20th, 40th, 60th and 80th percentiles of the signal and background4 samples
considered, while the bin edges have been chosen to ensure roughly the same
number of events in each bin. Figure 5.9 and 5.10 show the result of these
uniformity checks for Run 2p2 in muons and electrons, respectively. While
non-trivial features are observed in most of the distributions, there are a few
patterns that can be highlighted:

one. As a consequence, the algorithm will perform worse on real data than on the training
sample.

4Events with MVA values very close to zero are not included on this study, since they do
not represent well the features of the combinatorial background observed in the final sample.
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• a small linear trend coherent between all different thresholds can be noticed
in the q2

c and m(Kπee) distribution for the electron background sample;

• a strong trend in the m(Kπee) distribution of the electron signal sample,
where the cuts result more efficient for events close to the nominal B0

meson mass;

• a small trend in the cos θℓ distribution of the electron signal sample;

• a small trend in the m(Kπµµ) distribution of the muon background sample,
similar in trend to the one observed in the corresponding electron sample;

• a trend in the cos θK distribution of the signal muon sample, linked to the
differences between the transverse momentum distribution of B0 meson
in background and signal distributions as explained in Sec. 6.7, and that
might also be present in the electron sample, even if less visible.

While a completely flat response on the variables of interest is desirable, the non-
uniformities discussed here are not impactful. Most of the trends are common
across different MVA cuts, suggesting that signal and background distributions
will not change much for different choices of the MVA threshold. Additionally,
in the signal case, these variations are taken into account when producing the
acceptance functions in Sec. 7.2, therefore no bias is introduced in the final
fit if the simulation models these effects correctly. Distortions of the m(Kπℓℓ)
invariant mass for the combinatorial background could in principle be a problem,
since its contribution is extracted from data assuming an exponentially decreasing
distribution. However, due to the linear trend observed in both electrons and
muons, the exponential hypothesis is expected to be still valid after a cut on the
MVA classifier.

5.2.6.2 Cut optimization

The choice of the thresholds used for the MVA selection in electrons and muons is
performed by optimizing the statistical significance of the signal with respect to
the combinatorial background in the region populated by the signal, separately
for each run. This is approximated by the figure of merit (FoM), defined as

S√
S +B

, (5.4)

where S and B correspond to the signal and combinatorial yield as obtained
in the region of m(Kπℓℓ) of [5100, 5400] MeV/c2. This region has been chosen
because it is where most of the signal peaks. Values of the MVA cut for which
the FoMs are maximized correspond to the nominal choice of the cut, unless
otherwise stated. A direct estimate of the signal yield from the data fits is
avoided, since it could introduce a bias in our optimization procedure. The
expected signal yield after the cut MVA > x is estimated instead as

Nexp
sig (MVA > x) =

ϵMC
sig (MVA > x)

ϵMC
sig (MVA > xref )

·Nfit
sig (MVA > xref ) , (5.5)
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Figure 5.9: Efficiency as a function of the B0 invariant mass, q2 and angles for
the Run 2p2 classifier of the muon mode. The efficiency as a function of ϕ is
not reported here due to its flat behavior in both signal and background.
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Figure 5.10: Efficiency as a function of the B0 mass, q2
c and angles for the

Run 2p2 classifier of the electron mode. The efficiency as a function of ϕ is not
reported here due to its flat behavior in both signal and background.
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where Nfit
sig (MVA > xref ) corresponds to the yield observed in a mass fit at

the reference cut value of MVA > xref , and ϵMC(MVA>x)
ϵMC(MVA>xref ) corresponds to the

expected change in the observed yield due to the different efficiency of the
cut as obtained from simulation, ϵMC . A similar strategy is also used for the
estimation of the partially reconstructed background in the optimization for the
electron channel. The combinatorial background yield is instead estimated from
a direct fit to data at different thresholds. In all cases, a signal component is
also present in such fits, but the value obtained for its yield is kept blinded and
not considered.

5.2.6.3 Electron mode

The optimization of the FoM in the electron mode is performed separately for
Run 1, Run 2p1 and Run 2p2, without distinguishing between the different
trigger categories. Simultaneous fits to reconstructed candidates in the regions of
q2 corresponding to central-q2

c and J/ψ-q2
c are obtained for a value of the MVA

threshold x. The invariant mass shapes used for the signal are obtained from
fully corrected simulated samples of B0 → K∗0e+e− and B0 → K∗0J/ψ (→ e+e−)
decays after the set of selections described in Sec. 5.2.6.1. Their parametrization
follows the same strategy described in Sec. 8.2. When fitting data, a common
shift and scale of the width of the two distributions is allowed to float freely
in data. An additional cut on mDTF

J/ψ > 5150 MeV/c2 is applied to remove
the partially reconstructed background in the J/ψ-q2

c bin. The combinatorial
background is parametrized by a decreasing exponential with slope λexp,
separately for the different q2 regions and runs considered. The nominal fit in the
central-q2

c region (see Ch. 10) would additionally consider two more background
components: the partially reconstructed and double-semileptonic contribution.
The latter cannot be distinguished from the combinatorial without including
the angular distributions in the fit and is, for simplicity, partially vetoed by
applying the selection | cos θℓ| < 0.8, whose effect has already been discussed in
Sec. 5.2.5.3. The partially reconstructed background is included in the fit and its
shape is parametrized from simulation using a kernel density estimator (KDE)
lineshape [143].

The optimization procedure is then performed in three steps:

1. Simultaneous mass fits are performed for data events in the regions of
central-q2

c and J/ψ-q2
c that pass the reference cut MVA > xref , where xref

corresponds to the values of 0.995, 0.98 and 0.995 for Run 1, Run 2p1 and
Run 2p2, respectively. In these reference fits, the partially reconstructed
yield is allowed to float freely. In the specific case of Run 2p2, due to
the strong suppression performed by the MVA cut, the fit is found to
be unstable when both the combinatorial and partially reconstructed
component are considered. For this reason, only the latter is used.
Figure 5.11 shows the result of these reference fits, while Table 5.13 reports
the corresponding fit parameters for the central-q2

c region.
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Table 5.13: Results obtained from the reference point fits. An extended maximum
likelihood fit is made to directly obtain yields and their uncertainties.

Parameter Run 1 Run 2p1 Run 2p2
NSig 77±14 113±18 175±15
NComb 30±43 61±60 −
NPart. reco. 19±36 39±55 43±10
λexp. -0.003±0.003 -0.005±0.002 −

2. Almost the same procedure is then repeated for cut values x ranging from
0.50 to 0.999. The scan is made in steps of size 0.1 from 0.50 to 0.99, and
in steps of size 0.001 from 0.99 to 0.999. The region of 0.962 to 0.988 is
additionally scanned using step size of 0.002. The only difference is that
the yield of the partially reconstructed background is not allowed to float
freely, but instead fixed to the efficiency scaled expected value, as obtained
from Eq. 5.5 substituting “sig” with “partially reconstructed”.

3. For each of the values x used in the previous step, it is possible to estimate
the signal yield S scaling the signal yield observed for xref and using
simulation, as described by Eq. 5.5. The background yield, B, can be
estimated by the integrated number of the combinatorial events in the
range between [5100,5400] MeV/c2, as obtained from the data fit. These
two quantities can be combined, as shown in Eq. 5.4, to compute the signal
significance for each of the x MVA thresholds discussed. The optimization
procedure consists then in finding the value of x that maximizes this FoM.

The FoM values obtained for Run 1, Run 2p1 and Run 2p2 are shown in
Figure 5.12, together with their corresponding optimal working points of 0.99,
0.98 and 0.97, respectively. Due to the vicinity of these optimal values, a
simplified strategy where a single MVA value is chosen for all runs is preferred.
Since the variation of the MVA response is smaller for looser cuts, the common
value of 0.97 is chosen.

5.2.6.4 Muon mode

A strategy similar to the one discussed for the electrons can be also used in the
muon mode with further simplifications: no partially reconstructed and double-
semileptonic components need to be considered in these mass fits. Additionally,
since the shift and scale of the width of the distribution can be obtained directly
from the fit to the data in central-q2 region, there is no need for a corresponding
fit in the J/ψ-q2 region. The reference fits for the three runs are all performed at
a loose MVA value of xref = 0.5, and the results are gathered in Figure 5.13 and
Table 5.14. The MVA cut is then scanned for values ranging from 0.0 to 0.99,
with a fit made for every increase of 0.01. An additional scan is performed for
values ranging from 0.962 to 0.998, with step sizes of 0.002. The variation of the
FoM as a function of the MVA cut is shown in Figure 5.14. The optimal values
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5. Selecting B0 → K∗0ℓ+ℓ− decays

corresponding the cut at which the FoM is maximized correspond to 0.962, 0.96
and 0.92 for Run 1, Run 2p1 and Run 2p2, respectively.

A common lower cut value of 0.8 is chosen. This choice is made based on the
consideration of three main factors. Firstly, the limiting factor in this analysis
is the statistics of the electronic mode, and thus, choosing a threshold that is
less optimal according to the standard FoM is expected to have marginal impact
on the sensitivities to the observables of interest. Secondly, the optimization is

4900 5000 5100 5200 5300 5400 5500 5600 5700
0

5

10

15

20

C
an

d
id

at
es

p
er

20
.0

M
eV
/c

2

Data
Signal

Part. reco.

Combinatorial

4900 5000 5100 5200 5300 5400 5500 5600 5700

m(K+π−e+e−)[MeV/c2]

−2

0P
u

lls

LHCb Unofficial

4500 4750 5000 5250 5500 5750 6000
0

1000

2000

3000

4000

C
an

d
id

at
es

p
er

28
.3

3
M

eV
/c

2

Jpsi Comb

Jpsi Signal

Jpsi Bs

4500 4750 5000 5250 5500 5750 6000

m(K+π−e+e−)[MeV/c2]

−5

0P
u

lls

LHCb Unofficial

4900 5000 5100 5200 5300 5400 5500 5600 5700
0

5

10

15

20

C
an

d
id

at
es

p
er

20
.0

M
eV
/c

2

Data
Signal

Part. reco.

Combinatorial

4900 5000 5100 5200 5300 5400 5500 5600 5700

m(K+π−e+e−)[MeV/c2]

−1
0
1

P
u

lls

LHCb Unofficial

4500 4750 5000 5250 5500 5750 6000
0

1000

2000

3000

4000

5000

6000

7000

C
an

d
id

at
es

p
er

28
.3

3
M

eV
/c

2

Jpsi Comb

Jpsi Signal

Jpsi Bs

4500 4750 5000 5250 5500 5750 6000

m(K+π−e+e−)[MeV/c2]

−5
0
5

P
u

lls

LHCb Unofficial

4900 5000 5100 5200 5300 5400 5500 5600 5700
0

5

10

15

20

25

C
an

d
id

at
es

p
er

20
.0

M
eV
/c

2

Data
Signal

Part. reco.

4900 5000 5100 5200 5300 5400 5500 5600 5700

m(K+π−e+e−)[MeV/c2]

−2.5
0.0

P
u

lls

LHCb Unofficial

4500 4750 5000 5250 5500 5750 6000
0

2000

4000

6000

8000

C
an

d
id

at
es

p
er

28
.3

3
M

eV
/c

2

Jpsi Signal

Jpsi Bs

4500 4750 5000 5250 5500 5750 6000

m(K+π−e+e−)[MeV/c2]

−5

0

5

P
u

lls

LHCb Unofficial

Figure 5.11: Fits to the mass distributions of the electron mode signal and
control mode candidates with MVA references thresholds (xref) of 0.995, 0.98,
and 0.995 for Run 1 (top row), Run 2p1 (middle row) and Run 2p2 (bottom
row), respectively. For Run 2p2 the inclusion of the combinatorial component
resulted in problematic fit result as it was strongly disfavoured, which led to the
use of the partially reconstructed component only.

92



Selections

0.5 0.6 0.7 0.8 0.9 1.0

MVA threshold

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

F
O

M
[S
/√

S
+

B
]

KπeeRunI

Max FOM at MVA = 0.99

Max FOM = 8.93766263478

LHCb Unofficial

0.92 0.94 0.96 0.98 1.00

MVA threshold

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

F
O

M
[S
/√

S
+

B
]

KπeeRunI

Max FOM at MVA = 0.99

Max FOM = 8.93766263478

LHCb Unofficial

0.5 0.6 0.7 0.8 0.9 1.0

MVA threshold

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

F
O

M
[S
/√

S
+

B
]

KπeeRunIIp1

Max FOM at MVA = 0.98

Max FOM = 9.19580813309

LHCb Unofficial

0.92 0.94 0.96 0.98 1.00

MVA threshold

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

F
O

M
[S
/√

S
+

B
]

KπeeRunIIp1

Max FOM at MVA = 0.98

Max FOM = 9.19580813309

LHCb Unofficial

0.5 0.6 0.7 0.8 0.9 1.0

MVA threshold

13.50

13.75

14.00

14.25

14.50

14.75

15.00

15.25

F
O

M
[S
/√

S
+

B
]

KπeeRunIIp2

Max FOM at MVA = 0.968

Max FOM = 15.327328563

LHCb Unofficial

0.92 0.94 0.96 0.98 1.00

MVA threshold

14.4

14.6

14.8

15.0

15.2

F
O

M
[S
/√

S
+

B
]

KπeeRunIIp2

Max FOM at MVA = 0.968

Max FOM = 15.327328563

LHCb Unofficial

Figure 5.12: Calculated values of the standard FoM S/
√
S +B for Run 1 (top),

Run 2p1 (middle), and Run 2p2 (bottom) samples. The full set of results in the
investigated range of 0.5 < MVA < 0.999 is shown on the left hand side while
results in the region of interest above MVA> 0.9 are shown on the right hand
side. The optimal value is found to range from 0.97 to 0.99.
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Table 5.14: Results obtained from the muon mode reference point fits.

Parameter Run 1 Run 2p1 Run 2p2
NSig 666±33 704±34 1444±47
NComb 711±34 592±33 990±42
λexp. -0.0032±0.0003 -0.0030±0.0003 -0.0029±0.0003

carried out considering the signal significance alone. In the case of the amplitude
fit, very low levels of combinatorial background often lead to fit instabilities
when the background angular shape is allowed to vary, hence a looser cut
might be preferred. Finally, it is desirable to cross-check the final result of this
analysis with the work of Ref. [144], which also considers a region between the
two charmonium contributions, i.e. 11.0 ≤ q2 ≤ 12.5 GeV2/c4. The value of
the MVA threshold chosen ensures enough combinatorial background in this
additional region to still retain a high rate of convergence for each fit attempted
in toys.

5.2.7 Multiple candidates

After the full selection, it is possible that more than one signal candidate per p-p
collision enters the final sample. When these multiple candidates are present,
only one is chosen randomly, while the others are discarded. Table 5.15 reports
the fraction of removed candidates over the total.
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Figure 5.13: Fits to the mass distributions of the muon mode signal candidates
selected with the reference threshold of MVA> 0.50.
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Figure 5.14: Calculated values of the standard FoM S/
√
S +B for muon mode

Run 1 (top), Run 2p1 (middle), and Run 2p2 (bottom) samples. The full set
of results in the investigated range of 0.0 < MVA < 0.994 is shown on the left
hand side while results in the region of interest above MVA> 0.7 are shown on
the right hand side. The optimal value is found to range from 0.92 to 0.96.
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Inspecting the multiple candidates discarded in data, it has been observed
that the far majority (≈ 98%) has exactly two candidates per event. In Run 1,
the majority is constituted of candidates where the same tracks are used but
some of the particle hypothesis are swapped, while the rest is composed of
candidates for which at least a track is different. In general, the additional track
considered has a higher probability to be reconstructed as a pion. An opposite
behaviour is observed instead in Run 2, where multiple candidates corresponding
to a permutation of the particle hypothesis for the same tracks are the minority.

Table 5.15: Fraction of removed multiple candidates for simulation and data.
Simulation Data

Channel Run 1 Run 2 Run 1 Run 2
B0 → K∗0µ+µ− (0.17 ± 0.03)% (0.16 ± 0.01)% (0.8 ± 0.3)% (0.6 ± 0.1)%
B0 → K∗0J/ψ (→ µ+µ−) (0.242 ± 0.005)% (0.257 ± 0.004)% (1.16 ± 0.02)% (0.64 ± 0.01)%
B0 → K∗0e+e− (0.188 ± 0.06)% (0.30 ± 0.04)% (1.3 ± 0.6)% (0.8 ± 0.3)%
B0 → K∗0J/ψ (→ e+e−) (0.566 ± 0.014)% (0.564 ± 0.009)% (1.2 ± 0.04)% (0.84 ± 0.02)%
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Chapter 6

Corrections to simulation
Many aspects of the analysis depend on the ability of our simulation to closely
represent the behaviour observed in data. For this reason, a series of data-driven
corrections are performed on simulated samples to further reduce any relevant
difference. In the following, a brief introduction on the structure of the different
corrections is provided in Sec 6.1, while the Secs. from 6.2 to 6.6 detail the
procedure used on each separate step. Sec. 6.7 ends the chapter with a discussion
on the impact of the corrections in the variables used in the final amplitude fits.

6.1 Correction strategy

The corrections discussed in the following have two main goals: improve the
agreement between the distributions of the multiplicity of the events and the
reconstructed properties of the B0 meson; improve the agreement between the
efficiency observed in data and simulation for PID, tracking and trigger selections.
All these aspects have the potential to bias the observables of interest if they
are not properly corrected for.

The corrections are organized in a chain, composed of seven subsequent steps,
sketched in blue in Figure 6.1. This correction chain is referred to as nominal in
the following. The steps correspond to:

1. the correction of the PID efficiency for all the particles involved in the final
state, encoded in the weight wPID (Sec. 6.2);

2. the correction of the track reconstruction efficiency for electrons, encoded
in the weight wTRK (Sec. 6.3);

3. the correction of the generator level distribution of the event multiplicity
and kinematics of the B0 meson, encoded in the weight wMult&Kin (Sec. 6.5);

4. the correction of the L0 trigger efficiency, encoded in the weight wL0
(Sec. 6.4.1);

5. the correction of the HLT trigger efficiency, encoded in the weight wHLT
(Sec. 6.4.2);

6. the correction of the reconstructed properties of the B0 meson such as χ2
IP

and vertex χ2, encoded in the weight wReco (Sec. 6.5).

7. the smearing of the dielectron and Kπe+e− invariant mass (Sec. 6.6).

The effect of these corrections can be combined by means of a simple
multiplication, obtaining the total weight wtot = wPID · wTRK · wMult&Kin ·
wL0 · wHLT · wReco.
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wPID

wTRK wMult&Kin wL0 wHLT wReco

wHLT

wL0

mass 
smearing

prior correction chain

nominal correction chain

Figure 6.1: The nominal (blue) and prior (green) correction chains. The prior
chain corrects PID, L0 and HLT efficiencies before accessing the B meson
kinematics and underlying event multiplicity distributions.

All these corrections are obtained separately for different years in electrons
and muons. When necessary, an additional separation in trigger categories
is performed. Most of the corrections are derived from high statistics control
samples of B+ → K+J/ψ (→ µ+µ−) and B+ → K+J/ψ (→ e+e−) decays, selected
as similarly as possible to the resonant modes of B0 → K∗0J/ψ (→ µ+µ−) and
B0 → K∗0J/ψ (→ e+e−) decays. To ensure the portability of the corrections
from one channel to another, a parallel set of corrections is also obtained using
the B0 → K∗0J/ψ (→ ℓ+ℓ−) channel and the compatibility of the two is verified.
The main advantage of using different channels to correct the simulation is that
this minimizes the correlation between the corrections and the simulated samples
used in all other parts of the analysis. The only exception to this rule is the
last correction step, obtained directly from the B0 → K∗0J/ψ (→ e+e−) decay
channel.

Of all the steps involved in the nominal correction chain, wMult&Kin is
special, since it relies on a dedicated correction chain, referred to as prior
correction chain (see Figure 6.1). The prior correction chain is computed from
B+ → K+J/ψ (→ µ+µ−) decay candidates selected in the inclusive L0M trigger
category, where the only data events considered are those for which the TCKs of the
L0Muon trigger line are fully aligned with the simulation.1 This greatly increases
the agreement between data and simulation, reducing the size of the wL0 and
wHLT corrections in the prior correction chain. Samples of data and simulation
are then compared after PID and trigger corrections: any difference observed
in the kinematics of the B+ meson and the event multiplicity is interpreted as
a misalignment between the distributions generated by the simulation and the
properties of the reconstructed events in data. Even if these correction weights
are obtained from muons in a specific trigger category, since they represent a
correction to the generated kinematic distribution of the decaying B0 meson, they
can be ported to different trigger categories and even different channels, as in
the case of B0 → K∗0J/ψ (→ µ+µ−), B0 → K∗0J/ψ (→ e+e−), B0 → K∗0µ+µ−

and B0 → K∗0e+e− decays.
1Data in 2011, 2012 and 2018 is almost fully aligned with the available simulation, while

for 2015, 2016 and 2017 the size of the aligned sample corresponds to roughly 25%, 70% and
40%, respectively.
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6.2 Particle identification corrections

The simulation of the detectors that are responsible for the particle identification
is non-trivial, since a precise modelling of their response requires a very good
understanding of the experimental conditions under which they are operated. For
this reason, PID variables obtained from simulation are known to be unreliable
and data calibration samples are used to determine the efficiency of specific PID
selections. In the following, two different approaches are discussed.

The first approach is used for muons, kaons, protons and pions, and relies
on the assumption that PID efficiencies for these different particle species are
independent of one another, if not for the kinematic correlation related to their
common mother-particle. Under these assumptions, the efficiency of different
PID selections factorizes between the particles considered and each of these
efficiencies can be determined using different calibration samples.

Pure samples of these different particle species can be obtained, without the
use of particle identification on the probe track of interest, in the decays of:

• J/ψ → µ+µ−, where the J/ψ can be either prompt or coming from a B
meson, to obtain pure samples of muons;

• D∗+ → D0π+, where pure samples of kaons and pions can be distinguished
from the subsequent decay D0 → K−π+;

• Λ0 → pπ− and Λ+
c → pK−π+, where pure samples of protons are obtained

for regions of low and high proton momentum, respectively.

All fiducial requirements applied to the calibration samples that may affect
the PID efficiency measured must be also applied in signal and control modes,
as already discussed in Sec. 5.2.2 and summarized in Table 5.3.

Two types of efficiency maps are computed: ID and mis-ID maps. The first
ones correspond to the probability that a particle passes its corresponding PID
selection, e.g. a muon that passes ProbNNmu>2. The second one corresponds to
the probability that a particle passes a PID selection corresponding to a different
particle hypothesis, e.g. a muon that passes DLLKπ > 0. Efficiency maps for
the different particle species are then calculated as a function of the particle
momentum, pseudorapidity and number of tracks in the event (nTracks). For
each bin of event multiplicity considered, a fit to the invariant mass of the J/ψ ,
D0 or Λ(c) hadron is performed to estimate the amount of signal and background
in data. The background can then be statistically subtracted using the sPlot
method [145], and the 2D-distributions in particle momentum and pseudorapidity
for the total and passed signal events can be obtained. The ratio of the passed
over the total distribution corresponds to the efficiency maps needed for the PID
correction. Each reconstructed track t in simulation is therefore associated with a
weight wtPID(pt, ηt, nTracks)data obtained from the corresponding ID or mis-ID
efficiency map in data, depending on the true identity of the particle considered.
The total correction weight, wPID, corresponds to the multiplication of all the
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weights obtained for the particles in the final state, e.g. for B0 → K∗0µ+µ−

decays:

wK
−π+µ+µ−

PID =
∏

i∈{K− ,π+ ,µ+ ,µ−}

wiPID(pi, ηi, nTracks)data (6.1)

It is important to point out that wPID corresponds to the efficiency that a
certain event passes the set of PID cuts described in Table 5.3, thus replacing the
need to apply the corresponding PID requirements in simulation. A comparison
of the selection efficiency obtained from simulation and data for the PID selections
applied to kaons, pions and muons is shown in Figure 6.2.
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Figure 6.2: Comparison between the efficiency in data and simulation for the
PID selection of kaons (a), pions (b) and muons (c) as a function of the particle
momentum for simulated events of B0 → K∗0µ+µ− decays corresponding to the
data-taking conditions of Run 2p1.

A different approach is followed to obtain the correction on the PID
of the electrons; efficiency maps are obtained from data and simulation of
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Tracking corrections in electrons

B+ → K+J/ψ (→ e+e−) decays, and the ratio of the two is used to correct the
efficiency observed in simulation. This approach has the advantage of obtaining
a simulated sample with the efficiencies of the PID cuts as observed in data
while still retaining the correlation between the PID response and the other
features of the event, in particular the correlation with the other electron in the
decay. The efficiency is corrected using weights that correspond to the ratio of
the single-electron PID efficiencies in data and simulation. The total correction
weight wPID can be written, e.g. for B0 → K∗0e+e− decays, as:

wK
−π+e+e−

PID =
∏

i∈{K− ,π+}

wiPID(pi, ηi, nTracks)data

×
∏

i∈{e+ ,e−}

wiPID(piT , ηi, nTracks)data
wiPID(piT , ηi, nTracks)sim

, (6.2)

where wiPID(pi(T ), η
i, nTracks)data and wiPID(pi(T ), η

i, nTracks)sim correspond to
the efficiencies obtained in data and simulation as a function of the variables used
in the parametrization. To obtain the PID efficiency in data the sPlot method
cannot be employed reliably, due to the low statistics of the calibration samples
and a combinatorial background shape that is correlated to the PID variables.
A dedicated fit-and-count approach is developed where, for each bin of nTracks,
pT and η of the electron candidate, a fit to the events that pass or fail the electron
PID selection is performed. An additional distinction between events that have
or do not have an associated photon cluster in the ECAL is needed, due to
the different behaviour that the PID response has between these two classes of
events. 2 The efficiency in simulation is instead computed using a cut-and-count
approach after the same set of selections applied in data. Figure 6.3 shows the
efficiency of the electron PID cut in simulated B0 → K∗0e+e− decays before and
after the correction described, for events for which a photon compatible with a
bremsstrahlung emission was not found (a) or was found (b).

6.3 Tracking corrections in electrons

The performance of the track reconstruction algorithm for electrons depends on
the precise simulation of the bremsstrahlung emission. To reduce any possible
difference between data and simulation, the efficiency of reconstructing an
electron track as long in simulation (see Sec. 3.2.1.5) is thus corrected in a
data-driven way [146]. The track reconstruction efficiencies are obtained from
a sample of B+ → K+J/ψ (→ e+e−) decays candidates using a tag-and-probe
approach, where the tag candidates are selected exploiting the fully reconstructed
information of the kaon and one of the electrons, while only the information of
the VELO is used to reconstruct the second (probe) electron.3 The tracking

2As already discussed in Sec. 3.2.1.6, electrons that are compatible with having emitted a
photon detected in the ECAL are more likely to be identified as electrons.

3For this reason, this technically corresponds to a correction to the efficiency that a
reconstructed electron VELO track is reconstructed as long, ϵTRK(long|V ELO).
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Figure 6.3: Comparison between the efficiency in data and simulation for the
PID selection of electron candidates without (a) or with (b) a matching photon
in the ECAL, as a function of the particle transverse momentum, for simulated
events of B0 → K∗0e+e− decays corresponding to the data-taking conditions of
Run 2p1.

efficiencies are then obtained, in data, by performing a fit to the selected
candidates for which a corresponding long track for the probe electron was found
or not. The efficiencies are parametrized in bins of the transverse momentum,
pseudorapidity and the azimuthal angle of the electron in the detector, ϕ. This
last variable is needed to distinguish between the regions of the VELO where
the RF-foil is installed (see Sec. 3.2.1.2), corresponding to an additional 10%
radiation length for electrons and a different tracking performance. In simulation,
the efficiencies ϵsimTRK are obtained in the same bins of data by means of a cut-and-
count approach. Figure 6.4 shows the tracking efficiency in data and simulation,
together with the corresponding ratio, as a function of transverse momentum for
a specific bin of pseudorapidity. The impact of the presence or absence of the
RF-foil for the efficiency can be seen comparing Figure 6.4(a) and (b).

The correction weight wtTRK for the electron track t corresponds to:

wtTRK = ϵdataTRK(ptT , ηt, ϕt; long|VELO)
ϵsimTRK(ptT , ηt, ϕt; long|VELO) , (6.3)

while the total correction for a decay with two electrons in its final state
corresponds to the product of the separate track weights wTRK = we

+

TRK · we−

TRK.
No correction is considered for kaons, pions and muons. For the first two species,
the same exact correction should be applied in decays that have muons and
electrons in the final state and its impact is expected to cancel out in LFU
observables. Tracking corrections are neglected for muons as they are expected
to be quite close to unity in the region of phase space considered, and their
impact is expected to be small.
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(a) (b)

Figure 6.4: (a) Measured electron efficiency as a function of the electron
transverse momentum pT , in a specific bin of pseudorapidity for electrons that
do not travel parallel to the RF-foil. The ratios between the efficiencies in data
and simulation are shown below. The analogous plot for electrons that travel
parallel to the RF-foil is shown in (b) [146].

6.4 Trigger corrections

The trigger efficiency, i.e. the efficiency of triggering the signal candidates that
have been reconstructed by the detector, is not well described in the simulation.
To reduce the differences between data and simulation, a correction weight is
assigned for the L0 and HLT trigger to each simulated event, referred to as wL0
and wHLT, respectively. The correction is obtained separately for the different
trigger categories L0I and L0L! and for electrons and muons. The weights are
defined as data-over-simulation ratios of trigger efficiencies and, similarly to the
PID corrections described for electrons in Sec 6.2, their aim is to ensure that the
efficiency of the simulated sample matches the one observed in data, without
losing the correlation with the remaining variables in the event.

Due to the fact that a recorded event must have satisfied at least one of the
requirements of the LHCb trigger, normally it is not possible to study in data
the absolute or direct efficiency of a trigger line. Thus, trigger efficiencies in
data (ϵdata) and simulation (ϵMC) are estimated using a tag-and-probe approach,
based on the following expressions:

ϵdata
probe =

(
Ntag&probe

Ntag

)data
and ϵMC

probe =
(
Ntag&probe

Ntag

)MC
. (6.4)

In Eq. 6.4, Ntag corresponds to the number of signal candidates that have been
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observed after the tag selection, usually corresponding to a trigger selection
that is not correlated with the line under study, while Ntag&probe corresponds to
the number of signal events that passed both the tag and the trigger selection
of interest, here referred to as probe. The tag selection is chosen to be as
uncorrelated as possible with respect the probe selection, in order to minimize
any possible tag bias. The size of this bias can be assessed by measuring the
efficiency of a trigger line using several tag selections.

In the following, data and simulation efficiencies for the different trigger
selections used in the analysis are considered and the corresponding wL0 and
wHLT correction weights for the L0I and L0L! trigger categories discussed. For
the L0M trigger selection, the nominal and prior trigger weights are computed,
as already discussed in Sec. 6.1.

6.4.1 L0 trigger corrections

The L0 efficiencies are calibrated separately for each year of data-taking using
the resonant modes B+ → K+J/ψ (→ µ+µ−) and B+ → K+J/ψ (→ e+e−)
after the full selection chain is applied (see Sec. 5.2), except for the L0 trigger
requirements. Pure signal samples can be obtained from data without the use of
the sPlot technique by applying a cut of ±45 MeV around the J/ψ constrained
B+ invariant mass. The simulated events are additionally truth-matched, as
described in Sec. 5.1.2. Only the efficiencies for the inclusive categories L0I, L0E
and L0M are computed, since the weights for the exclusive categories can be
obtained by a proper combination of these efficiencies (see Sec. 6.4.1.4).

6.4.1.1 L0I calibration histograms

The probability that an event triggers independently of the specific decay of
interest is studied as a function of the transverse momentum of the reconstructed
B0 candidate and nTracks. A dependency on these variables is expected, since
the momentum of the reconstructed B0 meson is correlated with the transverse
momentum of the hadronization products of the opposite b-quark, and events
with higher multiplicity have a higher probability to be triggered independently
of the signal.

The efficiency is measured on events selected with the following three tag
selections:

• Lepton tag, corresponding to events that have been triggered by one of
the two leptons in the final state;

• Hadron tag, corresponding to events that have been triggered by a single
hadron;

• Combined tag, events that have been triggered by the Lepton or Hadron
tag.

Figure 6.5(a) shows the trigger efficiencies for L0I as a function of pT (B+)
and integrated in nTracks, as obtained from the muon samples for data (left)
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Figure 6.5: (a) Trigger efficiencies in B+ → K+J/ψ (→ µ+µ−) data (left) and
simulated (right) candidates in 2016 for the L0I trigger category. The efficiency is
shown as a function of pT (B+) and integrated in nTracks. The parametrization
obtained from a fit using the functional form introduced in Eq. 6.5 is overlaid.
(b) Data-over-simulation ratio of the efficiencies shown in (a). (c) Comparison
between ratio of efficiencies obtained for L0I in B+ → K+J/ψ (→ µ+µ−) and
B+ → K+J/ψ (→ e+e−) decays for 2016. A good compatibility between the two
is observed.

and simulation (right), and for the three different tag selections considered. Since
a good agreement between the Lepton and Hadron tag is found, the default
choice is to use the Combined tag to take advantage of the increased statistics.
To reduce the dependency on the chosen binning, the trigger turn-on curves are
fitted using a combination of an error function and a Gompertz function:

f1 ·
(

1 + erf
(

x− t√
2 · σ1

))
+ f2 · s

exp
(

−(x−t)√
2·σ2

)
+ a , (6.5)

where f1,2 are the fractions of the two folded functions, σ1,2 the resolutions, t the
trigger threshold, s the skewness of the Gompertz function and a is a constant
offset. The result of this fit can be seen in the solid curves in Figure 6.5(a) and
in the corresponding data-over-simulation efficiency ratio in Figure 6.5(b). Since
the L0I efficiency is expected to be independent of the signal final state, the
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corrections for electrons and muons are expected to be the same. Figure 6.5(c)
shows that indeed the two corrections are compatible. It is therefore possible to
take advantage of the clean and high statistics of muons sample and use this set
of corrections also for the electron samples.

6.4.1.2 Single muon TOS calibration histogram

The probability that a muon fires the L0Muon trigger line depends on its transverse
momentum pT . For this reason, its response is parametrized as a function of
pT (µ) in three regions of pseudorapidity.

The efficiency of the L0M trigger line is studied in data and simulation using
B+ → K+J/ψ (→ µ+µ−) candidates using three different tag selection:

• TIS tag, corresponding to events that are triggered by a hadron or an
electron not associated to the reconstructed signal;

• Hadron tag, corresponding to events triggered by a signal hadron;

• Lepton tag, corresponding to events triggered by the other muon from
the decay of the J/ψ .

Also in this case, a Gompertz function is used to parametrize the turn-on curves
of the obtained efficiencies. Figure 6.6(a) shows the efficiency for data (left)
and simulation (right) for the three different tag selections considered in the
central bin of pseudorapidity for the year 2016. The ratio of the two is shown in
Figure 6.6(b). A good agreement between the ratios for the three different tag
selections considered is found. Due to its higher statistics, the TIS tag is chosen
as default in the following.

The corrections just presented are part of the nominal correction chain. The
same strategy is used to obtain the efficiency ratios in the prior correction chain;
the main difference between the two is a better alignment between the TCKs of
data and simulation. Figure 6.6(c) shows the efficiency ratio obtained for the
prior correction chain in the same bin of pseudorapidity shown in Figure 6.6(b).
As it can be seen, the ratio obtained for the prior correction is much flatter than
the nominal one, as expected.

6.4.1.3 Single electron TOS calibration histogram

The probability that an electron triggers an event depends on the region of
the ECAL and on the amount of transverse energy deposited within 2×2 cells
neighbouring the extrapolated trajectory. For this reason, the efficiency correction
for the L0Electron trigger line is parametrized as a function of the region of
the ECAL(inner, middle or outer) and of the transverse energy of the electron
in the point where the electron track intersects the calorimeter, EL0

T . This last
quantity represents an approximation for the transverse energy deposited in
the calorimeter cells that caused the trigger to fire, since this quantity is not
available for the offline analysis. The trigger efficiency is measured on data and

106



Trigger corrections

LHCb Unofficial LHCb Unofficial

(a)

LHCb Unofficial

(b)

LHCb Unofficial

(c)

Figure 6.6: (a) Trigger efficiencies in B+ → K+J/ψ (→ µ+µ−) data (left) and
simulated (right) candidates in 2016 for the L0M trigger category. The efficiency
is shown as a function of pT (µ) for the central bin in η(µ). The parametrization
obtained from a fit using the functional form introduced in Eq. 6.5 is overlaid. (b)
Data-over-simulation ratio of the efficiencies shown in (a). (c) Ratio of efficiencies
obtained for the same central bin of η(µ) in the prior chain of corrections. Due
to the improved alignment of TCKs between data and simulation, the ratio is
much closer to unity than in (b), as expected.

simulation candidates of B+ → K+J/ψ (→ e+e−) decays with two different tags
selections:

• TIS tag, corresponding to events that are triggered by a hadron or a
muon not associated to the reconstructed signal;

• Hadron tag, corresponding to events triggered by a signal hadron.

A Gompertz function is used to parametrize the turn-on curves of the
obtained efficiencies in the different regions of the electromagnetic calorimeter.
Figure 6.7(a) shows the tag-and-probe efficiency computed for data (left) and
simulation (right) in the middle region of the calorimeter for the year 2016.
Figure 6.7(b) shows the ratio between the efficiencies obtained in data and
simulation. A good agreement between the ratios obtained with different tag
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selections is observed. Due to the large statistics available, the TIS tag is chosen
as default. Above the vertical dashed line, indicating the trigger threshold for
2016, the simulation agrees well with data. Below or near this line, the agreement
becomes worse. There are two main reasons for this effect: a poorly simulated
response of the ECAL and a dataset collected using different TCKs, corresponding
to a mixture of different trigger thresholds in data. The additional threshold cut
included in the definition of L0E! reduces the impact that such mismodellings
have in the final result.

LHCb Unofficial LHCb Unofficial
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Figure 6.7: (a) Trigger efficiencies in B+ → K+J/ψ (→ e+e−) data (left)
and simulated (right) candidates in 2016 for the L0E trigger category. The
efficiency is shown as a function of EL0

T for the middle region of the ECAL. The
parametrization obtained from a fit using the functional form introduced in
Eq. 6.5 is overlaid. (b) Data-over-simulation ratio of the efficiencies shown in (a).

6.4.1.4 L0 correction weights

Using the data-over-simulation efficiency ratios just described, it is possible
to assign event-by-event weights to the simulation samples depending on the
classification of the L0 trigger response, i.e. wL0I

L0 , wL0M!
L0 and wL0E!

L0 .
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L0I weights

Simulated L0I events, i.e. events triggered by particles not reconstructed in the
signal candidate, are corrected with the weight

wL0I
L0 = ϵdataL0I (B0pT )

ϵsimL0I (B0pT ) . (6.6)

This weight corresponds exactly to the ratio of efficiencies shown in Figure 6.5(b).

L0L! weights

Simulated L0L! events, i.e. events where at least one of the leptons in the signal
candidate triggered but no muon, electron or hadron in the underlying event
fired the corresponding trigger, are corrected with the weight

wL0L!
L0 = (1 − ϵdataL0I (B0pT ))

(1 − ϵsimL0I (B0pT )) · (1 − (1 − ϵdataℓTOS(ℓ+)) · (1 − ϵdataℓTOS(ℓ−)))
(1 − (1 − ϵsimℓTOS(ℓ+)) · (1 − ϵsimℓTOS(ℓ−))) , (6.7)

where the first factor corrects the efficiency of not having passed the L0I trigger
selection, while the second one corrects the efficiency of having triggered on at
least one of the final state leptons. The factorization of the different weights,
used here to build wL0E!

L0 , is only exact if the trigger efficiencies of the two leptons
are independent of each other and independent of L0I.

6.4.2 HLT trigger corrections

The HLT efficiencies are calibrated separately for each year of data taking and
for the different trigger categories L0I, L0M! and L0E!, using the resonant
modes B+ → K+J/ψ (→ e+e−) and B+ → K+J/ψ (→ µ+µ−) after the full
selection chain, with the exclusion of the HLT and the MVA selection. Due to a
non-negligible contribution of combinatorial background under the signal, the
calibration histograms for ϵdata are obtained by performing separate fits to the
probe and tag data samples as a function of nTracks. This choice is justified by
the fact that Run 1 data shows a trend in this variable, not well reproduced in
simulation, that needs to be corrected for. The use of additional variables, e.g.
the transverse momentum of the B+ meson, have been considered, but are only
used in the prior correction. The efficiency histograms ϵdata are then defined by
the ratio of the extracted yields, with a binning scheme chosen to have a similar
number of events in each bin. On the other hand, ϵsim is evaluated in the same
bins of nTracks by looking at the ratio of the weighted sum of events between
the probe and tag simulated samples. The weights used at this stage include
the PID, kinematics and multiplicity, and L0 correction weights. The same
selections are applied to data and simulation except for the tag selection, which
corresponds to HLTPHYS and HLTOR, respectively, defined in Table 6.1. This
choice is a compromise between using the HLTOR selection in data, that would
greatly reduce the statistics available, and using HLT{1,2}PHYS in simulation,
that would include a relevant fraction of HLT lines that are ignored in data.
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Table 6.1: Tag categories definition used for the HLT correction for electron and
muon mode in data (HLTPHYS) and in simulated events (HLTOR). The HLT1OR
and HLT2OR categories are defined as the logical OR of their listed single lines.

Label Run 1 15 16 17&18
HLT1PHYS HLT1_PHYS_TIS HLT1_PHYS_TIS HLT1_PHYS_TIS HLT1_PHYS_TIS
HLT2PHYS HLT2_PHYS_TIS HLT2_PHYS_TIS HLT2_PHYS_TIS HLT2_PHYS_TIS

HLTPHYS HLT1PHYS & HLT2PHYS

HLT1OR
HLT1TrackAllL0_TIS

HLT1Track{Muon,DiMuon}_TIS
HLT1Track{MVA,Muon}_TIS

HLT1TwoTrack_TIS
HLT1Track{MVA,Muon,MuonMVA}_TIS

HLT1TwoTrack_TIS
HLT1Track{MVA,Muon,MuonMVA}_TIS

HLT1TwoTrack_TIS

HLT2OR

HLT2Topo{2,3,4}BodyBBDT_TIS
HLT2TopoMu{2,3,4}BodyBBDT_TIS
HLT2TopoE{2,3,4}BodyBBDT_TIS

HLT2DiMuonDetached_TIS

HLT2Topo{2,3,4}Body_TIS
HLT2TopoMu2,3,4Body_TIS

Hlt2DiMuonDetachedHeavy_TIS

HLT2Topo{2,3,4}Body_TIS
HLT2TopoMu{2,3,4}Body_TIS

HLT2TopoMuMu{2,3,4}Body_TIS
Hlt2DiMuonDetachedHeavy_TIS
HLT2TopoE{2,3,4}Body_TIS
HLT2TopoEE{2,3,4}Body_TIS

HLT2Topo2,3,4,Body_TIS
HLT2TopoMu2,3,4Body_TIS

HLT2TopoMuMu2,3,4Body_TIS
Hlt2DiMuonDetachedHeavy_TIS

HLT2TopoE2,3,4Body_TIS
HLT2TopoEE2,3,4Body_TIS

HLTOR HLT1OR & HLT2OR

Additionally, it is found that ϵdata is compatible between the inclusive (L0L) and
exclusive (L0L!) categories. Due to the larger statistics of the former, it is then
preferred to correct the exclusive samples using the corrections obtained from
the inclusive ones. The ratios between data and simulation are shown in Fig. 6.8
for the L0 inclusive categories L0I and L0L.

Similarly to the L0, a prior set of corrections is computed for the HLT trigger
to improve the agreement between data and simulation in the L0M sample, used
to obtain the generator level correction to the kinematics. The same procedure
described above applies with two main differences: the corrections are performed
as a function of nTracks and pT (B), thanks to the higher statistics available,
and the simulation is weighted considering only the corrections obtained for PID
and L0.

6.4.2.1 HLT correction weights

The L0I events in the simulation are corrected with the weight

wL0I
HLT =

ϵHLTL0I,data(nTracks)
ϵHLTL0I,sim(nTracks)

, (6.8)

while the L0L! events are corrected with the weight

wL0L!
HLT =

ϵHLTL0L,data(nTracks)
ϵHLTL0L,sim(nTracks)

. (6.9)

6.5 Kinematic, multiplicity and reconstruction corrections

A good agreement between data and simulation in the variables that are used
to select, describe or correct the signal is fundamental. Two set of corrections
weights are discussed in the following:

• generator level correction weights, wMult&Kin, whose aim is to correct the
kinematics and event multiplicity of the B0 meson generated in simulation;
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Figure 6.8: Nominal chain HLT efficiency correction map obtained using the
B+ → K+J/ψ (→ µ+µ−) and B+ → K+J/ψ (→ e+e−) modes selected in the L0I
(a) and L0L (b) inclusive category for the year 2016. The label [BS] highlights
the results obtained enabling the bootstrapping of data fits and efficiency weight
ratios in simulation, while [n] labels the nominal efficiency ratio between data
and simulation.

• reconstruction correction weights, wReco, whose aim is to correct for the
reconstructed χ2

IP distribution of the B0 meson and J/ψ resonance, together
with any remaining difference in reconstructed kinematics of the B0 meson.

Both corrections are obtained training Boosted Decision Trees (BDT) [147, 148]
to reweight the simulated samples to match the selected data samples in multiple
dimensions, ensuring that correlations between all input variables are properly
taken into account. The algorithm used is the GBReweighter from the hep_ml
library [149]. A k-fold approach is used also in this situation, with the number
of folds used equal to four.

6.5.1 Generator level corrections

The first set of corrections focuses on the momenta, transverse momenta,
pseudorapidity of the B0 meson and nTracks. The last one is of particular
importance, since the occupancy of the detector is known to be poorly described
in simulation, mainly due to low momentum particles, backsplashes from particle
showers, and secondary interactions. It is important to point out that different
occupancy proxies are not all coherent between each other in data and simulation:
in general correcting one does not guarantee a good agreement of the others.
This is particularly relevant since both nTracks and nSPDHits are used in this
analysis. The current approach is to correct nTracks, since this variable is
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used in the PID corrections, and to assign a systematics due to the remaining
discrepancy observed between data and simulation in nSPDHits. It is however
important to point out that the discrepancy observed in nSPDHits is coherent
between rare and control mode and for muons and electrons, suggesting a minor
impact on LFU observables. The data and simulation events used correspond
to reconstructed B0 → K∗0J/ψ (→ µ+µ−) candidates, where the full selection
except for the combinatorial MVA is used. To improve the agreement between
data and simulation, only the data whose TCKs are matched in the simulated
sample have been used. Additionally, a prior chain of trigger corrections is
applied to the simulation. The only events used for data and simulation are the
ones that correspond to the trigger category L0M. The BDT is trained to match
the background-subtracted data and simulation after all these alignments, and
any remaining difference is interpreted as a difference in the generated properties
of the events in simulation, rather than a reconstruction effect. For this reason,
when correcting the full simulation, the correction is applied to both electrons
and muons based on the generated values of p(B), pT (B), η(B) and nTracks,
rather than on their reconstructed quantities.

6.5.2 Reconstruction corrections

The second set of corrections focuses on some of the reconstructed kinematics
variables of the B0 meson, together with the χ2

IP of the B0 meson and J/ψ
resonance. A good agreement between these features in data and simulation
is key, since these variables enter the selections and the MVA used to reduce
the combinatorial background. Due to the reconstruction differences between
electrons and muons and between different L0 trigger categories, each correction
is obtained separately. Data and simulation samples of B0 → K∗0J/ψ (→ µ+µ−)
and B0 → K∗0J/ψ (→ e+e−) candidates are considered after the full selection and
split in L0I and L0L! categories. Differently from the generator level corrections,
clean samples of signal from data cannot be obtained using sPlot, due to the
correlation of some of the reconstructed variables with the invariant mass of
the Kπℓ+ℓ− system. Instead, a tight cut on the MVA and an additional cut of
60 MeV/c2 around the nominal mass of the B0 meson in the mJ/ψ

DTF (Kπℓ+ℓ−) is
performed. The simulated samples have been selected accordingly, taking into
account the whole chain of weights, from wPID to wHLT. Figure 6.9 shows in black
the comparison between the distributions obtained from B+ → K+J/ψ (→ ℓ+ℓ−)
data candidates using sPlot technique, while in blue and red are shown the
distributions after and before the full chain of corrections is applied. As can be
seen, a remarkable improvement in the agreement between data and simulation
is achieved.
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Figure 6.9: Data/simulation comparison plots for 2016 L0M! (left) and L0E!
(right) B+ → K+J/ψ (→ ℓ+ℓ−) samples. The variables shown are some the input
variables used in the reweighter.

6.6 Invariant mass resolution correction

In simulation, the momentum resolution of the reconstructed electrons is better
than in collision data. This difference in resolution comes from two main sources.
First, differences in the material budget of the detector between data and
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simulation impact on the amount of bremsstrahlung emitted, which in turn
impacts on the momentum resolution. Second, the poor description of the
occupancy of the calorimeter response impacts on the bremsstrahlung recovery,
which influences the mass shape. Therefore, any invariant mass built by using
the dielectron system, e.g. m(e+e−) or m(Kπe+e−) in B0 → K∗0J/ψ (→ e+e−)
decays, is narrower in simulation with respect to data, potentially biasing the
efficiency estimation and the acceptance parametrization of the rare and control
mode.

To study the resolution in simulation and data, a fit to the invariant mass
of the dielectron system is performed on B0 → K∗0J/ψ (→ e+e−) candidates.
The samples are fully selected, except for the q2 region and combinatorial MVA
cut. The simulation is truth-matched and the full set of corrections up to
wReco is included. Since in addition to the constrained dilepton invariant mass
squared, q2

c , several cross-checks are performed with the standard q2 variable,
the resolution is studied both in m(e+e−) =

√
q2 and m(e+e−)B0 =

√
q2
c .

Fits to simulation are performed separately for different years, trigger and
bremsstrahlung categories. The signal shapes are parametrized with a double-
sided Crystal Ball [150](see Eq. 8.6) and fitted in the ranges corresponding to
[2500, 3150] MeV/c2 for m(e+e−)B0 and [2300,3500] MeV/c2 for m(e+e−). An
additional requirement on the invariant Kπe+e− mass with the dilepton mass
constrained to the J/ψ mass, mJ/ψ

DTF ∈ [5150, 5680] MeV/c2, is applied in the fits
to m(e+e−) to reduce the partially reconstructed background.

The same shape is then used for the signal in the fit to data, allowing only
three parameters to float:

• ∆µ, representing a shift between the peak position in data and simulation
and defined as µdata = µsim + ∆µ;

• sσ, representing a scaling factor in the width of the Gaussian core between
data and simulation and defined as σdata = sσ · σsim;

• sα, representing a scaling factor that controls the difference of the right
polynomial tail in data and simulation and defined as αdataR = sα · αsimR
and ndataR = nsimR /sα.

Since the right-hand tail plays no role in the 0γ bremsstrahlung category, sα
is not considered in those data fits. The residual combinatorial component is
modelled using an exponential function. An example of the data fits obtained is
shown on the top and bottom left part of Fig. 6.10 for the L0I trigger category
in the year 2016 for m(e+e−) and m(e+e−)B0 , respectively.

In each year and bremsstrahlung category, the averages of sσ, ∆µ and
µsim among the two trigger categories, denoted sσ, ∆µ and µsim, are used
to approximately correct the simulation, by producing a smeared variable
msmrd(e+e−) (msmrd(e+e−)B0) defined as:

msmrd = mtrue
preFSR+sσ ·(mreco−mtrue

preFSR)+(1−sσ)·(µsim−MJ/ψ )+∆µ . (6.10)
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The mtrue
preFSR is the true (generated) dilepton mass, evaluated from the generator

level tuple by using the difference between the true kinematics of the parent B0

meson and the true kinematics of the hadronic final states. To treat similarly
all the reconstructed events independently of their truth-matching, mtrue

preFSR is
assigned to each event by matching the reconstructed and generated candidates.
mreco is the reconstructed mass in simulation and MJ/ψ is the PDG value [129]
of the J/ψ resonance mass. The first two terms in the formula represent a stretch
in the mreco distribution with respect to the point mtrue

preFSR (this point will
not move), the third term describes the shift needed to put back the stretched
value of µsim into its original position, and the last one describes the additional
shift needed to have the stretched distribution centred in µdata. If mreco is
described by a Gaussian with mean µsim and standard deviation σsim, the
transformed variable msmrd will follow a Gaussian with mean µsim + ∆µ and
standard deviation σsim · sσ.

The right plots in Fig. 6.10 show a comparison between the parametrization
obtained in data (orange) and the shapes obtained from simulation before (black)
and after (blue) the smearing introduced with Eq. 6.10. As it can be seen,
the parametrization obtained from the smeared observables agrees better with
the signal distribution directly obtained from data. This is true for all years
and trigger categories, as the improved compatibility with zero (one) of the
average value of ∆µ (sσ) after the correction shows in Tables 6.2 and 6.3. A
small discrepancy remains however in the right tail of the distribution; this
is expected since the smearing procedure of Eq. 6.10 does not impact the tail
parameters. The systematic associated with this remaining difference between
data and simulation is expected to be small.

Table 6.2: Values of the mass shift and sigma scale obtained from data fits to
the invariant mass m(e+e−), using signal shapes obtained from fits to simulated
samples with (right) and without (left) resolution correction. The values reported,
< ∆µ > and < sσ >, correspond to the mean and standard deviation of ∆µ and
sσ obtained for the different years and trigger categories.

m(e+e−) w/o smearing m(e+e−) with smearing
Run1 Run2 Run1 Run2

0γ < ∆µ > −0.04 ± 2.12 −4.77 ± 1.14 0.20 ± 2.23 0.01 ± 0.66
< sσ > 1.06 ± 0.05 1.13 ± 0.05 1.00 ± 0.04 1.00 ± 0.02

1γ < ∆µ > −0.51 ± 3.77 −9.68 ± 3.95 −0.59 ± 3.45 −0.50 ± 2.69
< sσ > 1.13 ± 0.03 1.14 ± 0.04 1.01 ± 0.02 1.00 ± 0.03

2γ < ∆µ > 3.41 ± 1.72 −10.85 ± 4.64 −0.11 ± 0.80 −0.23 ± 3.76
< sσ > 1.10 ± 0.05 1.10 ± 0.06 1.00 ± 0.03 1.00 ± 0.03
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Table 6.3: Values of the mass shift and sigma scale obtained from data fits to the
invariant mass m(e+e−)B0 , using signal shapes obtained from fits to simulated
samples with (right) and without (left) resolution correction. The values reported,
< ∆µ > and < sσ >, correspond to the mean and standard deviation of ∆µ and
sσ obtained for the different years and trigger categories.

m(e+e−)B0 w/o smearing m(e+e−)B0 with smearing
Run1 Run2 Run1 Run2

0γ < ∆µ > −0.70 ± 0.68 −0.99 ± 0.32 0.05 ± 0.67 −0.01 ± 0.29
< sσ > 1.05 ± 0.06 1.12 ± 0.05 1.00 ± 0.05 1.00 ± 0.03

1γ < ∆µ > −1.42 ± 0.56 −0.07 ± 0.30 −0.02 ± 0.27 −0.00 ± 0.10
< sσ > 1.08 ± 0.13 1.12 ± 0.03 1.02 ± 0.12 1.00 ± 0.03

2γ < ∆µ > −0.91 ± 0.29 −0.17 ± 0.31 −0.04 ± 0.28 0.01 ± 0.22
< sσ > 1.14 ± 0.08 1.10 ± 0.04 1.00 ± 0.05 1.00 ± 0.03

6.7 Impact of the correction chain on the distributions

The different correction steps discussed in this chapter can have a sizable impact
on the distributions of the resonant and rare modes of interest. In the following,
the variation in the variables cos θK , cos θℓ, ϕ, q2 (q2

c ), m(Kπµµ) (m(Kπee))
and m(Kπ) due to the correction chain applied is studied in fully corrected and
selected simulated samples of B0 → K∗0µ+µ− (B0 → K∗0e+e−) decays. The
most important features observed are summarized as follows:

• The use of the PID efficiencies from dedicated calibration samples, rather
than performing a cut on the PID variables obtained from simulation, does
not have a strong impact on the variables of interest. The most relevant
effect can be seen in the cos θK distribution of B0 → K∗0µ+µ− decays, as
shown in Figure 6.11(a) for Run 1.

• The tracking corrections, applied only to the electron samples, have no
impact except for a small shaping in cos θℓ for B0 → K∗0e+e− decays in
Run 2, as shown in Figure 6.11(b). No effect is noticeable in Run 1.

• The kinematic and multiplicity corrections affect similarly muons and
electrons for the different runs and trigger categories. They tend to reduce
the number of events for cos θK ∼ 1 and cos θℓ ∼ −1, as can be seen in
Figure 6.11(c)-(d). These trends can be explained by the correlation that
the fiducial cuts pT (K) > 250 MeV/c and pT (π) > 250 MeV/c introduce
between the transverse momentum of the B0 meson, pT (B), and cos θK .
As Figure 6.13 shows, the cos θK distribution distortion increases as the bin
of pT (B) considered decreases, while no distortion is present if the fiducial
cut is not applied. As a consequence, by using a reweighting scheme that
decreases the importance of events with higher pT (B), as it is done for
wMult&Kin, the impact that the fiducial cut has on the integrated cos θK
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Figure 6.10: On the left are shown the results of fits performed to B0 →
K∗0J/ψ (→ e+e−) candidates for the year 2016 in the L0I category for the
variables m(e+e−), on the top, and m(e+e−)B0 , on the bottom. The sum of
the fit results obtained separately for the different bremsstrahlung categories
0γ, 1γ and 2γ is shown here together with the joint dataset. On the right are
shown the comparisons between signal shape obtained directly from the fits on
the left (orange) and the shapes obtained from simulation before (black) and
after (blue) the smearing correction is applied.

distribution increases. A similar interpretation holds for the behaviour
observed when correcting for the L0 trigger.

• The L0 corrections seem to have the opposite effect for the L0M! and L0I
categories in B0 → K∗0µ+µ− decays (see Figure 6.12(a)): the first one
is qualitatively similar to the impact of wMult&Kin, while the second one
increases the number of events in cos θK ∼ 1 and cos θℓ ∼ −1. A similar
behaviour is seen in Figure 6.12(b) for L0I in the electron case, while no
clear trend can be seen for L0E!.

• No clear trend is observed when considering the HLT corrections.

• The only trend visible when using the correction weight wReco is in
m(Kπℓℓ), as shown in Figure 6.12(c).
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(a) Example of the impact of wPID weights
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(b) Example of the impact of wTRK weights
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(c) Example of the impact of wMult&Kin corrections in B0 → K∗0µ+µ− decays
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(d) Example of the impact of wMult&Kin corrections in B0 → K∗0e+e− decays

Figure 6.11: Collection of the most relevant trends in angles, q2, m(Kπℓℓ) and
m(Kπ) caused by the use of wPID, wTRK and wMult&Kin correction weights on
simulated B0 → K∗0ℓ+ℓ− decays.
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(a) Example of the impact of wL0 corrections in B0 → K∗0µ+µ− decays
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(b) Example of the impact of wL0 corrections in B0 → K∗0e+e− decays
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(c) Example of the impact of wReco corrections in B0 → K∗0µ+µ− and B0 → K∗0e+e−

decays

Figure 6.12: Collection of the most relevant trends in angles, q2, m(Kπℓℓ) and
m(Kπ) caused by the use of wL0 and wReco correction weights on simulated
B0 → K∗0ℓ+ℓ− decays.
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Figure 6.13: Variation of cos θK in three bins of pT (B) with and without the
fiducual cuts pT (K) > 250 MeV/c and pT (π) > 250 MeV/c applied. The sample
used for this check corresponds to a private production of generator level MC
for B0 → K∗0e+e− in the central-q2

c region.

When considering the overall impact of all the corrections steps discussed, the
main effect seems to be a decreasing behaviour in cos θK in B0 → K∗0µ+µ−

decays, common to L0I and L0M!, and a decrease of cos θℓ in the region close to
-1 for L0M! only. In the electron samples, probably due to the reduced statistics,
no clear trend in visible after the full chain of corrections is applied.
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Chapter 7

Efficiency

The selections described in Sec. 5.2 aim to isolate the decays of B0 → K∗0ℓ+ℓ−

and B0 → K∗0J/ψ (→ ℓ+ℓ−) from potential backgrounds. At the same time,
they inevitably distort their distributions of interest, reducing the amount of
B0 decays available to study with respect to the ones that were originally
produced. The description of these two effects is the aim of the following chapter.
Firstly, the strategy for the determination of the absolute efficiencies of signal
and background decays from simulation is discussed in Sec. 7.1. A special
attention is given to the ratio of absolute efficiencies between B0 → K∗0ℓ+ℓ−

and B0 → K∗0J/ψ (→ ℓ+ℓ−) channels, called Rε, used to impose a constraint
on the observed yield of the signal in the final fit to data (see Section 10.3).
Secondly, the impact of the selections in distributions of interest is studied
and parametrized with a four-dimensional effective acceptance function. This
function is multiplied together with the signal pdf in the amplitude fits to data
(see Sec. 9.2.3 and Ch. 10).

7.1 Integrated and relative efficiency

The total efficiency of a decay (ϵtot) corresponds to the probability that an event
generated by a p-p collision in LHCb is reconstructed and survives the full chain
of selections described in Sec. 5.2. It can be measured from fully corrected and
smeared simulation samples as:

ϵtot = εgeo · εfull|geo , (7.1)

where

• εgeo represents the efficiency of having all final state particles in the
acceptance of the LHCb detector, corresponding to a polar angle θ
between 10 and 400 mrad with respect to the axis of the detector. For
B0 → K∗0ℓ+ℓ− and B0 → K∗0J/ψ (→ ℓ+ℓ−) decays, this corresponds to
εgeo ≈ 15 − 17%, with a relative uncertainty between 0.2 and 0.4%.

• εfull|geo, also referred to as selection efficiency, corresponds to the efficiency
of applying the full selection chain, including the q2 selection, fit mass
range and MVA selection, for the events that are already in the LHCb
acceptance.

Eq. 7.1 needs to be slightly modified when computing the total efficiencies of
some of the simulated backgrounds, due to the use of an intermediate filtering
step applied during the production. The expression becomes

ϵtot = εgeo · εflt|geo · εfull|flt , (7.2)
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where εflt|geo corresponds to the efficiency of the filtering step applied, given that
the events are already in the LHCb acceptance. The use of filtering steps in the
generation of samples has the advantage of reducing the amount of disk space
used for storing the simulation, without loosing any of the events that pass the
full final selection.

7.1.1 Selection efficiency

The selection efficiency εfull|geo (εfull|flt if a filtering step is present) is computed
using the fully corrected and smeared simulated samples thanks to the following
expression:

εfull|geo = A

B
· C
D

, (7.3)

A =
DecayTuple∑

w

(wPID · wTRK · wL0 · wHLT · wMult&Kin · wReco)|Selection(A) ,

B =
MCDecayTuple∑

w

(wMult&Kin)|Selection(B) ,

C =
DecayTuple∑

w

(wPID · wTRK · wL0 · wHLT · wMult&Kin)|Selection(NORM) ,

D =
DecayTuple∑

w

(wPID · wTRK · wL0 · wHLT · wMult&Kin · wReco)|Selection(NORM) ,

(7.4)

where:

• DecayTuple and MCDecayTuple represent the samples over which the
sums are computed, respectively the fully reconstructed simulated samples
and the generator level samples inside the LHCb acceptance before any
reconstruction.

• wi are the weights defined in Ch. 6, describing each of the corrections
performed to improve the agreement between simulation and data. Notice
that the weight wMult&Kin appears in B to normalize the expression in A,
since wMult&Kin is not normalized by default.

• Selection(A) is the full selection described in Sec. 5.2, except for the PID
cuts of kaons, pions and muons, whose efficiency in simulation is taken
into account with the use of wPID.

• In order to estimate the full efficiency, Selection(B) should correspond to
no selection at all.1 However, as the nSPDHits variable is badly modelled

1The geometric and filtering selections are however already applied to the MCDecayTuple
sample.
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in simulation, the effect of the corresponding cut is removed from εfull|geo
by defining Selection(B) as nSPDHits >600(450) for Run 1 (Run 2).
Ignoring the efficiency of this cut, introduces a bias in the estimation
of the total absolute efficiency. However, since no much difference is
expected in the nSPDHits distribution of the rare and resonant mode, it
can be assumed safely that the main quantity of interest, the ratio between
the two efficiencies, is unbiased.

• The cut used to normalize wReco, Selection(NORM), is a combination of
truth-matching, preliminary selection, L0, HLT and occupancy cuts. The
additional terms C and D (both of which operate on fully reconstructed
DecayTuple samples) are necessary because the BDT which generates the
wReco simulation weights is not normalized, and the inputs to this BDT
are not available in the generator level MCDecayTuple samples. The C/D
ratio therefore acts as an additional normalization for this weight.

Total efficiencies are calculated per-run and per-polarity and, if multiple
candidates survive the full chain of selections, one is chosen randomly. Tables 7.1
and 7.2 report the total efficiencies for the resonant modes after the set of
selections corresponding to the data fits in Sec. 8.3.2 and 8.3.3. The composite
efficiencies that combine years and polarities are computed as a luminosity
weighted sum:

ϵtot =
∑
y,m Lij · ϵy,mtot∑

y,m Lym
, (7.5)

where Lym corresponds to the integrated luminosity for the year y and magnet
polarity m. Due to the correlations between the different terms of Eq. 7.3, the
uncertainty is obtained using a bootstrapping procedure that consists in assigning
to each reconstructed candidate 100 different Poisson distributed weight values,
with a mean value of 1. In this way, 100 different efficiencies can be obtained
from the 100 data samples generated by the use of these weights. The mean
and standard deviation of the efficiencies obtained is then used as nominal value
and uncertainty for the estimated total efficiency. Note that a similar procedure
can be used to obtain the uncertainties and correlations of the data-simulation
corrections weights, and a straightforward combination of these two sources of
systematics uncertainties on the absolute efficiency is possible.

Table 7.1: Total efficiencies ϵtot for the selection used in the mass fit of Sec.8.3.2.

Channel Year L0I L0L!

B0 → K∗0J/ψ(→ e+e−) Run 1 (6.67 ± 0.02)·10−4 (7.23 ± 0.02)·10−4

Run 2 (10.49 ± 0.03)·10−4 (11.95 ± 0.03)·10−4

B0 → K∗0J/ψ(→ µ+µ−) Run 1 (17.18 ± 0.04)·10−4 (44.66 ± 0.06)·10−4

Run 2 (23.70 ± 0.05)·10−4 (57.17 ± 0.08)·10−4
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Table 7.2: Total efficiencies ϵtot for the selection used in the mass fit of Sec.8.3.3.

Channel Year L0I L0L!

B0 → K∗0J/ψ(→ e+e−) Run 1 (6.60 ± 0.02)·10−4 (7.18 ± 0.02)·10−4

Run 2 (10.41 ± 0.03)·10−4 (11.87 ± 0.03)·10−4

B0 → K∗0J/ψ(→ µ+µ−) Run 1 (17.00 ± 0.04)·10−4 (44.18 ± 0.06)·10−4

Run 2 (23.45 ± 0.05)·10−4 (56.58 ± 0.08)·10−4

B0 → K∗0ψ(2S)(→ e+e−) Run 1 (5.34 ± 0.03)·10−4 (7.09 ± 0.04)·10−4

Run 2 (8.34 ± 0.03)·10−4 (11.35 ± 0.04)·10−4

B0 → K∗0ψ(2S)(→ µ+µ−) Run 1 (15.72 ± 0.05)·10−4 (42.35 ± 0.11)·10−4

Run 2 (21.22 ± 0.05)·10−4 (53.31 ± 0.09)·10−4

7.1.2 Relative efficiency to control channel

The relative efficiency between the rare and control mode is a fundamental
ingredient of the measurement, as it allows estimating the expected number of
events for the signal rare mode as a function of the parameters that describe
the differential decay rate. A good control of this quantity over the different q2

regions of interest, both in muons and electrons, is of utmost importance. The
relative efficiency is defined as

Rε(i, j, k) = ϵ
sig(i,j,k)
tot

ϵ
J/ψ(j,k)
tot

, (7.6)

where the indices i,j and k refer to the q2 region, run and trigger category of the
computed ratio, respectively. Figures 7.1 and 7.2 show the evolution of these
ratios after each of the corrections steps for B0 → K∗0µ+µ− and B0 → K∗0e+e−

decays. The value of the ratios has been multiplied with a random number
to avoid unblinding the value of absolute efficiencies of the rare mode. The
maximum variation observed in each channel, run and trigger category is below
4%, with a coherent decreasing behaviour that is common between all of them.
This suggests that any systematic in the estimation of the branching ratio coming
from data-simulation differences should be below this level. At the same time,
the impact of such a systematic on the final quantities is expected to be even
lower, since part of the variation observed is correlated between muons and
electrons, and is thus expected to largely cancel when looking at LFU quantities.

7.2 Effective acceptance

Bremsstrahlung, selections and reconstruction effects distort the distributions of
the angles and q2 of the signal decay, defined in Sec. 2.2. This distortion can
be organized, for simplification, in three subsequent steps: final state radiation,
acceptance and resolution, as shown in Eq. 7.7. Final state radiation corresponds
to the bremsstrahlung emission of one or multiple photons by any of the charged
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Figure 7.1: Evolution of the blinded efficiency ratio between B0 → K∗0µ+µ−

and B0 → K∗0J/ψ (→ µ+µ−) in the trigger categories L0I (left) and L0M! (right)
and in Run 1 (top) and Run 2 (bottom).

particles of the signal final state. These emissions affect the measurement of the
decay branching ratio and angular distribution, and can be particularly dangerous
in LFU tests since they can induce non-universal corrections of the order of
O(α) ln(mℓ/MB), which can be large between different lepton generations [31, 55].
These effects, not included in the differential decay rate of Eq. 2.2, are corrected
through the use of the software package Photos [133]. The agreement between
dedicated theoretical studies and the results provided by Photos ensures the
possibility of effectively removing these QED effects and retrieve the observables
of interest from data using simulation [55, 151]. The impact of FSR, whose exact
functional form is not really of interest for this discussion, is described in the
rightmost part of Eq. 7.7, with a generic convolution of the theory decay rate
fth(Ωt, q

2
t ) with the kernel FQED. The second contribution from the right in
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Figure 7.2: Evolution of the blinded efficiency ratio between B0 → K∗0e+e−

and B0 → K∗0J/ψ (→ e+e−) in the trigger categories L0I (left) and L0E! (right)
and in Run 1 (top) and Run 2 (bottom).

Eq. 7.7 represents the impact of our full selection on the distribution after the
emission of FSR. This, usually referred to as acceptance, is indicated as ϵ(Ωf , q2

f ).
The last contribution describes the resolution, that is the effect of the smearing
of different features of the decay chain due to the physical characteristics of the
LHCb detector. Notice that the boundaries between these three steps are not
always well-defined, and is possible to find multiple situations where the order
of the terms might be inverted, or two more steps mixed.

f(Ωr, q2
r) =

∫
dΩrdq2

rK(Ωr, q2
r ; Ωf , q2

f )︸ ︷︷ ︸
resolution

·

acceptance︷ ︸︸ ︷
ϵ(Ωf , q2

f ) ·
∫

dΩtdq2
tFQED(Ωf , q2

f ; Ωt, q2
t )︸ ︷︷ ︸

FSR

fth(Ωt, q2
t )

(7.7)
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The main drawback of using Eq. 7.7 directly in the measurement is its
computational complexity, since it involves two eight-rank probability transition
tensors and a four-dimensional acceptance function.

In the following work, a simplified approach is preferred: the transformation
fth(Ωt, q2

t ) → f(Ωr, q2
r) is approximated by the effective acceptance function

ϵeff (Ω, q2) = f(Ω, q2)/fth(Ω, q2) , (7.8)

which encodes the combined effect of FSR, selection and resolution. It is
important to point out that for this expression to become exact, not only the
acceptance, FSR and resolution kernels obtained from the simulation, but also
the model used in the generation must be compatible with what is observed in
data. The simplification obtained by the use of Eq. 7.8 brings thus an additional
model dependence in the analysis, not present in Eq. 7.7. This model dependence
is treated here as a source of systematic uncertainty, discussed more in detail in
Sec. 10.6, and is expected to be more important as the width of the different
convolution kernels grows. For muon decays, where both FSR and resolution
effects are less relevant, the effective acceptance equals the selection acceptance,
i.e. ϵeff (Ωr, q

2
r) = ϵeff (Ωt, q

2
t ), and almost no model dependence is expected

in the parametrization of ϵeff . This strategy corresponds to what has already
been used in the previous binned analysis of B0 → K∗0µ+µ− [29]. Figure 7.3
shows a comparison of the resolution in the angles and dilepton mass squared
for muons and electrons. As it can be seen, the resolution in the angles cos θK
and ϕ is almost identical between the two lepton generations, while a sizable
difference can be observed for cos θℓ. The largest difference comes however from
the dilepton mass squared, where the resolution in the electron mode is roughly
four times that observed for muons. This last contribution is expected to be the
main potential source of systematic uncertainty in the parametrization of the
electron acceptance. However, thanks to the corrections described in Sec. 6.6,
the resolution kernel in simulation matches closely what is observed in data,
suggesting that the use of the effective acceptance is expected to be a good
approximation of Eq. 7.7 also for the electron channel. Any residual model
dependence on the underlying physics model will be considered as a source
of systematics and is currently expected to be subleading with respect to the
statistical uncertainty of the measurement.

7.2.1 Method of moments

The effective acceptance is parametrized using a method of moments approach in
the three decay angles cos θK , cos θℓ, ϕ and q2, without assuming factorization.
This results in the expression

ϵeff (cos θK , cos θℓ, ϕ, q2) =
∑

k,l,m,n

cklmnL(cos θK , k)L(cos θℓ, l)L(ϕ′,m)L(q2′
, n),

(7.9)
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Figure 7.3: Resolution distributions for simulated B0 → K∗0µ+µ− and
B0 → K∗0e+e− decays, defined as the difference between reconstructed and
generator level variables after QED corrections for (top left) cos θK , (top right)
cos θℓ, (bottom left) ϕ and (bottom right) q2 and q2

c . Note that the resolution
in the angular distributions for muons and electrons is quite similar, with the
biggest difference observed for cos θℓ.

where L(x, a) is the Legendre polynomial of order a in the variable x, with
x ∈ [−1, 1]. Since the variables ϕ and q2 are not naturally defined in the range
desired, the parametrization is performed in ϕ′ and q2′, defined as{

q2′ = 2q2−q2
max−q2

min

q2
max−q2

min

ϕ′ = ϕ/π.
(7.10)

The coefficients cklmn are determined using Monte Carlo integration and
the orthogonality properties of the Legendre polynomials. Their definition
corresponds to
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cklmn = 1
N ′

N∑
i=1

wi · c̃iklmn(cos θK , cos θℓ, ϕ, q2) =

1
N ′

N∑
i=1

wi

[(
2k + 1

2

) (
2l + 1

2

) (
2m+ 1

2

) (
2n+ 1

2

)
× L(cos θK , k)L(cos θℓ, l)L(ϕ,m)L(q2, n)

]
,

(7.11)

where the sum is performed over each ith simulated event, N is the total number
of events in the sample used and wi is the per-event weight. The normalization
is given by N ′ =

∑N
i=1 wi.

7.2.2 Generator level parametrization

As described in Eq. 7.8, before the parametrization of ϵeff is necessary to
obtain the inverse of the functional form of the generator level distribution
used in the simulation of the decays of interest, fgeneff (cos θK , cos θℓ, ϕ, q2). This
is obtained by applying the method of moments to a set of generator level
samples of B0 → K∗0µ+µ−, B0 → K∗0e+e−, B0 → K∗0J/ψ (→ µ+µ−) and
B0 → K∗0J/ψ (→ e+e−) decays, where no QED corrections are included. The
samples are produced using the LHCb software with the same configurations
used for the generation of the reconstructed samples. The orders of the
polynomials used to parametrize the generator level function are chosen to
provide a satisfactory description of the distributions of interest and correspond
to:

• 5, 4, 8, 18 in cos θK , cos θℓ, ϕ, q2 for B0 → K∗0µ+µ−, where q2 ∈
[0.7, 8.5]GeV2/c4;

• 5, 4, 8, 12 in cos θK , cos θℓ, ϕ, q2 for B0 → K∗0e+e−, where q2 ∈
[0.5, 10]GeV2/c4;

• 5, 4, 8 in cos θK , cos θℓ, ϕ both for B0 → K∗0J/ψ (→ e+e−) and
B0 → K∗0J/ψ (→ µ+µ−).

The ranges in the parametrization have been chosen to contain the q2 regions
of interest, and to have a buffer region at the boundaries to avoid being
influenced by the border instability of the parametrization. Figure 7.4 shows
the parametrization used for the generator level functions for B0 → K∗0e+e−

(left) and B0 → K∗0J/ψ (→ e+e−) (right) decays. The corresponding muon
distributions are analogous and are not shown for brevity. A general agreement
between the simulated datasets and the projected parametrization is observed.
However, inspecting the distributions, it can be noticed that in B0 → K∗0e+e−

simulation there is a step in the q2 region slightly below 6 GeV2/c4. This effect is
related to the discontinuity of the effective Wilson coefficients C7 and C9 used in
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the parametrization of the B0 → K∗0ℓ+ℓ− decay form factors [136] in EvtGen;
the NNLO corrections, as obtained from Ref. [152] are only available up to
roughly 5.7 Gev2/c4 and are afterwards turned off in the simulation, causing the
discontinuity observed in q2. The effect of this discontinuity is expected to have
a marginal effect in the parametrization of the acceptance, thanks to the high
order polynomials that closely mimic this step.

7.2.3 Effective acceptance parametrization

Once the generator level parametrization is available, the effective acceptance
ϵeff can then be parametrized as described in Eq .7.9. The samples used
correspond to truth-matched, fully weighted and smeared simulation candidates
of B0 → K∗0µ+µ−, B0 → K∗0e+e−, B0 → K∗0J/ψ (→ µ+µ−) and B0 →
K∗0J/ψ (→ e+e−) decays. The selections applied correspond to the full selection
described in Sec. 5.2, where in particular:

• For B0 → K∗0e+e− (B0 → K∗0J/ψ (→ e+e−)) decays, it is required a
MVA greater than 0.97, a mass window of m(Kπee) ∈ [4900, 5700] MeV/c2

(m(Kπee) ∈ [4600, 5700] MeV/c2) and the region of q2
c corresponding to

central-q2
c (J/ψ-q2

c ). In B0 → K∗0J/ψ (→ e+e−) decays is additionally
requested that mJ/ψ

DTF > 5150 MeV/c2, to reduce to a negligible level the
partially reconstructed component in the fit.

• For B0 → K∗0µ+µ− (B0 → K∗0J/ψ (→ µ+µ−)) decays, it is required a
MVA greater than 0.8, a mass window of m(Kπµµ) ∈ [5170, 5700] MeV/c2

and the region of q2 corresponding to central-q2 (J/ψ-q2).

The per-event weight wacc used in simulation corresponds to:

wacc = wtot · wmix
fgeneff (cos θKr, cos θℓr, ϕr, q2

r)
, (7.12)

where the weight wmix allows the correct combination of simulated samples for
different years and magnet polarities, taking into account their relative integrated
luminosities and total efficiencies. To avoid instabilities in the parametrization,
it is additionally required that fgeneff (cos θK , cos θℓ, ϕ, q2) ≤ 0, to remove negative
and infinite weights, and that the top 0.05%, 0.2% and 0.003% highest weights
for B0 → K∗0µ+µ−, B0 → K∗0e+e− and B0 → K∗0J/ψ (→ ℓ+ℓ−) decays are
rejected. These thresholds have been motivated by an empirical inspection of the
1D-projection of the acceptance parametrizations, together with the negligible
impact that they seem to have on the generator level observables as shown in
Sec. 9.2.2. It is important to point out that the higher the statistics in the
simulated sample, the smaller is the percentage rejected, suggesting that the
need to remove more events is mainly due to high weights that are not properly
averaged out in some corners of the phase space.

The acceptance is modelled using the lowest orders of the polynomials that
show good description of the angular distributions, corresponding to Legendre
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Figure 7.4: Generator level distributions of cos θK , cos θℓ, ϕ and q2 for
B0 → K∗0e+e− (left) and B0 → K∗0J/ψ (→ e+e−) (right) simulated decays (in
black) with the parametrization performed with the method of moments in blue.
A similar parametrization is performed for B0 → K∗0µ+µ− and B0 → K∗0J/ψ (→
µ+µ−) decays. No distribution is shown for q2 in B0 → K∗0J/ψ (→ e+e−) since
its parametrization is not used in the determination of the effective acceptances.
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Figure 7.5: Acceptance parametrization for B0 → K∗0J/ψ (→ µ+µ−) (left) and
B0 → K∗0J/ψ (→ e+e−) (right) in Run 2 for the trigger category L0I. In blue is
shown the nominal acceptance, while in green is shown the 1σ contour given by
the bootstrapping of the samples used to parametrize the acceptance.
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Figure 7.6: Acceptance parametrization for B0 → K∗0µ+µ− (left) and B0 →
K∗0e+e− (right) in Run 2 for the trigger category L0I. In blue is shown the
nominal acceptance, while in green is shown the 1σ contour given by the
bootstrapping of the samples used to parametrize the acceptance.
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polynomials of order five or less for cos θK , four or less for cos θℓ, six or less for
ϕ. Additionally, to enforce a symmetric behaviour in ϕ, the odd terms in its
parametrization have been set to zero. Legendre polynomials of order three are
used for q2 and q2

c in B0 → K∗0µ+µ− and B0 → K∗0e+e− decays, respectively,
while no dependency on these variables is present for the parametrization of
the acceptance in the resonant channels. In the rare (control) mode, these
correspond to a total of 840 (210) coefficients, some of which are set to zero
due to the symmetry of ϕ. The acceptance is parametrized separately for each
run of data-taking and for each trigger category of interest. Figures 7.5 and
7.6 show the parametrization of the acceptance for B0 → K∗0J/ψ (→ ℓ+ℓ−) and
B0 → K∗0ℓ+ℓ− decays in Run 2 for the L0I trigger category. As can be seen,
the projections of the parametrization closely match the reweighted sample in
most of the phase space with one clear exception: the high region of cos θK in
the muon channels. The impact that this mismodelling could have is discussed
in Sec. 9.2.3, where the possibility to use higher order parametrizations of the
acceptance to estimate the size of the bias introduced is investigated. Similar
behaviours are observed for the other trigger categories and runs and are not
shown here for brevity.
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Chapter 8

Invariant mass parametrization and
yield extraction from fits
The following chapter discusses two fundamental ingredients that enter the
amplitude fits to the rare mode: the parametrization of the rare mode invariant
mass distributions for B0 → K∗0ℓ+ℓ− decays, and the determination of the
yields from B0 → K∗0J/ψ (→ ℓ+ℓ−) reconstructed decay candidates. The former
are described in Sec. 8.2 together with the invariant mass parametrizations for
B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays. The latter are
obtained in Sec. 8.3.2 by performing simultaneous fits to B0 → K∗0J/ψ (→ ℓ+ℓ−)
decay candidates in the invariant mass m(Kπℓℓ). The chapter ends with
Sec. 8.3.3 describing an additional set of fits to B0 → K∗0J/ψ (→ ℓ+ℓ−) and
B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays performed in the mJ/ψ

DTF and mψ(2S)
DTF variables.

As discussed in more detail in Sec. 9.1, these fits can be used to test the quality
of the correction chain in regions of q2 different from where they have been
derived.

8.1 Fit generalities

All mass fits are obtained through the maximization of an unbinned extended
maximum likelihood L, defined as

L(x;Ntot, θ) = e−Ntot ·NNobs
tot

Nobs!
×
Nobs∏
i

P(xi; θ) , (8.1)

where the first term corresponds to the Poissonian probability of observing a
total number of events Nobs if the expected number corresponds to Ntot, while
the second corresponds to the probability that the observed events x = {xi}Nobsi=1
are obtained from the probability density function (pdf ) P(xi; θ) with the set
of parameters θ. The values of the parameters that maximize the likelihood
L represent the best estimate of the true parameters for Ntot and θ, and are
indicated as N̂tot and θ̂.

In fits to data, the chosen mass range can be populated not only by signal,
but also by several background contributions. The function P(xi; θ) can then be
re-written as

P(xi; θ) = NS
Ntot

S(xi; θ) +
∑
k

Nk
B

Ntot
Bk(xi; θ) , (8.2)

where NS and S(xi; θ) correspond to the expected yield and pdf of the signal
component, respectively, while Nk

B and Bk(xi; θ) correspond respectively to the
expected yield and pdf of the kth background component considered in the fit.
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8. Invariant mass parametrization and yield extraction from fits

Some backgrounds components might not have a distinctive feature in their
invariant mass and, when included in the fit, could cause some instability. This
issue is greatly reduced by constraining the expected size of these backgrounds
with respect to the resonant modes in the fit. For the decay of a generic b-hadron
Hb, the expected yield can be expressed as:

Nψn
Hb

= fHb
fd

· B(Hb → X)
B(B0 → K∗0ψn(→ ℓ+ℓ−)) · ϵ(Hb → X)

ϵψn
· NB0→K∗0ψn(→ℓ+ℓ−) ,

(8.3)
where:

• Nψn
Hb

corresponds to the expected yield of the decay mode Hb → X, cali-
brated from the observed yield in the resonant mode NB0→K∗0ψn(→ℓ+ℓ−);

• fHb and fd correspond to the fragmentation fractions to produce a Hb and
B0 hadron, respectively;

• B(Hb → X) and B(B0 → K∗0ψn(→ ℓ+ℓ−)) indicate the branching ratios
of the corresponding modes;

• ϵ(Hb → X) and ϵψn correspond to the total efficiencies of the background
and resonant mode, respectively, as obtained from simulated samples. Only
PID and tracking corrections are considered for this calculation.1

The total expected yield Nψn
Hb

can then be constrained by applying a set of
Gaussian constraints to the reconstruction efficiencies, fragmentation fractions
and branching ratios of Eq. 8.3. The total likelihood is then modified with the
multiplication of an additional penalty term of the form:

Lconstr =
∏
j

1√
2πσj

e
− 1

2

( ηj−ηconstr
j

σconstr
j

)2

, (8.4)

where ηj corresponds to the additional fit parameters introduced with the jth
Gaussian constraint, and ηconstr

j and σconstr
j to then mean and standard deviation

of the parameter, as determined either from simulation or from literature.
In the case in which different fits use the same parameters, e.g. multiple

backgrounds share the same fragmentation fraction, it is sometimes convenient
to perform these fits simultaneously, thus allowing the optimization to make use
of the higher statistics that comes from the combination of different samples. A
simultaneous fit simply corresponds to the optimization of the joint likelihood

Lsim = Lconstr ×
∏
k

Lk , (8.5)

1The size of the uncertainty on the efficiencies obtained from the backgrounds considered
is expected to be larger than the variation due to the different corrections steps. To simplify
the analysis strategy only the first correction steps are considered.
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Mass signal parametrization from simulation

equal to the multiplication of the single likelihoods Lk. The term describing the
Gaussian constraints, if present, should be included without repetition.

All likelihoods and pdf used in this work are implemented in TensorFlow [153]
within a framework developed specifically for the amplitude analysis described
in Ref. [144] and in this work, while the optimization of the likelihood is carried
out in MINUIT [154]. The performance of this framework has been cross-checked
and verified against the fitting package RooFit [155], widely used in the HEP
community.

8.2 Mass signal parametrization from simulation

From first principles, the invariant mass lineshape for the decays B0 →
K∗0ψn(→ ℓ+ℓ−) and B0 → K∗0ℓ+ℓ− should correspond to a narrow peak at
5279.6±0.15 MeV/c2, as reported by Ref. [129]. However, due to a combination
of effects such as bremsstrahlung emission and the finite momentum resolution of
the tracking in LHCb, the sharp peak is modified into a distribution determined
by the details of the reconstruction. To account for these multiple effects, the
main strategy is to use the fully corrected and smeared simulation to obtain
an effective parametrization of the invariant mass line shape, and then to allow
some residual freedom when fitting the data. This approach has, however, the
disadvantage of breaking the correlation between the reconstructed invariant
mass of the B0 and the remaining variables of the fit. The impact of such effect
is thought to be small and neglected in this work.

As already discussed in Sec. 5.2.4.2, only two types of invariant masses are
used in the fits: m(Kπℓℓ) and mψn

DTF , with ψn = J/ψ , ψ(2S). The former
corresponds to the latter if the decay is refitted constraining the dilepton pair
mass to the nominal mass of the resonances. Their shape is modelled from
truth-matched fully corrected simulated samples as a superposition of Gaussians
and double-sided Crystal Ball (DSCB) functions, as explained more in detail
in the following. A DSCB corresponds to a variation of the standard Crystal
Ball function [150], characterized by a common Gaussian core shared by two
independent power law tails on the opposite sides of the peak and defined as:

PDSCB(m|µ, σ, α, n) =



aL(
bL − (m−µ)

σ

)n if (m−µ)
σ < αL

e
−(m−µ)2

2σ2 if − αL <
(m−µ)
σ < αR

aR(
bR + (m−µ)

σ

)n if (m−µ)
σ > αR

(8.6)
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8. Invariant mass parametrization and yield extraction from fits

with

aL,R =
(
nL,R

|αL,R|

)nL,R

e− 1
2α

2
L,R ,

bL,R = n

|αL,R|
− αL,R ,

(8.7)

where µ and σ are the mean value and resolution of the Gaussian part of the
function, the sign of the α parameter governs the right-handed or left-handed
location of the tail and the parameter n drives the power law associated to the
decrease of the tail.

The invariant mass shape used in fits to the muon channels is parametrized
with two DSCB and a Gaussian, corresponding to:

Sµ(m) =f2 ·
(
f1 · PDSCB(m|µ, σ1, αL, αR, nL, nR)

+ (1 − f1) · PDSCB(m|µ, σ2, , αL, αR, nL, nR)
)

+ (1 − f2)G(m|µG = µ+ ∆µG, σG) . (8.8)

In the electron case, the invariant mass shape strongly depends on the number
of electrons in the final state that have been corrected by the bremsstrahlung
recovery algorithm. To improve the description of the mass shape, the events
are therefore separately parametrized in three bremsstrahlung categories: 0γ, 1γ
and 2γ, corresponding to events for which none, one or more than one photon
cluster has been added to the dielectron candidate to correct its momentum due
to bremsstrahlung. The full mass model can be then written as

Se(m) = f0γS0γ(m) + f1γS1γ(m) + (1 − f0γ − f1γ)S2γ(m) , (8.9)

where f0γ and f1γ correspond to the fractions of events belonging to the 0γ
and 1γ categories in simulation. In fits to B0 → K∗0e+e− decays, the shape
used to parametrize the invariant mass of the single bremsstrahlung category
is a DSCB. An additional Gaussian is added for the shapes of the 1γ and 2γ
categories for the fits to B0 → K∗0J/ψ (→ e+e−) decays in the mass m(Kπee).
To reduce the differences caused by the mismodelling of the resolution in the
dielectron momenta, the signal shapes are parametrized using the smeared mass
msmrd(Kπe+e−) rather than m(Kπee) (see Sec. 6.6). In fits to m(Kπee)ψ(2S)

DTF ,
the combination of a DSCB and a Gaussian is used for all bremsstrahlung
categories, while in fits to m(Kπee)J/ψDTF the parametrization is extended
including a second additional Gaussian in each category. In all cases, the choice
of including an additional Gaussian is based on the improvement that such term
provides on the parametrization of the simulation in the tails of the distributions.
Figure 8.1 shows the results of the fit results to simulated candidates for
B0 → K∗0ℓ+ℓ− and B0 → K∗0J/ψ (→ ℓ+ℓ−) decays in the m(Kπℓℓ) system,
while Figure 8.2 shows the corresponding results for the fits to m(Kπℓℓ)J/ψDTF in
B0 → K∗0J/ψ (→ ℓ+ℓ−) and m(Kπℓℓ)ψ(2S)

DTF in B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays.
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(a) Fits to simulated B0 → K∗0ℓ+ℓ− decays in m(Kπℓℓ)
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(b) Fits to simulated B0 → K∗0J/ψ (→ ℓ+ℓ−) decays in m(Kπℓℓ)

Figure 8.1: (a) Fits to the invariant mass distributions m(Kπℓℓ) of the simulated
decays of B0 → K∗0µ+µ− (left) and B0 → K∗0e+e− (right) in the central-q2 and
central-q2

c regions, respectively. (b) Fits to the invariant mass distributions of the
simulated decays of B0 → K∗0J/ψ (→ µ+µ−) (left) and B0 → K∗0J/ψ (→ e+e−)
(right) in the J/ψ-q2 and J/ψ-q2

c regions, respectively. All fits shown correspond
to samples selected in L0I trigger category for Run 2 conditions.

The left columns correspond to the muons, while the right ones to the electron
modes.

The parametrizations thus obtained are used as starting point to describe
the mass lineshape of the different signal channels in data. All parameters
obtained from simulation are fixed to their best fit values. To account for
residual simulation-data differences, two additional parameters are introduced
and allowed to float in the fit: ∆µ and sσ, corresponding to a shift and a
stretching of the distribution. Additional care must be taken when stretching
pdf s that contain multiple Gaussians together with a DSCB: since these are not
forced to be centred at the peak of the DSCB, their centre must be transformed
as µG → (µG · sσ − (sσ − 1) · µDSCB) + ∆µ. In the fits to m(Kπe+e−) for
B0 → K∗0J/ψ(→ e+e−) decays, a further parameter is allowed to float: seαR ,
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(a) Fits to simulated B0 → K∗0J/ψ (→ ℓ+ℓ−) decays in m(Kπℓℓ)J/ψDTF
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(b) Fits to simulated B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays in m(Kπℓℓ)ψ(2S)
DTF

Figure 8.2: (a) Fits to the invariant mass distributions m(Kπℓℓ)J/ψDTF of the
simulated decays of B0 → K∗0J/ψ (→ µ+µ−) (left) and B0 → K∗0J/ψ (→
e+e−) (right) in J/ψ-q2 (RK∗0). (b) Fits to the invariant mass distributions
m(Kπℓℓ)ψ(2S)

DTF of the simulated decays of B0 → K∗0ψ(2S)(→ µ+µ−) (left) and
B0 → K∗0ψ(2S)(→ e+e−) (right) in ψ(2S)-q2 (RK∗0). All fits shown correspond
to samples selected in L0I trigger category for Run 2 conditions.

representing an additional degree of freedom for the right-hand tail of the
DSCB. This parameter is introduced in Se(m) through the transformation
αdataR = seαR ·αsimR and ndataR = nsimR /seαR and is needed to improve the description
of the right-hand tail in data.

8.3 Mass fits to B0 → K∗0ψn decays

In the following, the two set of mass fits performed on the resonant modes
are presented. Due to the similarities between the fits in m(Kπℓℓ) in the
B0 → K∗0J/ψ (→ ℓ+ℓ−) channel and the fits in m(Kπℓℓ)J/ψDTF and m(Kπℓℓ)ψ(2S)

DTF

for the B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−) channels, the
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Mass fits to B0 → K∗0ψn decays

discussion of the background composition used in the mass fits is kept together
and discussed in Sec. 8.3.1. The details of the different fits are instead discussed
in Secs. 8.3.2 and 8.3.3.

8.3.1 Background parametrization

The backgrounds components considered in fits to B0 → K∗0J/ψ (→ ℓ+ℓ−) and
B0 → K∗0ψ(2S)(→ ℓ+ℓ−) data candidates are:

• Combinatorial:
The combinatorial background is modelled with a decreasing exponential
of slope λℓ, separately for different lepton generations ℓ = µ, e, runs and
trigger categories. The expected yield N ℓ

comb and the slope λℓ are left free
to float in the fits.

• Λ0
b → pKψn(→ ℓ+ℓ−), with ψn = J/ψ , ψ(2S):

This contribution is modelled with a binned KDE lineshape, separately
for different trigger categories, but joining the different years of simulation
available regardless of the different integrated luminosities. The samples
have been truth-matched allowing single (p→π) and double mis-ID
(p→K ,K→π) contributions. Fig. C.1(a) shows an example of such
parametrization for the L0I trigger category for muons and electrons,
respectively. To improve the quality of the simulation used, two set
of corrections have been considered: a data-driven correction for the
underlying dynamics of the two-dimensional plane of m(pK) and m(pJ/ψ)
based on Ref. [156], and a two-dimensional kinematic correction of the
pT (Λ0

b) and η(Λ0
b) spectrum of the Λ0

b at production based on Ref. [62].
The shape obtained is kept fixed in fits to data. Due to the small expected
size of this background in data (e.g. see Tables 5.9), its yield cannot be
allowed to float freely. Instead, it is parametrized with respect to the
observed yield of the corresponding signal resonant mode using Eq. 8.3,
where the parameters

fΛ0
b

fd
, B(Λ0

b→pKψn(→ℓ+ℓ−))
B(B0→K∗0ψn(→ℓ+ℓ−)) and ϵ(Λ0

b→pKψn(→ℓ+ℓ−))
ϵψn

are Gaussian constrained to their known values of Ref. [129] and to the
values obtained from the available simulated samples.

• B0
s → K∗0ψn(→ ℓ+ℓ−), with ψn = J/ψ , ψ(2S):

This background is modelled using the same mass shape used for the signal
resonant mode, but with means shifted upwards of the quantity ∆mB0

s

that corresponds to the mass difference between B0
s and B0 [129]. The size

of this background contribution is parametrized with respect to observed
yield of the resonant mode through the fraction fB0

s
and fB0

s
· BB0

s→K∗0ψ(2S)
B(B0

s→K∗0J/ψ )
for fits to B0 → K∗0J/ψ (→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays,
respectively. The fraction fB0

s
is allowed to float freely in data while the

fraction B(B0
s→K∗0ψ(2S))

B(B0
s→K∗0J/ψ ) is Gaussian constrained to the values obtained

from Ref. [129]. Notice that, while floating the fB0
s

in an electron-only

141



8. Invariant mass parametrization and yield extraction from fits

fit would be unfeasible, this can be done in the fits of Secs. 8.3.2 and
8.3.3, since this parameter is always shared with the corresponding muon
channel.

• B0
s → ϕJ/ψ(→ ℓ+ℓ−):

This contribution is modelled with a binned KDE lineshape, separately for
different runs and trigger categories. Fig. C.1(b) shows, as an example, the
parametrization obtained for the Run 1 L0I simulated samples of muons and
electrons, respectively. Notice that in the ψ(2S)−q2-region this component
is not included, as it is already absorbed in the B0

s → XJ/ψ(→ ℓ+ℓ−)
simulated sample. The yield of this background is parametrized with
respect to the observed yield in the corresponding resonant mode as
described by Eq. 8.3, where the parameters fs

fd
and B(B0

s→ϕJ/ψ(→ℓ+ℓ−))
B(B0→K∗0J/ψ(→ℓ+ℓ−))

are constrained to their known values [129] and ϵ(B0
s→ϕJ/ψ(→ℓ+ℓ−)))

ϵψn
to the

values obtained from the available simulated samples.

• K − π swap:
This background is parametrized using a binned KDE lineshape, separately
for different runs and trigger categories. Fig. C.1(c) shows, as an example,
the parametrization obtained for the Run 1 L0I simulated samples of muons
and electrons, respectively. The samples used for the parametrization are
the same ones used for the resonant signal simulation, with the difference
that the events are truth-matched requiring the double swap K ↔ π. The
background yield is parametrized with respect to the observed yield in the
corresponding resonant mode as described by:

Nψn
K−π swap = ϵswap

ϵψn
· NB0→K∗0ψn(→ℓ+ℓ−) , (8.10)

where the parameter ϵswap
ϵψn

is constrained to the value obtained from the
available simulated samples.

• Partially reconstructed B → XJ/ψ(→ ℓ+ℓ−) decays:
This contribution is modelled with a binned KDE lineshape, separately
for different trigger categories but joining the different years of simulation
available, regardless of the different integrated luminosities. An example
of such parametrization is shown in Fig. C.1(d) for the L0I simulated
samples of muons and electrons, respectively. The samples used in
muon fits correspond to an inclusive simulation of B0 and B+ decays,
while for electrons an additional inclusive B0

s component is considered.
The different samples and channels that compose them are reweighted
considering their relative efficiencies, hadronization fractions, isospin factors
and total branching ratios. In fits to B0 → K∗0J/ψ (→ e+e−) candidates
using m(Kπee)J/ψDTF , due to the larger dependency of the lineshape on the
presence or absence of higher cc̄ resonances, two different components are
considered to parametrize the partially reconstructed: decays where the
J/ψ comes directly from the B, referred to as B → XJ/ψ(→ e+e−), and
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decays where the J/ψ comes from a higher cc̄ resonance, referred to as
B → Y (→ J/ψX)Z. For the remaining B0 → K∗0J/ψ (→ ℓ+ℓ−) fits, a
single component parametrized from corrected simulation is considered.
This source of background is not included in fits to B0 → K∗0ψ(2S)(→
ℓ+ℓ−) candidates, due to their negligible size. The shapes obtained are
fixed to the simulation, while the observed yield is allowed to float freely
in the fit to data.

Extra components are considered in the fits to B0 → K∗0ψ(2S)(→ e+e−)
decays using mψ(2S)

DTF (Kπe+e−):

• B0 → K∗0J/ψ(→ e+e−) leakage:
This background is parametrized with a binned KDE lineshape, separately
for different runs and trigger categories. An example of such parametriza-
tion is shown Fig. 8.4(a) for the L0I trigger category in Run 1. The yield
of this contribution is allowed to float freely in the fit, while its shape is
fixed to simulation.

• Partially reconstructed B0 → K∗0ψ(2S)(→ XJ/ψ(→ e+e−)):
This contribution is modelled from simulation with a binned KDE lineshape,
separately for different runs and trigger categories. An example of such
parametrization is shown Fig. 8.4(b) used in the Run 1 data fit to the L0I
trigger category. The samples used for the parametrization are simulated
events of B0 → K∗0ψ(2S)(→ π+π−J/ψ(→ e+e−)) decays, where the decay
ψ(2S) → π+π−J/ψ constitutes roughly half of the inclusive decays of a
charmonium ψ(2S) into a J/ψ state. This is expected to be a good proxy
for the mass shape of the remaining decays that involve neutral particles
instead of the two pions. The yield of this background is parametrized
with respect to the observed yield in the corresponding resonant mode and
described by:

Nψ(2S)
bkg = B(ψ(2S) → π+π−J/ψ) · B(J/ψ → e+e−)

B(ψ(2S) → e+e−) (8.11)

× ϵ(B0 → K∗0ψ(2S)(→ π+π−J/ψ(→ e+e−)))
ϵψn

× NB0→K∗0ψ(2S)(→e+e−) ,

where the parameter ϵ(B0→K∗0ψ(2S)(→π+π−J/ψ(→e+e−)))
ϵψn

is Gaussian con-
strained to value obtained from the available simulated samples. To allow
the fit to compensate for the fact that only half of the ψ(2S) → XJ/ψ
decays are considered in the branching ratio and in the efficiency, the
constraint applied on B(ψ(2S)→π+π−J/ψ)·B(J/ψ→e+e−)

B(ψ(2S)→e+e−) is centred at the val-
ues reported in Ref. [129], but its width corresponds to the central value
increased by an arbitrary factor 1.5. This last choice allows the background
to float almost freely in data within a factor two or three from its cen-
tral value, without allowing the fit to confuse this component with the
B0 → K∗0ψ(2S)(→ e+e−) signal decays.
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(d) B → XJ/ψ(→ µ+µ−) and B → XJ/ψ(→ e+e−)

Figure 8.3: Comparison between the simulated distribution and the binned KDE
parametrization for some of the backgrounds discussed in Sec. 8.3.1. The lack of
agreement at the borders of the range shown is expected and does not affect the
region where the parametrization is used in fits.
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(a) B0 → K∗0J/ψ(→ e+e−) leakage
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(b) B0 → K∗0ψ(2S)(→ π+π−J/ψ(→ e+e−))

Figure 8.4: Binned KDE parametrization, in blue, and the simulated distribution,
in black, for B0 → K∗0J/ψ(→ e+e−) leakage and B0 → K∗0ψ(2S)(→
π+π−J/ψ(→ e+e−)) events reconstructed as signal for Run 1 in the L0I trigger
category. Both of them are parametrized for mψ(2S)

DTF (Kπe+e−).

8.3.2 Simultaneous data fits to B0 → K∗0J/ψ(→ ℓ+ℓ−) decays
in m(Kπℓ+ℓ−)

Simultaneous fits to B0 → K∗0J/ψ(→ µ+µ−) and B0 → K∗0J/ψ(→ e+e−)
decay candidates are performed in the invariant mass m(Kπℓ+ℓ−), separately
for each run and L0I and L0L! trigger category, in order to extract the
corresponding signal yields for electrons and muons. The choice to perform these
fits simultaneously between electrons and muons is justified by the possibility to
share the Gaussian constraints introduced in Sec. 8.3.1 and the fraction of B0

s

between the two modes, further stabilizing the fit. The two channels are selected
according to the full selection described in Sec. 5.2 and requiring in particular:

• for B0 → K∗0J/ψ(→ µ+µ−) decays, an invariant mass range from 5100
to 5800 MeV/c2, a q2 range between 8 and 11 GeV2/c4 (corresponding to
the J/ψ-q2 region) and a cut on the combinatorial MVA greater than 0.2;

• for B0 → K∗0J/ψ(→ e+e−) decays, an invariant mass range from 4600 to
5800 MeV/c2, a q2 range between 7 and 11 GeV2/c4 (corresponding to the
J/ψ-q2

c region) and a cut on the combinatorial MVA greater than 0.2.

The background components included are the same between the two channels,
and correspond to combinatorial, Λ0

b → pKJ/ψ(→ ℓ+ℓ−), B0
s → K∗0J/ψ(→

ℓ+ℓ−), B0
s → ϕJ/ψ(→ ℓ+ℓ−), K − π swap and partially reconstructed decays

B → XJ/ψ(→ ℓ+ℓ−). Table 8.1 recaps the parameters floating in the fit,
specifying which ones float and which ones are Gaussian constrained. The result
of the data fits is shown in Fig. 8.5, while the yields extracted are summarized
in Table 8.2. An overall agreement can be seen between the fit results and the
data.
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8. Invariant mass parametrization and yield extraction from fits

Table 8.1: Summary of the parameters floated in the m(Kπℓ+ℓ−) fits to
B0 → K∗0J/ψ(→ ℓ+ℓ−) decays.

Parameters

Floating

• sµσ, ∆µµ, seσ, ∆µe, seαR ,

• fB0
s
,

• NB0→K∗0J/ψ(→µ+µ−), Ncomb, NB→XJ/ψ(→µ+µ−),

• NB0→K∗0J/ψ(→e+e−), Ncomb, NB→XJ/ψ(→e+e−),

• λµ, λe

Gaussian
constr.

• fΛb
fd

, fs
fd

,

• B(Λ0
b→pKJ/ψ(→ℓ+ℓ−))

B(B0→K∗0J/ψ(→ℓ+ℓ−)) ,

• B(B0
s→ϕJ/ψ(→µ+µ−))

B(B0→K∗0J/ψ(→e+e−)) ,

• ϵ(Λ0
b → pKJ/ψ(→ µ+µ−)) , ϵ(Λ0

b → pKJ/ψ(→ e+e−)) ,

• ϵ(B0
s → ϕJ/ψ(→ µ+µ−)) , ϵ(B0

s → ϕJ/ψ(→ e+e−)) ,

• ϵ(K − π swap) , ϵ(K − π swap) ,

• ϵ(B0 → K∗0J/ψ(→ µ+µ−)) , ϵ(B0 → K∗0J/ψ(→ e+e−))

Table 8.2: Measured values of yields for B0 → K∗0J/ψ(→ µ+µ−) in the J/ψ-q2

region and B0 → K∗0J/ψ(→ e+e−) in the J/ψ-q2
c region.

Channel Run L0L! L0I

B0 → K∗0J/ψ (→ µ+µ−) Run 1 177742 ± 467 67913 ± 288
Run 2 529707 ± 789 215941 ± 507

B0 → K∗0J/ψ (→ e+e−) Run 1 29455 ± 367 25465 ± 343
Run 2 111333 ± 619 95677 ± 683
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(a) Fits to B0 → K∗0J/ψ (→ µ+µ−) data candidats in m(Kπµµ)
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(b) Fits to B0 → K∗0J/ψ (→ e+e−) data candidates in m(Kπee)

Figure 8.5: Fits to B0 → K∗0J/ψ (→ µ+µ−) (a) and B0 → K∗0J/ψ (→ e+e−)
(b) decay candidates for the L0L! (left) and L0I (right) trigger category. The
samples correspond to the data collected in Run 2.

8.3.3 Simultaneous data fit to B0 → K∗0ψn(→ ℓ+ℓ−) decays in
mψn
DTF (Kπℓ+ℓ−), with ψn = J/ψ , ψ(2S)

The simultaneous fits to B0 → K∗0J/ψ(→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−)
decays are performed in the invariant masses mJ/ψ

DTF and m
ψ(2S)
DTF , respectively,

separately for each run and combination of trigger categories. The datasets
used have passed all selections and, for the B0 → K∗0J/ψ (→ ℓ+ℓ−) channel,
are additionally required to have a mψ(2S)

DTF that is more than 200 MeV/c2 away
from the nominal mass of the B0, needed to suppress some of the partially
reconstructed contributions that are more difficult to model (see Sec. 5.2.5). The
four channels are then selected requiring:

• for B0 → K∗0J/ψ(→ µ+µ−) decays, an invariant mass range from 5100
to 6200 MeV/c2, a q2 range between 8.98 and 10.22 GeV2/c4 and a cut on
the combinatorial MVA greater than 0.2;
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8. Invariant mass parametrization and yield extraction from fits

• for B0 → K∗0J/ψ(→ e+e−) decays, an invariant mass range from 4900
to 6200 MeV/c2, a q2 range between 6 and 11 GeV2/c4 and a cut on the
combinatorial MVA greater than 0.2;

• for B0 → K∗0ψ(2S)(→ µ+µ−) decays, an invariant mass range from 5100
to 5750 MeV/c2, a q2 range between 12.86 and 14.33 GeV2/c4 and a cut on
the combinatorial MVA greater than 0.2;

• for B0 → K∗0ψ(2S)(→ e+e−) decays, an invariant mass range from 5100
to 5950 MeV/c2, a q2 range between 11 and 15 GeV2/c4 and a cut on the
combinatorial MVA greater than 0.3.

The choice of using regions of dilepton invariant mass squared based on the
q2 variable rather than q2

c for the electron channels, is justified by the distortion
that such a selection would cause on the invariant masses m(Kπee)J/ψDTF and
m(Kπee)ψ(2S)

DTF for the combinatorial background component. The effect of this
distortion can be seen when using the LFV sample after the full chain of selections
as a proxy for the combinatorial background in data, as shown in Figure 8.6.
When selecting on q2

c , the invariant mass distribution of the combinatorial proxy
is greatly distorted, with almost no region of the spectrum that follows an
exponential behaviour. The effect is particularly strong for q2

c ∈ [11, 15] GeV2/c4.
When selecting in q2, instead, the combinatorial proxy behaves exponentially in
the region used for the fits described here. This different behaviour justifies the
choice to use q2 rather than q2

c to select the electron modes.
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Figure 8.6: Effect of the choice of applying a dilepton invariant mass squared
selection on q2 or q2

c for the invariant masses m(Kπee)J/ψDTF and m(Kπee)ψ(2S)
DTF .

The samples used correspond to the reconstructed decays of B0 → K∗0µ±e∓

after the full selection. The region corresponding a real B0 → K∗0µ±e∓ decay
peak is not shown.
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Mass fits to B0 → K∗0ψn decays

Background components such as combinatorial, Λ0
b → pKψn(→ ℓ+ℓ−)

decays, B0
s → K∗0ψn(→ ℓ+ℓ−) decays, K − π swap are present in each of

the four channels. The B0
s → ϕJ/ψ(→ ℓ+ℓ−) components is included only

in B0 → K∗0J/ψ(→ ℓ+ℓ−) fits. Partially reconstructed decays are not included
when fittingB0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays due to their negligible contribution
if added, but they are included as a single component in B0 → K∗0J/ψ(→ µ+µ−)
decays and as two separate components in B0 → K∗0J/ψ(→ e+e−) decays:
B → XJ/ψ and B → Y (→ J/ψX)Z. The contributions coming from the
B0 → K∗0J/ψ(→ e+e−) leakage and partially reconstructedB0 → K∗0ψ(2S)(→
XJ/ψ(→ e+e−)) decays are considered only in B0 → K∗0ψ(2S)(→ e+e−) fits.
Table 8.3 recaps the parameters floating in the fit, specifying which ones float
and which ones are Gaussian constrained. The result of the data fits are shown
Figs. 8.7 and 8.8, while the yields extracted are summarized in Table 8.4. An
overall good agreement is observed between the fit results and the data, with a
main exception: some discrepancy with data can be noticed in the mass regions
on the left of the signal peak. These discrepancies are expected to have a minor
effect on the values of the extracted yields, and can be attributed to the complex
composition of the partially reconstructed backgrounds, for which an exact
parametrization from simulation is very difficult to achieve.
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8. Invariant mass parametrization and yield extraction from fits

Table 8.3: Summary of the parameters floated in the m
J/ψ
DTF (Kπℓ+ℓ−) fits

to B0 → K∗0J/ψ(→ ℓ+ℓ−) decays and m
ψ(2S)
DTF (Kπℓ+ℓ−) fits to B0 →

K∗0ψ(2S)(→ ℓ+ℓ−) decays.
Parameters

Floating

• sµσ, ∆µµ,seσ, ∆µe, seσ, ∆µe,

• fB0
s
,

• NB0→K∗0J/ψ(→µ+µ−),Ncomb, NB→XJ/ψ(→µ+µ−),

• NB0→K∗0J/ψ(→e+e−), Ncomb,

• NB→XJ/ψ(→e+e−), NB→Y (J/ψX)Z ,

• λµ, λe ,

• NB0→K∗0ψ(2S)(→µ+µ−),Ncomb,

• NB0→K∗0ψ(2S)(→e+e−), Ncomb,

• NJ/ψ leakage,

• λµ, λe ,

Gaussian
constr.

• fΛb
fd

, fs
fd

,

• B(Λ0
b→pKJ/ψ(→ℓ+ℓ−))

B(B0→K∗0J/ψ(→ℓ+ℓ−)) , B(B0
s→ϕJ/ψ(→ℓ+ℓ−))

B(B0→K∗0J/ψ(→ℓ+ℓ−)) ,

• ϵ(Λ0
b → pKJ/ψ(→ µ+µ−)) , ϵ(Λ0

b → pKJ/ψ(→ e+e−)) ,

• ϵ(B0
s → ϕJ/ψ(→ µ+µ−)) , ϵ(B0

s → ϕJ/ψ(→ e+e−)) ,

• ϵ(K − π swap) , ϵ(K − π swap) ,

• ϵ(B0 → K∗0J/ψ(→ µ+µ−)) , ϵ(B0 → K∗0J/ψ(→ e+e−)),

• B(Λ0
b→pKψ(2S)(→ℓ+ℓ−))

B(B0→K∗0ψ(2S)(→ℓ+ℓ−)) , B(B0
s→ϕψ(2S)(→ℓ+ℓ−))

B(B0→K∗0ψ(2S)(→ℓ+ℓ−)) ,

• B(B0→K∗0ψ(2S)(→π+π−J/ψ(→ℓ+ℓ−)))
B(B0→K∗0ψ(2S)(→ℓ+ℓ−)) ,

• ϵ(Λ0
b → pKψ(2S)(→ µ+µ−)) , ϵ(Λ0

b → pKψ(2S)(→ e+e−)) ,

• ϵ(K − π swap) , ϵ(K − π swap) ,

• ϵ(B0 → K∗0ψ(2S)(→ µ+µ−)) , ϵ(B0 → K∗0ψ(2S)(→ e+e−)),

• ϵ(B0 → K∗0ψ(2S)(→ π+π−J/ψ(→ ℓ+ℓ−))),
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Mass fits to B0 → K∗0ψn decays

Table 8.4: Measured values of yields for B0 → K∗0ψn(→ ℓ+ℓ−) fits in mψn
DTF

with ψn = J/ψ , ψ(2S).

Channel Run L0L! L0I

B0 → K∗0J/ψ (→ µ+µ−) Run 1 174972 ± 442 66795 ± 267
Run 2 521588 ± 732 212355 ± 468

B0 → K∗0J/ψ (→ e+e−) Run 1 27394 ± 215 24715 ± 221
Run 2 108108 ± 394 93006 ± 396

B0 → K∗0ψ(2S)(→ µ+µ−) Run 1 10675 ± 111 4075 ± 65
Run 2 31628 ± 183 12382 ± 117

B0 → K∗0ψ(2S)(→ e+e−) Run 1 1714 ± 43 1243 ± 45
Run 2 6444 ± 91 4846 ± 85
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(a) Fits to B0 → K∗0J/ψ (→ µ+µ−) candidates in m(Kπµµ)J/ψDTF
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(b) Fits to B0 → K∗0J/ψ (→ e+e−) data candidates in m(Kπee)J/ψDTF

Figure 8.7: Fits to B0 → K∗0J/ψ (→ µ+µ−) (a) and B0 → K∗0J/ψ (→ e+e−)
(b) decay candidates for the L0L! (left) and L0I (right) trigger category. The
samples correspond to the data collected in Run 2.
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(a) Fits to B0 → K∗0ψ(2S)(→ µ+µ−) data candidates in m(Kπµµ)ψ(2S)
DTF
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(b) Fits to B0 → K∗0ψ(2S)(→ e+e−) data candidates in m(Kπee)ψ(2S)
DTF

Figure 8.8: Fits toB0 → K∗0ψ(2S)(→ µ+µ−) (a) andB0 → K∗0ψ(2S)(→ e+e−)
(b) decay candidates for the L0L! (left) and L0I (right) trigger category. The
samples correspond to the data collected in Run 2.
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Chapter 9

LFU cross-checks
The analysis strategy outlined in Ch. 4 and described in detail in Ch. 10 relies
on the assumption that the understanding of the signal total efficiency and
acceptances obtained from simulation can be trusted to recover the original
properties of the underlying decay, without introducing any spurious lepton
flavour non-universal behaviour. To verify this, two sets of checks on the
reconstructed data candidates of B0 → K∗0J/ψ (→ µ+µ−) and B0 → K∗0J/ψ (→
e+e−) decays are presented in the following. The first set of checks, discussed in
Sec. 9.1, looks for sources of potential LFU-breaking introduced by the use of
the yields of the B0 → K∗0J/ψ (→ ℓ+ℓ−) decays to compute the constraint on
the expected number of rare signal events. The second set of checks, discussed
in Sec. 9.2, is focused on the possible sources of lepton flavour non-universality
introduced by the procedure used for the amplitude fit. The same framework of
signal pdf and acceptance parametrization is used, with minor modifications, to
perform an amplitude fit of the B0 → K∗0J/ψ (→ ℓ+ℓ−) decays in data. Since
no difference is expected in the description of the electron and muon resonant
channel, the compatibility between the observables of the two modes ensures the
reliability of the procedure proposed.

9.1 LFU cross-checks on ratios of branching fractions

The following section presents three cross-checks that aim to test the ability
of the correction chain to reliably correct for data-simulation differences in the
regions of q2 dominated by the charmonium resonances. The first test, presented
in Secs. 9.1.1, corresponds to the ratio of the estimated branching ratios of
B0 → K∗0J/ψ (→ ℓ+ℓ−) decays between muons and electrons. It is important to
stress that, since the electrons and muons behave so differently, such a check is
far from trivial and requires a remarkable control of many aspects of the analysis.
The control is thought to be satisfactory when the ratio rJ/ψ is compatible with
one, its expected value in the SM. The second check, described in Sec. 9.1.2, is
the measurement of the ratio of branching fractions between B(B0 → K∗0ψ(2S))
and B(B0 → K∗0J/ψ) decays, obtained separately for the decays of the two
resonances into electrons or muons. This type of ratio is quite interesting because,
when B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays are substituted with B0 → K∗0ℓ+ℓ−, it
corresponds to one of the main ingredients in the constraint of the expected yield
used in the final data fit, as discussed in Sec. 9.1.2. The last test, described in
Sec 9.1.3, corresponds to the ratio of the quantities obtained in the second check,
when they are computed using muons and electrons. While this corresponds just
to a further cross-check, when substituting again the decay of the resonant ψ(2S)
with the rare mode, such a quantity will correspond to the LFU test of the SM
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called RK∗ . Such a quantity plays an important role in this analysis, since any
difference in the branching ratios of B0 → K∗0µ+µ− and B0 → K∗0e+e− decays
will shift ∆C9 and ∆C10 from their SM value of zero.

9.1.1 Integrated rJ/ψ
The single ratio rJ/ψ, defined as

rJ/ψ =
NB0→K∗0J/ψ(→µ+µ−)

NB0→K∗0J/ψ(→e+e−)
·
ϵtotB0→K∗0J/ψ(→e+e−)

ϵtotB0→K∗0J/ψ(→µ+µ−)
, (9.1)

is well-known in the SM and, due to LFU in this class of decays, it is expected
be one to high degree of precision. Since fits to B0 → K∗0J/ψ(→ ℓ+ℓ−) decays
are used as a reference to extract the branching ratio of the rare mode in the
additional constraint to the likelihood (see Sec. 10.3), it is important to verify
that no lepton flavour non-universal behaviour is introduced at this step. The
yields NB0→K∗0J/ψ (→ℓ+ℓ−) are extracted using m(Kπℓℓ) fits, as described in
Sec. 8.3.2 and reported in Table 8.2, while the efficiencies ϵtotB0→K∗0J/ψ (→ℓ+ℓ−) are
obtained using simulated samples with the nominal correction chain applied, as
described in Sec. 7.1 and reported in Table 7.1. The cross-check is performed in
each of the two runs and trigger categories L0I and L0L! and shown in Table 9.1.
The two uncertainties correspond to the statistical uncertainty on the extracted
yields and the bootstrapped systematic uncertainty obtained from the estimation
of the efficiencies. The latter is expected to be a small fraction of the overall
systematic uncertainty, which was evaluated be around 2% in Ref. [128]. As
it can be seen, all the measured values agree with unity within 4%. Moreover,
the combination of different runs and trigger categories shows a compatibility
with unity within a single statistical standard deviation. This test confirms that
no lepton flavour non-universal behaviour is introduced by using the channels
B0 → K∗0J/ψ (→ ℓ+ℓ−) to calibrate the expected number of signal events in the
final fit.

Table 9.1: Measured values of rJ/ψ obtained from fits to the invariant mass
m(Kπℓ+ℓ−) (see Sec. 8.3.2).

Type L0M!/L0E! L0I/L0I All triggers
Run 1 0.977 ± 0.012 ± 0.003 1.036 ± 0.015 ± 0.004 1.002 ± 0.009 ± 0.002
Run 2 0.995 ± 0.006 ± 0.003 0.999 ± 0.008 ± 0.003 0.997 ± 0.005 ± 0.003
All Runs 0.986 ± 0.005 ± 0.002 1.016 ± 0.007 ± 0.003 0.999 ± 0.004 ± 0.002

For completeness, a similar cross-check can be performed in the fits to
m(Kπℓℓ)J/ψDTF and m(Kπℓℓ)ψ(2S)

DTF invariant masses described in Sec. 8.3.3, using
the measured yields of Table 8.4 and the efficiencies reported in Table 7.2. The
result of this cross-check is shown in Table 9.2. All the values obtained agree
with unity within 5%, however, in this case the combination of the different runs
and trigger categories is compatible with one only when considering the expected
systematic uncertainty computed in Ref. [128]. While the difference between
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the two LFU test discussed could be used to assign an additional systematic
based on the fit strategy chosen, this deviation does not enter directly in our
final measurement and is only used in combination with rψ(2S) to obtain the
cross-check RΨ(2S), discussed in Sec. 9.1.3. For this reason, no further studies
on the origins of the deviation observed were considered.

Table 9.2: Measured values of rJ/ψ obtained from fits to the invariant mass
m
J/ψ
DTF (see Sec. 8.3.3).
Type L0M!/L0E! L0I/L0I All triggers
Run 1 1.039 ± 0.009 ± 0.003 1.049 ± 0.010 ± 0.004 1.043 ± 0.007 ± 0.003
Run 2 1.012 ± 0.004 ± 0.003 1.014 ± 0.005 ± 0.003 1.013 ± 0.003 ± 0.003
All Runs 1.025 ± 0.004 ± 0.002 1.029 ± 0.004 ± 0.003 1.028 ± 0.003 ± 0.002

9.1.2 Integrated B(B0 → K∗0ψ(2S))/B(B0 → K∗0J/ψ)

A measurement of the ratio of branching fractions of B0 → K∗0ψ(2S) and
B0 → K∗0J/ψ decays can be obtained as:

B(B0 → K∗0ψ(2S))
B(B0 → K∗0J/ψ) =

Nψ(2S)

NJ/ψ
· B(J/ψ → ℓ+ℓ−)

B(ψ(2S) → ℓ+ℓ−) · 1
R
ψ(2S)
ε

, (9.2)

where NJ/ψ and Nψ(2S) are the signal yields obtained from the mass fits of
Sec. 8.3.3, Rψ(2S)

ε is the efficiency of B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays relative
to the B0 → K∗0J/ψ (→ ℓ+ℓ−) mode, and the ratio [129]

B(J/ψ → ℓ+ℓ−)
B(ψ(2S) → ℓ+ℓ−) = 7.69 ± 0.19 , (9.3)

assumes LFU in charmonium decays, i.e. B(J/ψ → µ+µ−)/B(ψ(2S) →
µ+µ−) = B(J/ψ → e+e−)/B(ψ(2S) → e+e−).

Figure 9.1 shows the results of Eq. 9.2, separately for the Run 1 and Run 2
datasets in the trigger categories L0I and L0L! for muons and electron, where
the uncertainty must be understood as statistical-only, compared to the world
average of [129]

B(B0 → K∗0ψ(2S))
B(B0 → K∗0J/ψ)

[PDG]

= 0.487 ± 0.018 ± 0.011 . (9.4)

The first uncertainty combines the statistical and systematic uncertainties from
Ref. [157] and the second isolates the systematic uncertainty due to uncertainty on
B(J/ψ → ℓ+ℓ−)/B(ψ(2S) → ℓ+ℓ−) of Eq. 9.3. Note that the latter uncertainty
enters identically both in the world average of Eq. 9.4 and in our determination
from Eq. 9.2, and is therefore removed. Finally, the check is based on the mass
fit results of Sec. 8.3 and assumes the same fraction of S-wave (FS) in both
B0 → K∗0J/ψ and B0 → K∗0ψ(2S) decays. The excellent agreement between
the two datasets and the world average fully accomplishes the purpose of this
cross-check.
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Figure 9.1: Determination of the ratio of branching fraction B(B0 →
K∗0ψ(2S))/B(B0 → K∗0J/ψ) in muons and electrons respectively, separately
for the Run 1 and Run 2 datasets in the trigger categories L0I and L0L!. The
blue shaded area corresponds to PDG value of Ref. [129].

9.1.3 Integrated Rψ(2S)

The double ratio Rψ(2S) is defined as

Rψ(2S) =
NB0→K∗0ψ(2S)(→µ+µ−)

NB0→K∗0ψ(2S)(→e+e−)
·
NB0→K∗0J/ψ(→e+e−)

NB0→K∗0J/ψ(→µ+µ−)

×
ϵtotB0→K∗0ψ(2S)(→e+e−)

ϵtotB0→K∗0ψ(2S)(→µ+µ−)
·
ϵtotB0→K∗0J/ψ(→µ+µ−)

ϵtotB0→K∗0J/ψ(→e+e−)
. (9.5)

This corresponds to the ratio of ratios Rψ(2S) = rψ(2S)/rJ/ψ or to Rψ(2S) =
B(B0→K∗0ψ(2S)(→µ+µ−))
B(B0→K∗0J/ψ(→µ+µ−)) × B(B0→K∗0J/ψ(→e+e−))

B(B0→K∗0ψ(2S)(→e+e−)) , where the single ratio rψ(2S)

is evaluated on B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays, similarly to what is done
for rJ/ψ in B0 → K∗0J/ψ (→ ℓ+ℓ−). Thanks to the double ratio, this check is
particularly insensitive to systematic uncertainties that affect the single ratios
and that were ignored in the Tables 9.1 and 9.2. This is because, when the same
procedure is used to parametrize the signal in the fits and to correct the efficiencies
in B0 → K∗0J/ψ(→ ℓ+ℓ−) and B0 → K∗0ψ(2S)(→ ℓ+ℓ−) decays, most of the
systematic uncertainties are common between the two modes, shifting the two
channels similarly but leaving the ratio largely unchanged. The ratios obtained
for rψ(2S) and Rψ(2S) are reported in Table 9.3 and Table 9.4, respectively. As
can be seen, while the values of rψ(2S) are systematically larger than one and the
combination of different runs and trigger categories is incompatible with unity,
the values obtained for the double ratio Rψ(2S) are in general closer to unity
with the final weighted average that is within two standard deviations from one.
The compatibility of the last result with its expected value, suggests that the use
of the correction chain developed in Ch. 6 in the B0 → K∗0J/ψ (→ ℓ+ℓ−) decays
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can be extended successfully to other regions of q2 without the introduction of
spurious non-LFU behaviours.

Table 9.3: Measured values of rΨ(2S) obtained from fits to the invariant mass
m(Kπℓℓ)ψ(2S)

DTF (see Sec. 8.3.3).
Type L0M!/L0E! L0I/L0I All triggers
Run 1 1.042 ± 0.028 ± 0.007 1.114 ± 0.044 ± 0.008 1.074 ± 0.024 ± 0.006
Run 2 1.045 ± 0.016 ± 0.004 1.004 ± 0.020 ± 0.004 1.027 ± 0.012 ± 0.003
All Runs 1.045 ± 0.014 ± 0.003 1.031 ± 0.018 ± 0.003 1.036 ± 0.011 ± 0.002

Table 9.4: Measured values of RΨ(2S) obtained from fits to the invariant masses
m(Kπℓℓ)J/ψDTF and m(Kπℓℓ)ψ(2S)

DTF (see Sec. 8.3.3).
Type L0M!/L0E! L0I/L0I All triggers
Run 1 1.003 ± 0.029 ± 0.008 1.061 ± 0.043 ± 0.009 1.029 ± 0.024 ± 0.006
Run 2 1.032 ± 0.016 ± 0.004 0.991 ± 0.020 ± 0.005 1.015 ± 0.013 ± 0.003
All Runs 1.027 ± 0.014 ± 0.004 1.010 ± 0.018 ± 0.004 1.019 ± 0.011 ± 0.003

9.2 LFU cross-check on the fit procedure: amplitude fits to
B0 → K∗0J/ψ decays

The control mode B0 → K∗0J/ψ (→ ℓ+ℓ−) is an ideal candidate to validate the
amplitude fit strategy discussed in Ch. 10 for the rare mode. Having the same
final states of B0 → K∗0ℓ+ℓ− decays, it is characterized by very similar efficiency
and reconstruction effects. At the same time, occurring via a tree-level transition,
it is expected to be significantly more abundant than the rare mode, providing
enough statistics to validate the proposed fitting strategy. The muon mode has
also been studied extensively in the past via several angular analyses, all of
which found results consistent with the SM [158–161]. Besides published results,
this mode was used for validation purposes as part of the angular analyses of
B0 → K∗0µ+µ− decays [29]. Table 9.5 reports the result obtained by LHCb
amplitude analysis with 1 fb−1 of data taken in 2011 [158] and the set of internal
results obtained from Ref. [29]. The compatibility between the observables
obtained for the muon and electron channels, together with the compatibility
with the results previously obtained from the literature, is used to determine if
the check can be considered passed or not.

9.2.1 Fit generalities

All amplitude fits to the B0 → K∗0J/ψ (→ ℓ+ℓ−) decay modes are obtained
through the maximization of an unbinned extended maximum likelihood L,
defined as in Eq. 10.35, where the term x corresponds to the five-dimensional
vector x ≡ {cos θK , cos θℓ, ϕ,m(Kπℓℓ),m(Kπ)}, needed to fully describe the
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LHCb 1fb−1 B0 → K∗0J/ψ(→ µ+µ−)
mKπ ∈ [825.9, 965.9]MeV/c2 Simultaneous fit Ref. [29]

FL 0.572 ± 0.008 0.5629 ± 0.0010
S3 -0.013 ± 0.010 -0.0004 ± 0.0013
S4 -0.250 ± 0.006 -0.2507 ± 0.0015
S5 – 0.0003 ± 0.0014
AFB – 0.0006 ± 0.0009
S7 – 0.0016 ± 0.0015
S8 -0.048 ± 0.007 -0.0547 ± 0.0015
S9 -0.084 ± 0.006 -0.0863 ± 0.0013
FS 0.064 ± 0.010 0.0554 ± 0.0019
SS1 – -0.2273 ± 0.0026
SS2 – 0.0261 ± 0.0017
SS3 – 0.0014 ± 0.0015
SS4 – 0.0002 ± 0.0016
SS5 – -0.0635 ± 0.0017
|A∥|2 0.227 ± 0.004 (0.011) –
|A⊥|2 0.201 ± 0.004 (0.008) –
δ∥ -2.94 ± 0.02 (0.03) –
δ⊥ 2.94 ± 0.02 (0.02) –
|AS |2∆1

0.115 ± 0.007 ( 0.020) 0.1234 ± 0.0072
|AS |2∆2

0.049 ± 0.004 ( 0.007) 0.0454 ± 0.0036
|AS |2∆3

0.052 ± 0.006 ( 0.009) 0.0531 ± 0.0034
|AS |2∆4

0.105 ± 0.014 ( 0.008) 0.1142 ± 0.0065
δ∆1
S 3.09 ± 0.10 ( 0.08) –
δ∆2
S 2.66 ± 0.06 ( 0.06) –
δ∆3
S 1.94 ± 0.03 ( 0.09) –
δ∆4
S 1.53 ± 0.03 ( 0.11) –

Table 9.5: Summary table of external results discussed in this section. The first
column contains the results of the amplitude fit to B0 → K∗0J/ψ(→ µ+µ−) [158]
(on the bottom) and the translation to the S-basis angular observables (on the
top). The set of values shown correspond to the mKπ range of 825.9 to 965.9
MeV/c2, with the exception of the |AS |2 and δS that are given in four bins ofmKπ:
[826, 861] MeV/c2, [861, 896] MeV/c2, [896, 931] MeV/c2 and [931, 966] MeV/c2.
We will refer to these bins as ∆i, where the index i goes from 1 to 4. The P-wave
observables S5, AFB and S7 are zero: this is a consequence of the purely vectorial
nature of the amplitudes that describe the decay. The second column contains a
cross-check results obtained as part of the B0 → K∗µ+µ− angular analysis for
Run 1 and 2016 datasets in the same mKπ bin [29]. The values reported have
been obtained from the internal documentation of the LHCb experiment.
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decay. The total pdf can be described as a linear composition of signal, Psig(x; θ),
and background components, Pk(x; θ), as already discussed in Eq. 8.2.

The signal is parametrized with the pdf :

Psig(x; θ) = Nnorm ·
(d4Γ[B̄0 → K+π−J/ψ]

dmKπdΩ⃗
· Sℓ(mKπℓ+ℓ−) · ϵeff (Ω⃗)

)
, (9.6)

where:

• d4Γ[B̄0→K+π−J/ψ]
dmKπ dΩ⃗

corresponds the differential decay amplitude of the decay
defined in Eq. 9.9 of Sec. 9.2.2;

• Sℓ(mKπℓ+ℓ−) is the invariant mass distribution for ℓ = e, µ, parametrized
as described in Sec. 8.2;

• ϵeff (Ω⃗) is the three-dimensional effective acceptance described in Sec. 7.2,
representing the distortion of the theory pdf due to the details of selection
and reconstruction;

• Nnorm is a factor representing the analytical normalization of the pdf.

The background component Pk is parametrized assuming factorization between
the five variables considered, using the functional forms that better describe the
distributions observed. More details on the specific parametrization used in the
fits to data are discussed in Sec. 9.2.3 and Appendix. C.

9.2.2 Parametrization of the signal amplitude

The angular structure of B0 → K∗0J/ψ (→ ℓ+ℓ−) decays is determined by
kinematics and conservation of angular momentum. It is thus possible to obtain
its differential decay rate starting from the Eq. 2.14, derived for B0 → K∗0ℓ+ℓ−

decays, and taking the limit for which a vector current dominates the decay. By
asking that the transversity amplitudes respect the following relations1:

AL
0,⊥ = AR

0,⊥ = i√
2
Ã0,⊥ AL

∥ = AR
∥ = −i√

2
Ã∥ , (9.7)

1The i factors are introduced to counteract the -1 terms in Eq. 2.15 and stay explicitly
aligned with the definition of transversity amplitudes used in Refs. [162, 163].
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the differential decay rate in Eq. 2.14 collapses to:

d3Γ[B̄0 → K̄∗0ℓ+ℓ−]
dΩ⃗

|ALλ=ARλ
βℓ≈1

=d3Γ[B̄0 → K̄∗0J/ψ(→ ℓ+ℓ−)]
dΩ⃗

=

= 9
32π

[ 1
2(|Ã⊥|2 + |Ã∥|2) sin2 θK(1 + cos2 θℓ)

+ 2|Ã0|2 cos2 θK sin2 θℓ

+ 1
2(|Ã⊥|2 − |Ã∥|2) sin2 θK sin2 θℓ cos 2ϕ

+ 1√
2

Re(Ã0Ã
∗
∥) sin 2θK sin 2θℓ cosϕ

+ 1√
2

Im(Ã0Ã
∗
⊥) sin 2θK sin 2θℓ sinϕ

+ Im(Ã⊥Ã
∗
∥) sin2 θK sin2 θℓ sin 2ϕ

]
, (9.8)

where the dependency on the q2 variable of Eq. 2.14 has been dropped since the
function is evaluated at q2 = M2

J/ψ and βℓ ≈ 1.
In fits to data, the contribution from decays where the Kπ system is

produced with zero angular momentum (S-wave) corresponds to a background
that can bias the observables of interest if not taken into account properly.
This contribution can be included in the differential decay rate by introducing
an additional transversity amplitude, ÃS0, and the two functions, AP (mKπ)
and AS(mKπ), needed to parametrize the distribution of the S- and P-wave
in m(Kπ), respectively. The discussion of the exact parametrization of each
of these additional functions is deferred to Sec. 10.1, since the same formalism
can be used in the decays of B0 → K∗0ℓ+ℓ−. Those results can be extended
to B0 → K∗0J/ψ (→ ℓ+ℓ−) decays by simply performing the substitution
AL
S0 = AR

S0 = i√
2 ÃS0, analogously to what has been done for the P-wave

transversity amplitudes in Eq. 9.7. The full differential decay rate, including the
P, S and P-S wave interference terms corresponds to:

d4Γ[B̄0 → K+π−J/ψ]
dmKπdΩ⃗

=
[
|AP (mKπ)|2 · d3Γ

dΩ⃗

∣∣∣∣
P−wave

+ 2
3 |ÃS0AS(mKπ)|2 sin2 θℓ

+ 4√
3

Re
[
ÃS0Ã

∗
0AS(mKπ)A∗

P (mKπ)
]

sin2 θℓ cos θK

+
√

2
3 Re

[
ÃS0Ã

∗
∥AS(mKπ)A∗

P (mKπ)
]

sin 2θℓ sin θK cosϕ

+
√

2
3 Im

[
ÃS0Ã

∗
⊥AS(mKπ)A∗

P (mKπ)
]

sin 2θℓ sin θK sinϕ
]
.

(9.9)

The two quantities Aλ and Ãλ represent the transversity amplitudes that
describe the decay of B0 → K∗0ℓ+ℓ− and B0 → K∗0J/ψ (→ ℓ+ℓ−), respectively.
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However, the former corresponds to a complex function that depends on the
hadronic matrix elements and Wilson coefficients, while the latter correspond to
a complex parameter that can be floated or fixed in the fit. When performing fits,
the differential decay rate in Eq. 9.9 needs to be normalized into a pdf , allowing
only three of the four complex transversity amplitudes to float freely in the fit,
i.e. Ã⊥,∥,S0. To simplify the comparison with Ref. [158], these parameters can
be combined to construct the four real P-wave observables:

|A⊥,∥|2 =
|Ã⊥,∥|2

|Ã0|2 + |Ã⊥|2 + |Ã∥|2
and δ⊥,∥ = Arg(Ã∗

0Ã⊥,∥) , (9.10)

and the two real S-wave observables:

|AS0|2∆mKπ
= FS

∣∣
∆mKπ

=
|ÃS0|2

∫
∆mKπ

dmKπ|AS(mKπ)|2

(|Ã0|2 + |Ã⊥|2 + |Ã∥|2) ·
∫

∆mKπ
dmKπ|AP (mKπ)|2

δ
∆mKπ

S = Arg
(
ÃS0Ã

∗
0 ·

∫
∆mKπ

dmKπAS(mKπ)A∗
P (mKπ)

)
. (9.11)

The normalization condition imposes |A0|2 = 1 − |A⊥|2 − |A∥|2, while, since
only phase differences are measurable, no imaginary part is allowed for Ã0.
Starting from the amplitudes Ãλ, the conventional angular observables defined
in Sec. 2.3.2 can be obtained as described in Eq. 2.24.

The parametrization described in Eq. 9.9 is tested in reconstructed simulated
samples of B0 → K∗0J/ψ (→ µ+µ−) and B0 → K∗0J/ψ (→ e+e−) decays. Since
these samples are the same ones used to parametrize the acceptances used in the
fit, special care must be taken to extract a statistically meaningful check. This
issue can be solved using a k-folding approach, where five of the six total folds
are used to parametrize the acceptance, while the last one is used as dataset
in the fit. For simplicity, no weights are considered when parametrizing the
acceptances and in the fit to the datasets. Figure 9.2 shows the difference
between the result of the amplitude fits performed to B0 → K∗0J/ψ (→ µ+µ−)
and B0 → K∗0J/ψ (→ e+e−) decays and the generator values of the parameters,
as defined in EvtGen. A reasonable agreement is found between all channels
and years for the trigger category L0L!, confirming the validity of the approach
chosen. A similar agreement is obtained when considering the trigger category
L0I. Notice that, since the floating parameters in the signal-only pdf are the
real and complex part of the amplitudes Ã⊥,∥ (no S-wave is present in the
simulation), only the last four columns of Fig. 9.2 come directly from the fit,
while the remaining are derived as described by Eq. 2.24.

9.2.3 Amplitude fits to data

Extended maximum likelihood fits to data samples of B0 → K∗0J/ψ (→ ℓ+ℓ−)
decay candidates are performed in cos θK , cos θℓ, ϕ, m(Kπℓℓ) and m(Kπ),
simultaneously between Run 1 and Run 2, but separately for different trigger
categories. The m(Kπ) range chosen is reduced to [825.9, 965.9] MeV/c2 in
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Figure 9.2: Compatibility of the amplitude parameters and angular observables
between the generator values and the fit results of the reconstructed simulation
of B0 → K∗0J/ψ (→ µ+µ−) (top) and B0 → K∗0J/ψ (→ e+e−) (bottom) in the
trigger category L0L! in all different years. The purple line, labelled as ’gen’
correspond to the generator values as obtained from EvtGen.

order to allow the comparison with the results in the literature. Since no strong
dependence on the mKπ mass is expected, the acceptance used is still obtained
in the region of [795.9, 995.9] MeV/c2. Two different fit configurations have been
studied: the first one is an extension of the mass fits discussed in Sec. 8.3.2
to include the angles and the m(Kπ) mass, the second one corresponds to an
amplitude fit in which all sources of backgrounds are reduced as much as possible.

A detailed discussion of the first approach is described in Appendix. C.
The main outcome of this study is that it is possible to extend the mass fits
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including the angular distributions and m(Kπ) mass of the most important
backgrounds, providing a reasonable description of the data. When comparing
the obtained observables between the muon and electron channels, as it is done in
Figure C.4, a good agreement between the P-wave observables is observed, while
a significant discrepancy can be noticed on δS . Such result is not unexpected
since the underlying parametrization of the different distributions of the peaking
backgrounds, in particular the partially reconstructed ones, cannot be trusted
completely from simulation.

In the second approach, candidates are selected exactly as discussed in
Sec. 8.3.2 with two main differences: a tighter MVA cut, corresponding to the
values used for the rare modes, and a smaller mass range, corresponding to
[5170, 5700] MeV/c2 and [4900,5800] MeV/c2 for muons and electrons, respectively.
Additionally, to reduce the partially reconstructed component from electron fits,
a cut on the reconstructed invariant mass of the B0 with the J/ψ constraint is
applied, requiring m(Kπee)J/ψDTF > 5150 MeV/c2.

After these selections, the only background component expected to signifi-
cantly survive is the combinatorial. Its shape is parametrized using a decreasing
exponential function for the mass and Chebyshev polynomials up to third (sec-
ond) order for cos θK , up to second order for cos θℓ, up to second (first) order for
ϕ and up to first (second) order for mKπ for muons (electrons), assuming factor-
ization between the different variables considered. This approach is similar to
the one used in Sec. 10.2 to parametrize the combinatorial component in the rare
mode. In fits to B0 → K∗0J/ψ (→ µ+µ−) candidates, the combinatorial shape is
allowed to float freely. In fits to B0 → K∗0J/ψ (→ e+e−) candidates, due to the
reduced amount of combinatorial background caused by the additional cuts, the
angular and m(Kπ) parametrization of the combinatorial cannot be determined
directly from the main fit. Instead, a sample of candidates reconstructed as the
lepton flavour violation channel B0 → K∗0µ±e∓, with the selection as aligned
as possible to the B0 → K∗0J/ψ (→ e+e−) channel, is used as a proxy for the
combinatorial in data.2

In the muon fits, the floating parameters correspond to: the real and complex
part of the amplitudes Ã⊥,∥,S0, the shift and scale of the invariant mass peak, the
slope of the exponential distribution, the parameters of the angular combinatorial
distributions and the width and centre of Breit-Wigner in mKπ. In the electron
fits, due to the low level of combinatorial available, the angular parametrization
of the combinatorial is fixed to the fit results obtained in the LFV sample and
the shape of the invariant mass is fixed to the values obtained from simulation.
All the other parameters are floated as in the muon mode.

The projections of the fits for muons and electrons in the trigger categories
L0L! for Run 2 are shown in Figs. 9.3 and 9.4. Similar results have been obtained
for the L0I trigger categories and are not shown here for brevity. Overall the fit
projections show a good agreement with the data, with four main exceptions:

2To avoid including any double-semileptonic component in the dataset, the events have
been selected above the B0 nominal mass, requiring m(Kπℓℓ) > 5300 MeV/c2, and loosening
the MVA requirement from 0.97 to 0.3 to increase the statistics available.
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Figure 9.3: Projection of the fit result for the B0 → K∗0J/ψ (→ µ+µ−) angular
fit in the L0L! trigger category for Run 2.
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Figure 9.4: Projection of the fit result for the B0 → K∗0J/ψ (→ e+e−) angular
fit in the L0L! trigger category for Run 2.
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• A large deviation in the region of cos θK between -1 and 0.5 that is consistent
between electrons and muons. This deviation, which is also seen in Ref. [29],
is caused by the presence of exotic charmonium states, e.g. Z+

c (4200) and
Z+
c (4430), which decay to the J/ψπ pair. While this type of background

significantly distorts the low region of the cos θK distribution, a good
description of this contribution goes beyond the scope of this analysis.
This is not considered to be a serious problem for the fit validation, as
existing muon results are similarly affected and no such component is
expected to be present in the fits to the rare modes.

• A large deviation in the region of cos θK between 0.85 and 1 only in the
muons. This deviation is an artefact caused by the choice of truncating
the expansion in Legendre polynomials for cos θK at the sixth order.
Preliminary studies suggest that such choice corresponds to a systematic
uncertainty between one and two times the statistical uncertainties
obtained.

• Small deviations in the invariant mass distributions for both lepton flavours
can be seen. This effect is caused by some remaining mismodelling of the
signal shapes, visible also in Fig. 8.5, and partially by the contribution
of remaining backgrounds that have not been included in the fit (e.g.
remaining partially reconstructed and peaking background). Since the
size of these mismodelling is limited, no major impact is expected in the
observables of interest.

• A consistent deviation in the mKπ invariant mass in the muon channel.
Most muons fits are affected by a non-flat trend in the pulls, the effect being
more evident when more statistics is available, suggesting that something
similar might be happening also in the electrons. A similar behaviour has
been observed in Ref. [164] (Figure 9.1) and seems to be linked to the choice
of parametrization used for the description of the Breit-Wigner. It has
been shown that this deviation can be greatly reduced if a parametrization
as the one used in Ref. [29] is used instead.

To meaningfully compare the results obtained from the fits to data with
the values obtained in Refs. [29, 165], it is necessary to also estimate the
systematic uncertainties of the measurement. The impact of this contribution
to the total uncertainty budget is expected to be quite sizeable due to the high
statistics available in data for these resonant modes. In the following, the focus
is limited on one main source of uncertainty: the uncertainty on the acceptance
parametrization due to the limited statistics available in the simulated samples.
To estimate this contribution, a set of 100 signal-only toys is generated based
on the best fit value obtained from data and corresponding to the channel and
trigger category of interest. Each toy generated is then fitted in two different
configurations: using the standard parametrization used for the generation or
using an alternative acceptance parametrization obtained from bootstrapping (see
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Figure 9.5: Summary of amplitude parameters and the derived angular
observables for the simultaneous fit in Run 1 and Run 2 of electrons and muons.
The fits are performed separately in the trigger categories L0I (top) and L0L!
(bottom).
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Type (→ e+e−) ∆(σ)e+e−

LHCb 1fb−1
∆(σ)e+e−

LHCb Run 1 +2016
(→ µ+µ−) ∆(σ)µ+µ−

LHCb 1fb−1
∆(σ)µ+µ−

LHCb Run 1 +2016
LFU

FL 0.5643 ± 0.0024 ± 0.0036 -0.84 0.32 0.5604 ± 0.0016 ± 0.0025 -1.36 -0.79 -0.74
FS 0.0454 ± 0.0015 ± 0.0019 -1.80 -3.19 0.0471 ± 0.0010 ± 0.0012 -1.67 -3.37 0.56
S3 -0.0032 ± 0.0028 ± 0.0043 0.87 -0.54 -0.0045 ± 0.0017 ± 0.0027 0.81 -1.17 -0.20
S4 -0.2451 ± 0.0018 ± 0.0027 0.72 1.58 -0.2441 ± 0.0010 ± 0.0017 0.93 2.61 0.27
S8 -0.0502 ± 0.0035 ± 0.0044 -0.24 0.77 -0.0481 ± 0.0021 ± 0.0029 -0.01 1.71 0.31
S9 -0.0843 ± 0.0030 ± 0.0033 -0.03 0.44 -0.0841 ± 0.0018 ± 0.0023 -0.01 0.70 0.04
Ss1 -0.2132 ± 0.0061 ± 0.0077 – 1.39 -0.2216 ± 0.0039 ± 0.0051 – 0.82 -0.72
Ss2 0.0332 ± 0.0020 ± 0.0024 – 2.02 0.0348 ± 0.0012 ± 0.0017 – 3.24 0.42
Ss5 -0.0566 ± 0.0015 ± 0.0017 – 2.43 -0.0559 ± 0.0008 ± 0.0009 – 3.59 0.27
δS 2.1736 ± 0.0165 ± 0.0198 -0.32 – 2.1954 ± 0.0096 ± 0.0129 -0.13 – 0.72
δ∆1
S -2.9180 ± 0.0175 ± 0.0213 2.07 – -2.8853 ± 0.0102 ± 0.0134 2.35 – 1.01
δ∆2
S 2.7443 ± 0.0169 ± 0.0205 0.95 – 2.7736 ± 0.0098 ± 0.0133 1.32 – 0.94
δ∆3
S 1.7561 ± 0.0160 ± 0.0189 -1.88 – 1.7707 ± 0.0092 ± 0.0127 -1.76 – 0.50
δ∆4
S 1.2970 ± 0.0163 ± 0.0191 -2.00 – 1.3111 ± 0.0095 ± 0.0127 -1.90 – 0.47
δ⊥ 2.9361 ± 0.0145 ± 0.0182 -0.08 – 2.9430 ± 0.0085 ± 0.0120 0.07 – 0.25
δ∥ -2.9498 ± 0.0201 ± 0.0231 -0.19 – -2.9446 ± 0.0114 ± 0.0162 -0.10 – 0.14
|AS |2∆1

0.0812 ± 0.0028 ± 0.0033 -1.65 – 0.0856 ± 0.0018 ± 0.0024 -1.46 – 0.83
|AS |2∆2

0.0260 ± 0.0009 ± 0.0011 -3.23 – 0.0267 ± 0.0006 ± 0.0007 -3.16 – 0.45
|AS |2∆3

0.0335 ± 0.0011 ± 0.0015 -2.02 – 0.0346 ± 0.0007 ± 0.0009 -1.92 – 0.51
|AS |2∆4

0.1085 ± 0.0036 ± 0.0045 0.23 – 0.1141 ± 0.0023 ± 0.0030 0.63 – 0.82
|A⊥|2 0.2146 ± 0.0030 ± 0.0045 1.30 – 0.2153 ± 0.0019 ± 0.0029 1.52 – 0.11
|A∥|2 0.2211 ± 0.0031 ± 0.0048 -0.56 – 0.2243 ± 0.0019 ± 0.0031 -0.32 – 0.47

Type (→ e+e−) ∆(σ)e+e−

LHCb 1fb−1 ∆(σ)e+e−

LHCb Run 1 +2016
(→ µ+µ−) ∆(σ)µ+µ−

LHCb 1fb−1
∆(σ)µ+µ−

LHCb Run 1 +2016
LFU

FL 0.5596 ± 0.0024 ± 0.0037 -1.35 -0.71 0.5623 ± 0.0010 ± 0.0016 -1.18 -0.30 0.54
FS 0.0459 ± 0.0014 ± 0.0022 -1.75 -2.93 0.0474 ± 0.0006 ± 0.0009 -1.65 -3.65 0.52
S3 -0.0073 ± 0.0026 ± 0.0048 0.50 -1.24 -0.0043 ± 0.0011 ± 0.0016 0.85 -1.66 0.52
S4 -0.2473 ± 0.0016 ± 0.0029 0.40 0.95 -0.2437 ± 0.0007 ± 0.0011 1.03 3.56 1.03
S8 -0.0463 ± 0.0034 ± 0.0046 0.19 1.42 -0.0490 ± 0.0013 ± 0.0018 -0.14 2.10 -0.44
S9 -0.0836 ± 0.0028 ± 0.0036 0.05 0.57 -0.0856 ± 0.0012 ± 0.0017 -0.25 0.29 -0.40
Ss1 -0.2128 ± 0.0057 ± 0.0087 – 1.34 -0.2195 ± 0.0024 ± 0.0036 – 1.53 -0.59
Ss2 0.0333 ± 0.0019 ± 0.0024 – 2.06 0.0337 ± 0.0008 ± 0.0012 – 3.45 0.13
Ss5 -0.0574 ± 0.0013 ± 0.0018 – 2.19 -0.0561 ± 0.0005 ± 0.0007 – 3.85 0.53
δS 2.1735 ± 0.0147 ± 0.0220 -0.32 – 2.1871 ± 0.0063 ± 0.0085 -0.21 – 0.48
δ∆1
S -2.9147 ± 0.0156 ± 0.0236 2.09 – -2.8907 ± 0.0065 ± 0.0092 2.32 – 0.79
δ∆2
S 2.7413 ± 0.0151 ± 0.0228 0.91 – 2.7672 ± 0.0063 ± 0.0089 1.25 – 0.88
δ∆3
S 1.7503 ± 0.0143 ± 0.0209 -1.93 – 1.7605 ± 0.0061 ± 0.0082 -1.88 – 0.37
δ∆4
S 1.2958 ± 0.0145 ± 0.0211 -2.00 – 1.3009 ± 0.0063 ± 0.0083 -2.00 – 0.18
δ⊥ 2.9507 ± 0.0141 ± 0.0190 0.23 – 2.9391 ± 0.0053 ± 0.0076 -0.02 – -0.45
δ∥ -2.9428 ± 0.0191 ± 0.0231 -0.06 – -2.9391 ± 0.0076 ± 0.0112 0.02 – 0.11
|AS |2∆1

0.0816 ± 0.0026 ± 0.0039 -1.63 – 0.0864 ± 0.0011 ± 0.0017 -1.42 – 0.94
|AS |2∆2

0.0260 ± 0.0008 ± 0.0012 -3.22 – 0.0268 ± 0.0004 ± 0.0005 -3.16 – 0.51
|AS |2∆3

0.0340 ± 0.0011 ± 0.0016 -1.95 – 0.0348 ± 0.0005 ± 0.0007 -1.91 – 0.35
|AS |2∆4

0.1107 ± 0.0034 ± 0.0052 0.37 – 0.1153 ± 0.0015 ± 0.0022 0.72 – 0.68
|A⊥|2 0.2129 ± 0.0028 ± 0.0051 1.10 – 0.2145 ± 0.0012 ± 0.0017 1.52 – 0.27
|A∥|2 0.2275 ± 0.0029 ± 0.0052 -0.04 – 0.2232 ± 0.0012 ± 0.0019 -0.43 – -0.68

Table 9.6: Overview of the amplitude parameters and the derived angular
observables for the simultaneous fits in L0I (top) and L0L! (bottom) Run 1
and Run 2 for B0 → K∗0J/ψ (→ e+e−) and B0 → K∗0J/ψ (→ µ+µ−), indicated
here as (→ e+e−) and (→ µ+µ−) for brevity. Additionally the compatibility,
expressed as a number of standard deviations, of the obtained values with respect
to the reference reported in the first column of Table 9.5. The last columns
shows instead the compatibility between electron and muon channel.
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Sec. 7.2.3). The width of the toy-by-toy difference obtained between the use of
the two alternative acceptances is used to estimate the corresponding systematic
uncertainty. Overall, the size of this systematic uncertainty is between one and
one and half times the statistical uncertainty.

A comparison between the observables extracted from the fits to data and
the reference values listed in Table 9.5 is shown in Fig. 9.5, separately for the
trigger categories L0I and L0L!. The inner error bar represents the statistical
uncertainty, while the outer one corresponds to the sum in quadrature of
statistical and systematic uncertainty. The values of the observables for electron
and muon channels can also be found explicitly in Table 9.6, together with
their compatibility with previous measurements and between themselves. To
appropriately compare with the available results, the expected values of |AS |2
and δS are computed in four bins of mKπ: [826, 861] MeV/c2, [861, 896] MeV/c2,
[896, 931] MeV/c2 and [931, 966] MeV/c2, referred for brevity as ∆i with i from 1
to 4. The procedure used follows the definition in Eq. 9.11.

In general, the compatibility between P- and S-wave observables for electrons
and muons in both trigger categories suggests that the current approach does
not introduce any difference between the decays that involve the two lepton
generations. This is the most important outcome of the test presented here.
When comparing with previous measurements, the P-wave observables show a
good agreement with respect to the results obtained with 1 fb−1 of data taken in
2011, indicated in the first columns in Table 9.5. Some tensions can be noticed
for S4 and S8 when comparing to the check performed in the angular analysis of
B0 → K∗0µ+µ− up to the year 2016. A stronger disagreement can be seen when
comparing S-wave and S-P interference terms. These deviations are expected to
be driven mainly by the difference between the S-wave fraction observed here
and in Ref. [29]. A systematic contribution to the choice of the model used for
the parametrization of the mKπ distribution in the S-wave is not included in
here, but could greatly reduce the incompatibility with respect to Ref. [29].
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Chapter 10

Amplitude fits to B0 → K∗0ℓ+ℓ−

decays
The final goal of this analysis is to perform a measurement of the difference
of the Wilson coefficients C9 and C10 between muons and electrons. Chapter 5
has described the selections applied to data to isolate B0 → K∗0ℓ+ℓ− decay
candidates in data, while Ch. 7 discussed their impact in the expected number of
signal events and their distributions. Additionally, the framework used in the fit
has been tested in B0 → K∗0J/ψ (→ ℓ+ℓ−) data candidates in Ch. 9, providing
satisfactory results. The following chapter concludes this work discussing the
main ingredients of the amplitude fit, together with its main results.

Firstly, Sec. 10.1 extends the parametrization of the signal of Sec. 2.2 to
include an S-wave contribution. Then, Sec. 10.2 presents the parametrizations
used for the different backgrounds entering the final amplitude fit. As already
mentioned in Ch. 4, the observed yield for the signal component is not free
to float in the final fit, but rather constrained to the expected value predicted
by its differential branching ratio. A detailed description of this constraint is
presented in Sec. 10.3. Section 10.4 links the first three sections of this chapter
together by describing the full likelihood and the parameters allowed to vary in
its maximization. The projections obtained from the best fit results are shown
for all the samples considered, while the numerical values of the parameters of
interest are kept blind. The chapter ends with the discussion of the statistical
properties of the fit (Sec. 10.5), together with an heuristic estimation of the main
sources of systematic uncertainties (Sec. 10.6).

10.1 Parametrization of the signal amplitude

The signal component is parametrized starting from the expression defined in
Eq. 2.14, where the q2 dependence is stored implicitly in the Ii angular coefficients
as a function of the transversity amplitudes AL,R

0,⊥,∥(q2). The parametrization of
the local and non-local hadronic matrix elements follows the parametrization of
Appendices A and B, respectively. Additionally, the signal parametrization is
supplemented with the inclusion of the invariant mass lineshape Sℓ(m(Kπℓℓ)),
in order to improve the discrimination between signal and backgrounds, and of
the effective acceptance ϵeff (Ω⃗, q2), to model the distortion that the selections
applied cause on the reconstructed angles and q2. Considering these contributions,
the signal pdf for B0 → K∗0ℓ+ℓ− decays can be written as

Psig(x; θ) = Nnorm · Sℓ(m(Kπℓℓ)) · ϵeff (Ω⃗, q2) · d4Γ(B0 → K∗0ℓ+ℓ−)
dq2 dΩ⃗

, (10.1)
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

where Nnorm corresponds to the analytical normalization of the function.
However, as already introduced in Sec. 5.2.5, reconstructed K+π− candidates
can originate not only from the decay of the K∗(892)0 → K+π− resonance, but
also from the decay of scalar resonances or from non-resonant decays of the
type B0 → Kπℓ+ℓ−.1 Previous measurements have estimated the contribution
of the S-wave component in mKπ ∈ [796, 996] MeV/c2 to be around 10% [33].
Even if its size is small, its peculiar distribution in the decay angles and q2

could have a sizable impact on some variables of interest if not properly treated.
For this reason, this contribution is included in the signal parametrization by
modifying the differential decay rate of Eq. 2.14 in two ways: with the inclusion
of four additional complex amplitudes, AL,R

S0,St(q2), and the introduction of a
parametrization of the m(Kπ) lineshapes for P and S-waves, AP (mKπ, q

2) and
AS(mKπ, q

2), respectively. With the inclusion of the S-wave contribution, the
signal pdf then becomes

Psig(x; θ) = Nnorm ·Sℓ(m(Kπℓℓ)) ·ϵeff (Ω⃗, q2) · d5Γ(B0 → K+π−ℓ+ℓ−)
dΩ⃗ dq2 dm(Kπ)

, (10.2)

where the term d5Γ(B0→K+π−ℓ+ℓ−)
dΩ⃗ dq2 dm(Kπ)

refers to the differential decay rate including
both P and S-wave contributions, for which the final expression can be found in
Eq. 10.16.

10.1.1 Inclusion of the S-wave transversity amplitudes

To include the contribution of decays in which the Kπ system has been produced
in an S-wave configuration, it is possible to start considering the resonant decay
of a scalar meson, such as K∗(1430)0. The extension of this model to a more
generic non-resonant contribution is discussed in Sec. 10.1.2. As described in
Ref. [166], four additional transversity amplitudes must be included in the model,
AL,R
St and AL,R

St , whose definitions read as

AL,R
S0 = −N0

√
λK∗(1430)0

MB

√
q2

{[
(C9 − C′

9) ∓ (C10 − C′
10)

]
f+(q2)

+ 2mbMB

q2

[
(C7 − C′

7)fT (q2) − 16π2MB

mb
HS0(q2)

]}
,

ASt = −2N0
M2
B −M2

K∗(1430)0

MB

√
q2

(C10 − C′
10)f0(q2), (10.3)

where the normalization factor N0 is given by

N0 = GFαeVtbV
∗
ts

√
q2βl

√
λK∗(1430)0

3 · 210π5MB
, (10.4)

1Contribution for higher spin resonances are not considered due to the vanishingly small
contribution expected in the mKπ region of interest.
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and λK∗(1430)0 is the kinematic Källén function, defined in Eq. 2.18, after the
substitution MK∗0 → MK∗(1430)0 . Three new form factors are required to
parametrize the scalar B → [Kπ]J=0 transition matrix elements, namely f+, fT
and f0, whose definitions slightly differ from Ref. [166] and are detailed in
Appendix D. The non-local hadronic functions HS0(q2), introduced here for
coherence with the P-wave parametrization, follow Eq. B.2, while Eq. B.3 is
replaced by

ĤS0(z) =
[ K∑
k=0

αS0
k zk

]
f+(q2) . (10.5)

Note that the functions HS0(z), describing the non-local hadronic contribution in
the S-wave part, are fixed to zero in the nominal fit configuration (see Sec. 10.4)
and will only be considered in the determination of systematic uncertainties on
the signal modelling.

10.1.2 Inclusion of the Kπ invariant mass lineshape

To facilitate the discrimination between P- and S-wave in the fit, the differential
decay rate can be expanded introducing a parametrization for the hadronic
invariant mass m(Kπ). The additional discriminating power comes from the
fact that the two contributions have very different distributions, with the P-wave
being characterized by a resonant behaviour, with a peak inside the m(Kπ) range
of interest, while the S-wave is expected to be almost linear and slowly rising. It
is important to point out that the approach described should be regarded as an
effective description of the m(Kπ) spectrum, which is motivated by its ability
to satisfactorily describe the data in previous analysis [33]. Attempts to improve
on this parametrization are discussed in more detail in Appendix E and are not
considered in the rest of this work.

A generic decay B0 → K∗0
J ℓ

+ℓ−, where K∗0
J represents a resonance with

angular momentum J that subsequently decays into a kaon and a pion, can be
described as a function of mKπ and q2 with the following expression

f̃J(mKπ, q
2) =√

p ·B′
LB (p, p0, d) ·

(
p

p0

)LB

×
√
k ·B′

LKπ (k, k0, d) ·
(
k

k0

)LKπ

· fJ(mKπ) . (10.6)

In Eq. 10.6, k (p) corresponds to the momentum of the K+(K∗0
J ) in the rest

frame of the K∗0
J (B), the parameters k0(p0) are the values of k(p) evaluated at

the pole-mass of the mother-particle, B′
L corresponds to the Blatt-Weisskopf

barrier or form factors [129], and LKπ(LB) correspond the orbital angular
momentum between K+ and π−(K∗0

J and the dilepton). The dependence of
k (p) on mKπ (q2) is kept implicit in Eq. 10.6 for simplicity. For the decays of
K∗0
J into spinless daughters such as kaons and pions, the conservation of total

momentum implies that LKπ = J , corresponding to one or zero if the resonance
is vector or scalar, respectively. Similarly, under the assumption that in the
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

decays of B0 → K∗0
J ℓ

+ℓ− the dilepton system is dominantly in a vector state,
the conservation of angular momentum requires that for scalar resonances the
angular momentum between K∗0

J and ℓ+ℓ− is one (LB = 1), while it is equal to
zero for vector resonances such as K∗(892)0 (LB = 0).

When considering the decay of the K∗(892)0 vector resonance, characterized
by a relatively narrow width and located far from the threshold of additional
decay channels, the decay amplitude is expected to be effectively described by a
relativistic Breit-Wigner function, defined as

fP ≡ f892
BW (mKπ) = 1

m2
Kπ −m2

892 − im892Γ892(mKπ) , (10.7)

where m2
892 is the pole-mass of the K∗(892)0 resonance and the running width

Γ892(mKπ) is given by

Γ892(mKπ) = Γ892B
′2
L=1(k, k892, d)

(
k

k892

)3 (
m892

mKπ

)
. (10.8)

For decays involving the Kπ system in an S-wave state, caused either by
the decay of a scalar resonance such as K∗(1430)0 and K∗

0 (800) or from a non-
resonant B0 → Kπℓ+ℓ− decay, a sum of Breit-Wigners cannot be used and the
choice of a different parametrization should be preferred. In the following, we
rely on a model for the S-wave Kπ spectrum that was developed to describe
scattering experiments: the so-called “LASS” model [167]. Its functional form is
defined as

fS ≡ fLASS(mKπ) =
(

1
cot δB − i

+ e2iδB 1
cot δR − i

)
, (10.9)

where the two terms cot δB and cot δR are defined as

cot δB = 1
ak

+ rk

2 and cot δR = m2
1430 −m2

Kπ

m1430Γ1430(mKπ) , (10.10)

with m2
1430 corresponding to the pole-mass of the K∗(1430)0 resonance and

a and r empirical parameters fixed to the values a = 1.95 [ GeV/c]−1 and
r = 1.78 [ GeV/c]−1 of Ref. [29, 167, 168]. The second term of Eq. 10.9
corresponds to a relativistic Breit-Wigner for the K∗

0 (1430)0 resonance, with

Γ1430(mKπ) = Γ1430
k

k1430

m1430

mKπ
. (10.11)

An important feature of Eq. 10.6 is its dependence on the momentum of the
decay products, that results in a non-trivial dependence between mKπ and q2.
This dependence plays a relevant role when extending the signal parametrization
to the Kπ system. For illustration, Figure 10.1 shows a comparison between the
modulus square of the functions f892

BW and fLASS , together with their interference
term for four different relative phases δS .
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Figure 10.1: Comparison between the mKπ distributions of the square modulus
of f892

BW and fLASS , together with the corresponding interference term for the
relative phases δS = {0, π2 , π,

3
2π}.

10.1.3 Full differential decay rate

With the introduction of the description of the Kπ invariant mass system, it is
possible to define the total differential decay rate. The transversity amplitudes
defined in Eq. 2.16 and 10.3, can be modified to accommodate the additional
m(Kπ) dependency as follows

AL,R
0,⊥,∥,t(q

2,mKπ) = AL,R
0,⊥,∥,t(q

2) ·AP (mKπ, q
2) ,

AL,R
S0,St(q2,mKπ) = AL,R

S0,St(q2) ·AS(mKπ, q
2) ,

(10.12)

where
AP (mKπ, q

2) = NP (q2) · fP (mKπ, q
2) ,

AS(mKπ, q
2) = NS(q2) · gSeiδS · fS(mKπ, q

2) ,
(10.13)

while the coefficients gS and δS represent the relative magnitude and phase
between the S- and P-wave contributions. The constants NP and NS are defined
requiring that the modulus squared of AP and AS are normalized to unity in
the entire physical region of mKπ as a function of q2∫ ∞

0

∣∣Ni(q2) · fi(mKπ, q
2)

∣∣2dmKπ = 1 ∀ q2 , (10.14)

The above normalization arises from the condition∫ ∞

0

d5Γ
dq2 dΩ dmKπ

dmKπ = d4Γ
dq2 dΩ , (10.15)

which is imposed to satisfy the consistency of the P-wave differential decay rate
when integrating over the entire physical mKπ region.
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

These additional scalar amplitudes can be incorporated in the differential
decay rate of Eq. 2.14 in the following way:

32π
9

d5Γ
dq2 dmKπ dΩ⃗

∣∣∣∣
P+S−wave

= 32π
9

d5Γ
dq2 dmKπ dΩ⃗

∣∣∣∣
P−wave

+
(
IS1c + IS2c cos 2θl

)
+

(
Ĩ1c + Ĩ2c cos 2θl

)
cos θK

+
(
Ĩ4 sin 2θl + Ĩ5 sin θl

)
sin θK cosϕ

+
(
Ĩ7 sin θl + Ĩ8 sin 2θl

)
sin θK sinϕ , (10.16)

where the additional angular coefficients [166] ISi are pure S-wave contributions
and Ĩi are S-P wave interference terms. Their definition is:

IS1c = 1
3

{[
|AL

S0|2 + |AR
S0|2

]
+ 4m2

l

q2

[
|ASt|2 + 2 Re(AL

S0AR
S0

∗)
]}
,

IS2c = −1
3β

2
l

[
|AL

S0|2 + |AR
S0|2

]
,

Ĩ1c = 2√
3

Re
[
AL
S0AL

0
∗ + AR

S0AR
0

∗ + 4m2
l

q2

(
AL
S0AR

0
∗ + AL

0 AR
S0

∗ + AStAt
∗
)]
,

Ĩ2c = − 2√
3
β2
l Re

[
AL
S0AL

0
∗ + AR

S0AR
0

∗]
,

Ĩ4 = −1 ·
√

2
3β

2
l Re

[
AL
S0AL

∥
∗ + (L → R)

]
,

Ĩ5 =
√

8
3β

2
l Re

[
AL
S0AL

⊥
∗ − (L → R)

]
,

Ĩ7 = −1 ·
√

8
3β

2
l Im

[
AL
S0AL

∥
∗ − (L → R)

]
,

Ĩ8 =
√

2
3β

2
l Im

[
AL
S0AL

⊥
∗ + (L → R)

]
, (10.17)

where the dependence of the transversity amplitudes on q2 and mKπ is implied
for simplicity. In analogy with Eq. 2.15, the −1 in front of Ĩ4,7 results from
the transformation from the theory to the LHCb angular convention [31]. An
example of the effect of the inclusion of the S-wave contribution in the full
differential decay rate for the central-q2 region is reported in Figure 10.2.

It is interesting to notice that, when integrating over the angles, the
interference terms between P- and S-wave and many of the angular parameters
do not contribute to the total differential decay rate, which becomes

d2Γ
dq2 dm2

Kπ

=
∣∣A2

P (mKπ)
∣∣2 · dΓP

dq2 +
∣∣AS(m2

Kπ)
∣∣2 · dΓS

dq2 , (10.18)

with
dΓP

dq2 = 3
4(2I1s + I1c) − 1

4(2I2s + I2c) (10.19)
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Figure 10.2: Projections of the distribution of cos θK , cos θℓ, ϕ, q2 and mKπ

for the B0 → K+π−µ+µ− decays that include P and S-wave contributions that
interfere with a relative phase δS = π. The fraction of S-wave considered, FS ,
corresponds to ≈ 7%.
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and
dΓS

dq2 = 1
4I

S
1c − 3

4I
S
2c . (10.20)

10.1.3.1 Conventional observables

The conventional observables used to study the decays of B0 → K∗0ℓ+ℓ− have
been presented in Sec. 2.3 and correspond mainly to branching ratios and angular
observables binned as a function of q2. The methodology described in this work
allows to obtain a continuos parametrization in these variables allowing to obtain,
for the branching ratio, its differential distribution as

dB(B0 → K∗0ℓ+ℓ−)/dq2 = τB
ℏ

∫
dΩ⃗dmKπ

d5Γ[B0 → K∗0ℓ+ℓ−]
dΩ⃗dq2dmKπ

= τB
ℏ

· dΓP
dq2

(10.21)
and, for the angular observables, their variation as a function of q2

FL(q2) =
3
4I1c − 1

4I2c
dΓP
dq2

and Si(q2) = Ii
dΓP
dq2

. (10.22)

Binned values of these observables can then be simply obtained by integrating
Eq. 10.21 and Eq. 10.22 in the chosen bin of q2, ∆q2. In the latter, a separate
integration between numerator and denominator must be performed to compare
with the available measurements:

< Si >
∣∣∣
∆q2

=
∫
Ii(q2)dq2∫ dΓ

dq2 dq2 . (10.23)

Analogously, the S-wave fraction, FS , can be extracted as function of q2 and
mKπ with the following expression

FS(mKπ, q
2) =

∣∣AS(mKπ, q
2)

∣∣2 · dΓS

dq2 (q2)∣∣AP (mKπ, q2)
∣∣2 · dΓP

dq2 (q2) +
∣∣AS(mKπ, q2)

∣∣2 · dΓS

dq2 (q2)
. (10.24)

In order to obtain the measured value of the S-wave fraction in a given region of
interest, e.g. a region corresponding to the bin ∆q2 and ∆mKπ in q2 and mKπ,
one must integrate the previous, obtaining

< FS >
∣∣∣ ∆q2

∆mKπ

=

∫ ∣∣AS(mKπ, q
2)

∣∣2 · dΓS

dq2 (q2) dmKπdq2∫ (∣∣AP (mKπ,q2)
∣∣2

· dΓP
dq2 (q2)+

∫ ∣∣AS(mKπ,q2)
∣∣2

· dΓS
dq2 (q2)

)
dq2dmKπ

,

(10.25)
where the double integration runs over q2 and mKπ. Note that, also in this
case, < FS > is not a direct parameter of the fit, but rather a function of the
parameters of the model.
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In addition to the conventional flavour specific observables, it is also possible
to derive LFU universality tests such as ∆Si = Sµi − Sei , Qi = P ′,µ

i − P ′,e
i [56]

and RK∗0 = B(B0→K∗0µ+µ−)
B(B0→K∗0e+e−) , both as a function of q2 or integrated in a specific

bin. The access to these binned observables is an interesting feature of this
analysis, since it provides a direct metric to validate the results of the amplitude
fit against the published results.

10.2 Parametrization of the backgrounds

The three most important backgrounds that enter the data fits of B0 → K∗0ℓ+ℓ−

decays are combinatorial, double-semileptonic and partially reconstructed decays.
Due to the better momentum resolution, only the combinatorial background
affects B0 → K∗0µ+µ− decays in the range chosen for the mass fit.

10.2.1 Combinatorial background parametrization

The combinatorial background consists of decay candidates built from random
particles coming from the fragments of the same p-p collision. Due to the sheer
number of particles produced, it is possible that some of these combinatorial
candidates pass the full chain of selections applied. Since they are not coming
from a real B0 meson decay, they do not peak in the m(Kπℓℓ) region of the
signal and are expected to be distributed according to a decreasing exponential.
Similarly, their distributions in the angles, q2 and m(Kπ) are supposed to be
flat or with a mild curvature. For these reasons, the parametrization of this
background is performed using Chebyshev polynomials [169] up to order 3 for
cos θK , up to order 2 for cos θℓ, ϕ and in q2, up to order 1 for mKπ. Assuming
factorization between the different variables considered, the combinatorial pdf
can thus be expressed as

Pcomb(x; θ) = Ncomb ·
∏
y

( ∑
ciCi(x)

)
· e−λmKπℓℓ , (10.26)

where y ≡ {cos θK , cos θℓ, ϕ, q2,m(Kπ)}, Ci(x) denotes Chebyshev polynomials
of order i and Ncomb is a factor needed to normalize the pdf to unity. This
parametrization is performed separately for the two runs in the rare muon
channel, but kept together in the electron one. A separate parametrization
between different trigger categories is however allowed in the second case. These
components are freely floating in the final fit and determined directly from data.

The application of a cut on the MVA or q2
c can alter the natural exponential

distribution of the combinatorial background in the invariant mass. The extent
of the distortion is investigated in the lepton flavour-violating sample of Kπµ±e∓

candidates after the standard selection, where the additional requirement of
ProbNNmu<0 and ProbNNe<0.2 is applied on the reconstructed electrons and
muons to reduce their misidentification. As Figure 10.3 shows, the selected events
maintain an exponential behaviour in the mass region of [4900,5700] MeV/c2

regardless of the dilepton invariant mass squared variable (left) and of the different
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

combinatorial MVA thresholds (right) used. For this reason, the exponential
parametrization of Eq. 10.26 is expected to be a good representation of the
combinatorial in muon and electron data samples.
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Figure 10.3: Distribution of m(Kπµ±e∓) mass in the central-q2
c region in Run 2

for the nominal working point of MVA > 0.97 (left) and for different MVA
thresholds (right).

10.2.1.1 Effect of B+ → K+ℓ+ℓ− veto

Of all the vetoes applied in Sec. 5.1.2, the one applied to remove a possible B+ →
K+ℓ+ℓ− decays contribution has the strongest impact on the parametrization
of the fit components. The veto, due to the cut performed on the invariant mass
made of three out of the four final state particles, removes a certain volume
of the three-dimensional space in the variables cos θK , q2 and m(Kπℓℓ). Any
component that has a non-negligible overlap with this region in the fit will be
distorted. This effect, being most prominent in the region above 5300 MeV/c2, is
particularly worrying for the parametrization of the combinatorial background,
since it breaks the factorization hypothesis.

To resolve this issue, an additional term describing the efficiency of the veto
on combinatorial events is introduced in the parametrization, such that the total
pdf correctly takes into account the affected phase space. A three-dimensional
efficiency map is computed in cos θK , q2 and m(Kπℓ+ℓ−) using the lepton flavour
violating channel reconstructed as B0 → K∗0µ±e∓. Since the cut represents a
purely kinematic effect, the differences in resolution between electron and muons
are expected to be negligible, and the efficiency map obtained is expected to work
well for the parametrization of the combinatorial components in B0 → K∗0µ+µ−

and B0 → K∗0e+e− decays. The function ε3D
veto(cos θK , q2,mKπℓℓ) is defined as

the ratio between the three-dimensional histogram of events that are removed by
the veto over the total, and it is parametrized in the ranges cos θK ∈ [−1, 1], q2

∈ [1, 14] GeV2/c4 and m(Kπℓ+ℓ−) ∈ [4500, 6800] MeV/c2 with 100, 40, 50 bins,
respectively. Notice that, for the electron case, q2

c is used instead of q2. Figure

180



Parametrization of the backgrounds

10.4 shows the function ε3D
veto as a function of cos θK and m(Kπℓℓ), in three

different bins of q2.
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Figure 10.4: Two-dimensional projection of ε3D
veto as a function of cos θK and

m(Kπe±µ∓) in bins of q2.

The background pdf can then be fully formalized as a six-dimensional function
given by

Pcomb(x; θ) = Ncomb · (1 − ε3D
veto(cos θK , q2,mKπℓℓ)) ·

[ ∏
y

( ∑
ciCi(y)

)
· e−λmKπℓℓ

]
.

(10.27)
The validity of this approach is probed in muon data using the upper

mass sideband region defined as m(Kπµµ) ∈ [5450, 5700] MeV/c2, where all
the background coefficients are floated in the fit. In order to allow for enough
statistics to resolve the background shape over this reduced range, the MVA
cut has been relaxed to MVA > 0.2 for both runs. Figure 10.5 shows the
effect of the B+ → K+ℓ+ℓ− veto and how the term (1 − ϵveto) introduced in
Eq. 10.27 successfully describes the event distribution. For illustration purpose,
the unfolded distributions are also plotted together with the data where no
veto has been applied. A good agreement is observed in all the distributions
when comparing the fit result (solid red) with the vetoed dataset (black). The
agreement becomes slightly worse when comparing the unfolded distribution
(dashed red) to the dataset where the veto has not been applied. This is
expected, since a contribution from B+ → K+µ+µ− decays might be present
in data. Even if a small excess can be observed in cos θK for Run 1, a clear
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signature of B+ → K+µ+µ− decays does not seem to be present in the selected
data. The current nominal strategy is to keep the veto in our final fit, since it is
the safest option and no such check can be performed in the electron mode due
to the worse resolution and smaller statistics.
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Figure 10.5: Projection of the fit to the combinatorial background events in
the upper mass sideband [5450, 5700]MeV/c2 of central-q2 for Run 1 (left) and
Run 2 (right). The MVA selection has been been loosened as described in the
text, while the dashed line illustrate the resulting Chebyshev polynomials once
the effect of the veto is unfolded.

10.2.2 Double-semileptonic cascade decays

The double-semileptonic cascade background (DSL) comprises decays of the
type Hb → Hc(→ Hsℓ

−ν̄ℓ)ℓ+νℓ, with a K and a π in the final state. These
decays are particularly dangerous because they present the same visible final
state particles of the signal and have branching fractions of O(10−4), roughly
a thousand times larger than B0 → K∗0ℓ+ℓ− decays. Due to the energy loss
from the missing neutrinos, these backgrounds have a distribution in Kπℓ+ℓ−

mass similar to that of the combinatorial, but with a slope that dies earlier at
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the invariant mass of the B0 due to kinematics. The similarity is, however, not
mirrored in the angular distribution of θℓ: as the antilepton from the Hb tends
to have higher momentum than the one from the Hc, and θℓ by definition always
refers to the angle between the Hb and this antilepton, it will generally take on
values close to zero, giving rise to a distinctive, asymmetric cosθℓ distribution
peaked near one. This background, while present in both B0 → K∗0µ+µ− and
B0 → K∗0e+e− decays, in the first case is easily rejected by the choice of mass
range, thanks to the better momentum resolution in the reconstruction of the
muons. For this reason, this background component is studied in the following
only in the context of B0 → K∗0e+e− decay fits. As already mentioned in
Sec. 5.2.5, two alternatives have been used to veto this contribution in previous
analyses: a cut to the invariant mass of the K+π−e− above the D−(Hc) mass
at 1780 MeV/c2 [128], and a cut on | cos θℓ| < 0.8 [170]. Due to the distortion or
reduction of cos θℓ that these two vetoes imply on the signal angular distribution,
none of the two is applied here. Instead, the parametrization and inclusion of
this background component in the final fit is preferred.

To investigate the best strategy to model this type of contribution, a sample
of simulated B0 → D−(→ K∗0(→ K+π−)e−ν̄)e+ν decays has been generated
and reconstructed within the LHCb software, since this channel is expected to
be the single dominant contribution in this type of background. The validation
in data of this assumption is of paramount importance. A possible proxy for this
background in data is the lepton-flavour-violating channel B0 → K∗e±µ∓, where
other sources of backgrounds such as partially reconstructed or J/ψ leakage are
absent, while a double-semileptonic contribution involving muons and electrons
is expected. A preliminary comparison between events of B0 → D−(→ K∗0(→
K+π−)e−ν̄)e+ν and B0 → D−(→ K∗0(→ K+π−)µ−[e−]ν̄)e+[µ+]ν simulated
decays, where the square brackets indicate the decay where the electron and
the muon are swapped, is performed to verify that the impact of resolution
between different lepton generations is negligible. As Figure 10.6 shows, the
three simulated decays agree well in all distributions. It is therefore reasonable to
assume that the DSL contribution in the LFV data could be a good representation
of the one expected in the signal rare mode. Further compatibility checks using
data-driven approaches are reported in Appendix F.1.1.

A direct comparison between simulation and data is not trivial, since in the
latter multiple background contributions can be present. The cos θℓ angular
distribution for the Kπeµ data and B0 → D−(→ K∗0e−ν̄)e+ν simulation is
depicted in Figure 10.7. The LFV sample has been obtained by applying the
same selection as the rare mode, but considering the invariant mass region of
[4500, 5500] MeV/c2.2 While contributions from combinatorial backgrounds are
still present in the data (though dominated by DSL decays), an immediate
inspection of these distributions clearly shows a significant disagreement between
the two samples. In particular, the width of the peaking structure around

2Note that while the signal region where potentially the LFV channel can appear is
investigated, no inspection to the invariant mass is performed. In addition, any impact of this
contribution in the angular distributions are expected to be marginal. Therefore, it is safe to
assume that the relevant figures for the search for this unobserved channel are preserved.
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cos θℓ close to +1 seems larger for data than for simulation. It has been tried to
explain some of these differences by the presence of events from other DSL decays
not included in the single-component simulation, such as B0 → D∗(2010)e−ν̄,
which may modify the shape and width of the main peak, or even data-driven
corrections to the simulation. None of the combinations tried seems to account
for the disagreement observed, as shown in Appendix F.1.2. Additionally, the
simulation fails to reproduce the smaller bump at -1. Two main hypotheses have
been found to explain this feature observed in data: B0

s → D+
s (→ K∗0e+ν)e−ν̄

decays or the combination of a genuine DSL decay where a random K∗0 from
the underlying event is used in the reconstruction. In the first case, the cos θℓ
distribution will peak at -1, opposite to B0 → D−(→ K∗0e−ν̄)e+ν decays, due
to the fact the decay of the D meson produces a K∗0 and a positron rather
than an electron. In the second case, the cos θℓ distribution is expected to
peak symmetrically at -1 and +1, since a random K∗0 or K∗0 is picked from
the underlying event, and the event is reconstructed as the decay of a B0 or
B0, for which the definition of cos θℓ refers to the electron or the position,
respectively. This contribution is also expected to be characterized by a longer
exponential tail with respect to the fully reconstructed DSL contribution, due to
the combinatorial nature of the K∗0.

Since the rich structure seen in the LFV sample is difficult to model from
simulation, a data-driven approach to obtain a parametrization for the DSL-like
contribution is preferred and discussed in the Sec. 10.2.2.1. For completeness,
a parametrization on B0 → D−(→ K∗0e−ν̄)e+ν simulated decays is also
performed and reported in Appendix F.1.3. This model is used in Sec. 10.5 to
estimate the systematic uncertainty linked to the choice of the DSL model. A
comparison between the two parametrization is provided in Figure 10.9.

10.2.2.1 Data-driven parametrization from B0 → K∗0e±µ∓ candidates

A data-driven approach has been designed to obtain a double-semileptonic
cascade background parametrization from B0 → K∗0e±µ∓ data, aiming at
the isolation of this contribution from combinatorial. This is achieved by
applying a very tight cut to the combinatorial MVA (MVA > 0.9975) in the
lower B0 invariant mass range of [4500, 5200] MeV/c2 and by further requiring
the ProbNNmu<0 and ProbNNe<0.2 for the reconstructed electron and muon,
respectively. This last cut is necessary to avoid a contribution from mis-ID
events from real B0 → K∗0J/ψ (→ ℓ+ℓ−) decays. The combinatorial MVA is
expected to efficiently select the double-semileptonic contribution in data and
reduce the contamination of the combinatorial, due to the more signal-like
features of the former with respect to the latter. These cuts are applied on top
of the full set of selections. In this sample, a fit to the angular distributions, q2

c

and m(Kπ) is performed to obtain a parametrization for the DSL contribution.
Due to the small mass range considered, a fit to m(Kπeµ) is not included; its
parametrization is extracted directly from the amplitude fits to the rare mode.

The pdf used for the parametrization corresponds to Chebyshev polynomials
up to order 3, 2, 2 for cos θK , ϕ and q2

c , respectively. The m(Kπeµ) is described
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Figure 10.6: Comparison between the invariant mass and angular distributions
of DSL simulations for B0 → D−(→ K∗0e−ν̄e)e+νe (red) and B0 → D−(→
K∗0(→ K+π−)µ−[e−]ν̄)e+[µ+]ν (blue or green) decays.
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Figure 10.7: Comparison between the Kπeµ data and B0 → D−(→ K∗0e−ν̄)e+ν
simulation in the cos θℓ distribution.
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

by a decreasing exponential, cos θℓ by a KDE lineshape and m(Kπ) by a linear
term plus a Gaussian. The drop of the KDE at the boundaries of cos θℓ has been
mitigated by a mirroring of the simulated sample with respect to -1 and 1. The
overall parametrization reads as

PDSL =
∏
x

( ∑
ciCi(x)

)
· e−λm ·KDE(cos θℓ) · fDSL(mKπ) , (10.28)

where x ≡ {cos θK ϕ, q2}, Ci(x) denotes Chebyshev polynomials of ith order, m
is the variable describing the m(Kπeµ) distribution and

fDSL(mKπ) = [fG · G(µK∗0 , σK∗0) + (1 − fG) · Nlinear(a ·mKπ + b))] , (10.29)

where G is a Gaussian pdf with mean µK∗0 , standard deviation σK∗0 , and a and
b are the coefficients of the straight line describing the asymmetric term needed
to obtain a satisfactory description of the distribution. The factor Nlinear is
needed to ensure the normalization of the second part of the pdf. Factorization
between the different dimensions considered is assumed. Figure 10.8 shows
the corresponding fit results to the DSL enriched sample, whose parameters
are gathered in Table 10.1. Additionally, Figure 10.9 shows the comparison
between the parametrization just obtained, with the one derived from a fit
to the simulated sample of B0 → D−(→ K∗0e−ν̄)e+ν decays, as described in
Appendix F.1.3.

Table 10.1: Parameter values obtained from fits to reconstructed B0 → K∗e±µ∓

candidates in data enriched with a double-semileptonic contribution.
Year Run 1 Run 2
Type L0I L0E! L0I L0E!
cK1;DSL -0.423 ± 0.123 -0.563 ± 0.103 -0.550 ± 0.078 -0.554 ± 0.074
cϕ1;DSL -0.009 ± 0.029 -0.021 ± 0.030 0.012 ± 0.027 -0.030 ± 0.024
cq

2

1;DSL 0.350 ± 0.102 0.626 ± 0.084 0.591 ± 0.067 0.481 ± 0.068
cK2;DSL 0.183 ± 0.096 0.003 ± 0.095 -0.017 ± 0.075 -0.051 ± 0.074
cϕ2;DSL -0.016 ± 0.008 -0.003 ± 0.009 0.020 ± 0.009 0.003 ± 0.008
cq

2

2;DSL 0.049 ± 0.094 0.046 ± 0.082 0.097 ± 0.064 0.042 ± 0.066
cK3;DSL -0.108 ± 0.096 -0.199 ± 0.092 -0.266 ± 0.068 -0.248 ± 0.065
fKπG;DSL 0.308 ± 0.081 0.484 ± 0.082 0.399 ± 0.049 0.419 ± 0.043
aDSL 0.001 ± 0.031 0.008 ± 0.130 0.000 ± 0.001 0.000 ± 0.000
µK

∗0 0.901 ± 0.005 0.902 ± 0.004 0.894 ± 0.002 0.894 ± 0.002
bDSL 0.000 ± 0.003 -0.001 ± 0.007 -0.000 ± 0.000 -0.000 ± 0.000
σK

∗0 0.023 ± 0.006 0.027 ± 0.005 0.020 ± 0.003 0.020 ± 0.002
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Figure 10.8: Data fits to enriched DSL samples from B0 → K∗0e±µ∓ decay
candidates corresponding to Run 2 conditions in the trigger category L0I.
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Figure 10.9: Comparison of the two parametrizations available to model the
double-semileptonic background corresponding to Run 2 conditions for the trigger
category L0I. The bands represent the 1σ uncertainty of the shapes as obtained
from the covariance matrix of the fit result.
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10.2.3 Partially reconstructed B+ → K+π+π−e+e− decays

In addition to double-semileptonic decays, another important source of
partially reconstructed background consists of decays featuring heavier kaon
resonances, such as B+ → K+

1 (→ K+π+π−)e+e− and B+ → K2(1430)+(→
K+π+π−)e+e−, which can be reconstructed as the signal when one or more
pions are not considered. Due to the missing pion(s), the shape of this partially
reconstructed background in the m(Kπee) invariant mass is that of a broad
peak with its centre shifted towards the lower mass region. The modelling
strategy for this background involves the use of a KDE lineshape for m(Kπee),
factorized Chebyshev polynomials up to third order for cos θK , second order
for the remaining angles and q2

c , and a Gaussian on top of a linear term for
m(Kπ), similarly to what has been done in Eq. 10.29 in the case of the double-
semileptonic contribution. The KDE lineshape and the remaining fit parameters
are obtained from B+ → K+π+π−e+e− simulated decays reconstructed under
the B0 → K∗0e+e− mass hypothesis. Since there is no model available that
reproduces the full Kππ spectrum observed in data, the simulation has been
generated flat in m(Kππ), and a reweighting tool has been used to obtain a
data-driven correction. The correction consists of a simultaneous reweighting of
m(K+π+π−), m(K+π−) and m(π+π−) invariant masses, performed by training
a BDT on B+ → K+π+π−J/ψ(→ µ+µ−) simulated decays and sWeighted
data. The reweighter is then applied to the generator level information of our
B+ → K+π+π−e+e− simulation samples, from which the weights can be ported
to the reconstructed tuple via a matching procedure. Figure 10.10 shows the
impact of the reweighting on the generator level distributions, displaying nicely
the expected mass distributions as observed in data. The reweighted distributions
of the m(K+π−) and m(K+π−e+e−) systems after reconstruction can be seen
instead in Fig. 10.11. To improve the agreement between data and simulation,
a smearing on the momentum of the two electrons has also been performed,
accordingly to what has been described in Sec .6.6.
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Figure 10.10: Distribution of m(K+π+π−), m(K+π−) and m(π+π−) as
obtained in the generator level phase space simulation of B+ → K+π+π−e+e−

before (black) and after (red) the reweighting procedure to reproduce the Kππ
spectrum observed in data.

Additionally, two more corrections to the simulation are considered after
the reweighting of the Kππ spectrum: tracking and PID corrections, as
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Figure 10.11: Distribution of m(K+π−) and msmrd(K+π−e+e−) in the
reconstructed phase space simulation of B+ → K+π+π−e+e−. The black and
red distributions show the impact of the reweighting on the two reconstructed
variables while in blue (only on the right) is highlighted the impact of removing
the smearing in the K+π−e+e− invariant mass.

already discussed in Ch. 6. The simulated sample of B+ → K+π+π−e+e−

decays reweighted, smeared and after the full selection used for the signal rare
mode, is then used to obtain a six-dimensional parametrization of the partially
reconstructed background in the region of the signal. Figure 10.12 shows these
parametrizations for the trigger category L0I in Run 2, while the other fit results
are omitted for brevity. Table 10.2 reports the values of the parameters obtained
from the fits.

Table 10.2: Parameter values obtained from fits to B+ → K+π+π−e+e− in
Run 1 and Run 2 for the trigger categories L0I and L0E!

Year Run 1 Run 2
Type L0I L0E! L0I L0E!
cK1;PR -0.886 ± 0.030 -0.760 ± 0.035 -0.951 ± 0.014 -1.032 ± 0.014
cℓ1;PR -0.019 ± 0.037 0.129 ± 0.039 -0.035 ± 0.019 0.024 ± 0.019
cϕ1;PR -0.007 ± 0.012 0.005 ± 0.012 0.007 ± 0.006 0.019 ± 0.006
cq

2

1;PR -0.094 ± 0.037 -0.012 ± 0.038 -0.057 ± 0.019 -0.000 ± 0.019
cK2;PR 0.025 ± 0.036 -0.060 ± 0.038 0.142 ± 0.017 0.230 ± 0.016
cℓ2;PR -0.312 ± 0.040 -0.309 ± 0.043 -0.285 ± 0.020 -0.341 ± 0.021
cϕ2;PR 0.001 ± 0.004 -0.004 ± 0.004 0.001 ± 0.002 0.004 ± 0.002
cq

2

2;PR -0.071 ± 0.037 0.114 ± 0.035 -0.047 ± 0.018 0.014 ± 0.019
cK3;PR -0.094 ± 0.031 0.052 ± 0.035 -0.155 ± 0.014 -0.125 ± 0.014
fKπG;PR 0.539 ± 0.052 0.476 ± 0.034 0.422 ± 0.013 0.399 ± 0.017
aPR 0.010 ± 0.149 -0.001 ± 0.000 -0.028 ± 0.042 -0.034 ± 0.039
µK

∗0

PR 0.888 ± 0.002 0.892 ± 0.002 0.890 ± 0.001 0.890 ± 0.001
bPR -0.002 ± 0.019 0.001 ± 0.001 0.049 ± 0.067 0.053 ± 0.058
σK

∗0

PR 0.034 ± 0.003 0.026 ± 0.002 0.023 ± 0.001 0.024 ± 0.001

190



Parametrization of the backgrounds

−1.0 −0.5 0.0 0.5 1.0
0

200

400

600

800

E
nt

ri
es

/
(0

.0
8)

weighted fit
data: 10252

−1.0 −0.5 0.0 0.5 1.0
cos θK

−5

0

5

LHCb Unofficial

−1.0 −0.5 0.0 0.5 1.0
200

250

300

350

400

450

E
nt

ri
es

/
(0

.0
8)

weighted fit
data: 10252

−1.0 −0.5 0.0 0.5 1.0
cos θL

−5

0

5

LHCb Unofficial

−2 0 2

250

300

350

400

450

500

E
nt

ri
es

/
(0

.2
5)

weighted fit
data: 10252

−3 −2 −1 0 1 2 3
φ

−5

0

5

LHCb Unofficial

1 2 3 4 5 6 7

250

300

350

400

450

E
nt

ri
es

/
(0

.2
4G

eV
2 /

c4 )

weighted fit
data: 10252

1 2 3 4 5 6 7
q2

c[GeV2/c4]

−5

0

5

LHCb Unofficial

0.80 0.85 0.90 0.95 1.00

200

400

600

800

E
nt

ri
es

/
(0

.0
1G

eV
/c

2 )

weighted fit
data: 10252

0.80 0.85 0.90 0.95 1.00
mKπ[GeV/c2]

−5

0

5

LHCb Unofficial

Figure 10.12: Result of the fit to the weighted and smeared B+ → K+π+π−e+e−

simulation sample in Run 2 for the trigger category L0I.
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This reweighting strategy only takes the mass shapes into account and does
not explicitly correct for angular distributions. It is known, however, that the
spin of both intermediate resonances and missing final state particles can have
a significant impact on the shape of partially reconstructed backgrounds. To
account for these differences, an alternative parametrization of the partially
reconstructed background is obtained using simulated samples that mimic the
underlying dynamics of the B+ → K+

1 e
+e− decay. While the fit results are

detailed in Appendix F.2, a comparison of the two parametrizations available
is shown in Figure 10.13 for simulated samples corresponding to Run 2 in the
L0I trigger category. As it can be seen, while there is a small difference between
the shapes of the two modes in the reconstructed m(Kπee) (histogrammed here
since it is parametrized with a KDE rather than a fit), a clear difference can be
noticed between the two parametrizations in the other variables of interest. The
impact of such differences is studied in toys and a systematic uncertainty based
on the choice of the model is assigned.

10.3 Constraint on the observed signal yield

Additional stability is provided to the fit when the B0 → K+π−ℓ+ℓ− branching
ratio information is used as a constraint on the number of signal events observed.
In fact, the total signal yield N̂sig (P+S waves) directly enters the extended
likelihood as shown in Eq. 10.35 and can be expressed as

N̂sig = NJ/ψ · (1 −F
J/ψ
S ) · B(B0 → K+π−ℓ+ℓ−)

B(B0 → J/ψK∗0) · B(J/ψ → ℓ+ℓ−) · ϵ
sig
tot

ϵ
J/ψ
tot︸ ︷︷ ︸
Rε

. (10.30)

Notice that the term B(K∗0 → K+π−) is omitted since it cancels out in the ratio.
The terms appearing in the previous equation can be split in two categories:
some corresponding to external constraints and some that are a function of the
parameters floating in the fit. In the first category we find:

• NJ/ψ, yield of the corresponding resonant mode obtained from the mass
fits described in Sec. 8.3.2, used to normalize the branching ratio of the
signal;

• F
J/ψ
S , the S-wave fraction in the control channel. This could, for consistency,

be directly extracted from the amplitude fit in Sec. 9.2.3. However, the
difference between using this or an external value is expected to be small,
since the uncertainty on this quantity has been shown to be dominated by
a systematic uncertainty of 0.01 due to the difficulties in modelling exotic
contributions from B0 → Z(4430)−K+ decays [164]. For this reason, the
value used corresponds to FS = (6 ± 1)% [164].

• B(B0 → J/ψK∗0), the branching ratio of the resonant channel, which is
fixed to the value in Ref. [161].
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Figure 10.13: Comparison of the two parametrizations available to model the
partially reconstructed background corresponding to Run 2 and the trigger
category L0I. The bands represent the 1σ uncertainty of the shapes obtained
from the covariance matrix of the fit result.
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

• B(J/ψ → ℓ+ℓ−), the branching ratio of the J/ψ decaying in the dileptons,
fixed from PDG [129].

• Rε, the ratio of the total efficiencies between the rare and resonant mode,
defined in Sec. 7.1.2.

In the second category, we are left with the term B(B0 → K+π−ℓ+ℓ−),
corresponding to the branching ratio of the rare mode, where both P- and
S-wave are considered. This quantity is given by

B(B0 → K+π−ℓ+ℓ−) = τB
ℏ

∫
∆q2

∆mKπ

d2Γ(∆⃗C; θnuis)
dq2dmKπ

∣∣∣
S+P

dq2dmKπ , (10.31)

where the integration is performed in ∆q2, a region of q2 corresponding to
central-q2 and in ∆mKπ, a region of mKπ corresponding to an interval of
±100 MeV/c2 from the nominal mass of the K∗0(892) resonance. For clarity, the
dependency on the ∆⃗C = (∆C9,∆C10) and θnuis (vector indicating the remaining
nuisance parameters) is explicit. It is important to notice that the expression in
Eq. 10.30 is an approximation of the more rigorous

Nsig =
NJ/ψ · (1 − F

J/ψ
S )

B(B0 → J/ψK∗0) · B(J/ψ → ℓ+ℓ−) · ϵJ/ψtot

× τB
ℏ

∫
dx ϵsigeff (x) · d5Γ(∆⃗C; θnuis)

dx

∣∣∣
S+P

, (10.32)

where x ≡ {cos θK , cos θℓ, ϕ, q2,mKπ} and ϵsigeff (x) corresponds to the effective
acceptance discussed in Eq. 7.9, properly normalized to represent the differential
absolute efficiency. The two Eqs. 10.30 and 10.32 are identical only under the
hypothesis that the underlying physics distribution in data is identical to the
one generated in the simulation, or expressed differently

ϵsigtot
!=

∫
dx ϵsigeff (x)·d

5Γ(∆⃗C; θnuis)
dx

∣∣∣
S+P

/ ∫
dxd5Γ(∆⃗C; θnuis)

dx

∣∣∣
S+P

. (10.33)

In the following, to simplify an already complicated likelihood, we decided to
perform the fit using as a constraint the simplified relationship in Eq. 10.30. The
impact of such assumption is considered as a source of systematics in Sec. 10.6.

10.4 Amplitude fits to data

An extended maximum likelihood fit is performed in data, simultaneously in the
electron and muon channel, split in six subsamples corresponding to: the region
of central-q2 and central-q2

c for B0 → K∗0µ+µ− and B0 → K∗0e+e− decays,
respectively; two different trigger categories for B0 → K∗0e+e− decays (L0I and
L0E!), while L0I and L0M! are merged for B0 → K∗0µ+µ− decays; and two
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Amplitude fits to data

different runs, corresponding to Run 1 and Run 2. The invariant mass regions
chosen are m(Kπee) ∈ [4900, 5700] MeV/c2 and m(Kπµµ) ∈ [5170, 5700] MeV/c2,
while the MVA response is required to be larger than 0.97 and 0.8, respectively,
as suggested by the optimization process in Sec 5.2.6. The m(Kπ) region is
chosen to be [796,996] MeV/c2.

The full likelihood can be expressed as

Ltot(θ) = Lconstr ·
∏

r∈{Run 1,Run 2}

Lµr (θ) ·
∏

r∈{Run 1,Run 2}
t∈{L0I,L0E!}

Lert(θnuis) , (10.34)

with the single likelihood defined as

Lℓrt(θ) = e−N̂tot · N̂Nobs
tot

Nobs!
·
Nobs∏
i

[
N̂sig(θ)
N̂tot

Psig(x; θ) +
∑
k

N̂k

N̂tot
Pk(x; θ)

]
, (10.35)

where the pdf s are parametrized as a function of x ≡ {Ω⃗, q2,m(Kπ),m(Kπℓℓ)};
Psig(x; θ) is the full signal pdf , defined in Sec. 10.1.3; Pk(x; θ) is the pdf
corresponding to the kth background component included in the fit, whose
possible parametrizations were described in Sec. 10.2; Nobs is the total number
of candidates observed in the subsample considered; N̂sig corresponds to the
estimator for the number of signal events observed, expressed as a function of
the Wilson coefficients, as discussed in Eq. 10.30, and N̂k corresponds to the
estimator for the number of observed events for the kth background component.
The likelihood term Lconstr describes instead the effect of the multidimensional
Gaussian constraints applied on the parameters used to describe the form factors
and CKM parameters, as explicitly shown in the following

Lconstr = 1√
(2π)19det|C|

e− 1
2 (ϕ⃗−ϕ⃗constr)TC−1(ϕ⃗−ϕ⃗constr)

×
∏
j

1√
2πσconstr

j

e
− 1

2

( ηj−ηconstr
j

σconstr
j

)2

, (10.36)

where C represents the covariance matrix between the different form factor
parameters ϕ, ϕconstr corresponds to the central values of the 19 form factor
parameters considered, σconstrj is the standard deviation of the jth CKM
parameter ηj , which is centred with a Gaussian distribution to is expected
value ηconstrj .

The optimization is performed with respect to the fit parameters θ, containing
both the parameters of interest ∆C9 and ∆C10, and nuisance parameters, θnuis.
When considering the signal component, the nuisance parameters of the fit
correspond to:

• The effective Wilson coefficients C̃e9 , C̃e10, whose estimation could be polluted
by a mismodelling of the charm-loop contribution. Since no contributions
from the complex part of the WC is considered here, all WCs are assumed
to be real.
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

• The Wilson coefficient C7, whose value is fixed to the SM (C7 = −0.34 [23])
due to the strong constraint obtained from radiative B meson decays [127].

• The chirality-flipped Wilson coefficients Ce′
i and ∆C′

i, which are set to zero
and not floated the fit.

• The Wolfenstein parameters {αCKMm } ≡ {λ,A, ρ̄, η̄}, used to parametrize
the CKM elements that enter the amplitudes. They are Gaussian
constrained to the values obtained from a SM fit of the unitarity triangle
[171].

• The P-wave form-factors parameters {α(FF )
l } ≡ {V,A0,...,2, T1,...,3} (see

Appendix A). They are Gaussian constrained from a combined fit to
Light-Cone Sum Rules and lattice QCD results as determined in Ref. [34].

• The P-wave non-local hadronic parameters (real and imaginary parts)
{α(λ)

k } for each polarization λ =⊥, ∥, 0 at a given order of the analytical
expansion zk (see Appendix B). They are free to float in the fit and are
expected to describe the charm-loop contribution to the signal amplitude.
In the following, an expansion up to z2 is considered as the nominal
configuration.

• The relative magnitude (gS) and phase (δS) between the P- and S-wave
in the Kπ system. Notice that these terms are needed to account for the
normalization of the S-wave with respect to the P-wave, since an analytical
normalization in mKπ ∈ (−∞,∞) is not allowed for the expression in
Eq. 10.9.

• The shift and scale factors of data with respect to the simulation for the
muon channel, sµσ, ∆µµ. The shift and the scaling for the electron channels
are obtained from the resonant modes and fixed in the final fit.

This corresponds to a total of 47 nuisance parameters, assuming that the non-
local hadronic model can be curtailed at z2. In addition to the above-mentioned
nuisance parameters floated in the fit, the following set of parameters (all
belonging to the S-wave contribution) are fixed in the nominal fit configuration.

• The S-wave form factor parameters {α(FF )
s } ≡ {f+, fT , f0}. For more

information see Appendix. D.

• The S-wave non-local hadronic parameters {αS0
k } are fixed to zero, i.e.

the contribution of non-local hadronic effects is ignored in the S-wave
amplitudes.

When including the parametrization of the background contributions in the
full fit, the number of total nuisance parameters grows to 109 and includes:

• The yield and the shape parameters for the combinatorial background in
B0 → K∗0µ+µ− decays, corresponding to 24 free parameters when both
runs are considered.
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• The yield and the shape parameters for the combinatorial background in
B0 → K∗0e+e− decays, corresponding to 26 free parameters when both
runs and trigger categories are considered. To improve the stability of the
fit, the shapes have been allowed to be different between trigger categories,
but are shared between different runs. This has been motivated by a study
performed on the same-sign sample and described in Appendix F.3.

• The yields of the double-semileptonic and partially reconstructed decays,
whose full parametrization, described in Sec. 10.2.2 and 10.2.3, respectively,
is fully fixed from simulation or control mode data. The only exception are
the exponential slopes of the DSL components, floated in data. Systematic
uncertainties arising from the choice of these models will be discussed in
Sec. 10.6.

A summary of the parameters floated in the fit can be found in Table 10.3. To be
sure to find the global minimum, each fit is repeated O(20) times with randomized
starting parameters. All the parameters, which have a Gaussian constraint in the
fit, e.g. form factors and CKM parameters, are initialized uniformly in a [+5σ,
-5σ] range. For all unconstrained parameters, a sufficiently large starting range
is chosen, namely [2, 6] and [-6, -2] for C̃e9 and C̃e10, respectively, and [-2, 1] for
∆C9 and [-1, 2] for ∆C10. The solution with the smallest negative log-likelihood
is taken as the default result.

The results of the amplitude fit to B0 → K∗0ℓ+ℓ− candidates in data are
shown, split for the different runs and trigger categories, in Appendix G. For
simplicity, Figures 10.14, 10.15, 10.16 show the fit result when the two runs are
merged together. The projections of the fit results are overlaid on the selected
data for the merged datasets. As can be seen, a good agreement is observed in all
projections. Some tensions can be noticed in the regions dominated by the DSL
background, but their impact is expected to be accommodated by the systematic
uncertainty associated to the modelling of this background component. The
values of the observables of interest are kept blinded.

Having obtained the maximum likelihood estimate of the parameters of
interest, θ̂, we then proceed to the determination of the corresponding confidence
intervals. In most practical applications, if the number of measurements
is big enough, the negative log-likelihood is, with good approximation, a
multidimensional parabola in the fit parameters θ. The covariance matrix
Cij can, in this approximation, be obtained from the inverse of the second-order
partial derivatives of the negative log-likelihood

C−1
ij = −∂ ln Ltot(x; θ)

∂θi∂θj
. (10.37)

An alternative possibility is to determine the interval for which the negative
log-likelihood increases of 0.5 with respect to its minimum. It can be shown
that this method leads to identical results as Eq. 10.37 in the case of a
parabolic function but, for a more generic shape, it allows to better follow
the behaviour of the likelihood allowing for asymmetric uncertainties to be
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Figure 10.14: Projection of the fit result for the B0 → K∗0µ+µ− amplitude fit
in central-q2. A combination of the Run 1 and Run 2 datasets and fit results is
shown.
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Figure 10.15: Projection of the fit result for the B0 → K∗0e+e− amplitude fit
for the trigger category L0E! in central-q2

c . A combination of the Run 1 and
Run 2 datasets and fit results is shown.
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Figure 10.16: Projection of the fit result for the B0 → K∗0e+e− amplitude fit for
the trigger category L0I in central-q2

c . A combination of the Run 1 and Run 2
datasets and fit results is shown.
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Table 10.3: Summary of the parameters floated in the amplitude data fits to
B0 → K∗0ℓ+ℓ− decays.

Parameters

Floating

• sµσ, ∆µµ for each run

• N µ
comb for each run,

• N e
comb, NB→Kππe+e− , NDSL for each run and trigger

category

• C̃e9 , C̃e10, ∆C9, ∆C10,

• α
(λ)
k , where k is the order of the z-expansion used

• gS , δS

• λµcomb, c
K;µ
l,comb, c

ℓ;µ
l,comb, c

ϕ;µ
l,comb, c

q2;µ
l,comb, c

mKπ ;µ
l,comb for each run,

• cK;e
l,comb, c

ℓ;e
l,comb, c

ϕ;e
l,comb, c

q2;e
l,comb, c

mKπ ;e
l,comb for each trigger

category,

• λecomb, λeDSL, for each run and trigger category

Gaussian
constr.

• λ, A, ρ̄, η̄

• V ≡ {V 0, V 1, V 2}

• A0 ≡ {A0
0,A1

0,A2
0}, A1 ≡ {A0

1,A1
1,A2

1}, A2 ≡ {A1
2,A2

2},

• T1 ≡ {T 0
1 ,T 1

1 ,T 2
1 }, T2 ≡ {T 1

2 T
2
2 }, T3 ≡ {T 0

3 ,T 1
3 ,T 2

3 }

computed. A multidimensional scan of the likelihood can be very computationally
expensive, since it additionally provides information not only on the uncertainties
of the parameters of interest ∆C9 and ∆C10, but also on all the nuisance
parameters, including their correlation. An alternative approach is to obtain a
confidence interval for the parameters of interest performing a “profiling” of the
likelihood [172]. This procedure consists in repeating the minimization of the
negative log-likelihood with respect to nuisance parameters, while the parameters
of interest are kept fixed. Mathematically, this corresponds to obtaining the 1D
or 2D profile functions ∆NLL(∆C9,10) and ∆NLL(∆C9,∆C10), which correspond
to:

∆NLL(∆C9,10) = min
θnuis,∆C10,9

[
− ln

(Ltot(∆C9,10; ∆C10,9, θnuis

Ltot(∆̂C9, ˆ∆C10, θ̂nuis)

)]
(10.38)
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and

∆NLL(∆C9,∆C10) = min
θnuis

[
− ln

( Ltot(∆C9,∆C10; θnuis
Ltot(∆̂C9, ˆ∆C10, θ̂nuis)

)]
. (10.39)

It is important to notice that this function is not a negative log-likelihood
function itself, but rather corresponds to a test statistics known as likelihood-
ratio[172]. Under the assumption that the hypotheses of Wilk’s theorem [173]
hold, it is possible to build the confidence intervals for the variables of
interest, exploiting the fact that this statistical test, when multiplied by two,
asymptotically corresponds to a χ2 distribution with a number of degrees of
freedom equal to the number of parameters of interest. In practice, when
performing a one-dimensional profiling, the uncertainty for the parameter of
interest considered corresponds to the distance from the minimum of the profile
function to the points where 2∆NLL has increased of one unit. For a two-
dimensional profiling, the confidence interval corresponds instead to the curve
where the function 2∆NLL has increased of 2.296 with respect to its minimum.
The values corresponding to the 2σ and 3σ confidence intervals are reported in
Table 10.4 for likelihoods profiled in 1D and 2D.

Table 10.4: Difference of negative log-likelihood used to determine the 1, 2, 3 σ
contours for onw and two-dimensional projections of WCs. Values are obtained
from the inverse CDF of a χ2 distribution with one and two degrees of freedom.

σ Coverage 2∆NLL
1D 2D

1 68.27% 1 2.296
2 95.45% 4 6.18
3 99.73% 9 11.83

The 1D likelihood profiles obtained in data for ∆C9 and ∆C10, together with
the corresponding confidence intervals, are shown in Figure 10.17 and reported in
Table 10.5. Overlaid to the points is shown, in blue, the sixth-order polynomial
function used to approximate the likelihood profile. The possibility to limit the
parametrization to a parabola has been considered, but was found to provide an
unsatisfactory description of the profiled points due their asymmetric behaviour
around the minimum. Alternatively, the possibility of parametrizing the points
below and above the minimum with two separate parabolas was investigated.
As the red and cyan curves in Figure 10.17 show, a good agreement with the
profiled points is observed using this parametrization. This is a nice feature,
since as long as the half-parabolic behaviour holds, the left and right confidence
intervals can be computed as multiples of the “1σ interval” as for a normal
Gaussian. The likelihood profile obtained in two-dimensions is shown instead
in Figure 10.18, together with third-order two-dimensional polynomial used to
approximate it and the confidence interval obtained.
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Figure 10.17: One-dimensional profile likelihood in the parameters ∆C9 (left)
and ∆C10 (right), centred at the corresponding blinded best fit value (red point).
The black points correspond to the points used in the likelihood profile, while the
blue line is the fit result obtained with a 6th order polynomial to approximate
the likelihood shape and obtain an estimate of the 1, 2, 3σ confidence intervals.
The red and cyan lines represent instead a parabolic fit to the profiled points
that stay to the left and right of the minimum, respectively.

Table 10.5: Confidence intervals for ∆C9 and ∆C10 centred around the blinded
best fit value as obtained from a one-dimensional profiling of the likelihood in
data.

σ ∆C9 ∆C10
left right left right

1 -0.257 0.262 -0.212 0.194
2 -0.553 0.513 -0.455 0.381
3 -0.866 0.774 -0.721 0.579

avg. 0.273 0.217

Even though the profiling of the likelihood improves the statistical properties
of the fit with respect to the parabolic approximation, the exact coverage of
the uncertainties is not ensured and needs to be verified in toys. The coverage
of the uncertainties obtained with this procedure is discussed in more detail in
Sec. 10.5.

10.5 Statistical properties of the fit

The statistical properties of the fit parameters of interest and the confidence in-
tervals obtained from the likelihood profile of Sec. 10.4 can be studied performing
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Figure 10.18: Two-dimensional profile likelihood in the parameters ∆C9 and
∆C10, centred at the corresponding blinded best fit value (red point). The black
points correspond to the points used to profile the likelihood, while the gray lines
correspond to a a 3rd order two-dimensional polynomial used to approximate
the likelihood shape and obtain an estimate of the 1, 2, 3σ confidence intervals,
shown by the indigo, teal and yellow contours. On the left, it is shown a three-
dimensional representation of the likelihood, while, on the right, is shown the
projection on the ∆C9 and ∆C10 plane. Next to each profiled point is reported
the value of ∆NLL obtained from the fit.

a set of toy experiments. A series of approximately 500 pseudoexperiments are
generated based on the full signal and background models considered in the full
data fit, including the separation of different runs and trigger categories (only for
electrons). This configuration corresponds exactly to the nominal model used to
fit the data. The generation is performed by setting the central values of all fit
parameters, e.g. Wilson coefficients, yields, background parameters, to the result
obtained from the blind fit to data. The only exception are the form factors
and CKM parameters, that are set to their corresponding central values from
LCSM/lattice-QCD and UTFitter predictions (see Sec. 10.4). This different
treatment is justified by the fact that these parameters are not floated freely in
the final fit, but rather Gaussian constrained to their predicted value. While
this caused no complication when performing the fit on data, care must be taken
when including these constraints in an ensemble of toy experiments. In particular,
the values of the fit parameters used in the generation of the ensembles have to
be kept always the same for a given set of pseudoexperiments, while the mean
of the external Gaussian constraints applied to a certain subset of parameters
has to be sampled based on a normal distribution centred at the corresponding
external value and with a standard deviation equal to its uncertainty [174]. As
a consequence, each toy will have Gaussian constraints applied with different
central values.
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Figure 10.19: One-dimensional fit parameter distributions for ∆C9 (left) and
∆C10 (right) in pseudoexperiments generated from the (blind) fit results. All
the distributions are centred at the values used for the generation of the toy
ensemble.

Table 10.6: Bias, expected sensitivity and correlation of the difference of Wilson
coefficients between muons and electrons.

Bias Stat. uncertainty 2D correlation
∆C9 0.010 ± 0.012 0.267 ± 0.008 0.584
∆C10 0.001 ± 0.010 0.216 ± 0.007

After the generation, the set of pseudoexperiments is fitted with the nominal
model used in the analysis. Figure 10.19 shows the distributions of the difference
of Wilson coefficients as obtained from fits to these ensembles. The width of
the obtained distributions is associated to the expected statistical uncertainty,
while a bias parameter can be defined as the difference between the expected
value of the distribution and the generated value. The expected statistical
uncertainty and bias are summarized in Table 10.6. No bias is observed for ∆C9
and ∆C10 with the current statistics. Additionally, the statistical uncertainty
obtained shows a remarkable agreement with the average 1σ confidence intervals
of Table 10.5. Figure 10.20 shows the two-dimensional distributions for the
Wilson coefficients of electrons and muons and their difference. As can be seen,
there is a correlation between the fit parameters of interest ∆C9 and ∆C10, whose
value is reported in Table 10.6. When estimating the compatibility with the SM,
it is fundamental to take this correlation into account.
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Figure 10.20: Two-dimensional fit parameter distributions for (C̃e9 , C̃e10), (C̃µ9 , C̃µ10)
and (∆C9, ∆C10) for pseudoexperiments generated from the (blind) fit results on
the top, middle and bottom row, respectively. All the distributions are centred
at the values used for the generation of the toy ensemble.

Toy experiments also allow to study the statistical coverage of the
uncertainties estimated profiling the likelihood. The coverage corresponds to
percentage of toys in which the true value of a parameter of interest θ is
contained in the quoted confidence interval [θ̂ − δθ−, θ̂ + δθ+], where θ̂ and
δθ± correspond to the best fit value and estimated asymmetric uncertainty in
each toy experiment. Intervals for which the probability of containing the true
value are compatible with the standard 68.27% are said to cover, and directly
correspond to a confidence interval for the true value of the parameter of interest.

The coverage is studied for an ensemble of toy experiments, by refitting
each of the pseudoexperiments with an alternative model where the values of
∆C9 and ∆C10 (∆C9 or ∆C10 for a 1D profile) are fixed to their generation
values. The difference between the negative log-likelihood of the alternative
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and standard fit configuration corresponds to the profile functions defined in
Eq. 10.39 (10.38), computed at the generated values of the parameters of
interest, ∆NLLgen ≡ ∆NLL(∆C9

gen,∆C10
gen) (∆NLLgen ≡ ∆NLL(∆Cgeni )).

If the uncertainties estimated using the profiling of the likelihood are covered,
the distributions of 2∆NLLgen should follow a χ2 distribution with a number
of degrees of freedom equal to the number of parameters that have been fixed
to perform the profiling: the number of degrees of freedom is 2 and 1 for the
2D and 1D likelihood profiles, respectively. Figures 10.21 and 10.22 show the
distribution of 2∆NLLgen for the 2D and the 1D profiling of the difference
of Wilson coefficients. The grey dashed lines correspond the 1-2-3 standard
deviation intervals and the number reported next to them are the fraction of
toys, in percentage, that fall below that value of χ2. Table 10.7 reports these
percentages for the three likelihood profiles performed and compares them with
the expected percentages in case of perfect coverage. The coverage observed is
compatible with the expected reference values, demonstrating the validity of the
use of the likelihood scan to estimate the uncertainty of the measurement.
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9,10]

0.0

0.1

0.2

0.3

0.4

0.5

65.64 ± 2.31

95.97 ± 0.96

99.76 ± 0.24

χ2[d.o. f . = 2]
toys

LHCb Unofficial

Figure 10.21: Distribution of 2∆NLLgen for the 2D-likelihood profile in ∆C9 and
∆C10, shown in blue. Superimposed, in red, the value of the χ2 distribution with
two degrees of freedom integrated in the bin. The grey dashed lines correspond
the the 1-2-3 standard deviation intervals defined in Table 10.4.

Table 10.7: Coverage of the 1, 2, 3 σ confidence intervals determined from
pseudoexperiments.

Interval Coverage Reference
∆C9 ∆C10 (∆C9, ∆C10)

1 σ 67.74 ± 2.53 63.37 ± 2.60 65.64 ± 2.31 68.27%
2 σ 96.19 ± 1.04 92.15 ± 1.45 95.97 ± 0.96 95.45%
3 σ 99.71 ± 0.29 99.71 ± 0.29 99.76 ± 0.24 99.73%
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Figure 10.22: Distribution of 2∆NLLgen for the 1D-likelihood profile in ∆C9 and
∆C10, shown in blue. Superimposed, in red, the value of the χ2 distribution with
one degree of freedom integrated in the bin. The grey dashed lines correspond
the the 1-2-3 standard deviation intervals.

10.6 Systematics

The uncertainty obtained from the likelihood profile described in Sec. 10.4
represents only part of the uncertainty budget of the final measurement. The
several assumptions made during the analysis described can have a sizable impact
on the measurement, and therefore need to be assessed properly and included
in the final uncertainty. These contributions, usually referred to as systematic
uncertainties, are estimated with simulated toys experiments, similarly to the ones
described in Sec. 10.5. Currently, the estimation of the systematic uncertainties
of the measurement is still ongoing. In the following, a discussion of the
contributions that are expected to dominate the systematic uncertainty budget
is presented, and an heuristic estimation of the total uncertainty anticipated is
provided.

The measurement proposed in this work follows quite closely the strategies
used in the ongoing measurements of the RK∗ branching fraction ratio [128] and
angular analysis of B0 → K∗0e+e− decays [140], with which it shares a sizable
fraction of the samples used for data and simulation. It is therefore reasonable to
expect that the most important sources of systematic uncertainties observed in
these two analyses will also constitute the most relevant part of the systematic
error budget of this measurement. Tables 10.8 and 10.9 report a preliminary
estimation of the systematic uncertainties for RK∗ and the angular observables
of B0 → K∗0e+e− decays, respectively.

As it can be seen, the dominant contribution to the uncertainty comes,
in both cases, from the contribution of misidentified backgrounds that peak
below the signal region (“Misidentified backgrounds” and “Peaking bkg”). At
first, the impact of neglecting these contributions in the fits has been studied
by both analysis repeating the fits to data for a set of different electron PID
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Table 10.8: Individual sources of systematic uncertainties on the RK∗

measurements in the central-q2 (RK∗) region [128]. All values are given in percent
relative to the central value. These values are indicative and are computed as
weighted averages of systematic variations determined in each data-taking period
and trigger category.

Table 10.9: Individual sources of systematic uncertainties on the measurement
of the angular observables of B0 → K∗0e+e− decays [140].
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10. Amplitude fits to B0 → K∗0ℓ+ℓ− decays

requirements. Since tightening the selections should reduce the size of the
misidentified backgrounds in data, a saturation effect is expected in the values
of the observables of interest obtained. With respect to the nominal PID
cut used, which is common between the analyses considered here, a variation
roughly equivalent to the statistical uncertainty was found before reaching
saturation. Since this behaviour was noticed in both measurements, it is expected
that a PID scan of this type would show similar deviations also in this work.
While the angular analysis of B0 → K∗0e+e− decays has currently estimated a
conservative systematic uncertainty based on the maximum deviation observed, in
the measurement of RK∗ it was chosen to include these misidentified backgrounds
in the final fit using a data-driven estimation of their contribution. The statistical
uncertainty associated with this procedure was found to be roughly a third of
the statistical uncertainty. A study similar to the one performed in Ref. [128] is
currently not available in this analysis, however, a systematic of similar relative
size is expected if the approach used can be extended to the multidimensional
fit of Chapter 10. The corresponding systematic contribution would then be of
the order of 0.09 and 0.07 for ∆C9 and ∆C10, respectively.

The choice of the model used in the parametrization of the specific
backgrounds considered in the final fit, i.e. double-semileptonic and partially
reconstructed contributions, is also an important source of systematic uncertainty
(see “Specific backgrounds”3 and “DSL”, “Comb DSL-like” and “Part. reco.”).
As already discussed in Sec. 10.2.2, the nominal parametrization of the double-
semileptonic component is obtained from a direct fit to a control region of
the LFV sample. In this configuration, the selected sample is expected to
be a good description of the mixture of DSL components that are present in
the B0 → K∗0e+e− candidates in data. This parametrization is preferred to
the use of a mixture of simulated samples due to its data-driven nature. The
systematic uncertainty associated with this choice is obtained by performing
300 pseudoexperiments, generated in the standard configuration presented in
Sec. 10.2.2, and fitted, firstly, with the matching DSL model and, afterwards,
with the model extracted from simulation, as discussed in Appendix F.1.3. A
similar procedure has been used to obtain the size of the systematic uncertainty
associated with the choice of the partially reconstructed background. A set of 300
pseudoexperiments has been generated in the standard configuration and fitted
firstly with the matching partially reconstructed model and afterwards with the
model extracted from B+ → K+

1 → (K+π+π−)e+e− simulation, as discussed
in Appendix F.2. The mean and the standard deviation of the toy-by-toy
difference associated with these two contributions is summarized in Table 10.10.
The systematic uncertainty due to the parametrization of the DSL (partially
reconstructed) background is obtained as the sum in quadrature of the mean
and standard deviation of the difference observed in toys, and corresponds to
0.075 and 0.056 (0.019 and 0.027) for ∆C9 and ∆C10, respectively.

Only other three contributions are expected to have a size comparable to
3Only the partially reconstructed contribution is considered in Ref. [128], since the DSL

component is vetoed.
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Table 10.10: Mean and standard deviation of the toy-by-toy difference in ∆C9
and ∆C10 for the preliminary systematic studies in the modelling of DSL and
partially backgrounds reconstructed.

DSL Part. Reco.
< ∆ > σ(∆) < ∆ > σ(∆)

∆C9 0.052 ± 0.004 0.054 ± 0.003 -0.012 ± 0.001 0.015 ± 0.001
∆C10 -0.027± 0.004 0.050 ± 0.003 -0.021 ± 0.001 0.017 ± 0.001

the previous: the systematic due to the model used in the generation of the
simulated samples (“Form factors”), the systematic linked to the correction of
the simulation (“Kinematics and multiplicity”, “Stability of rK∗

J/ψ ” and “Sim.
Corr.”), and the systematic due to the choice of the order of the Chebyshev
polynomials used to parametrize the acceptance (“Higher orders”). Assuming
for all three contributions uncertainties similar to ones observed for the DSL
(partially reconstructed) contribution, the overall systematic uncertainty would
correspond to roughly 0.18 and 0.14 (0.12 and 0.1) for both ∆C9 and ∆C10,
respectively. When these uncertainties are combined in quadrature with the
statistical uncertainties reported in Table 10.6, the overall reduction in sensitivity
is between 10 and 20% with respect to the statistical uncertainty alone.
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Chapter 11

Conclusions and future prospects
The work presented in this dissertation has described the strategy used for the
first direct determination of the observables that encode potential non-equal
couplings between muons and electrons, obtained from an amplitude analysis of
the decays of B0 → K∗0µ+µ− and B0 → K∗0e+e−.

The dataset analyzed corresponds to 9 fb−1 collected by the LHCb experiment
between the years 2011 and 2018. In the region of dilepton mass square between
1.1 and 7 GeV/c2, it was possible to isolate roughly 3400 and 1200 candidates of
B0 → K∗0µ+µ− and B0 → K∗0e+e− decays. A simultaneous amplitude analysis
of these candidates has been performed by means of an unbinned extended
maximum likelihood fit, where all the most important experimental effects
have been considered, e.g. different background contributions and efficiency
effects, and the observed yield in the signal modes was included as an additional
constraint on the observables ∆C9 and ∆C10.

The central value of these two observables is currently blinded, since a
complete estimation of all the most relevant systematic uncertainties is still
ongoing. The most important result of this work corresponds therefore to the
estimation of the sensitivity of the measurement, which is obtained directly from
a likelihood profile on data. This estimation has been confirmed by realistic
toys, where the coverage of the confidence intervals obtained from likelihood
scans was verified. Additionally, an heuristic estimation based on the preliminary
work of Refs. [128, 140] has shown that the systematic uncertainty is expected
to be between 50 and 70% of the current statistical uncertainty, suggesting
that at the end of Run 2 this measurement will still be statistically limited.
This analysis naturally includes all the information that can be extracted from
the measurements of the ratio of branching fractions and difference of angular
observables in B0 → K∗0ℓ+ℓ− decays and, thanks to its unbinned description
of the dilepton invariant mass squared, is expected to have better sensitivity to
the observables ∆C9 and ∆C10. A comparison of the expected sensitivity on the
difference of Wilson coefficients for the binned measurements of RK∗ and Q5
at the end of Run 2 is shown in Figure 11.1, together with their combination.
In red is shown the statistical sensitivity obtained from this analysis. As it
can be seen, the 1σ contour is well-within the confidence interval spanned by
the combination of the two binned observables, providing the most sensitive
measurement of ∆C9 and ∆C10 derived from B0 → K∗0ℓ+ℓ− decays.

During the last years, the LHCb spectrometer has undergone an upgrade,
which allowed it to start its Run 3 data-taking in the summer of 2022. This is just
the first step of the LHCb Upgrade program, which is expected to run for more
than 10 years and collect a minimum of 300 fb−1 at the end of its life. Ignoring
the advantages introduced by the implementation of a fully software based trigger
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Figure 11.1: The confidence interval obtained for ∆C9 and ∆C10 in this work
is compared to the expected combination of the binned LFU observables RK∗

and Q5 for the same expected statistics. The separate contribution of the two
observables is also shown. The confidence intervals for these two are obtained
with the software package flavio [175] assuming a SM scenario. The contours
shown correspond to the 1σ and 2σ confidence intervals.

Figure 11.2: Constraints on the ∆C9 and ∆C10 from electron and muon modes
with the Run 3 and Upgrade II datasets. The 3σ regions for the Run 3 data
sample are shown for the SM (solid blue), a vector-axial-vector new physics
contribution corresponding to ∆C9 = -∆C10 = -0.7 (red dotted) and for a purely
vector new physics contribution corresponding to ∆C9 = -1.4 (green dashed).
The shaded regions denote the corresponding constraints for the Upgrade II
dataset. More details are provided in Ref. [176]
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and potential improvements of the electromagnetic calorimeter, a minimum of
20000 B0 → K∗0e+e− decay events are expected to be collected during the LHCb
Upgrade [176]. This endeavour will allow to reduce the statistical uncertainty on
the difference in Wilson coefficients of at least a factor four. Such a sensitivity
would allow to use these decays, not only to establish the existence of NP if
present, but also to discriminate between different NP models, as shown in
Figure 11.2. The systematic uncertainties affecting the measurement, that if
unchanged would be larger than the statistical uncertainty, are also expected to
be similarly reduced with the additional statistics. This measurement is therefore
expected to be statistically limited even at the end of the LHCb Upgrade.
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Chapter 12

Afterword
After the submission of this work for review, the LHCb collaboration published
an update on the RK and RK∗ measurements, corresponding to the completion
of the work mentioned in Sec. 10.6. These results, obtained in two regions of
q2 corresponding to q2 ∈ [0.1, 1.1] GeV2/c4 (low-q2) and q2 ∈ [1.1, 6] GeV2/c4

(central-q2), supersede the previous work presented in Refs. [52, 60] and
correspond to the most precise determination of these quantities up to date.
These measurements, reported in Figure 12.1, show a remarkable compatibility
with the SM prediction. The difference between the central values published
in Refs. [52, 60] is explained by the presence in the final fit of misidentified
background events that were considered negligible in previous iterations of the
analyses, but that actually resulted to be sizable after a data-driven determination
of their contribution was carried out [177].

Even if the hints of lepton flavour non-universality in B+ → K+ℓ+ℓ− and
B0 → K∗0ℓ+ℓ− decays has disappeared, it is important to remember that
the deviations observed in the measurement of branching ratios and angular
observables of b→ s ℓ+ℓ− transitions still hold and are not affected in the same
way by the contribution of misidentified backgrounds. For this reason additional
work is needed to understand if the tensions observed are of NP origin or a
simple underestimation of the systematic uncertainty in the corresponding theory
predictions. Additionally, these updated results do not reduce the importance of
the work presented in this thesis, but if anything, they increase it. From one
side, the improvement in the sensitivity for the couplings ∆C9 and ∆C10 will help

Figure 12.1: Measured values of LFU observables in B+ → K+ℓ+ℓ− and
B0 → K∗0ℓ+ℓ− decays and their overall compatibility with the SM [177].
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12. Afterword

to further constrain the phase space available for any NP model to come. On
the other side, it is fundamental to test lepton flavour universality in different
aspects of the same decays, not only studying branching ratios but also their
angular distributions. These two aspects are not only sensitive to different NP
scenarios but also to different systematic uncertainties. The verification that a
coherent picture emerges from these two aspects represents a fundamental check
of the measurement performed. The analysis presented here is, at the moment,
the only one able provide such a check.
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Appendix A

P-wave form factors in the
narrow-width approximation

To express the B0 → Kπ matrix elements in terms of the B0 → K∗0 form factors
it is common to assume that the K∗0 decays on-shell. Under this approximation,
often referred to as narrow-width approximation (NWA), the form factors can be
accessed at low q2 using quark-hadron-duality arguments through QCD Light-
Cone Sum Rules [178, 179] and at high q2 from first principles using Lattice
QCD [35, 180]. Due to the complementarity of the two approaches, it is possible
to perform a combined fit at the predictions obtained in these two regimes and
obtain an effective parametrization that provides a consistent set of form factors
over the full q2 range [34]. It is therefore possible to re-express the form factors
introduced in Eq. 2.16 as:

F⊥(q2) =
√

2λ
MB(MB +MK∗0)V (q2) ,

F∥(q2) =
√

2(MB +MK∗0)
MB

A1(q2) ,

F0(q2) = 8MK∗0√
2
A12(q2) ,

FT
⊥(q2) =

√
2λ

M2
B

T1(q2) ,

FT
∥ (q2) =

√
2(M2

B −M2
K∗0)

M2
B

T2(q2) ,

FT
0 (q2) = 4MK∗0

√
q2

(MB +MK∗0)MB
T23(q2) ,

Ft(q2) =
√
λ√

q2MB

A0(q2) . (A.1)

A detailed description of the q2 functions V , A0,1,12, T1,2,23 is provided in
Appendix A.1. The only difference between the presented choice of form factors
and the basis commonly used in the literature (see Refs. [136, 181]) corresponds
to the definition of A12 and T23:

A12 = (MB +MK∗0)2((M2
B −MK∗0 − q2)A1 − λA2)

16MBM2
K∗0(MB +MK∗0) (A.2)

= q2/2(M2
B + 3M2

K∗0 − q2)A1 + λMK∗0/(MB +MK∗0)A3

8MBM2
K∗0(MB −MK∗0) (A.3)

220



Form factors from LCRS and LQCD fits

T23 = (M2
B −M2

K∗0)(M2
B + 3M2

K∗0 − q2)T2 − λT3

8MBM2
K∗0(MB −MK∗0) . (A.4)

A.1 Form factors from LCRS and LQCD fits

A series of fits is performed on sets of pseudo-data generated with correlated
theoretical uncertainties corresponding to the values of the standard form factors
at three q2 values both at low and high q2, using the parametrizations provided
by LCSR [34] and lattice QCD [35, 182] respectively. The fits are performed
using a simplified series expansion (SSE), based on the rapidly converging series
in the parameters

z(t) ≡
√
t+ − t−

√
t+ − t0√

t+ − t+ √
t+ − t0

, (A.5)

where t± = (MB ± MK∗0) and t0 = t+(1 −
√

1 − t−
t+

). It is then possible to
express Fi ∈ {V,A0,1,12, T1,2,23} as

Fi(q2) = Pi(q2)
∑
k

αik[z(q2) − z(0)]k , (A.6)
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Figure A.1: Combined LCSR and lattice fit to V,A0,1,12, T1,2,23, where lattice
data points are indicated in red, LCSR points in blue, the gray solid band shows
the combined three-parameter fit and the red dashed band the two-parameter
lattice fit from Ref. [182]. Plots reproduced from Ref [34].
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A. P-wave form factors in the narrow-width approximation

where Pi(q2) = (1 − q2/M2
K∗0)−1 is a simple pole corresponding to the first

resonance in the spectrum. For this application the expansion is truncated after
the quadratic term in z, corresponding for a maximum of three fit parameters
αi0,1,2 for each of the seven Fi. The fit results, as obtained in Ref. [34], are
summarized Fig. A.1, while Table A.2 reports the central values of the expansion
coefficients obtained.

Figure A.2: Fit results for the SSE expansion coefficients in the combined LCSR
and lattice fit as obtained in Ref. [34].

222



Appendix B

Long distance effects from
analyticity
Non-local matrix elements arising from the calculation of the time-ordered
product between four-quark operators, i.e. O1,2, and electromagnetic currents
are particularly difficult to determine reliably from first principles and have been
the focus of much attention over the last two decades. Different approaches
have been suggested to extract these contributions from data-driven analysis
either using empirical parametrization [122, 183, 184] or exploiting the analytical
properties of its structure [23, 124, 125, 185]. In the following, we will rely on
the parametrization presented in Ref. [23] and briefly summarize here.

The non-local hadronic functions Hλ(q2) can be expressed in terms of a
“conformal” variable z [186, 187]

z(q2) ≡
√
t+ − q2 −

√
t+ − t0√

t+ − q2 + √
t+ − t0

, t+ = (2MD)2 , t0 = t+−
√
t+(t+ −M2

ψ(2S)) ,

(B.1)
where

• 2MD corresponds to the threshold at which is possible to produce a two-
particle intermediate states (branch cut) through B0 → K∗0[D̄D](→ ℓ+ℓ−)
decays,

• Mψ(2S) is the mass of the ψ(2S) resonance that, together with the J/ψ ,
contributes to the decay as a one-particle intermediate state (pole).

This choice enables to map the cc̄ branch cut in the unit circumference |z| = 1 and
the region of q2 between −7 GeV2 and M2

ψ(2S) in |z| < 0.52. As a consequence,
the functions Hλ(z) are analytical for |z| < 1 except for the two simple poles for
zJ/ψ(1S) ≃ 0.18 and zψ(2S) ≃ −0.44, corresponding to the resonances J/ψ and
ψ(2S) respectively. Therefore, after dividing out these singularities

Hλ(z) =
1 − zz∗

J/ψ(1S)

z − zJ/ψ(1S)
·

1 − zz∗
ψ(2S)

z − zψ(2S)
· Ĥλ(z), (B.2)

the remaining functions Ĥλ(z) are analytical in |z| < 1 and can be Taylor-
expanded around z = 0. In addition, in order to improve the convergence of the
expansion, these non-local functions are assumed to inherit all the singularities
of the form factors, resulting in

Ĥλ(z) =
[ K∑
k=0

α
(λ)
k zk

]
Fλ(z) , (B.3)
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B. Long distance effects from analyticity

where α(λ)
k are complex coefficients, and the analytical expansion is truncated

after the term zk. This parametrization is expected to converge reasonably
well in the region of interest, |z| < 0.52,1 however, the truncation of the series
unavoidably introduces some model dependence.

Finally, using the property that the longitudinal correlator must vanish at
zero momentum transfer (see Ref. [23]), i.e. Ĥ0(q2 = 0) = 0, we can reduce by
one the number of complex parameters through the replacement

Ĥ0(z)
F0(z) = (z − z0) ·

K−1∑
k=0

α0
kz
k , (B.4)

where z0 = z(q2 = 0).

1The domain |z| < 0.52 includes q2 values between −7 GeV2 and M2
ψ(2S).
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Appendix C

Amplitude fits to
B0 → K∗0J/ψ (→ ℓ+ℓ−) data
candidates including partially
reconstructed backgrounds
In the following, the extension of the mass fits obtained in Sec. 8.3.2 with the
inclusion of the variables cos θK , cos θℓ, ϕ and m(Kπ) is presented. The signal
and background components have been parametrized using the same datasets
discussed in Sec. 8.3.2 and keeping the same mass parametrization already
described. The list below reports the parametrization of the components in the
remaining variables:

• B0 → K∗0J/ψ (→ ℓ+ℓ−) signal decays:
The signal component is parametrized as reported in Eq. 9.6, with an
effective acceptance ϵeff parametrized accounting for the specific set of
selections applied. The floating parameters for the signal component
correspond to the real and complex part of the amplitudes Ã⊥,∥,S0, width
and centre of Breit-Wigner in mKπ and the shift and scale of the invariant
mass peak. In electron fits the right-hand tail of the mass distribution is
also allowed to float via the scaling sα.

• Combinatorial:
The combinatorial background is modelled using Chebyshev polynomials
up to third (second) order for cos θK , up to second order for cos θℓ, up
to second (first) order for ϕ and up to first (second) order for mKπ for
muons (electrons), requiring factorization between the different variables.
The shape is allowed to float freely in data, together with the slope of its
exponential mass distribution and the corresponding yield.

• Partially reconstructed B → XJ/ψ(→ ℓ+ℓ−) decays:
This contribution is modelled from simulation separately for different
trigger categories but joining the different years of simulation available,
regardless of the different integrated luminosities as already discussed.
The invariant mass m(Kπℓℓ) is modelled with a binned KDE while
Chebyshev polynomials up to third order for cos θK , up to second order
for cos θℓ, up to second order for ϕ are used for muons and electrons. The
m(Kπ) mass, due to the contribution from real K∗0, presents a resonant
behaviour, parametrized using a combination of a linear function and a
Gaussian. Only for electrons, an additional Gaussian contribution is added
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C. Amplitude fits to B0 → K∗0J/ψ (→ ℓ+ℓ−) data candidates including partially
reconstructed backgrounds

to the Chebychev parametrization of cos θK , to improve the description
of the peaking behaviour around 0.6. This contribution, visible also in
muon modes but ignored there due to its smaller size, corresponds to
B+ → K+X(→ Y πJ/ψ ) decays, where the asymmetric behaviour in
cos θK is caused by the different average momentum of the kaon and pion,
similarly to what happens in double-semileptonic decays. The shapes
obtained are fixed from simulation, with the only parameter allowed to
float corresponding to the yield of the partially reconstructed component.
Figure C.1 shows the parametrization obtained in the trigger category L0L!
for muons and electrons, respectively shown in the left and right column.

The projections of the fits for muons and electrons in the trigger categories
L0L! for Run 2 are shown in Figs. C.2 and C.3. Similar results have been
obtained for the L0I trigger categories and are not reported here for brevity.

Overall the fit projections show a good agreement with the data with four
main exceptions: a large deviation in the region of cos θK between -1 and 0.5
that is consistent between electrons and muons, a large deviation in the region of
cos θK between 0.85 and 1 in the muons, a consistent deviation in the mKπ mass
in muons and a sizable deviation in the variant mass distribution for both lepton
flavours. The first three effects are also present in the simplified fit configuration
and are thus explained in Sec. 9.2.3. The distortion observed in the invariant
mass is instead different to what is observed in the simplified fit. Since the
mass only fit described in Sec. 8.3.2 shows a much better agreement in data,
it is expected that the deviations observed are caused by the introduction of
the additional distributions, most likely caused by a non-perfect correspondence
between the distributions obtained from simulation and the background content
present in data. The effect of the background distortion is however not considered
such to invalidate the proposed approach.

The comparison between the observables extracted and the reference values
listed in Table 9.5 are summarized in Fig. C.4. The values of the observables
for electron and muon channels in L0L! (L0I) can also be found explicitly
in Table C.1, together with their compatibility with previous measurements
and between themselves. To appropriately compare with the available results,
we computed the expected values of |AS |2 and δS in four bins of mKπ: [826,
861] MeV/c2, [861, 896] MeV/c2, [896, 931] MeV/c2 and [931, 966] MeV/c2, referred
for brevity as ∆i with i from 1 to 4. The procedure used follows the definition
in Eq. 9.11. The uncertainties reported are statistical only.

In general, the compatibility between P-wave observables for electrons
and muons in both trigger categories suggest that the current approach does
not introduce any difference between the decays that involve the two lepton
generations. A sizable difference is observed instead when considering the S-wave
observable δS , that is significantly lower in electrons with respect to muons.
The origin of this difference is not fully understood, but could be related to a
possible mismodelling of the partially reconstructed contribution from simulation.
This difference disappears when, in the simplified configuration fit of Sec. 9.2.3,
additional selections are applied to reduce as much as possible this contribution.

226



−1.0 −0.5 0.0 0.5 1.0

10

20

30

40

50

E
nt

ri
es

/
(0

.0
4)

weighted fit
data: 9727

−1.0 −0.5 0.0 0.5 1.0
cos θK

−5

0

5

LHCb Unofficial

−1.0 −0.5 0.0 0.5 1.0

25

50

75

100

125

150

E
nt

ri
es

/
(0

.0
4)

weighted fit
data: 33601

−1.0 −0.5 0.0 0.5 1.0
cos θK

−5

0

5

LHCb Unofficial

−1.0 −0.5 0.0 0.5 1.0

10

15

20

25

30

E
nt

ri
es

/
(0

.0
4)

weighted fit
data: 9727

−1.0 −0.5 0.0 0.5 1.0
cos θL

−5

0

5

LHCb Unofficial

−1.0 −0.5 0.0 0.5 1.0

50

60

70

80

90

E
nt

ri
es

/
(0

.0
4)

weighted fit
data: 33601

−1.0 −0.5 0.0 0.5 1.0
cos θL

−5

0

5

LHCb Unofficial

−2 0 2

15

20

25

30

E
nt

ri
es

/
(0

.1
3)

weighted fit
data: 9727

−3 −2 −1 0 1 2 3
φ

−5

0

5

LHCb Unofficial

−2 0 2

60

70

80

90

E
nt

ri
es

/
(0

.1
3)

weighted fit
data: 33601

−3 −2 −1 0 1 2 3
φ

−5

0

5

LHCb Unofficial

0.80 0.85 0.90 0.95 1.00
5

10

15

20

25

30

E
nt

ri
es

/
(0

.0
0G

eV
/c

2 )

weighted fit
data: 9727

0.80 0.85 0.90 0.95 1.00
mKπ[GeV/c2]

−5

0

5

LHCb Unofficial

0.80 0.85 0.90 0.95 1.00

40

60

80

100

120

E
nt

ri
es

/
(0

.0
0G

eV
/c

2 )

weighted fit
data: 33601

0.80 0.85 0.90 0.95 1.00
mKπ[GeV/c2]

−5

0

5

LHCb Unofficial

Figure C.1: Parametrization of the partially reconstructed components as
obtained from a fit to simulated events for the trigger category L0L! in the
muon and electron channel, shown in the left and right column respectively.
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C. Amplitude fits to B0 → K∗0J/ψ (→ ℓ+ℓ−) data candidates including partially
reconstructed backgrounds

When comparing with previous measurements, the P-wave observables show a
good agreement with respect to the results obtained with 1 fb−1 of data taken
in 2011, corresponding with the first columns in Table 9.5. Some tensions can
be noticed for S4 and S8 when comparing to the check performed in the angular
analysis of B0 → K∗0µ+µ− up to the year 2016. A stronger disagreement can be
seen when comparing S-wave and S-P interference terms. It is however important
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Figure C.2: Projection of the fit result for the B0 → K∗0J/ψ (→ µ+µ−) angular
fit in the L0L! trigger category for Run 2.

228



to stress that the uncertainties reported here are purely statistical in nature.
The compatibility between the different measurements must be re-evaluated once
all the systematics are taken into account.

The impact of ignoring the additional components has been briefly studied.
The data fits have been repeated including their contributions, with the angular
and m(Kπ) distributions fixed from simulation and constraining their expected
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Figure C.3: Projection of the fit result for the B0 → K∗0J/ψ (→ e+e−) angular
fit in the L0L! trigger category for Run 2.
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reconstructed backgrounds
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Figure C.4: Summary of amplitude parameters and the derived angular
observables for the simultaneous fit in Run 1 and Run 2 of electrons and muons.
The fits are performed separately in the trigger categories L0I (top) and L0L!
(bottom).

yields analogously to Sec. 8.3.2. Due to their small size, their inclusion has next
to no effect on the observables of the B0 → K∗0J/ψ (→ ℓ+ℓ−) decays and is not
reported here for brevity.
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Type (→ e+e−) ∆(σ)e+e−

LHCb 1fb−1 ∆(σ)e+e−

LHCb Run 1 +2016
(→ µ+µ−) ∆(σ)µ+µ−

LHCb 1fb−1
∆(σ)µ+µ−

LHCb Run 1 +2016
LFU

FL 0.5651 ± 0.0026 -0.82 0.78 0.5588 ± 0.0016 -1.62 -2.20 -2.06
FS 0.0508 ± 0.0016 -1.31 -1.87 0.0480 ± 0.0010 -1.59 -3.47 -1.48
S3 -0.0090 ± 0.0027 0.38 -2.90 -0.0049 ± 0.0017 0.80 -2.11 1.30
S4 -0.2491 ± 0.0017 0.14 0.70 -0.2447 ± 0.0010 0.86 3.27 2.26
S8 -0.0546 ± 0.0034 -0.85 0.03 -0.0484 ± 0.0020 -0.06 2.49 1.55
S9 -0.0845 ± 0.0029 -0.08 0.56 -0.0834 ± 0.0018 0.09 1.28 0.32
Ss1 -0.2057 ± 0.0058 – 3.37 -0.2231 ± 0.0035 – 0.95 -2.54
Ss2 0.0324 ± 0.0019 – 2.47 0.0356 ± 0.0011 – 4.67 1.43
Ss5 -0.0603 ± 0.0013 – 1.49 -0.0566 ± 0.0009 – 3.62 2.35
δS 2.1206 ± 0.0139 -0.81 – 2.1939 ± 0.0091 -0.15 – 4.42
δ∆1
S -2.9615 ± 0.0139 -46.29 – -2.8881 ± 0.0091 -45.87 – 4.42
δ∆2
S 2.6995 ± 0.0139 0.46 – 2.7729 ± 0.0091 1.32 – 4.42
δ∆3
S 1.6978 ± 0.0139 -2.53 – 1.7712 ± 0.0091 -1.77 – 4.42
δ∆4
S 1.2368 ± 0.0139 -2.55 – 1.3102 ± 0.0091 -1.92 – 4.42
δ⊥ 2.9147 ± 0.0144 -0.60 – 2.9416 ± 0.0084 0.04 – 1.62
δ∥ -2.9688 ± 0.0195 -0.65 – -2.9507 ± 0.0115 -0.26 – 0.80
|AS |2∆1

0.0920 ± 0.0028 -1.14 – 0.0873 ± 0.0017 -1.38 – -1.48
|AS |2∆2

0.0289 ± 0.0009 -2.84 – 0.0273 ± 0.0006 -3.08 – -1.48
|AS |2∆3

0.0373 ± 0.0012 -1.62 – 0.0352 ± 0.0007 -1.86 – -1.48
|AS |2∆4

0.1219 ± 0.0035 1.17 – 0.1158 ± 0.0021 0.76 – -1.48
|A⊥|2 0.2084 ± 0.0030 0.75 – 0.2156 ± 0.0019 1.66 – 2.04
|A∥|2 0.2265 ± 0.0030 -0.13 – 0.2255 ± 0.0019 -0.22 – -0.27

Type (→ e+e−) ∆(σ)e+e−

LHCb 1fb−1 ∆(σ)e+e−

LHCb Run 1 +2016
(→ µ+µ−) ∆(σ)µ+µ−

LHCb 1fb−1
∆(σ)µ+µ−

LHCb Run 1 +2016
LFU

FL 0.5615 ± 0.0023 -1.26 -0.55 0.5609 ± 0.0010 -1.37 -1.43 -0.23
FS 0.0490 ± 0.0015 -1.48 -2.62 0.0479 ± 0.0006 -1.60 -3.73 -0.68
S3 -0.0064 ± 0.0025 0.64 -2.14 -0.0045 ± 0.0011 0.85 -2.43 0.71
S4 -0.2480 ± 0.0015 0.32 1.28 -0.2440 ± 0.0007 1.00 4.10 2.48
S8 -0.0490 ± 0.0031 -0.13 1.65 -0.0493 ± 0.0013 -0.18 2.72 -0.09
S9 -0.0797 ± 0.0026 0.66 2.24 -0.0855 ± 0.0012 -0.25 0.43 -2.03
Ss1 -0.2008 ± 0.0056 – 4.32 -0.2191 ± 0.0023 – 2.35 -3.04
Ss2 0.0318 ± 0.0018 – 2.30 0.0338 ± 0.0008 – 4.12 0.99
Ss5 -0.0616 ± 0.0013 – 0.91 -0.0570 ± 0.0005 – 3.62 3.32
δS 2.1177 ± 0.0134 -0.83 – 2.1803 ± 0.0058 -0.27 – 4.29
δ∆1
S -2.9644 ± 0.0134 -46.33 – -2.9017 ± 0.0058 -46.05 – 4.29
δ∆2
S 2.6966 ± 0.0134 0.43 – 2.7593 ± 0.0058 1.17 – 4.29
δ∆3
S 1.6949 ± 0.0134 -2.56 – 1.7576 ± 0.0058 -1.92 – 4.29
δ∆4
S 1.2339 ± 0.0134 -2.58 – 1.2966 ± 0.0058 -2.05 – 4.29
δ⊥ 2.9397 ± 0.0128 -0.01 – 2.9380 ± 0.0053 -0.05 – -0.13
δ∥ -2.9712 ± 0.0177 -0.71 – -2.9419 ± 0.0078 -0.05 – 1.52
|AS |2∆1

0.0891 ± 0.0026 -1.29 – 0.0871 ± 0.0011 -1.39 – -0.68
|AS |2∆2

0.0279 ± 0.0009 -2.99 – 0.0273 ± 0.0004 -3.10 – -0.68
|AS |2∆3

0.0360 ± 0.0011 -1.77 – 0.0352 ± 0.0005 -1.87 – -0.68
|AS |2∆4

0.1181 ± 0.0034 0.91 – 0.1156 ± 0.0014 0.75 – -0.67
|A⊥|2 0.2129 ± 0.0027 1.28 – 0.2150 ± 0.0012 1.61 – 0.73
|A∥|2 0.2257 ± 0.0027 -0.21 – 0.2241 ± 0.0012 -0.36 – -0.54

Table C.1: Overview of the amplitude parameters and the derived angular
observables for the simultaneous fits in L0L! (top) and L0I (bottom) Run 1
and Run 2 for B0 → K∗0J/ψ (→ e+e−) and B0 → K∗0J/ψ (→ µ+µ−), indicated
here as (→ e+e−) and (→ µ+µ−) for brevity. Additionally the compatibility,
expressed as a number of standard deviations, of the obtained values with respect
to the reference reported in the first column of Table 9.5. The last columns
shows instead the compatibility between electron and muon channel.
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Appendix D

S-wave form factors
The scalar form factors f+, fT and f0 introduced in Sec. 10.1.1 can be described
by the following matrix elements,

⟨K∗
0 (k)|s̄γµγ5b|B(p)⟩ =

[
(p+ k)µ −

M2
B −M2

K∗
0

q2 qµ

]
f+(q2)

+
M2
B −M2

K∗
0

q2 qµ f0(q2) (D.1)

and

⟨K∗
0 (k)|s̄σµνγ5q

νb|B(p)⟩ = i
[
(M2

B −M2
K∗

0
)qµ − q2(p+ k)µ

]MB

q2 fT (q2) . (D.2)

They correspond to the form factors reported in Eq.10 of Ref. [166], except for
the transformation

fT 7→ q2

MB(MB +MK∗
0
)f

′
T , (D.3)

where f ′
T is defined in Ref. [166].

The form factors definition holds for a generic scalar-to-scalar transition,
but the exact evaluation of the f+, fT and f0 functions depends on the
mesons involved in the decay. Since the current theoretical knowledge on
the B0 → [Kπ]J=0 form factors is very limited, the S-wave form factors are fixed
in the amplitude fit and a systematic uncertainty will be assigned for this choice
in the model.

The nominal model for the S-wave form factors is based on Ref. [188], where
a calculation in the perturbative QCD approach and the dipole parametrization
has been adopted to access the momentum transfer dependence (see Eq.A3
of [188])

F (q2) = F (0)
1 + aF q2/m2

B + bF (q2/m2
B)2 . (D.4)

The resulting coefficients are summarized in Table D.1.

Table D.1: B0 → K∗
0 form factors as from Table II of [188].

F (0) aF bF
f+ 0.27 -2.1 1.2
f0 0.27 -1.2 0.08
fT 0.30 -2.2 1.2
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Appendix E

Improvements in the inclusion of
the Kπ invariant mass lineshape

The expression f̃J , introduced in Eq. 10.6, has been used in binned angular
analysis to describe the shape in q2 and mKπ of the P and S-wave amplitudes.
As already mentioned, only the term f892

BW and fLASS contains information
on the dynamics of the decay, while the remaining factors are obtained from
conservation of linear and angular momentum, with the Blatt-Weisskopf factor
functions that ensure a non-divergent behaviour of the amplitude. However,
when considering the expression obtained in Eq. 2.16 and 10.3 for the transversity
amplitudes of B0 → K∗0ℓ+ℓ−, it is possible to notice a correspondence between
the functions AL,R

λ and f̃P,S , once it is realized that p =
√
λ

2MB
. In particular,

considering only the p dependence, we have that:
f̃P ∝ √

p ∝ AL,R
⊥,∥,0,t , (E.1)

f̃S ∝
√
p3 ∝ AL,R

S0,St . (E.2)
This exact correspondence suggests that the factors √

p(p/p0) introduced by
Eq. 10.6 are actually already present in Eq. 2.16 and 10.3, and correspond
therefore to a double counting. On a similar line of thought, it can be noticed
that the phenomenological form factor B′(p, p0, d) simply corresponds to an
approximation of the actual B0 → K∗0 form factors and should be therefore
also removed.

A different discussion holds for the terms that describe the decay of the
K∗(892)0 or K∗(1430)0, together with the corresponding non-resonant S-wave.
The expressions obtained for the transversity amplitudes AL,R

λ assume indeed
only the transition to a resonant state and no amplitude for its subsequent decay
is considered.

Therefore, the parametrization described in Eq. 10.6, could actually be
improved with the modification of the f̃P and f̃S into:

f̃P (mKπ) →
(√

k · k

mKπ

)
B′
L=1(k, k892, d)

m2
Kπ −m2

892 − im892Γ892(mKπ) , (E.3)

f̃S(mKπ) →
√
k

(
1

cot δB − i
+ e2iδB 1

cot δR − i

)
. (E.4)

With this modification the modification of the transversity amplitudes to include
the mKπ contribution would correspond to

AL,R
0,⊥,∥,t(q

2,mKπ) → AL,R
0,⊥,∥,t(q

2) ·AP (mKπ) ,

AL,R
S0,St(q2,mKπ) → AL,R

S0,St(q2) ·AS(mKπ) ,
(E.5)
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E. Improvements in the inclusion of the Kπ invariant mass lineshape

where
AP (mKπ) = NP · f̃P (mKπ) ,
AS(mKπ) = NS · |gS |eiδS · f̃S(mKπ) .

(E.6)

The constants NP and NS are here defined requiring that the modulus
squared of AP and AS are normalized to unity in the entire physical region∫ ∞

0

∣∣Ni · fi(mKπ)
∣∣2dmKπ = 1, (E.7)

and no dependence on q2 in the normalization is now present. In this work
these improvements have not been considered due to the small impact that such
modifications are expected to have, together with the additional needed time
that reproducing all fits and toys would have meant.

It is however important to understand that, even with these improvements,
the expressions discussed here are still only an effective approximation of
the differential decay rate d5Γ

dq2 dmKπ dΩ⃗
. An attempt to improve on such a

parametrization, including the finite width of the K∗(892)0 and its decay,
including the full mKπ spectrum as been proposed in Ref. [189]. However,
while this is a clear step in the direction of having a coherent parametrization of
B0 → K∗0ℓ+ℓ− decays that includes its mKπ shape, to be fully implemented in
this context it would ideally require to have a corresponding parametrization in
the case of K∗(1430)0 and its non-resonant contributions. Such parametrization
is currently not available in the literature.
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Appendix F

Backgrounds modelling for
B0 → K∗0ℓ+ℓ−

F.1 Double-semileptonic background

F.1.1 A rough comparison of DSL in Kπeµ and Kπee data

Even though the simulation for B0 → D−(→ K∗0e−ν̄e)e+νe and B0 → D−(→
K∗0µ−[e−]ν̄)e+[µ+]ν points to the fact that the angular shapes are minimally
effected by the presence of an electron or a muon in the final state, it is important
to check the portability of the parametrization obtained from Kπeµ data to
Kπee data.

It is possible to do so by looking in both datasets at the mass window
m(Kπee) ∈ [3800, 4300] MeV/c2 after a tight MVA cut (MVA > 0.99). Here we
expect:

• only double-semileptonic cascade decays and combinatorial backgrounds
for Kπeµ data,

• double-semileptonic cascade decays, combinatorial, B0 → K∗0J/ψ leakage
and partially reconstructed for Kπee data.

A comparison between the cos θℓ distributions is shown in Fig. F.1(a) and allows
for three comments:

• the qualitative behaviour of the two distributions is similar as expected,
since the dominant contribution should be given by DSL,

• both samples present a second peak for values of cos θℓ close to -1 that is
not reproduced in simulation,

• the relative abundance of this peak is not the same between the two
samples, however additional sources of background in the Kπee could be
responsible for such differences (e.g. J/ψ-leakage or partially reconstructed
decays).

The presence of a second peak in data but not in simulation seems to point
to a reconstruction effect. One possible explanation for this discrepancy is a
contribution from combinatorial-like components in data, such as the combination
of a random K∗ with a true DSL event, which could show up as a symmetric
structure with peaks at both -1 and 1. This would imply two things: first
such combinatorial-like contribution could be probably merged in the standard
parametrization of the combinatorial, secondly, due to the fact that also the
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F. Backgrounds modelling for B0 → K∗0ℓ+ℓ−

B0 → K∗0J/ψ leakage and partially reconstructed are symmetric in cos θℓ, we
could manage to compare the asymmetric part of the DSL distribution (that is
the dominant) in data between the Kπeµ and the Kπee dataset, by subtracting
the left-hand side of the cos θℓ distribution from the right-hand side. This
attempt is shown in Fig. F.1(b), where the agreement shown between the two is
very good.

In conclusion, it seems that, where it is possible to have a meaningful
comparison, the agreement between the DSL shapes obtained from Kπeµ data
to Kπee is such that no differences are expected when using a parametrization
of the DSL background from Kπeµ as a proxy of the DSL in Kπee data.
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Figure F.1: On the left, a comparision between the cosθℓ distribution in
B0 → K∗0e+e− and B0 → K∗0e+±∓ data candidates selected in the DSL-
enriched mass region of m(Kπee) ∈ [3800, 4300] MeV/c2 with tight cut on the
combinatorial MVA. On the right, the same plot where a subtraction of the
symmetric component of the two distributions has been performed.

F.1.2 Including additional components to DSL simulation

To explain some of the differences observed between the LFV sample and the
single component simulation, additional contributions have been studied and
included in a mixture of different channels. Figure F.2 reports a screenshot
of the different components included in the decay, while Figure F.3 shows a
comparison between the simulation of B0 → D−(→ K∗0(→ K+π−)e−ν̄)e+ν
and the mixture chosen. As can be noticed no clear difference between the two
simulated samples can be noticed in the projections of the variables of interest.
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Double-semileptonic background

Figure F.2: Screenshot reporting the different contribution included in the
mixture of different double-semileptonic decays used in the check.

Figure F.3: Comparison between the simulation of B0 → D−(→ K∗0(→
K+π−)e−ν̄)e+ν and the mixture reported in Figure F.2.

F.1.3 DSL modelling from simulation

As an alternative parametrization, the double-semileptonic contribution can be
obtained from simulated decays of B0 → D−(→ K∗0e−ν̄)e+ν. The sample is
reconstructed as B0 → K∗0e+e− and undergoes the full selection chain of the
rare mode. Additionally, the events are required to have a MVA > 0.97, q2

c

in central-q2
c and to be in the mass range m(Kπe+e−) ∈ [4800, 5700] MeV/c2,

slightly larger than the mass range of the fit to the rare mode, to increase the
statistics available. The fit results obtained from a fit to these simulated samples,
for different years and trigger categories, is reported in Table F.1. The same
parametrization of Eq. 10.28 is used in these fits to parametrize the double-
semileptonic component. Figure F.4 shows a projection of the fit result obtained
for the Run 2 dataset in the L0I trigger category.
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Figure F.4: Parametrization of the B0 → D−(→ K∗0e−ν̄)e+ν simulated sample
corresponding to Run 2 in the L0I trigger category.
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Partially reconstructed B+ → K+
1 → (K+π+π−)e+e− decays

Table F.1: Parameter values obtained from fits to the simulated double-
semileptonic samples for all runs and trigger categories.

Year Run 1 Run 2
Type L0E! L0I L0E! L0I
cK1;DSL -0.825 ± 0.168 -0.573 ± 0.143 -0.540 ± 0.120 -0.525 ± 0.090
cϕ1;DSL 0.011 ± 0.053 0.060 ± 0.045 -0.056 ± 0.041 0.001 ± 0.025
cq

2

1;DSL 0.661 ± 0.164 0.589 ± 0.116 0.531 ± 0.099 0.704 ± 0.072
cK2;DSL 0.382 ± 0.139 0.334 ± 0.101 0.369 ± 0.083 0.297 ± 0.068
cϕ2;DSL -0.015 ± 0.015 0.009 ± 0.014 0.023 ± 0.014 -0.010 ± 0.007
cq

2

2;DSL 0.133 ± 0.176 -0.048 ± 0.121 0.068 ± 0.098 0.079 ± 0.072
cK3;DSL -0.542 ± 0.139 -0.470 ± 0.113 -0.295 ± 0.092 -0.353 ± 0.070
fKπG;DSL 0.810 ± 0.086 0.720 ± 0.072 0.812 ± 0.070 0.699 ± 0.046
aDSL 2.585 ± 0.946 0.344 ± 0.164 0.523 ± 0.553 -1.647 ± 10.086
µK

∗0 0.892 ± 0.004 0.898 ± 0.003 0.899 ± 0.003 0.899 ± 0.002
bDSL -1.986 ± 9.934 -0.237 ± 0.113 -0.393 ± 0.415 1.164 ± 7.582
σK

∗0 0.024 ± 0.003 0.024 ± 0.003 0.027 ± 0.003 0.021 ± 0.002

F.2 Partially reconstructed B+ → K+
1 → (K+π+π−)e+e−

decays

In the following are reported the fit results obtained from the parametrization
of B+ → K+

1 → (K+π+π−)e+e− simulated decays corresponding to Run 1
and Run 2 conditions, separately for the trigger categories L0I and L0E!. The
pdf used to parametrize the simulated samples corresponds exactly to the one
described in Sec. 10.2.3. Figure F.5 shows the result of a fit to the weighted Run 2
B+ → K+

1 → (K+π+π−)e+e− simulated decays in the L0I trigger category.
Table F.2 reports the corresponding best parameters for all runs and trigger
categories.
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F. Backgrounds modelling for B0 → K∗0ℓ+ℓ−

Table F.2: Parameter values obtained from fits to B+ → K+
1 e

+e− in Run 1 and
Run 2 for the trigger categories L0I and L0E!.

Year Run 1 Run 2
Type L0I L0E! L0I L0E!
cK1;PR -0.715 ± 0.105 -0.666 ± 0.114 -0.887 ± 0.027 -0.855 ± 0.033
cℓ1;PR -0.067 ± 0.109 -0.152 ± 0.104 -0.017 ± 0.025 0.002 ± 0.029
cϕ1;PR -0.050 ± 0.038 -0.001 ± 0.037 0.006 ± 0.009 -0.009 ± 0.011
cq

2

1;PR 0.183 ± 0.111 -0.092 ± 0.119 0.035 ± 0.030 0.068 ± 0.035
cK2;PR 0.024 ± 0.105 0.025 ± 0.112 0.261 ± 0.025 0.256 ± 0.029
cℓ2;PR -0.508 ± 0.122 -0.763 ± 0.112 -0.801 ± 0.029 -0.838 ± 0.033
cϕ2;PR 0.006 ± 0.012 -0.003 ± 0.011 -0.005 ± 0.003 -0.005 ± 0.003
cq

2

2;PR -0.014 ± 0.108 0.155 ± 0.116 0.141 ± 0.027 0.114 ± 0.032
cK3;PR -0.140 ± 0.099 -0.129 ± 0.101 -0.211 ± 0.024 -0.163 ± 0.029
fKπG;PR 0.314 ± 0.063 0.400 ± 0.147 0.248 ± 0.024 0.209 ± 0.024
aPR 0.001 ± 0.001 0.001 ± 0.002 0.002 ± 0.006 0.001 ± 0.008
µK

∗0

PR 0.887 ± 0.004 0.887 ± 0.007 0.896 ± 0.002 0.898 ± 0.002
bPR -0.001 ± 0.001 -0.001 ± 0.001 0.001 ± 0.004 0.000 ± 0.001
σK

∗0

PR 0.018 ± 0.004 0.028 ± 0.011 0.025 ± 0.002 0.020 ± 0.002
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Partially reconstructed B+ → K+
1 → (K+π+π−)e+e− decays
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Figure F.5: Result of the fit to the B+ → K+
1 e

+e− simulation sample in Run 2
for the trigger category L0I.
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F.3 On the possibility of joining the parametrization of the
combinatorial component

The possibility of joining the combinatorial components of different runs while
keeping them split for different trigger categories in B0 → K∗0e+e− data fits is
studied using the same-sign sample. The selections applied are aligned as much
as possible to the ones applied to the opposite-sign mode B0 → K∗0e+e−. but
additionally the following changes/selections are applied:

• a selection in q2
c corresponding to the central-q2

c region;

• a looser mass range: m(Kπee) ∈ [4900, 6800] MeV/c2;

• a looser MVA cut: MVA> 0.3;

• the only events taken are the ones corresponding to leptons of the same
sign. Samples including hadrons of the same sign are here ignored.

As can be seen, some of the selections have been loosened. This has been done
to increase the statistics available for this check. No major distortion is expected
due to these choices. To simplify the comparison the selected data has been
fitted using a standard combinatorial shape, as introduced in Sec. 10.2.1, where
the effect of the B+ → K+ℓ+ℓ− veto has not been considered. Additionally, the
order of the Chebyshev polynomials used are up to order 3 for cos θK , up to
order 5 for cos θℓ, up to order 2 for ϕ, q2 and mKπ. Figures F.6, F.7, F.8 and
F.7 show the result of the fits performed for Run 1 and Run 2 for the different
trigger categories. Three main features can be noticed: the L0I sample is three
times bigger than the L0E! and there is an overall good agreement between
the fit and the data, except for the cos θℓ distribution in Run 2 L0I, where a
dip around zero can be observed. It is now possible compare the distributions
obtained from the fits, by including also the uncertainty as obtained from the
fit result. This comparison is shown in Figures F.10 and F.11. As can be seen
there is an overall good agreement between the distributions, suggesting that
using a single shapes for different runs should introduce a negligible bias.
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Figure F.6: Fit to the same-sign sample for Run 1 in the L0E! trigger category.
The black points represent the data while the red line the best fit function.
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Figure F.7: Fit to the same-sign sample for Run 2 in the L0E! trigger category.
The black points represent the data while the red line the best fit function.
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Figure F.8: Fit to the same-sign sample for Run 1 in the L0I trigger category.
The black points represent the data while the red line the best fit function.
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Figure F.9: Fit to the same-sign sample for Run 2 in the L0I trigger category.
The black points represent the data while the red line the best fit function.
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Figure F.10: Comparison between the shapes obtained from fits to same-sign
data for the trigger category L0E! in Run 1 and Run 2.

247



F. Backgrounds modelling for B0 → K∗0ℓ+ℓ−

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cos K

0.2

0.4

0.6

0.8

1.0
Run1-L0I
Run2-L0ILHCb Unofficial

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cos

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Run1-L0I
Run2-L0ILHCb Unofficial

3 2 1 0 1 2 3

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19
Run1-L0I
Run2-L0ILHCb Unofficial

1 2 3 4 5 6 7
q2

c

0.14

0.16

0.18

0.20

0.22

0.24 Run1-L0I
Run2-L0ILHCb Unofficial

4900 5000 5100 5200 5300 5400 5500 5600 5700
m(K e + e )

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225 Run1-L0I
Run2-L0ILHCb Unofficial

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
m(K )

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0 Run1-L0I
Run2-L0ILHCb Unofficial

Figure F.11: Comparison between the shapes obtained from fits to same-sign
data for the trigger category L0I in Run 1 and Run 2.
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Appendix G

Blinded fit results to
B0 → K∗0ℓ+ℓ− decay candidates

In the following the fit results obtained for B0 → K∗0µ+µ− and B0 → K∗0e+e−

candidates, separately for different years and trigger categories are shown in
Figures from G.1 to G.6.
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Figure G.1: Projection of the fit result for the B0 → K∗0µ+µ− amplitude fit for
Run 1 in central-q2.
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Figure G.2: Projection of the fit result for the B0 → K∗0µ+µ− amplitude fit for
Run 2 in central-q2.
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Figure G.3: Projection of the fit result for the B0 → K∗0e+e− amplitude fit for
L0I Run 1 in central-q2
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Figure G.4: Projection of the fit result for the B0 → K∗0µ+µ− amplitude fit for
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Figure G.5: Projection of the fit result for the B0 → K∗0µ+µ− amplitude fit for
L0E! Run 1 in central-q2
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Figure G.6: Projection of the fit result for the B0 → K∗0µ+µ− amplitude fit for
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