

Solid State Physics Exercise Sheet 10 Electronic band structure

HS19 Prof. Dr. Marta Gibert

Assistant: Masafumi Horio Received on 22^{nd} November Discussed on 3^{rd} December

Exercise 1 Nearly free electron bands in two dimensions

An electron of mass m moves in a square lattice of lattice spacing a. Consider the limit of a very weak potential where there is no band gap at the Brillouine-zone boundary.

- (a) Sketch $E(\mathbf{k})$ along the (0, 0)– $(\pi/a, \pi/a)$ and (0, 0)– $(\pi/a, 0)$ lines. Hint: Consider 4 paraboloids originating at the following Brillouin-zone centers: (0, 0), $(2\pi/a, 0)$, $(0, 2\pi/a)$, and $(2\pi/a, 2\pi/a)$.
- (b) With one electron per site in the crystal, draw the Fermi surface in the 1st Brillouin zone. Is this a metal or an insulator?
- (c) With two electrons per site, draw the Fermi surface in the 1st Brillouin zone. Is this a metal or an insulator?

Exercise 2 Band gap in two dimensions

We have a two-dimensional nearly free-electron system on a square lattice of lattice spacing a. The Fourier transform of the weak lattice potential is $V_{\mathbf{G}}$. We want to investigate the band structure around the $(\pi/a, \pi/a)$ point in the reciprocal space using the central equation.

- (a) Show that without perturbation the bands are four times degenerated at $(\pi/a, \pi/a)$.
- (b) From the central equation, construct a set of 4 equations using V_G with $\mathbf{G} = (0, 2\pi/a)$ and $\mathbf{G} = (2\pi/a, 2\pi/a)$ (Assume $V_{(0,0)} = 0$ for simplicity and neglect the other V_G terms as they are very small).
- (c) Calculate the gap at $(\pi/a, \pi/a)$ when $V_{(0,2\pi/a)} = 0$ and $V_{(2\pi/a,2\pi/a)} = V$.

Exercise 3 Instability at the Fermi wavenumber

Assume that a weak potential in the form of $V(x) = V_0 \cos(2k_{\rm F}x)$ is created for a one-dimensional nearly free electron system of lattice spacing a ($k_{\rm F}$ is the Fermi wavenumber and smaller than π/a).

- (a) Derive the Fourier component V_G with $G=2k_{\rm F}$, and calculate E(k) around $k=k_{\rm F}$.
- (b) Sketch E(k) within $-\pi/a \le k \le \pi/a$. Compare qualitatively the total energy of electrons with and without the potential V(x).