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QCD
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« The theory of the strong interaction, Quantum Chromodynamics (QCD), 
    is very similar to QED but with 3 conserved �colour� charges  

In QED: 
•  the electron carries one unit of charge 
•  the anti-electron carries one unit of anti-charge 
•  the force is mediated by a massless �gauge 
    boson��– the photon 

In QCD: 
•  quarks carry colour charge: 
•  anti-quarks carry anti-charge: 
•  The force is mediated by massless gluons 

SU(3) colour symmetry 

• This is an exact symmetry, unlike the approximate uds flavour  symmetry  
   discussed previously. 

«  In QCD, the strong interaction is invariant under rotations in colour space   

  i.e. the same for all three colours   



Symmetries and Conservation Laws
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e.g. rotation of the coordinate axes 
« Suppose physics is invariant under the transformation 

• To conserve probability normalisation require 

• For physical predictions to be unchanged by the symmetry transformation, 
   also require all QM matrix elements unchanged 

i.e. require 

therefore   commutes with the Hamiltonian 

« Now consider the infinitesimal transformation    (    small ) 

(      is called the generator of the transformation) 

has to be unitary i.e. 
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•  For       to be unitary 

neglecting terms in   

i.e.        is Hermitian and therefore corresponds to an observable quantity       ! 
• Furthermore, 

Symmetry          Conservation Law 

Example: Infinitesimal spatial translation 

• Translational invariance of physics implies momentum conservation !  

i.e.        is a conserved quantity.  

«  For each symmetry of nature have an observable conserved quantity 

is conserved 

i.e. expect physics to be invariant under 

but 

The generator of the symmetry transformation is     , 

But from QM 

Symmetries and Conservation Laws
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Symmetries and Conservation Laws
•  In general the symmetry operation may depend on more than one parameter   

For example for an infinitesimal 3D linear translation  :  

•  So far have only considered an infinitesimal transformation, however a finite  
    transformation can be expressed as a series of infinitesimal transformations     

Example: Finite spatial translation in 1D:                          with 

i.e. obtain the expected Taylor expansion 
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Isospin
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• The proton and neutron have very similar masses and the nuclear 
   force is found to be approximately charge-independent, i.e. 

• To reflect this symmetry, Heisenberg (1932) proposed that if you could  
   �switch off� the electric charge of the proton  

There would be no way to distinguish  
       between a proton and neutron 

• Proposed that the  neutron and proton should be considered as  
   two states of a single entity; the nucleon 

«  Analogous to the spin-up/spin-down states of a spin-½ particle 
ISOSPIN 

• The neutron and proton form an isospin doublet with total isospin I = ½  and 
   third component I3 = ± ½  

«  Expect physics to be invariant under rotations in this space 
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Flavour Symmetry
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«  Assume the strong interaction treats all quark flavours equally (it does) 

• Because    : 
  The strong interaction possesses an approximate flavour symmetry 
   i.e. from the point of view of the strong interaction nothing changes 
   if all up quarks are replaced by down quarks and vice versa.                      

We can extend this idea to the quarks: 

•  Express the invariance of the strong interaction under                as  
   invariance under �rotations� in an abstract isospin space   

•  Choose the basis 

The 2x2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters 
But there are four constraints from   

8 – 4 = 4 independent matrices 
• In the language of group theory the four matrices form the U(2) group 
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 not a flavour transformation and of no relevance here. 

•  For an infinitesimal transformation, in terms of the Hermitian generators 

•  A linearly independent choice for        are the Pauli spin matrices 

•  The proposed flavour symmetry of the strong interaction has the same  
    transformation properties as SPIN ! 

•  One of the matrices corresponds to multiplying by a phase factor 

•  Define ISOSPIN: 

•  The remaining three matrices form an SU(2) group (special unitary) with 

•  Check this works, for an infinitesimal transformation 

Which is, as required, unitary and has unit determinant 

•   

Flavour Symmetry
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Properties of Isospin
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•  Isospin has the exactly the same properties as spin 

•  The eigenstates are exact analogues of the eigenstates of ordinary 
   angular momentum 

with 
•  In terms of isospin: 

d u

As in the case of spin, have three non-commuting operators,                , and  
even though all three correspond to observables, can�t know them simultaneously.  
So label states in terms of  total isospin      and the third component of isospin 

NOTE: isospin has nothing to do with spin – just the same mathematics 

•  In general       
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•  Can define isospin ladder operators – analogous to spin ladder operators 

«  Combination of isospin: e.g. what is the isospin of a system of two d quarks, 
    is exactly analogous to combination of  spin  (i.e. angular momentum) 

•       additive :   

•      in integer steps from                             to    
«  Assumed symmetry of Strong Interaction under isospin transformations 
     implies the existence of conserved quantites 

•  In strong interactions       and       are conserved, analogous to conservation of 
         and       for angular momentum          

Step up/down in      until reach end of multiplet 

•  Ladder operators turn                 and  

u ¦ d d ¦ u 

Properties of Isospin

Nuclear and Particle Physics II



SU(3) Flavour
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«  Extend these ideas to include the strange quark. Since                            don�t 
     have an exact symmetry. But        not so very different from                  and can  
     treat the strong interaction (and resulting hadron states)  as if it were  
     symmetric under   
•  NOTE: any results obtained from this assumption are only approximate 
               as the symmetry is not exact.   

•  The 3x3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters 
   There are 9 constraints from   

Can form 18 – 9  = 9 linearly independent matrices  
These 9 matrices form a U(3) group.  

•  The remaining 8 matrices have                     and form an SU(3) group  

•  The assumed uds flavour symmetry can be expressed as 

•  As before, one matrix is simply the identity multiplied by a complex phase and  
    is of no interest in the context of flavour symmetry 

•  The eight matrices (the Hermitian generators) are: 
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SU(3) Flavour
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« In SU(3) flavour, the three quark states are represented by: 

« In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows 
   us to write the first three matrices: 

u 1  d i.e. 

with 

§  The third component of isospin is now written 

§       �counts the number of up quarks – number of down quarks in a state  

d u§  As before, ladder operators 
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SU(3) Flavour
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u 1  s 

d 1  s 

§  Now consider the matrices corresponding to the  u 1  s and d 1  s   

• Define the eighth matrix,      ,  as the linear combination:   

which specifies the �vertical position� in the 2D plane 

•  Hence in addition to                                   have two other traceless diagonal matrices  

•  However the three diagonal matrices are not be independent.  

d u

s
�Only need two axes (quantum numbers)  
to specify a state in the 2D plane�: (I3,Y)  
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SU(3) Flavour
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« The other six matrices form six ladder operators which step between the states 

u 1  d 

u 1  s 

d 1  s 

d u

s

with 

and the eight Gell-Mann matrices  
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«  Represent               SU(3) colour states by: 

«  Colour states can be labelled by two quantum numbers: 
s        colour isospin 
s        colour hypercharge 

Exactly analogous to labelling u,d,s flavour states by       and   
«  Each quark (anti-quark) can have the following colour quantum numbers: 

quarks anti-quarks 



Quark-gluon interaction
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• Representing the colour part of the fermion wave-functions by:  

• The QCD qqg vertex is written: 

• Hence the fundamental quark - gluon QCD interaction can be written  

• Particle wave-functions 

• Only difference w.r.t. QED is the insertion of the 3x3  
     SU(3) Gell-Mann matrices 

q q 

colour i ¦ j 

• Isolating the colour part:  

Gluon a 



Feynman Rules for QCD
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  Matrix Element    -iM =  product of all factors 

  External Lines 
outgoing quark 

outgoing anti-quark 
incoming anti-quark 

incoming quark 

spin 1/2 

spin 1 outgoing gluon 
incoming gluon 

  Internal Lines (propagators) 

spin 1  gluon 

a, b = 1,2,…,8 are gluon colour indices 
  Vertex Factors 

spin 1/2   quark 

i, j = 1,2,3 are quark colours,        

  + 3 gluon and 4 gluon interaction vertices 
a = 1,2,..8  are the Gell-Mann SU(3) matrices        



QCD Scattering
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u u 

d d 

«  Consider QCD scattering of an up and a down quark  
• The incoming and out-going quark colours are 
    labelled by 
•  In terms of colour this scattering is 

•  The 8 different gluons are accounted for by 
    the colour indices 
• NOTE: the δ-function in the propagator ensures 
              a = b, i.e. the gluon �emitted� at a is the 
              same as that �absorbed� at b       

«  Applying the Feynman rules: 

where summation over a and b (and µ and ν) is implied. 
«  Summing over a and b using the δ-function gives:  

Sum over all 8 gluons (repeated indices) 



QED vs QCD
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QED 

µ– 

e– 

µ– 

e– 

QCD u u 

d d 

«  QCD Matrix Element = QED Matrix Element with: 

or equivalently •   

+ QCD Matrix Element includes an additional �colour factor� 



QCD Color Factor
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r r 

r r 

• QCD colour factors reflect the gluon states that are involved 

� Configurations involving a single colour 

Gluons: 
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r r 

r r 

• QCD colour factors reflect the gluon states that are involved 

� Configurations involving a single colour 

Similarly find  

• Only matrices with non-zero entries in 11 position are involved 

Gluons: 

QCD Color Factor
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QCD Color Factor
r r 

b b 

� Other configurations where quarks don�t change colour  
• Only matrices with non-zero entries in 11 and 33 position  
  are involved 

e.g.   

Similarly  
� Configurations where quarks swap colours  e.g.   

g r 

g r 

• Only matrices with non-zero entries in 12 and 21 position  
  are involved 

� Configurations involving 3 colours  e.g.   
b r 

b g 

• Only matrices with non-zero entries in the 13 and 32 position  
• But none of the  λ  matrices have non-zero entries in  the 
   13 and 32 positions.  Hence the colour factor is zero 

«  colour is conserved 

Gluons 
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QCD Color Factor (anti-quark)
•  Recall the colour part of wave-function:  
•  The QCD qqg vertex was written: 

« Now consider the anti-quark vertex 

q q 

Note that the incoming anti-particle now enters on the LHS of the expression  

•  The QCD qqg vertex is: 

• For which the colour part is  i.e indices ij  are  
swapped with respect 
to the quark case 

•  Hence  

•  c.f. the quark - gluon QCD interaction  
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Quark-Antiquark annihilation
« Finally we can consider the quark – anti-quark annihilation 

q 

q 

QCD vertex: 

with 
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QCD Color Factor

q q 

q q 

q q 

q q 

q q 

q q 

•  Consequently the colour factors for the different diagrams are: 

Colour index of adjoint spinor comes first 

e.g. 
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Quark-antiquark scattering
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Quark-antiquark scattering
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Running Coupling Constant

QED •  �bare� charge of electron screened  
     by virtual e+e– pairs 
•   behaves like a polarizable dielectric 

-Q
+Q

--

-- -+

+
+

+
+

-+
-

+

- +

«  Giving an infinite series which can be summed and is equivalent to 
     a single diagram with �running� coupling constant 

+ + +…… 

«  In terms of Feynman diagrams: 

«  Same final state so add matrix element amplitudes: 

Note sign 
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Running Coupling Constant

«  In QED, running coupling increases  
    very slowly 

• Atomic physics: 

• High energy physics: 

OPAL Collaboration, Eur. Phys. J. C33 (2004) 

«  Might worry that coupling becomes  
    infinite at 

         i.e. at 

•  But quantum gravity effects would come 
   in way below this energy and it is 
   highly unlikely that QED �as is� would 
   be valid in this regime 
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Running Coupling Constant
QCD Similar to QED but also have gluon loops  

+ + + +… 

Fermion Loop Boson Loops 

«  Bosonic loops �interfere negatively�  

with 

 αS  decreases with Q2 Nobel Prize for Physics, 2004 
(Gross, Politzer, Wilczek) 

= no. of colours 
= no. of quark flavours 

«  Remembering adding amplitudes, so can get negative interference and the sum 
     can be smaller than the original diagram alone  
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Running Coupling Constant

QCD 
Prediction 

ë  As predicted by QCD,  
    αS decreases with Q2  

«  At low      : αS is large, e.g. at                         find αS ~ 1 
• Can�t use perturbation theory ! This is the reason why QCD calculations at 
   low energies are so difficult, e.g. properties hadrons, hadronisation of 
   quarks to jets,…  

«  At high       : αS is rather small, e.g. at                    find  αS ~ 0.12 

Asymptotic Freedom 

• Can use perturbation theory and this is the reason that in DIS at high        
  quarks behave as if they are quasi-free (i.e. only weakly bound within hadrons) 

«  Measure αS in many ways: 
•  jet rates 
•  DIS   
•  tau decays  
•  bottomonium decays 
•  +… 
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Running Coupling Constant
«  Superficially QCD very similar to QED 
«  But gluon self-interactions are believed to result in colour confinement 
«  All hadrons are colour singlets which explains why only observe  

Mesons Baryons 

«  A low energies  
Can�t use perturbation theory ! 

«  Coupling constant runs, smaller coupling at higher energy scales  

Non-Perturbative regime 

Can use perturbation theory 

Asymptotic Freedom 

«  Where calculations can be performed, QCD provides a good description 
      of relevant experimental data  


