

Assistant: Masafumi Horio

Received on 1st November Due on 8th November

Exercise 1 Chemical potential in two dimensions

- (a) Derive the density of states $D(\epsilon)$ of a two-dimensional gas of free electrons.
- (b) Show that the chemical potential of a Fermi gas in two dimensions is given by:

$$\mu(T) = k_{\rm B} T \ln \left[\exp \left(\frac{\pi n \hbar^2}{m k_{\rm B} T} \right) - 1 \right],\tag{1}$$

where $n = N/L^2$ is the area density of particles. Hint: Use $N = \int_0^\infty D(\epsilon) f(\epsilon) d\epsilon$.

- (c) In two dimensions, derive the Fermi energy $E_{\rm F}$ and express $\mu(0)$ in terms of the Fermi energy $E_{\rm F}$.
- (d) Make a plot of equation (1).

Exercise 2 Fermi energy $E_{\rm F}$ and Fermi temperature $T_{\rm F}$

The atom ³He has spin $\frac{1}{2}$ and is a fermion. The density of liquid ³He is 0.081 g/cm³ near T = 0 K. Calculate the Fermi energy $E_{\rm F}$ and Fermi temperature $T_{\rm F}$.

Exercise 3 Ground-state properties of an electron gas

Consider a three-dimensional gas of N free electrons at 0K.

- (a) Show that the kinetic energy is $U = \frac{3}{5}NE_{\rm F}$.
- (b) Calculate (i) the average velocity and (ii) the highest velocity of electrons when Fermi temperature is $T_{\rm F} = 10^4$ K.
- (c) Express the bulk modulus $K = -V \frac{\partial P}{\partial V}$ of the electron gas in terms of $n = \frac{N}{V}$ and $E_{\rm F}$. Note that the pressure P can be obtained through $P = -\frac{\partial U}{\partial V}$.
- (d) Calculate the bulk modulus of Na using (c) and the density 0.917 g/cm^3 , and show that the result is consistent with the literature value K = 6.3 GPa.